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Abstract—Federated learning (FL) is a popular collaborative distributed machine learning paradigm across mobile devices. However,

practical FL over resource constrained mobile devices confronts multiple challenges, e.g., the local on-device training and model

updates in FL are power hungry and radio resource intensive for mobile devices. To address these challenges, in this paper, we attempt

to take FL into the design of future wireless networks and develop a novel joint design of wireless transmission and weight quantization

for energy efficient FL over mobile devices. Specifically, we develop flexible weight quantization schemes to facilitate on-device local

training over heterogeneous mobile devices. Based on the observation that the energy consumption of local computing is comparable

to that of model updates, we formulate the energy efficient FL problem into a mixed-integer programming problem where the

quantization and spectrum resource allocation strategies are jointly determined for heterogeneous mobile devices to minimize the

overall FL energy consumption (computation + transmissions) while guaranteeing model performance and training latency. Since the

optimization variables of the problem are strongly coupled, an efficient iterative algorithm is proposed, where the bandwidth allocation

and weight quantization levels are derived. Extensive simulations are conducted to verify the effectiveness of the proposed scheme.

Index Terms—Federated learning over mobile devices, weight quantization, device heterogeneity

Ç

1 INTRODUCTION

DUE to the incredible surge ofmobile data and the growing
computing capabilities of mobile devices, it becomes a

trend to apply deep learning (DL) on these devices to support
fast responsive and customized intelligent applications.
Recently, federated learning (FL) has been regarded as a
promising DL solution to providing an efficient, flexible, and
privacy-preserving learning framework over a large number
of mobile devices. Under the FL framework [1], each mobile
device executes model training locally and then transmits
the model updates, instead of raw data, to an FL server. The
server will then aggregate the local models to obtain the
global model and broadcast it to the participating devices. Its
potential has prompted wide applications in various
domains such as keyboard predictions [2], physical hazards
detection in smart home [3], health event detection [4], and
vehicular networks [5]. Unfortunately, it also faces many sig-
nificant challenges when deploying FL over mobile devices
in practice. First, although mobile devices are gradually
equipped with artificial intelligence (AI) computing capabili-
ties, the limited resources (e.g., battery power, computing
and storage capacity) restrain them from training deep and
complicated learning models at scale. Second, it is unclear
how to establish an effective wireless network architecture to
support FL over mobile devices. Finally, the power-hungry
local computing and wireless communications during itera-
tions in FL may be too much for the power-constrained
mobile devices to afford.
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The mismatch between the computing and storage
requirements of DL models and the limited resources of
mobile devices becomes even more challenging due to the
increasing complexity of the state-of-art DL models. To
address this issue, one of the most popular solutions is to
compress trained DL models [6], [7], [8]. Han et a. [7] suc-
cessfully applied multiple compression methods, e.g., prun-
ing and quantization, to several large-scale neural networks
(e.g., AlexNet and VGG-16). These compression techniques
help reduce model complexity by multiple orders of magni-
tude and speed up model inference on mobile devices.
However, on-device training is less explored and more com-
plicated than its inference counterpart. Some pioneering
works [9], [10] have made efforts on quantizing the model
parameters to make it possible to conduct computationally
efficient on-device training. Nevertheless, most existing
compressed on-device learning frameworks and the associ-
ated convergence analysis for the potential on-device train-
ing only consider the case of a single mobile device. A few
works, such as [11], have considered quantized on-device
training in distributed settings. However, they assign the
same quantization strategy for different mobile devices. In
practice, FL may encompass massively distributed mobile
devices that are highly heterogeneous in computing capabil-
ity and communication conditions. Thus, it is in dire need to
develop a flexible quantization scheme catering to the het-
erogeneous devices and investigate the impacts of such het-
erogeneity on learning performance.

Besides the on-device training for local computing, the
energy consumption for FL over mobile devices also
includes the wireless communications for the intermediate
model updates. Particularly, with the advance of computing
hardware and future wireless communication techniques,
like 5G and beyond (5G+) [12], we have observed that the
energy consumption for local computing in FL is compara-
ble to that for the wireless transmissions on mobile devices.
For instance, the energy consumption of local computing
(e.g., 42.75J for one Tesla P100 GPU of one training iteration
for Alexnet with batch size of 128) is comparable to that of
today’s wireless communications (e.g., 38.4J for transmitting
240MB Alexnet model parameters at 100 Mbps data rate
[13]). Thus, a viable design of the energy efficient FL over
mobile devices has to consider the energy consumption of
both “working” (i.e., local computing) and “talking” (i.e.,
wireless communications). However, most existing works
in wireless communities have mainly conducted the radio
resource allocation under the FL convergence constraints
[14], [15], [16], while neglecting the energy consumption
during learning. Moreover, among the previous works, the
targeted learning models are either relatively simple (i.e.,
with convex loss functions) or shallow networks [14], [15],
[16], [17], which is inconsistent with the current trend of the
overparameterized DL models. On the other hand, most
efforts in the machine learning communities have focused
on communication efficient FL algorithmic designs, such as
compressing the size of the model updates or reducing the
update frequency during the training phase. The basic
assumption is that the wireless transmission is slow, which
results in the bottleneck to support complicated learning
models over mobile devices. Therefore, the goal of such
designs is to reduce the number of communications in

model updates without considering the advance of wireless
transmissions.

Fortunately, the future wireless transmissions (e.g., 5G/
6G cellular, WiFi-6 or future version of WiFi), featured by
very high data rate (1 Gbps or more [12]) with ultra low
latency of 1 ms or less for massive number of devices, can
be leveraged to relieve the communication bottleneck with
proper design. Furthermore, the multi-access edge comput-
ing in the future networks enhances the computing capabili-
ties at the edge, and hence provides an ideal architecture to
support viable FL.

Motivated by the aforementioned challenges (i.e., ineffi-
cient on-device training and large overall energy consump-
tion in FL training), in this paper, we develop a wireless
transmission and on-device weight quantization co-design
for energy efficient FL over heterogeneous mobile devices.
We aim to 1) facilitate efficient on-device training on hetero-
geneous local devices via a flexible quantization scheme,
and 2) minimize the overall energy consumption during the
FL learning process by considering the learning perfor-
mance and training latency. Based on the derived conver-
gence analysis, we formulate the energy minimization
problem to determine the optimal strategy in term of local
iterations, quantization levels, and bandwidth allocations.
Our major contributions are summarized as follows.

� We propose a novel efficient FL scheme over mobile
devices to reduce the overall energy consumption in
communication and computing. Briefly, subject to
their current computing capacities, the participating
mobile devices are allowed to compress the model
and compute the gradients of the compressed ver-
sion of the models. Meanwhile, for a given training
time threshold, the network resource allocation is to
minimize the total computing and communication
energy cost during FL training.

� To facilitate on-device training for FL over heteroge-
neous mobile devices, weight quantization is
adapted to meet the resource demands while main-
taining the model performance by representing
model parameters with lower bit-widths. We further
provide the theoretical analysis of the convergence
rate of FL with quantization and obtain a closed-
form expression for the novel convergence bound in
order to explore the relationship between the weight
quantization error, and the performance of the FL
algorithm.

� Based on the obtained theoretical convergence
bound, the energy minimization during FL training
is formulated as a mixed-integer nonlinear problem
to balance the computing and communication costs
by jointly determining the bandwidth allocation and
weight quantization levels for each mobile device.
An efficient iterative algorithm is proposed with low
complexity, in which we derive new closed-form sol-
utions to determining the bandwidth allocation and
weight quantization levels.

� We evaluate the performance of our proposed solu-
tion via extensive simulations using various open
datasets and models to verify the effectiveness of our
proposed scheme. Compared with existing schemes,
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our proposed method shows significant superiority
in terms of energy efficiency for FL over heteroge-
neous devices.

The rest of this paper is organized as follows. The related
work is discussed in Section 2. In Section 3, a detailed
description of the system model is presented and the con-
vergence analysis of the proposed FL with weight quantiza-
tion is also discussed. The energy minimization, joint
quantization selection, and bandwidth allocation algorithm
are presented in Section 4. In Section 5, the feasible solutions
from the real datasets are analyzed. The paper is concluded
in Section 6.

2 RELATED WORK

2.1 Cost-Efficient Design for FL Over Wireless
Networks

Recognizing that training large-scale FL models over mobile
devices can be both time and energy consuming, several
research efforts have been made on decreasing these costs via
device scheduling [18], network optimization [17] and
resource utilization optimization [15], [19], [20], [21], [22], [23],
[24]. In particular, the resource allocation for optimizing over-
all FL energy efficiencywas studied in [21], [22], [23], [24]. Mo
et a. in [23] have designed the computing and communication
resources allocation to minimize the energy consumption
while only considering the CPU models for mobile devices.
Zeng et a. [21] proposed to partition the computing workload
between CPU-GPU to improve the computing energy effi-
ciency. However, their resource allocation strategies are for
particular (non-optimal)model parameters (i.e., weight quan-
tization levels in this paper). Thus, they overlook the opportu-
nities to first reduce the costs in learning (i.e., model
quantization in this paper) before utilizing the available
resources. Close to our work, Li et a. [24] considered to spar-
sify the model size before transmission to improve communi-
cation efficiency and determine heterogeneity-aware gradient
sparsification strategies. However, they neglect the mismatch
between the computing/storage requirement for on-device
training and the limited computing resources onmobile devi-
ces. Based on the example illustrated in Section 1, on-device
computing consumes more energy than model update trans-
mission. Hence, different from [24], this paper leverages the
quantization method for on-device training instead of wire-
less transmission only.

2.2 On-Device Training With Low Precision

Various works have been developed for on-device learning
to reduce the model complexities via low precision opera-
tion and storage requirements [25]. In the extreme case, the
weights and activations are represented in one bit, called
Binary Neural Networks (BNN) [26], while the performance
degrades significantly in large DNNs. For weight quantiza-
tion, the prior work such as “LQ-Net” in [9] quantized
weights and activations such that the inner products can be
computed efficiently with bit-wise operations, performing
in the case of single machine computation. Similar to our
work, Fu et a. [10] considered the weight quantization for
local devices in the distributed learning setting and pro-
posed to quantize activations via estimating Weibull distri-
butions. However, they did not consider optimization for

energy efficiency during FL training. Besides, they assigned
the same quantization level on all participating devices,
which limited the performance when facing the challenges
of device heterogeneity. How the flexible quantization
impact the learning model accuracy remains an open prob-
lem, which is addressed in this work. Unlike the existing
works, a mobile-compatible FL algorithm with flexible
weight quantization is introduced in our proposed model.
By jointly considering the heterogeneous computing and
communication conditions, we formulate the overall FL
energy (computing + transmissions) minimization to seek
for the optimal strategy in term of local iterations, quantiza-
tion levels, and bandwidth allocations.

3 FL WITH FLEXIBLE WEIGHT QUANTIZATION

3.1 Preliminary of Weight Quantization

In this subsection, we introduce the related concepts about
weight quantization for on-device training. Quantization is
an attractive solution to implementing FL models on mobile
devices efficiently. It represents model parameters, includ-
ing the weights, feature maps, and even gradients, with
low-precision arithmetic (e.g., 8-bit fixed-point numbers).
When the model parameters are stored and computed with
low-bitwidth, the computational units and memory storage
to perform the operations during on-device training are
much smaller than the full-precision counterparts, leading
to energy reduction during on-device training.

To train the FL model in low precision, we define a quanti-
zation function Qð�Þ to convert a real number w into a quan-
tized version ŵ ¼ QðwÞ. We use the same notation for
quantizing vectors sinceQ acts on each dimension of the vec-
tor independently in the samemanner. Moreover, we employ
stochastic rounding (SR) [8] in our proposed model and ana-
lyze its convergence properties. SR, also known as unbiased
rounding, possesses the important property: E½QðwÞ� ¼ w.
This property avoids the negative effect of quantization noise,
which is useful for the theory of non-convex setting [27]. For
each component wn of a vector w, the function Qð�Þ converts
the data type from 32-bit into q-bit, defined as:

QðwnÞ ¼ s � signðwnÞ �
Iaþ1; w:p: jwnj

sDq
� Ia

Dq

Ia; w:p:
Iaþ1
Dq
� jwnj

sDq

(
; (1)

where signð�Þ represents the sign function, s ¼ kwk1
denotes the scaling factor, the index k satisfies Ia � jwnj

s �
Iaþ1, quantization set Sw ¼ f�IA; � � � ; I0; � � � ; IAg with A ¼
2q�1 � 1; 0 ¼ I0 � I1 � � � � � IA are uniformly spaced, and
Dq denotes the quantization resolution as Dq ¼ Iaþ1 � Ia ¼
1=ð2q � 1Þ. According to the definition in (1), we have the
following lemma [28].

Lemma 1 (Weight quantization error in SR [28]). For
model weight w 2 Rd satisfying kwk1 ¼ s, let wrþ1 ¼
wr � hefðwrÞ be the SGD update for a single iteration r and
Qðwrþ1; qÞ be the stochastic quantization scheme ofwrþ1 in (1),
quantization level q, and the learning rate h. The weight quanti-
zation error on each iteration can be bounded, in expectation, as
follows,

EQ kQ wrþ1; q
� ��wrþ1k22

h i
� h

ffiffiffi
d
p

sDqkefðwrÞk2: (2)
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In the above, smaller resolution results in a smaller gap
and keeps as much information as the original weight, while
it has higher memory requirements. In practice, the bit-
width for the weight quantization can be extremely small,
like 2 or 3 bits without notable performance degradation.
Other parameters, such as the weight gradient calculations
and updates, are applied to capture accumulated small
changes in stochastic gradient descent (SGD). In contrast,
quantization makes them insensitive to such information
and may impede convergence performance during training.
Therefore, we keep a higher precision for the gradients than
the weights and inputs so that the edge server aggregates
the local gradients and updates the global model in full
precision.

3.2 FL With Flexible Weight Quantization

We consider a mobile edge network consisting of one edge
server and a set N ¼ f1; 2; � � � ; Ng of distributed mobile
devices, collaboratively training a DNN model through FL
framework, which is depicted in Fig. 1. Each mobile device
i is equipped with a single antenna and has its own dataset
Di with data size jDij. The data is collected locally by the
mobile device i itself. Generally, each learning model has a
particular loss function fjðwÞ with the parameter vector w
for each data sample j. The loss function represents the dif-
ference of the model prediction and groundtruth of the
training data. Thus, the loss function on the local data of
mobile devices i is given as FiðwÞ :¼ 1

jDij
PjDij

j¼1 fjðwÞ: The
training objective of the shared model is to collaboratively
learn from all the participating mobile devices, formulated
as follows:

minw2RdF ðwÞ ¼
XN
i¼1

piFiðwÞ; (3)

where d denotes the total number of the DNN model
parameters and pi is the weight of the nth device such that
pi ¼ jDij=

PN
i¼1 jDij and

PN
i¼1 pi ¼ 1.

Given the sensitive nature of the users’ data, each mobile
device keeps its data locally instead of uploading its data to
the edge server. An FL framework [1] is adopted to solve
problem (3), named FedAvg, that allows the users to update
the model to the edge server periodically. Let r be the rth
training iteration in FL. In FedAvg, the edge server first
broadcasts the latest model �wr to all the devices. Second,
every device i 2 N performs H mini-batch SGD steps in
parallel, obtains and transmits its intermediate local model
wrþH

i to the edge server. After that, the edge server will

update the model based on aggregated results from the
mobile devices, i.e., �wrþH ¼P

piw
rþH
i . This procedure

repeats until FL converges.
Targeting at the energy-efficient FL training over mobile

devices, we propose a flexible weight quantization (FWQ)
scheme for heterogeneous mobile devices. After mobile
devices receive the shard model from the edge server, they
first quantize and store the model to satisfy their current
storage budget. Unlike the prior works that maintain the
same quantization strategy across all the participating devi-
ces, FWQ considers device heterogeneity and allows the
mobile devices to perform weight quantization with differ-
ent bit-widths of qi during on-device training and transmit
the model updates in more bits. Note that the weights and
gradients at the server side remain in full precision opera-
tions to avoid further model performance degradation. A
pseudo-code of our FWQ algorithm is presented in Algo-
rithm 1.

Algorithm 1. Flexible Weight Quantizated FL (FWQ-FL)

Input:h ¼ learning rate; Qð�Þ ¼ quantization function; initial
�w0; a mini-batch size M; a number of local SGD iterations H; a
number of training iterations R
Output: �wR

1: for r ¼ 0; � � � ; R� 1 do
2: Edge server sends �wr to the set of participating mobile

devicesN
3: for each mobile device i 2 N in parallel do
4: Sample a mini-batch ofM training data points from Di

5: Compute the mini-batch stochastic gradient
gri ¼ 1

M

PM
m¼1 Ïfmðwr

i Þ
6: Update the model parameters

wrþ1
i  Qðwr

i � hig
r
i Þ

7: if ððrþ 1ÞmodHÞ ¼ 0 then
8: Sendwrþ1

i to the FL server.
9: end if
10: end for
11: Edge server updates the global model �wrþ1 as follows
12: if ððrþ 1ÞmodHÞ ¼ 0 then
13: �wrþ1  PN

i¼1 piw
rþ1
i

14: else
15: �wrþ1  �wr

16: end if
17: end for

3.3 Convergence Analysis of FL With FWQ

Before we discuss the convergence of Algorithm 1, we make
the following assumptions on the loss function, which are
commonly used for the analysis of SGD approach under the
distributed/federated learning settings [29], [30].

Assumption 1. All the loss functions fj are differentiable and
their gradients are L-Lipschitz continuous in the sense of
l2-norm: for any x and y 2 Rd, kÏfjðxÞ � ÏfjðyÞk2 � L
kx� yk2.

Assumption 2. Assume that efi is randomly sampled from the
ith mobile device local loss functions. For local device i, its sto-
chastic gradient is an unbiased estimator and its variance:
EjjÏefiðwrÞ � ÏFiðwrÞjj22 � t2i . Thus, the a mini-batch size M
of gradient variance is given as t2i =M and its second moment is

Fig. 1. Federated learning framework with weight quantization.
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EkÏefiðwwwwwwwrÞk22 � G2
i , for any i ¼ 1; � � � ; N and define

G ¼ maxifGig.
Assumption 1 indicates that the local loss functions Fi

and the aggregated loss function F are also L-smooth. The
unbiasedness and bounded variance of stochastic gradients
in Assumption 2 are customary for non-convex analysis of
SGD [29], [30], [31], [32], [33].

For the case of non-convex loss function Fi, the algorithm
may have multiple stable fixed points. Hence, convergence
to a global minimum cannot in general be guaranteed. A
reasonable substitute is to study the convergence to local
minima, or at the very least, to stationary points [32], [34].
Hence, similar to previous work [30], [35], we use the rela-
tionship between average expected squared gradient norm
and the iteration number to characterize the convergence
rate of FL with FWQ.

From the updating rule of Algorithm 1, we use the fol-
lowing notation to denote the stochastic gradient used to
update the local model and global model at the rth iteration:

urþ1
i ¼ Qi wr

i � hgri ; qi
� � ¼ wr

i � hgri þ eri ; (4)

�wrþ1 ¼ kr
XN
i¼1

piu
rþ1
i þ ð1� krÞ �wr; (5)

where eri ¼ Qiðwr
i � hgri ; qiÞ � ðwr

i � hgri Þ denotes the quan-
tization error and the indicator kr ¼ 1 if ðrþ 1ÞmodH ¼ 0
and kr ¼ 0 otherwise. urþ1

i is introduced to represent the
immediate result of one step SGD update with quantization
from wr

i . We can access wrþ1 only when ðrþ 1ÞmodH ¼ 0.
Thus, we have a virtual sequence �urþ1 ¼ �wr � h�gr and
E½gri � ¼ ÏFiðwr

i Þ1.
In the following, we establish the upper bound of the dif-

ferential of loss values between two consecutive iterations.
We first derive the upper bounds of model weight differen-
tial between two consecutive iterations and the model
divergence in one iteration, shown as the following two
lemmas.

Lemma 2 (Bounding the model divergence). Let Assump-
tion 1-2 hold and the learning rate h satisfying 1�
3h2L2H2 > 0, we have,

XN
i¼1

p2
iE k �wr �wr

ik22
h i

�
hH

PN
i¼1 p

2
i hHt2i =M þ

ffiffiffi
d
p

Gdi þ 3hHkÏF ð �wrÞk22
� �

1� 3h2L2H2
: (6)

Proof. Please refer to the detailed proof in Appendix A in
the separate supplemental file, available online. tu

Lemma 3. If Assumptions 1 and 2 hold, then for any iteration r,
we have

L

2
E k �wrþ1 � �wrk22
h i

� hL

2

XN
i¼1

p2
i

ht2i
M
þ

ffiffiffi
d
p

diGi

� �
þ h2L

2
k
XN
i¼1

piÏFiðwr
i Þk22: (7)

Proof. Please refer to the detailed proof in Appendix B in
the separate supplemental file, available in the online
supplemental material. tu
Now we are ready to show the convergence property of

FL with FWQ.

Theorem 1. Let the learning rate h be
ffiffiffiffi
M
R

q
and hL � 1

3H . If
Assumptions 1-2 hold, the average-squared gradient after R
iterations is bounded as follow,

1

R

XR�1
t¼0

EkÏF ð �wrÞk22

� 4ðE F ð �w0Þ½ � � F
? Þffiffiffiffiffiffiffiffiffi

MR
p þ 4HLtffiffiffiffiffiffiffiffiffi

MR
p þ 4

ffiffiffi
d
p

LG
XN
i¼1

p2
i di;

� O
�
H þ 1ffiffiffiffiffiffiffiffiffi
MR
p

�
þO

� ffiffiffi
d
p XN

i¼1
p2
i di

�
; (9)

where di ¼ sDqi , t ¼
PN

i¼1 p
2
i t

2
i , and F

?
is the global mini-

mum of F.

Proof. According to the update rules in (5), we have

F �wrþ1� � ¼ F �wr þ kr �urþ1 � �wr
� �� �

: (10)

Under the Lipschitz gradient assumption on F , we have,

E F ð �wrþ1Þ	 
�E F ð �wrÞ½ �
� E hÏF ð �wrÞ; �wrþ1 � �wri	 
þ L

2
E k �wrþ1 � �wrk22
h i

¼ E ÏF ð �wrÞ;�hkr�grh i½ � þ L

2
E k �wrþ1 � �wrk22
h i

¼ðaÞ E hÏF ð �wrÞ;�
XN
i¼1

piÏFiðwr
i Þi þ

L

2
E k �wrþ1 � �wrk22
h i" #

; (11)

where in ðaÞ E�;Q½�gri � ¼ E�;Q½
PN

i¼1 piðgri � e
r=
i hÞ� ¼PN

i¼1 piÏFiðwr
i Þ due to the unbiasedness of weight quan-

tization scheme and SGD. The second term of (11) is
bounded by Lemma 3. Now, we need to derive the
expectation of the first term in (11).

E ÏF ð �wrÞ;�
XN
i¼1

piÏFiðwr
i Þ

* +" #

¼ðaÞ � h

2
E kÏF ð �wrÞk22
h i

� h

2
E k

XN
i¼1

piÏFiðwr
i Þk22

" #

þ h

2
E kÏF ð �wrÞ �

XN
i¼1

piÏFiðwr
i Þk22

" #

�
ðbÞ
� h

2
E kÏF ð �wrÞk22
h i

� h

2
E k

XN
i¼1

piÏFiðwr
i Þk22

" #

þ hL2

2

XN
i¼1

p2
iE�;Q k �wr �wr

ik22
h i

; (12)1. For convenience, we define �ur ¼PN
i¼1 piu

r
i , �w

r ¼PN
i¼1 piw

r
i , and

�gr ¼PN
i¼1 piðgri � eri =hÞ.

CHEN ETAL.: ENERGY EFFICIENT FEDERATED LEARNING OVER HETEROGENEOUS MOBILE DEVICES VIA JOINT DESIGN OFWEIGHT... 7455

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 12:33:26 UTC from IEEE Xplore.  Restrictions apply. 



where ðaÞ is due to 2ha; bi ¼ jjajj2 þ jjbjj2 � jja� bjj2 and
ðbÞ follows from L-smoothness assumption. The last part
of (12) is bounded, as shown in Lemma 2.

By associating (11) and (12), the expectation of the
objective change in one step is given below

E F ð �wrþ1Þ	 
�E F ð �wrÞ½ �

� � h

2
E kÏF ð �wrÞk22
h i

þ � h

2
þ h2L

2

� �
k
XN
i¼1

piÏFiðwr
i Þk22

þ hL2

2

XN
i¼1

p2
iE�;Qk �wr �wr

ik22 þ
hL

2

XN
i¼1

p2
i

hti

M
þ

ffiffiffi
d
p

diGi

� �

�
ðaÞ
� h

2
E kÏF ð �wrÞk22
h i

þ hL2

2

XN
i¼1

p2
iE�;Q k �wr �wr

ik22
h i

þ hL

2

XN
i¼1

p2
i

hti

M
þ

ffiffiffi
d
p

diGi

� �
: (13)

By replacing
PN

i¼1 p
2
iE�;Q½k �wr �wr

ik22� with the bound
derived in Lemma 2, we can get

E F ð �wrþ1Þ	 
�E F ð �wrÞ½ �

� �
� h

2
� hL2

2

3h2H2
PN

i¼1 p
2
i

1� 3h2L2H2

�
E kÏF ð �wrÞk22
h i

þ h2L

2
þ hL2

2

h2H2

1� 3h2L2H2

� �XN
i¼1

p2
i

t2i
M

þ hL

2
þ hL2

2

hH

1� 3h2L2H2

� � ffiffiffi
d
p XN

i¼1
p2
i diGi: (14)

Here, (a) holds if the learning rate hL � 1. Summing up
for all R iterations, we have:

E F ð �wRÞ	 
�E F ð �w0Þ	 

� � h

2

�
1� 3h2L2H2

PN
i¼1 p

2
i

1� 3h2L2H2

�XR�1
r¼0

E kÏF ð �wrÞk22
h i

þR
h2LC1

2M

XN
i¼1

p2
i t

2
i þR

hLC1

ffiffiffi
d
p

2

XN
i¼1

p2
i diGi; (15)

where C1 ¼ 1þhLH2�3h2L2H2

1�3h2L2H2 and C2 ¼ 1þhLH�3h2L2H2

1�3h2L2H2 and
rearranging the terms, we have

h

2
C01

XR�1
r¼0
kÏF ð �wrÞk22

� E F ð �w0Þ � F ð �wRÞ	 
þR
LC1

2

XN
i¼1

p2
i

�
h2t2i
M
þ h

ffiffiffi
d
p

diGi

�
;(16)

where C01 ¼ 1� 3h2L2H2
PN

i¼1 p
2
i

1�3h2L2H2 . If we set h ¼
ffiffiffiffi
M
R

q
and

3h2L2H2

1�3h2L2H2 � 1
2 ; we can get 1=C01 � 2, C1=C

0
1 � 4H, and

C2=C
0
1 � 4. Thus,

1

R

XR�1
r¼0
kÏF ð �wrÞk22

� 2

hRC01
ðE F ð �w0Þ	 
� F

? Þ þ hLC1

C01M
t þ

ffiffiffi
d
p

LC2

C01

XN
i¼1

p2
i diGi

� 4ðE F ð �w0Þ½ � � F
? Þffiffiffiffiffiffiffiffiffi

MR
p þ 4HLtffiffiffiffiffiffiffiffiffi

MR
p þ 4

ffiffiffi
d
p

LG
XN
i¼1

p2
i di; (17)

where t ¼PN
i¼1 p

2
i t

2
i and the proof is completed. tu

From Theorem 1, we observe that the proposed model
admits the same convergence rate as parallel SGD in the
sense that both of them attain the asymptotic convergence
rate Oð 1ffiffiffiffiffiffi

MR
p Þ. Weight quantization makes FL converge to

the neighborhood of the optimal solution without affecting
the convergence rate. The limit point of the iterates is related
to the quantization noise di. If the quantization becomes
more fine-grained (i.e., by increasing the number of bits),
the model performance will approach the model with full
precision floating point.

4 OPTIMIZATION FOR ENERGY EFFICIENT FWQ

Motivated by the above discussion, the quantization levels
fqigNi¼1 and the numbers of local SGD iterations, H, act as
critical parameters of FL training performance (i.e., model
convergence rate). Besides, these strategies also greatly
impact the energy consumption of mobile devices since
they affect the total communication rounds and computing
workload per round. In this section, we formulate the
energy efficient FWQ problem (EE-FWQ) under model con-
vergence and training delay guarantee. We develop flexible
weight quantization and bandwidth allocation to make the
trade-off between computing and communication energy of
mobile devices in FL training. We start with discussion on
the computing and communication energy model, followed
by problem formulation and solution.

4.1 Energy Model

4.1.1 Computing Model

Here, we consider the GPU computing model instead of the
CPUmodel, for two reasons. First, CPUs cannot support rel-
atively large and complicated model training tasks. Second,
GPUs are more energy efficient than CPUs for on-device
training and are increasingly integrated into today’s mobile
devices (e.g., Google Pixel). The GPU based training makes
computing energy consumption comparable to that of com-
munications in FL. Noted that the local computing of mobile
device i involves the data fetching in GPUmemory modules
and the arithmetic in GPU core modules, where the voltage
and frequency of each module are independent and
configurable:

1) GPU runtime power model of mobile device i is modeled
as a function of the core/memory voltage/frequency [36],

pcpi ¼ pG0
i þ zmem

i fmem
i þ zcorei ðV core

i Þ2fcorei ; (18)

where pG0
i is the summation of the power consumption

unrelated to the GPU voltage/frequency scaling; V core
i ;

fcorei ; fmem
i denote the GPU core voltage, GPU core
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frequency, and GPU memory frequency, respectively; zmem
i

and zcorei are the constant coefficients that depend on the
hardware and arithmetic for one training iteration,
respectively.

2) GPU execution time model of mobile device i with quan-
tization level qi is formulated as

Tcp
i ðqiÞ ¼ t0i þ

c1ðqiÞumem
i

fmem
i

þ c2ðqiÞucorei

fcore
i

; (19)

where t0i represents the other component unrelated to train-
ing task; umem

i and ucorei denote the number of cycles to access
data from the memory and to compute one mini-batch size
of data samples, respectively, which are measured on a plat-
form-based experiment in this paper. Due to the weight
quantization, the number of cycles for data fetching and
computing are reduced with scaling c1ðqiÞ and c2ðqiÞ,
respectively. For simplicity, we assume that the number of
cycles for data fetching and computing scales, c1ðqiÞ and
c2ðqiÞ, are linear functions of data bit-width qi, respectively.
This is reasonable since the quantization reduces the bit-
widths, and the data size scales linearly to the bit represen-
tation [37].

With the above GPU power and performance model, the
local energy consumed to pass a single mini-batch SGD
with quantization strategy qi of the ith mobile device is the
product of the runtime power and the execution time, i.e.,

Ecomp
i ðqi;HÞ ¼ H � pcpi � Tcp

i ðqiÞ: (20)

4.1.2 Communication Model

We consider orthogonal frequency-division multiple access
(OFDMA) protocol for devices to upload their local results
to the edge server. The total channel bandwidth is bounded
by Bmax and Bi is denoted as the bandwidth allocated to
device i where Bi satisfies

PN
i¼1 Bi � Bmax. As a result, the

achievable transmission rate (bit/s) of mobile device i can
be calculated as

gi ¼ Bi ln 1þ hip
cm
i

N0

� �
; (21)

where N0 represents the noise power, and pcmi is the trans-
mission power. Here, hi denotes the average channel gain
of the mobile device i to the edge server during the training
task of FWQ-FL. The dimension of the gradient vector gi is
fixed for a given model so that the overall data size to trans-
mit the gradient vector is the same for all the mobile devi-
ces, which is denoted by Dg. Here, we only consider the
energy consumption of uplink transmission2. Then, the
communication time to transmitDg for device i is

Tcm
i ðBiÞ ¼ Dg

gi

¼ Dg

Bi ln 1þ hip
cm
i

N0

� � : (22)

Thus, the communication energy consumption at device i
can be derived as

Ecomm
i ðBiÞ ¼ Dgp

cm
i

Bi ln 1þ hip
cm
i

N0

� � : (23)

4.2 Problem Formulation

Considering the computing capabilities of different mobile
devices vary, we formulate the problem as minimizing the
total energy consumption during the training process as

minH;K;�q;q;B

XN
i¼1

K Ecomm
i ðBiÞ þ Ecomp

i ðqi;HÞ
� �

(24a)

s.t. c3ðqiÞUi � Ci; 8i 2 N ; (24b)

A3

XN
i¼1

p2
i di � �q; (24c)

A1H þA2ffiffiffiffiffiffiffiffiffiffiffiffiffi
MHK
p þA3

XN
i¼1

p2
i di � �; (24d)

maxi K HTcp
i þ Tcomm

i

� � � Tmax; (24e)

XN
i¼1

Bi � Bmax; (24f)

Bi > 0; qi 2 Q; 8i 2 N ; (24g)

H 2 Zþ; 0 � �q � �; (24h)

where K represents the total number of communication
rounds, Ui, and Ci represent the learning model size (MB)
stored in full precision and the memory capacity in mobile
device i, respectively. c3ðqiÞ is the ratio of the bit-width to
full precision. q ¼ ½q1; � � � ; qN � and B ¼ ½B1; � � � ; BN � are the
quantization and bandwidth allocation strategies of mobile
devices, respectively. Constraint (24b) states the model
size stored on mobile device i does not exceed its storage
capacity. The constraint (24c) controls the average quanti-
zation error over participating devices as small as possible.
The constraints in (24e) ensures the entire training time
can be completed within predefined deadline Tmax. In con-
straint (24f), the bandwidth allocation to the mobile devi-
ces must not exceed the channel bandwidth available to
the edge server. Constraints (24g) and (24h) indicate that
variables take the values from a set of non-negative num-
bers. Bit representation set Q is defined as a power of 2,
ranging from 8 to 32 bits, which is a standard-setting and
hardware friendly [39]. The number of communication
rounds K is determined by the FL model convergence.
Based on the results in Theorem 1, we set upper bound to
satisfy the convergence constraint as in (24d), where A1,
A2 and A3 are coefficients3 used to approximate the big-O
in Eqn. (8). Furthermore, given the constraint (24c), we can

2. First, the downlink transmission energy at the edge server side is
less concerned. Seconds, during the FL training process, the mobile
edge server broadcasts the global model parameters to all devices in
downlinks. In typical wireless transmission environments (e.g., cellular
network), downlink bandwidth is much larger than uplink bandwidth
[13]. The time of global model broadcasting using downlink is much
shorter than that of local model updates using uplink. Besides, the
receiving power is smaller than transmission power at mobile devices
[38]. Hence, the downlink energy consumption is much smaller com-
pared with the uplink one and can be neglected.

3. These coefficients can be estimated by using a small sampling set
of training experimental results.
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rewrite the (24d) as

A1H þA2ffiffiffiffiffiffiffiffiffiffiffiffiffi
MHK
p þ �q � �: (25)

For the relaxed problem, if any feasible solution H, �q, and
K satisfies constraint (25) with inequality, we note that the
objective function is a decreasing function of K. Thus, for
optimalK, the constraint (25) is always satisfied with equal-
ity, and we can deriveK from this equality as

KðH; �qÞ ¼ ðA1H þA2Þ2
MHð�� �qÞ2

; (26)

From (26), we observe that KðH; �qÞ is a function of H that
first decreases and then increases, which implies that too
small and too large H all lead to high communication cost
and that there exists an optimalH. Besides, a large �q, which
results from aggressive quantization levels (small bit-
widths), also hinders the learning efficiency since it requires
more communication rounds to recover the learning accu-
racy. In light of this, local update and weight quantization
levels should be carefully determined to minimize the over-
all energy consumption for FWQ-FL.

For the ease of analysis, we simplify the description of
the GPU time model as a linear function of qi, i.e., T

cp
i ðqiÞ ¼

c2i qi þ c1i . By substituting (26) into its expression, we obtain

minH;�q;q;B

XN
i¼1

ðA1H þA2Þ2
MHð�� �qÞ2

pcmi Dg

gi
þHpcpi ðc2i qi þ c1i Þ

� �

s.t. ð24bÞ � ð24hÞ: (27)

The relaxed problem above is a mixed-integer non-linear
programming. It is intractable due to the multiplicative
form of the integer variables (H and q) and continuous vari-
ables (�q and B) in both the objective function and con-
straints. In what follows, we develop an iterative algorithm
with low complexity to seek feasible solutions.

4.3 Iterative Algorithm for EE-FWQ

The proposed iterative algorithm divides the original prob-
lem (27) into two sub-problems: 1) Local update and quanti-
zation error optimization (for H and �q); 2) Joint weight
quantization selection and bandwidth allocation (for q and
B), which can be solved in an iterative manner. For the two
sub-problems, we are able to derive the closed-form solu-
tions for local updates, bandwidth allocation and weight
quantization levels. The details are presented in the follow-
ing subsections.

4.3.1 Local Update and Quantization Error Optimization

To obtain the optimal strategies for FWQ, we first relaxH as
a continuous variable for theoretical analysis, which is later
rounded back to the nearest integer. Given B and q, prob-
lem (27) is written as follows

minH;�q

ðA1H þA2Þ2
MHð�� �qÞ2

ðEcmðBÞ þHEcpðqÞÞ (28a)

s.t.
ðA1H þA2Þ2
MHð�� �qÞ2

� Tmax

Tcm
i ðBiÞ þHTcp

i ðqiÞ
; 8i 2 N ; (28b)

�q � �min
q ; (28c)

0 � �q � �;H � 0; (28d)

where �min
q ¼PN

i¼1
A3p

2
i
s

2qi�1 , EcmðBÞ ¼PN
i¼1 E

cm
i ðBiÞ, and

EcpðqÞ ¼PN
i¼1 E

cp
i ðqiÞ.

Theorem 2. The optimal �
?

q in problem (27) satisfies

�
?

q ¼ �min
q ; (29)

and the optimalH
?
is given by

minH CðHÞ , ðA1H þA2Þ2ðEcmðBÞ þHEcpðqÞÞ
MHð�� �min

q Þ2
(30a)

s.t. Hmin � H � Hmax; (30b)

where rðHminÞ ¼ rðHmaxÞ ¼MNð�� �min
q Þ2Tmax and

rðHÞ is defined in (C.7b).

Proof. Please refer to the detailed proof in Appendix C in
the separate supplemental file, available in the online
supplemental material. tu
Noted that it can be verified that the objective function

CðHÞ in (30) is convex. The optimal H
?
can be obtained by

setting the following first-order derivative to zero,

dCðHÞ
dH

¼ 2A2
1HEcpðqÞ þA2

1E
cmðBÞ þ 2A1A2E

cpðqÞ

�A2
2E

cmðBÞ
H2

: (31)

It is a cubic equation of H and can be solved analytically via
Cardano formula [40]. Therefore, for the fixed values of q
and B, we have a unique real solution of H in the closed
form as follows

H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3b

27
þ b2

4

s
� a3

27
� b

2

3

vuut þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3b

27
þ b2

4

s
� a3

27
� b

2

3

vuut
þ a

3
; (32)

with a ¼ A1E
cmðBÞþ2A2E

cpðqÞ
2A1E

cpðqÞ ; and b ¼ � A2
2E

cmðBÞ
2A2

1
EcpðqÞ .

4.3.2 Joint Weight Quantization Selection and

Bandwidth Allocation

Given the updated H, �q, the optimal quantization levels q
?

and the bandwidth allocation B
?
can be obtained by solving

the following problem,

min
q;B

KðH; �qÞ
XN
i¼1

pcmi a1
i

Bi
þHpcpi � ðc2i qi þ c1i Þ (33a)

s.t. ð24bÞ; ð24cÞ; ð24fÞ; ð24gÞ; (33b)

a1
i

Bi
þHðc2i qi þ c1i Þ �

Tmax

KðH; �qÞ ; 8i 2 N : (33c)
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Based on the observation of problem (33), it is clear that
problem (33) is a mixed-integer non-linear problem.
Besides, the integer variable qi and a fractional form of con-
tinuous variable Bi are linearly coupled in constraint (33c),
which makes the optimization problem difficult to tackle.
To address the above issues, we first introduce a new vari-
able eq ¼ log 2ðqÞ and its finite set can be defined as eQ ¼
f1; 2; 3; 4; 5g. We then relax eqi to be continuous and then
round the solution. Since eq ¼ log 2ðqÞ is monotonously
increasing function, we can transform an equivalent formu-
lation as follows

mineq;B KðH; �qÞ
XN
i¼1

pcmi a1
i

Bi
þHpcpi ðc2i 2eqi þ c1i Þ (34a)

s.t. ð24fÞ; (34b)

fðeq1; � � � ; eqNÞ , XN
i¼1

A3p
2
i s

22
eqi � 1

� �q; (34c)

c3ð2eqiÞUi � Ci; 8i 2 N ; (34d)

a1
i

Bi
þHðc2i 2eqi þ c1i Þ �

Tmax

KðH; �qÞ ; 8i 2 N ; (34e)

Bi > 0; qmin � eqi � qmax; 8i 2 N : (34f)

For objective function in (34),
KðH;�qÞa1i

Bi
and pcpi c

2
i 2
eqi are

convex functions in Bi and eqi, respectively. The affine com-
bination of convex functions preserves convexity. Similarly,
we can easily verify the convexity of the constraints.

Next, we propose an efficient iterative algorithm to
reduce the computational complexity. The main idea of the
proposed iterative algorithm as follows. In the ðzÞth itera-
tion, we first fix the bandwidth in the ðz� 1Þth iteration,
denoted as Bðz�1Þ, to solve problem (34) to obtain quantiza-
tion strategy eq; then, with the updated eqðzÞ, we can get the
optimal BðzÞ. In the intermediate steps, we attempt to derive
some analytical solutions to reduce the computation load.

In the ðzÞth iteration, we can decompose problem (34)
into two convex subproblems as

mineqðzÞ R
XN
i¼1

pcpi ðc2i 2eqðzÞi þ c1i Þ (35a)

s.t. ð34cÞ; ð34dÞ; ð34fÞ; (35b)

a1
i

HB
ðz�1Þ
i

þ ðc2i 2eqðzÞi þ c1i Þ �
Tmax

R
; 8i 2 N ; (35c)

where R ¼ HKðH; �qÞ and

min
BðzÞ

KðH; �qÞ
XN
i¼1

pcmi a1
i

B
ðzÞ
i

(36a)

s.t. ð24fÞ; ð34fÞ; (36b)

KðH; �qÞa1
i

B
ðzÞ
i

� Tmax �RTcp
i ð2eqðzÞi Þ; 8i 2 N : (36c)

In the above, the objective function in (35) is a monotoni-
cally increasing function w.r.t eq, and the objective function

in (36) monotonically decreasing function w.r.t B. Hence,
we have the unique solutions of eq, B as follows

Algorithm 2. The Proposed Iterative Algorithm for (34)

1: Input: Given H, �q, two small constants, i1, i2, and a large
positive number m̂.

2: Output: Optimal 2eq?i , B?

i

3: Initialization: m1
LB ¼ vLB ¼ 0; m1

UB ¼ m̂; vUB ¼ v̂;
4: Choose a feasible x0  ðBð0Þ; eqð0ÞÞ
5: repeat
6: Set m1 ¼ ðm1

UB þ m1
LBÞ=2 and v ¼ ðvUB þ vLBÞ=2

7: repeat
8: Calculate eqðzÞi via ð37Þ
9: if fðeqðzÞ1 ; � � � ; eqðzÞN Þ > �q then
10: Set m1

UB ¼ m1

11: else
12: Set m1

LB ¼ m1

13: end if
14: until m1

UB � m1
LB � i1

15: repeat
16: Set v ¼ ðvUB þ vLBÞ=2
17: Calculate B

ðzÞ
i via ð38Þ

18: if
P

B
ðzÞ
i > B then

19: Set vUB ¼ v

20: else
21: Set vLB ¼ v

22: end if
23: until vUB � vLB � i2
24: xz  ðBðzÞ; eqðzÞÞ and z zþ 1
25: until jxzþ1 � xzj � i3

Theorem 3. The optimal quantization levels eq?

i and bandwidth
allocation B

?

i for the ith device are given by

eqðzÞ?i ¼ minfeqmax
i ; eqiðm1? Þg; (37)

and

B
ðzÞ?
i ¼ maxfBðzÞi;minðeqðzÞ?i Þ; BðzÞi ðv? Þg; (38)

where

eqi ¼ log 2 log 2ð�i þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
i þ 4

q
Þ � 1

� �
; (39)

�i ¼ lnð2Þm1? A3p
2
i s

2

c2i Rðpcpi þ m2
i ðm1? ÞÞ ; (40)

B
ðzÞ
i;minðeqðzÞ?i Þ ¼

KðH; �qÞ
Tmax �RTcp

i ð2eqðzÞ?i Þ
; (41)

B
ðzÞ
i ðv? Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
pcmi a1

i

p ðA1H þA2Þ
v?

ffiffiffiffiffiffiffiffiffi
MH
p ð�� �qÞ

; (42)

m1? and v
?
are the optimal Lagrange multipliers to satisfy the

quantization error constraint fðeqðzÞ?1 ; � � � ; eqðzÞ?N Þ ¼ �q and band-
width capacity constraint

PN
i¼1 B

ðzÞ?
i ¼ Bmax, respectively.

Proof. Please refer to the detailed proof in Appendix D in
the separate supplemental file, available in the online
supplemental material. tu
Theorem 3 suggests that eq?

i is determined by local com-
puting capabilities. Specifically, small quantization levels
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can be allocated to devices with weaker computing capabili-
ties for the benefit of sum computing energy reduction.
Given the overall quantization error constraint, the devices
with higher computing capabilities may use a higher quan-
tization level to maintain the model accuracy. It also indi-
cates that the optimal bandwidth allocation B depends not
only on the channel conditions (hi) but also on the quantiza-
tion levels eq?

i . Concisely, assigned bandwidth increases with
the poor channel condition to avoid the straggler issues. In
addition, when the devices use a higher quantization level
for local training (higher computing energy), the device
should be assigned more bandwidth to reduce total energy
consumption.

The algorithm that solves problem (27) is summarized in
Alg 3, by iteratively solving problem (28) and problem (34).
We first solve problem (28) to determine ðH; �qÞ in the closed
form. Then, with Alg. 2 we iteratively calculate (37) and (38)
which keeps decreasing the objective function in (33) until
we achieve the converged solutions ðeq;BÞ. In Alg. 3, since
the optimal solution of problem (28) or (34) can be obtained
in each loop, the objective value of the problem (27) keeps
decreasing in the loop. Moreover, the objective value of
problem (27) is lower bounded by zero. Thus, Alg. 3, will
finally converges.

Next, we analyze the computational complexity of Algo-
rithm 3. To solve the EE-FWQ problem by using Algorithm
3, two subproblems (28) and (34) need to be solved. For the
subproblem (28), we can obtain a unique real solution of H
from (31) in closed form, which does not resort to any itera-
tive solver. For the subproblem (34), it requires
Oðlog 2ððm1

UB � m1
LBÞ=i1Þ þ log 2ððvUB � vLBÞ=i2ÞÞ inner-loop

iterations for the bisection method [41] to determine the
optimal m1 and v and F1 outer-loop iterations (as shown in
simulations, F1 is usually no more than 3). Hence, it
requires OðF1ðlog 2ððm1

UB � m1
LBÞ=i1Þ þ log 2ðvUB � vLBÞ=i2ÞÞ

iterations to converge in Algorithm 2. The complexity is
OðNF1log 2ð1=i1Þlog 2ð1=i2ÞÞ with accuracy i1 and i2. As a
result, the total complexity of Algorithm 3 is
OðNF1F2log 2ð1=i1Þlog 2ð1=i2ÞÞ where F2 is the number of
iterations required in Alg 3 (as shown in simulations, F2 is
usually no more than 4). The complexity of Algorithm 3 is
low since OðNLlog 2ð1=i1Þlog 2ð1=i2ÞÞ grows linearly with
the total number of participating devices.

Algorithm 3. Joint Design of Flexible Weight Quantiza-
tion and Bandwidth Allocation for EE-FWQ

1: Input: InitializeHð0Þ; �qð0Þ; qið0Þ; Bið0Þ of problem (27) and
set l ¼ 0.

2: Output:H
?
, �

?

q , q
?
, B

?

3: repeat
4: With given qðlÞ, BðlÞ, compute �qðlþ 1Þ and Hðlþ 1Þ via

(29) and (32), respectively
5: With given �qðlþ 1Þ and Hðlþ 1Þ, compute qiðlþ 1Þ and

biðlþ 1Þ by Algorithm 2
6: until objective value (27) converges
7: Rounding q̂i ¼ beq?

i e and bH? e and obtain the quantization
strategy q

?

i ¼ 2q̂i with the minimum objective value.

It should be noted that the FL server is in charge of solv-
ing the optimization in (24). It is practical because the FL
protocol in [42] requires mobile devices to check in with the

FL server first before the FL training begins. Hence, the FL
server can collect the information (c1ðqiÞ, c2ðqiÞ, Ci, p

cm
i and

hi) from mobile devices, determine the optimal strategies
(qi, Bi) of each device via Algorithm 3, and inform the strat-
egies to the participating devices. It only needs to be solved
once if the network information remains unchanged. That is
absolutely affordable for the FL server.

5 PERFORMANCE EVALUATION

5.1 Data and Settings

1) Learning Model and Dataset: To test the model perfor-
mance, we consider two types of learning tasks: image clas-
sification and next-character prediction. For the image
classification task, we choose two commonly-used deep
learning models: ResNet-34 [43], and MobileNet [44]. The
well-known datasets, CIFAR-10 and CIFAR-100, are used to
train FL models for image classification tasks. The CIFAR-
10 dataset consists of 60000 32x32 color images in 10 classes
with 5000 training images per class. The CIFAR-100 dataset
has 100 classes and each class has 500 32x32 training images
and 100 testing images. To generated heterogeneous data
partition, we consider the label distribution of devices are
different. Then, each device only has data samples of J dif-
ferent labels. Without specific explanation, for the CIFAR-10
dataset, we consider the number of device, N ¼ 10, and
each device contains a total number of 30000=N training
samples with only J ¼ 6 classes. For the CIFAR-100, each
device contains a total number of 20000=N training samples
with only J ¼ 40 classes. We use Shakespeare [45] dataset
for the next character prediction task. This dataset is built
on The Complete Works of William Shakespeare by separately
extracting different roles’ dialogues. We employ a two
LSTM [46] layers, each with 256 nodes and a softmax layer
(with dropout rate of 0.1). The heterogeneous dataset is the
natural split of Shakespeare where each device corresponds
to a role and the local dataset contains this role’s sentences.

2) Communication and Computing Models: For the commu-
nication model, we assume the noise power is N0 ¼ �174
dBm. The transmitting power of each device is uniformly
selected from f19; 20; 21; 22; 23g dBm. Unless specified other-
wise, we set the bandwidth Bmax ¼ 100MHz and the channel
gains hi are modeled as i.i.d. Rayleigh fading with average
path loss set to 10�3. Furthermore, we assume that model
parameter is quantized into 16 bits before transmission. For
the GPU computing model, the scaling factors of quantization
are measured by Nvidia profiling tools on Jetson Xavier NX.
We use ResNet-34 model with CIFAR-10 multiple times
and obtain the simulated function c1ðqÞ ¼ 7:12� 10�3q þ
0:274 and c2ðqÞ ¼ 4:24� 10�4q þ 1:035. The GPU core fre-
quency fcore

i ; 8i is uniformly selected from
f1050; 1100; 1150; 1200gMHz and memory frequency fmem

i ; 8i
is uniformly selected from f1450; 1500; 1550; 1600gMHz.

3) Peer Schemes for Comparison:We compare our proposed
FWQ scheme with the following two different peer
schemes:

� FL FDMA [22]: All mobile devices train their local
models with full precision, i.e., without quantization.
Their scheme optimizes the computing and communi-
cation resources (i.e., CPU frequency and wireless
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bandwidth) to minimize the energy consumption in FL
training. For a fair comparison, we change the CPU
model in FL FDMA to GPUmodel and set q ¼ 32.

� FlexibleSpar [24]: All mobile devices train their local
models with the full precision and sparsity of their
model updates before transmitting to the FL server.
Their scheme optimizes the frequency of model
updates and gradient sparsity ratio to minimize the
energy consumption in FL training. Here, we set q ¼
32 in the GPU model.

Beside, we also consider two different quantization levels
for our evaluation:

� Unified Q: All the devices are set to use the same
quantization strategy regardless of resource budgets
for different mobile devices.

� Rand Q: All mobile devices choose a quantization
level randomly without considering the learning
performance.

� FWQ-pro: We assign different weight quantization
levels based on their GPU core and memory frequen-
cies. Given the available combination of GPU core
and memory frequencies, we divide devices into
slow, medium, and fast groups. We set three differ-
ent quantization levels, i.e., a small quantization
level (q ¼ 8), a medium quantization level (q ¼ 16), a
large quantization level (q ¼ 32). Then, we assign the
small quantization level to the slow group of devices.
The rest can be done in the same manner.

The resource allocation strategies for Unified Q, Rand Q,
and FWQ-pro are optimized by solving a simplified version
of the problem (27).

5.2 Convergence Analysis

First, we conduct convergence analysis. We implement the
above learning models and choose a unified quantization
strategy q1 ¼ � � � ¼ qN ¼ 16 in the Unified Q scheme. Fig. 2
shows the comparison of different FL schemes in terms of
testing accuracy and corresponding energy consumption,
when FL models are trained for a given epoch number4. We

observe that the models trained by FWQ, Unified Q, Rand Q,
and FWQ-pro are inferior to the FL FDMA scheme, and the
Rand Q has the worst performance. That is consistent with
our convergence analysis that the discretization error
induced by the quantization is unavoidable. This error is
accumulated by all the participating mobile devices, which
indicates some mobile devices take aggressive quantization
levels (e.g., 8 bit) due to their resource limitation. For our
proposed FWQ scheme, since it considers this error in the
quantization selection, the degradation is well controlled
and relatively small. Compared with FWQ-pro, it demon-
strates the effectiveness of the proposed optimization that
can find the optimal strategies for different mobile devices.
It shows when reaching FL convergence in the learning task
of CIFAR10 with ResNet34, FWQ can reduce 62% energy
consumption with 0.26% accuracy loss compared with FL
FDMA, and reduce round 28% energy consumption with
0.16% accuracy loss compared with FlexibleSpar. For lan-
guage task in Fig. 2c, FWQ can reduce 52% energy with
0.18% accuracy loss compared with FL FDMA, and reduce
23% energy with 0.06% accuracy loss compared with Flexi-
bleSpar. The FWQ scheme is superior to the other three
schemes in terms of the trade-off between the overall energy
efficiency for FL training and training accuracy, which is
essential for battery-limited mobile devices.

Next, we show the convergence behavior of the proposed
iterative algorithms, i.e., Algs. 2 and 3. The convergence
results of Algorithm 2 are shown in Figs. 3 and 4, and the
convergence results of Algorithm 3 is shown in Fig. 5. As
observed from Figs. 3 and 4, the proposed iterative algo-

Fig. 2. Convergence analysis for diferent learning tasks. (a): ResNet-34 on CIFAR-10 with the estimated parameters A1 ¼ 13:765;A2 ¼ 1:023;A3 ¼ 0:0435.
(b): MobileNet on CIFAR-100 with the estimated parameters A1 ¼ 16:655;A2 ¼ 1:013;A3 ¼ 0:0795. (c): LSTM on Shakespeare with the estimated parame-
tersA1 ¼ 6:34;A2 ¼ 2:003;A3 ¼ 0:039.

Fig. 3. Convergence of the inner loop of Algorithm 2.

4. We set different epoch numbers for different learning tasks: 200
epoch for CIFAR10, 300 epoches for CIFAR100, and 50 epoches for
Shakespeare.
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rithm requires approximately seventeen inner iterations and
3 outer iterations. Hence, it takes total thirty to forty itera-
tions to reach convergence, which indicates that Algorithm
2 holds a desirable convergence rate. From Fig. 4, for dif-
ferent non-i.i.d levels (i.e., different values of (A1; A2; A3),
they require approximately four iterations to reach con-
vergence, which can be concluded that Algorithm 3 is
robust to the parameters (A1; A2; A3) in term of conver-
gence rate.

5.3 Impacts of Data Heterogeneity

We evaluate the performance of FWQ with different data
distributions in the context of skew class distribution. We
set different J values as J 2 f2; 4; 6; 8g. Sample distributions
become skewer as J becomes small. The model is trained by
ResNet34. As shown in Fig. 9, we find that training with
small J consumes more training energy compared with
large J values. In the case of J ¼ 2, the proposed FWQ can
efficiently reduce the energy consumption by 68% and 27%,
compared with FL FDMA and FlexibleSpar, respectively.
From the results in Fig. 9, the proposed FWQ achieves better
trade-off between the energy consumption and model per-
formance, compared to the peer schemes.

5.4 Impact of the Number of Users

We now evaluate how the number of users affects the total
energy consumption for FL training. Fig. 6 shows that the
average energy consumption decreases as the number of
mobile devices participating in FL increases. The average
energy consumption per device does not experience too
much change even after more devices participate in FL
training under all the schemes. The reason is that bringing
more devices to train the FL model helps speed up the

model convergence and thus reduce energy consumption,
which is consistent with the sub-linear speedup in Theorem
1. However, as N continues increasing, the marginal reduc-
tion of the total number of training iterations becomes
smaller and smaller. Besides, our proposed FWQ scheme
outperforms FL FDMA and FlexibleSpar. For example, the
proposed FWQ scheme saves the energy of FL FDMA by
56% and of FlexibleSpar by 35%, respectively. The reason is
that the proposed FWQ leverages weight quantization to
reduce the workload for on-device training and optimize
the weight quantization levels for heterogeneous devices,
while the computing workload is not optimized and fixed
for all the devices in both FL FDMA and FlexibleSpar scheme.
Moreover, the proposed FWQ scheme reduces the energy in
the Unified Q strategy by 20%, the Rand Q strategy by 38.7%,
and the FWQ-pro strategy by 13%, respectively, when the
number of users is equal to ten. These results demonstrate
the effectiveness of our proposed weight quantization
scheme.

Next, we show the conputation overhead of the proposed
iterative algorithms in Table 1. It shows the computation
overhead of Algorithm 3 under varying number of devices.
The computation overhead increases with the increase of
the number of devices.

5.5 Impact of Computing Capacities

We evaluate the impact of device heterogeneity concerning
computing capability. Here, we keep the number of mobile
devices as ten and divide them into four groups. Fixing the
minimum capacity as 1800MB, we set different capacities
into 4 groups: CMB, ðC þ 50LÞMB, ðC þ 150LÞMB, and
ðC þ 200LÞMB, respectively. The values of L range from 0
to 10. A larger value of L means mobile devices have more
diverse computing conditions, implying that the optimized
quantization strategy has more diverse values. From Fig. 7,
we observe that the total energy consumption grows as the
value of L increases. It indicates that device heterogeneity
does impact the energy efficiency in FL training. Besides, it
is observed that the gap between FWQ-pro and FWQ

Fig. 4. Convergence of Algorithm 2.

Fig. 5. Convergence of Algorithm 3.

Fig. 6. Energy versus the numbers of devices.

TABLE 1
Computation Overhead versus the Numbers of Devices

N=10 N=50 N=100 N=500

Computation overhead (s) 0.04 0.31 1.02 7.07

7462 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 12, DECEMBER 2023

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 12:33:26 UTC from IEEE Xplore.  Restrictions apply. 



increases as the UE heterogeneity level grows. This indi-
cates the effectiveness of the proposed FWQ under high UE
heterogenity. Since the proposed FWQ scheme jointly opti-
mizes the quantization levels and bandwidth allocation for
heterogeneous devices, the FWQ scheme is superior to all
other schemes in terms of high levels of computing hetero-
geneity across participating devices.

5.6 Impact of Communication Capacities

Fig. 8 shows the impacts of the wireless conditions on the
optimal quantization selection. We vary the total available
bandwidth from 80 MHz to 98 MHz and divide the mobile
devices into 4 different groups, denoted as fg1; g2; g3; g4g,
where the channel gain hðg1Þ � hðg2Þ � hðgd3Þ � hðg4Þ.
From Fig. 8, we observe that, as the overall bandwidth
becomes small, the ratio of the communication energy con-
sumption to the overall energy consumption grows, which
means wireless communications have a larger impact on
the total energy consumption than local computing. As a
result, the mobile devices in group 1, with small channel
gain, become the stragglers in FL training and could slow
down the gradient update time for one iteration. To avoid
the update delay for the next iteration and reduce the over-
all energy consumption, they have to take aggressive
actions to compress their local models into the smallest
number of bits. However this results in large discretization
noise and degrades the performance, as stated in Theorem
1. To compensate for that, those who have better channel
gain need to “work” more by using a higher precision
model to perform local training. Similarly, when the avail-
able bandwidth increases, the computing contributes more
to the overall energy consumption. Those mobile devices
with smaller local computing capacities choose to compress
their models more to save computing energy.

6 CONCLUSION

In this paper, we have studied the energy efficiency of FL
training via joint design of wireless transmission and weight
quantization. We have jointly exploited the flexible weight
quantization selection and the bandwidth allocation to
develop an energy efficient FL training algorithm over hetero-
geneous mobile devices, constrained by the training delay
and learning performance. Theweight quantization approach
has been leveraged to deal with the mismatch between high
model computing complexity and limited computing capaci-
ties of mobile devices. The convergence rate of FL with local

quantization has been analyzed. Guided by the derived theo-
retical convergence bound, we have formulated the energy
efficient FL training problem as a mixed-integer nonlinear
programming. Since the optimization variables of the prob-
lem are strongly coupled, we have proposed an efficient itera-
tive algorithm, where the closed-form solution of the
bandwidth allocation and weight quantization levels are
derived in each iteration. By comparing with different quanti-
zation levels through extensive simulations, we have demon-
strated the effectiveness of our proposed scheme in handling
device heterogeneity and reducing overall energy consump-
tion in FL over heterogeneousmobile devices.
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