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Abstract—It is often observed that people’s data are scattered across various organizations and these data can be used to generate
usable insights when integrated. However, data fusion from multiple data hosting sites could put user privacy at risk albeit with some
security mechanisms. This paper studies a data-analytic platform that adopts the Kulldorff scan statistic to determine
infectious-disease spatial hotspots by integrating and analyzing users’ health and location data that are respectively stored in two
clouds. We examine the privacy threats to this platform which has a key-oblivious inner product encryption (KOIPE) mechanism in
place to ensure that only coarse-grained statistical data is revealed to the honest-but-curious (HbC) entity. To protect user privacy from
the designed inference attack, we exploit a game-theoretic approach to incentivize users to form anonymous clusters with a
quantitative privacy guarantee. We conduct extensive simulations based on real-life datasets to demonstrate the performance of our

scheme in terms of design overhead and privacy level.

Index Terms—public health, Kulldorff scan statistic, secure multi-party computation, Bayesian inference, game theory.

1 INTRODUCTION

Classified as one of the top leading causes of death in the
United States, infectious disease is a serious public health
problem [2]. The impact of infectious diseases is immense
but unfortunately, rapid urbanization and globalization in-
creases the vulnerability of our society to its outbreaks. This
year’s COVID-19 pandemic is a typical but brutal example
of how threatening infectious disease could be. Therefore,
efficient detection and timely response to infectious disease
outbreaks, should it occur, are the key steps for public health
organizations. Among many analysis interests, the spatial
clustering analysis is of critical importance [3]. By analyzing
people’s health (e.g., fever, coughing) and location (e.g.,
zipcode) data, epidemiologists could identify geographical
disease clusters at the early stage of the disease outbreak.
Then, public resources like antibiotic prophylaxis could
be allocated to prevent its further dissemination. Recent
deployment of disease monitoring systems has gained great
attention. COVID-19 web dashboard was launched to track
global COVID cases [4]. Another project called Biological-
Agent Correlation Tracker (BACTracker) [5] deployed by
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MIT Lincoln Laboratory aims to mitigate possible bio-
terrorist attacks.

However, these participatory-based mobile systems bear
the weakness such as the coarse timeliness, limited repre-
sentativeness and unreliable participation rate. For example,
some systems collect data weekly; a majority of participants
are women; and participation rates also relate to illness
with first-time participants being more likely to be sick
than repeated ones. Furthermore, it has also been noted
that patients are generally very reluctant to report their
health and location information for a variety reasons, some
related to socio-demographic differences and others for
privacy concerns (e.g., unwanted intrusive marketing [6]).
Ideally, high-fidelity clustering analysis requires as much
an individual’s information as possible, but existing mobile
systems fail in this regard.

To remedy this problem, the popularity of cloud services
may shed a light on an alternative solution. Nowadays,
our digital life are scattered among a myriad places in
the cloud — our location data at Google, health data at
Apple and social network at Facebook. Ideally, integrating
these data from multiple clouds will create many insightful
knowledge about the public health [7], but some hurdles
such as rigid business models, intellectual property (IP)
concerns, legal and ethical issues challenge the practicality
of this multi-cloud model. Amongst these obstacles, privacy
is the utmost concern to users so many security mechanisms
are widely developed to protect user’s privacy in multi-
cloud data fusion. For example, in our preliminary work [1],
we designed a secure multi-party computation (SMC)-based
scheme which only gives statistical data to the honest-but-
curious (HbC) data-integration entity for the analysis of spa-
tial clusters of infectious diseases. At first glance, disclosing
statistical data — a common methodology in the state-of-
the-art — can preserve user’s privacy because an adversary
only has a fuzzy view of a group, but this syntactic privacy
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model is vulnerable to the inference attack by the adversary
with prior knowledge, which are recently evidenced in a
few works [8], [9], [10], [11].

In this paper, departing from our prior work [1], we
investigate the privacy implication and countermeasure in a
secure multi-cloud data fusion model for infectious disease
analysis. Specifically, this work makes the following major
contributions.

« We present a novel framework to collect users’ multi-
institutional data across various cloud platforms for
spatial clustering analysis of infectious diseases.

« We develop a SMC-based scheme by leveraging
the key-oblivious inner product encryption (KOIPE)
mechanism to ensure that untrusted entities can only
get statistical data of a group instead of an individual.

o We demonstrate the effectiveness of Bayesian infer-
ence attack on statistical data in deriving an indi-
vidual’s data. Then, we propose a non-perturbative
game-theoretic approach to preserve user privacy
and guarantee high-fidelity data analysis by incen-
tivizing participation in this multi-cloud platform.

The remainder of the paper is organized as follows. Sec-
tion 2 surveys the related works. Section 3 describes the sys-
tem model and security assumptions. Section 4 introduces
the preliminaries for our design. Section 5 presents the SMC-
based data fusion protocol. Then we discuss an effective
inference attack in Section 6 and propose its countermeasure
in Section 7. The performance evaluation of our scheme is
later shown in Section 8. Finally, we conclude the paper in
Section 9.

2 RELATED WORKS
2.1 Infectious disease monitoring and analysis

Spatial analysis of infectious diseases has drawn great at-
tention recently. One line of research efforts is to develop
surveillance platforms for data collection. Exemplary plat-
forms include the COVID-19 web dashboard [4]. However,
these systems have unreliable participation rate and the
collected data has limited representativeness.

With the popularity of cloud services like social net-
works, an alternative yet effective solution becomes avail-
able for infectious disease monitoring. For instance, Twitter
data is exploited to track flu [12] and Ebola [13]. Fung et
al. showed the effectiveness of using Weibo data to track 42
infectious diseases like Dengue and Malaria in China [14].
Zhang et al. proposed a privacy-preserving framework for
integrating health cloud with social cloud to predict users’
health condition based on their social contacts [15].

2.2 Privacy and security in infectious disease analysis

To ensure privacy when data is collected, distributed and
consumed in health applications, randomization (e.g., dif-
ferential privacy [16]) and anonymization are common tech-
niques. However, these approaches tend to either introduce
large distortion leading to errors in the data analysis, or
suffer from re-identification attacks, nullifying the effort of
protection practices [17].

2

Another idea on preserving privacy is to reduce the
unnecessary data disclosure as much as possible, prefer-
ably only revealing statistical information. Rmind [18] is
a cryptographic tool that provides secure computation for
statistical analysis. It implements a number of secure op-
erations including quantiles, co-variance, statistical tests, to
name a few. However, it has been shown in recent works
that privacy is not preserved in a platform that only re-
veals statistical data through secure computations [8], [9].
A simple inference algorithm like random forest would
reveal users’ information in an aggregated statistical dataset,
which is coined as the membership inference attack [19].
As the countermeasure, PrivaDA [10] and Pettai ef al. [11]
introduced differential privacy to an aggregated dataset to
preserve user privacy.

In order to secure data analytics from multiple sources,
SMC has been widely adopted recently. For example, Laud
et al. [20] proposed an SMC protocol to remove duplicated
records among multiple databases to avoid record linkage.
However, Ah-Fat et al. [11] recently observed that some
information of sensitive input could still be leaked from
SMC outputs.

In this work, we intend to address a missing element
in existing works and use a non-perturbative technique to
protect user privacy from inference attack on statistical in-
formation, especially the one from the SMC output. Besides
privacy, such a technique shall not hurdle infectious disease
monitoring system from collecting high-fidelity data. In
other words, it should incentivize users to contribute their
data for analysis.

3 SYSTEM MODEL

In this section, we give a high-level discussion on the system
model for data fusion, and the security model.
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Figure 1: System model for the data fusion framework
exploiting two cloud services.

3.1 System Model

As shown in Fig.1, our system consists of five entities. Col-
lectively, they are the trusted authority (TA), public health
office (PHO), location-based service (LBS) cloud server (LC),
health service cloud server (HC) and users.
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Users get services from LC and HC through off-the-
shelf devices such as their GPS-enabled mobile phones and
wearable devices. LC and HC are operated by different en-
terprises and they offer location and health services to users,
respectively. PHO is a public health entity that conducts
disease monitoring and analysis. Upon users’ consent, PHO
can collect data from LC and HC. TA bootstraps the system,
generates and distributes secret materials to other entities.
It also addresses disputes and revokes misbehaved entities
if needed. The rationale of assuming three independent and
inter-operable entities is based on some practical systems
and business examples. For instance, amid COVID-19 pan-
demic, Apple and Google developed respective APIs in their
app stores to collect users’ location (i.e., physical contact)
and health information in order to deliver contract warnings
and enable health authorities (e.g., CDC) to keep track of
the spread of COVID-19 [21]. The developed schemes in
this paper could potentially be integrated in the existing
platforms for privacy protection.

3.2 Security Model

TA is fully trusted by other entities in the system and
it cannot be compromised by the adversary. LC and HC
are honest-but-curious (HbC). That is to say, they honestly
follow the protocol but are curious about users’ location
and health information. Their incentives for malicious be-
haviors include delivering commercials, denial of insurance
for unhealthy users and many more. PHO is assumed HbC
as well in the sense that it honestly conducts statistical
analysis of infectious disease but are curious of one’s loca-
tion and health data for purposes like segregating infected
patients, which however is against users’ willingness and
thus compromising their privacy. PHO, LC and HC are op-
erated by separate entities and they are assumed to be non-
colluding. Users in this system are not trusted. They may
launch Sybil attacks to mislead PHO's analysis by injecting
fake/duplicated data to LC and HC. Their incentive is either
to cause panic in an uninfected region or to reduce PHO’s
awareness of an infected area. This applies to bio-terrorists
or businesses trying to gain commercial advantages over
others.

4 PRELIMINARIES
4.1 Kulldorff Scan Statistic [22]

The Kulldorff scan statistic was firstly proposed in 1997 [22],
and it now becomes a powerful tool in performing both
spatial and temporal clustering analysis for infectious dis-
eases. In spatial analysis, the Kulldorff scan statistic is able
to discover small regions (e.g., a school or a shopping mall)
of significantly elevated disease density. In what follows, we
describe how the Kulldorff scan statistic works.

A surveillance region K is divided into subareas
{s1,82,...,5x} of any arbitrary level of resolution, and

K
K = U s;. The disease headcount and population in each

subarlez;, denoted as {c1,¢2,....cx} and {p1, p2,.... Pk}, re-
spectively, are collected. Let the total disease case count
Cior = Zfil ¢; and census population P, = Zfil pi of
whole region K. The Kulldorff scan statistic is then applied

3

to search all possible clusters of adjacent subareas for ab-
normal ones with disease overdensity. Specifically, suppose
{81, 82, ..., Sp} is the set of such clusters, each of which has
disease case count C; and population P;. The Kulldorff
spatial scan statistic proceeds to calculate the respective
cluster density D; as

Ctot - Cj _
Prot - Pj

C.
C; log# + (Cror — Cj) log
j

if % > % and 0, otherwise.

fn so doing, the maximum density mrd = maxs, D and
the corresponding cluster mdr = arg maxg; D; in the region
K can be identified. To evaluate if this cluster is statistically
significant, the Kulldorff spatial scan statistic assumes that
¢; follows inhomogeneous Poisson processes and a random-
ization testing approach is conducted to examine mdr. The
statistical significance (i.e., p-value) is then calculated so that
the cluster is considered as the outlier or being statistically
significant when p < 0.05.

4.2 Privacy Metric

We follow the popular privacy metric [8] and model user
privacy level as the inverse of an adversary’s capability in
correctly inferring a user’s private information. Specifically,
Area Under Curve (AUC) is used to capture the adversary’s
overall inference performance while the privacy loss (PL)
score is calculated to represent a particular user’s loss of
privacy.

AUC Score: Suppose that a user’s private information is
x € {0,1} and adversary’s inference is x* € {0,1}. We have
the following metrics:

e True Positive (TP) when x* =1 and x = 1;
o True Negative (TN) when x* =0 and x = 0;
» False Positive (FP) when x* =1 and x = 0;
« False Negative (FN) whenx* =0 and x = 1;

from which we could derive the True Positive Rate as TPR =
TP/(TP+FN) and False Positive Rate as FPR = FP/(FP+TN).
Then, based on different discrimination thresholds, the
Receiver Operating Characteristic (ROC) curve could be
obtained and the AUC is just the area under the ROC
curve which captures the adversary’s overall performance
in inferring the user’s information x.

PL Score: Suppose the ideal case where the adversary
has no prior knowledge about a user’s private information
and thus it has to randomly guess (AUC = 0.5) x*. Through
the inference attack, AUC may increase and we define the
PL score as the adversary’s relative belief gain over its
original random guess:

AUC-0.5

PL_{ Lo if AUC > 0.5
"o

otherwise

5 SECURE MuLTI-CLouD DATA FUSION FOR IN-
FECTIOUS DISEASE ANALYSIS
5.1 Protocol Overview

The overall information flow is shown in Fig.1. At system
bootstrap, TA generates and distributes security materials
to PHO, LC, HC and users, and then it can go offline

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee0r§/§ublicati0nsﬁstandards/ ublications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 05,

022 at 09:20:54 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3145745, IEEE

Transactions on Mobile Computing

(coined as flow (1) in Fig.1). Whenever an infectious disease
outbreaks, PHO first determines an incentive to motivate
users to contribute their data, as will be discussed in Sec-
tion 7. LC and HC collect location and health data from
users, respectively, coined as flow (2) in Fig.1, in which an
authentication scheme based on anonymous group signatures
is designed to avoid Sybil attacks and an anonymity scheme
based on identity-based encryption is designed to provide
controllable linkability of users” data on HC and LC. Finally,
PHO interacts with LC and HC to obtain users” aggregated
health and location data, coined as flow (3) and (4) in Fig.1,
for spatial analysis.

For the sake of brevity, we will only present the design
for flow (3) and (4), i.e., the SMC-based design for statistical
data calculation, to motivate our study on the privacy threat
and protection in Section 6. For more details on our design
for flow (1) and (2), we refer readers to our preliminary
work [1].

5.2 Secure Data Aggregation via SMC

Since the Kulldorff scan statistic only requires the census
data such as the population P; and the count of infected
users C; in each geographical grid j, the design goal is to
limit PHO to access only these statistical (i.e., aggregated)
data. Moreover, spatial analysis deals with prohibitively
large datasets, so high efficiency is desired in the compu-
tation. Specifically, the steps of our design are as follows.
PHO starts with matching users’ health and location
records respectively at HC and LC by linking users’ en-
crypted identifiers uid at LC and uid at HC!. After that,
PHO and HC jointly calculate the aggregated disease counts
in a secure manner. For demonstrative purposes, we show a
toy example in Fig.2. On the one hand, PHO forms a query
matrix @ containing users’ existence in one geographical
grid. A value 1 represents the user in that grid; 0 otherwise.
On the other hand, HC maintains users’ infected status in
vector H. Then, PHO can efficiently calculate the disease
count vector CNT in each geographical grid via the inner
product of @ and H. In our design, PHO’s query matrix

p—ap—aOp—a

Figure 2: A toy example for the batch query: PHO’s
query matrix contains 3 grids and 4 users; HC holds
4 users’ infected status; the inner product gives the
number of infected users in each grid.

0 should be hidden to HC (for location privacy) and con-
versely HC’s health vector H should be kept private to PHO
(for health privacy). Therefore, our scheme is boiled down to

1. Linkability is ensured by our design in flow (2) as shown in Fig.1.

4

a secure multiparty computation (SMC) design where PHO
and HC collaboratively calculate the inner product of @ and
H without revealing further information.

Inspired by the secure k nearest neighbour (kNN)
scheme [23], which is detailed in Appendix A, we modify its
original design because (i) it only provides relative distance
instead of exact value; (ii) the random matrix is known to
both entities, which cannot satisfy the security requirement
for our design. In light of this, we propose a Key-Oblivious
Inner Product Encryption (KOIPE) scheme to address these
problems. The overview of our design is shown in Fig.3 and
the detailed description is given as follows.

-
=13 sillei
LC PHO

0) Query: user list in every grid

0) Respond: {uid }
>

Decrypt {uid'} and randomize via 7,()
1) Matrix Synchronization

_ 1) Acknowledgement

QryRnd: O =7,(Q-M™") Dataknc: H = Enc,, (H.r)

2) H

KeyEmd: H = Enc,, (M-H)

3) 7,(H)

Decrypt and Inner Product

_a)CNT

Figure 3: Diagram for information exchange and se-
cure data aggregation.

(1) MtxSync: PHO and HC first “synchronize” their
matrices so that mismatched records will be eliminated. To
do it securely, PHO applies a permutation mechanism 77 to
randomize the user list uid, which is then sent to HC to trim
and re-order H.

(2) QryRnd: PHO selects a random invertible matrix M
of size N x N to encrypt the query matrix into @ = Q-M~1. To
enhance security, another permutation vector n, is applied
to Q and PHO then sends the transformed encrypted query

matrix @ (i.e, @ = m(Q)) to HC. Note that applying
the same permutation on two matrices, regardless of the
number of times, does not change the inner product of them.

(3) DataEnc: We use the additive homomorphic property
from the Paillier cryptosystem [24]. HC firstly obtains a
key pair (pkuc,sknc) from TA. Then, HC encrypts H
using public key pkpc and gets H, which is sent back
to PHO. Specifically, for h; € H, the encryption runs as
hi = Encpiye(hiri) where Encpp,.() is the encryption
function and r; is a random number selected in correspon-
dence with 4;.

(4) KeyEmd: Here, we intend to securely embed the
random invertible matrix M in H. By leveraging the prop-
erty of the additive Paillier cryptosystem, PHO calculates
H' = Encpi, (M - H) via the following arithmetic computa-
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tion for each element in H:
’ N — M
hi = l_lj:1 EncpkHc(hjv rj)
=TT E Y
= Lo B¥pkuc (mi jhj,r; ™)
N 7 N m;
:EnCPkHC(ijl mi,jhj, r. ),

j=1'i
Then, PHO applies the same permutation m, as in Step
2 to randomize the H, _and then sends it along with the

1<i<N.

encrypted query matrix Q back to HC.
(5) InPrd: Upon receiving the two matrices from PHO
in Step 4, HC first decrypts the health data vector using the

secret key sk c into H and then computes the inner produ_ct

to derive the number of infected users as CNT = Q - H”.
Then, HC sends it back to PHO, which concludes the whole
process. With the disease case count ¢; and the respective
number of participants p; for every geographical grid area
sj, PHO can apply the Kulldorff scan statistic to search for
the spatial clusters that exhibit statistical significance.

The above design can be proven to be secure in the sense
that neither HC nor PHO can determine a specific user’s
health and location data purely based on the interactions in
Fig.3. The reasoning is as follows. First, by observing PHO'’s

Q, HC has to solve a system of linear equations which has
K equations but K - N variables to derive the randomization
matrix M so as to revert 0. Although secure kNN scheme is
inherently vulnerable to known-plaintext attack (KPA) [23]
implying that HC can invert M with sufficient number of
plaintext-ciphertext pairs, KPA is practically rare especially
given our threat model that PHO and HC will not collude.
Therefore, there lacks sufficient information to find M which
implies that HC cannot determine a user’s location data.
Second, PHO is oblivious of a user’s location due to the
batch query to the LC; and it cannot deduce a user’s health
status either since solving discrete logarithm problem is
assumed to be mathematically hard. Nonetheless, PHO can
access the final output statistics, i.e., how many users are in
a grid area and how many of them carry the disease. This
statistics could then be misused by the PHO to infer a user’s
sensitive information. To illustrate this point, we showcase
PHO's inference capability in the following section.

6 INFERENCE ATTACK ON STATISTICAL DATA

In this section, we evaluate how capable PHO is in com-
promising individual’s health data depending on its side
information and inference capability. Consider a scenario
where PHO monitors the city-level public health in real-
time. That is to say, PHO continuously collects data from HC
and LC to facilitate its statistical analysis. By correlating data
from different time instants, PHO could increase its belief of
a particular user’s health condition, which on the contrary
reduces the user’s privacy level. Next, we demonstrate the
effectiveness of such an inference attack based on a real-
world dataset. We then propose a game-theoretic approach
in Section 7 as the countermeasure.

6.1 Adversary’s Knowledge and Objective

Following the same notations from previous sections, we
use Q to denote the locations of all participant users, where

5

qi,; € QKXINI'is 1 if user i is within geographical grid
area j and 0 otherwise. By adding the vector of disease
counts CNT into Q, we construct the matrix D € ZKX(INI+D)
as PHO’s knowledge after querying LC and HC. Suppose
PHO periodically collects D across a finite series {1,2,...,¢}
for the purpose of real-time disease surveillance. Then, by
time ¢, PHO has a stream of observed data denoted as
S; ={D1,D,,....D;} and we let S;[i] =D; for1 <i <rt.

Next, we assume that PHO possesses certain prior
knowledge P regarding how likely users could get infec-
tious disease. For instance, certain infectious diseases (e.g.,
airborne or foodborne [25]) exhibit evident age and gender
bias [26]. PHO could easily construct by correlating users’
wellness with their physiological attributes which are po-
tentially revealed from the mobility pattern in S;.

In addition, suppose PHO has an inference function adv
which takes (u*, S;, ) as input and yields an inferred
result about whether user u* carries infectious disease or not.
Mathematically, the inference attack can be characterized as

h* =ado(u*, S¢, P),

where h* € {0,1} represents the inferred result. Note that
although PHO'’s inference is w.r.t. a user with pseudonym
uid*, the potential re-identification attacks, e.g., from mobil-
ity traces, could undermine our faith on the anonymization
system [27].

6.2 Bayesian Inference Attack

Here, we opt to instantiate PHO’s inference function adv
with the Bayesian inference model [28]. Given the prior knowl-
edge #, PHO derives the posterior knowledge when observ-
ing the collected dataset D, which is coined as evidence. This
process repeats for ¢ times, which captures PHO’s up-to-
date belief in users’ health condition. Specifically, by time
t, PHO's belief in whether user i has the disease or not is
characterized by Eq.(2) and Eq.(3), respectively. Here, the
health condition H is a set of random variables, which are
assumed independent with each other and follow the non-
identical Bernoulli distributions.

In Eq.(2), the equality (a) is for the calculation of
Bayesian posterior probability via the chain rule where S; is
the evidence; h; = 1 is the hypothesis that user i carries the
disease; and Pr(h; = 1) is part of PHO'’s prior knowledge
P regarding user i’s health condition. Recall that every D
consists of users’ location information @ and the count of
infected users in each geographic grid k. Suppose the moni-
toring phase ¢ is at the early stage of disease developments,
so the infected users only exhibit the signs and symptoms
but the disease is not that contagious [29]. We thus assume
no users are infected by the infected ones through their
social contacts within time f. As a result, the event D; is
independent of any other event D; and the conditional
probability can be re-written followed by the equality (b).
Furthermore, define a set L;; = {u; € Ulgsi; A qs,j1r =
1,35 € K,1 < i # j < N} as the set of users who are at the
same geographic grid s with user i at a given time stamp ¢,
and the operand A is the Boolean AND operation. Then, the
number of infected users where the user i resides at time

stamp ¢ is hx = cij¢, which is collected
{klug €Ly k#i,1<k<N}
from HC. Suppose users’ mobility pattern Q is an observed
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and thus deterministic variable whereas the occurrence of an
event D, is the outcome of the set of random variables in H.
Therefore, we have the equality (c). Recall that users” health
conditions are independent with each other, so we can
further write the conditional probability according to the
equality (d) and derive the final expression for the Bayesian
posterior probability as in Eq.(2). Similarly, PHO's belief in
user i’s health condition as non-infected can be captured by
Eq.(3) or simply as Pr(h; = 0[S;) =1 - Pr(h; = 1|S;).

Since the set of random variables in H are independent
and follow non-identical Bernoulli distributions, the sum
of the subset of H (i.e., Y hi) follows the Poisson binomial

distribution and we coufd calculate the Bayesian posterior
probabilities Eq.(2) and Eq.(3) in this regard. Then, we select
a threshold ¢ such that user i is classified to have the disease
(i.e., by = 1) if Pr(h; = 1|S;) > ¢ while not having the disease
(i.e., hi = 0) otherwise. For various selections of £, we can
construct the ROC curve for a specific user and then use
AUC and PL as the metric to quantify PHO’s inference
capability and user’s privacy loss, respectively.

6.3 Evaluation
6.3.1 Simulation Setup

We choose a real-world dataset that captures the mobility
characteristics, obtained from Gowalla [30], a location-based
social networking website where users share their location
by checking-ins. Specifically, it contains a total of 6,442,892
check-ins of users over the period of February 2009 to
October 2010. Each record consists of a user identifier, time
stamp, latitude, longitude and location id. For our analysis,
we focus on the users that have checked in on March 14,
2010 in Austin, Texas, USA. The geographical area of Austin
was approximated by taking a rectangular grid with corners
at coordinates (29.5°N, 98.5°W), (29.0°N, 97.5°W), (30.5°N,
97.5°W) and (30.5°N, 98.5°W); and center at coordinate
(30.0°N, 98.0°W). A total of 10,638 check-ins were reported
by 1,801 unique users in Austin within the specified time.
To determine PHO's inference capability, we perform a
series of inference attack for each user. First, the region of
interest is split into grids (e.g., 10 x 10, 15 x 15 and 20 x 20).
Next, the infected rate of population is assumed to be 10%
and remain constant over the considered time and PHO's

prior knowledge on each user’s disease condition is set to
0.5. We then randomly assign disease condition (i.e., 0 or
1) to every user based on the infected rate. Next, suppose
PHO collects the statistical data in a time granularity of
hours (e.g., 1 hr., 2 hrs. and 3hrs) within a day. Given these
inputs, PHO updates its posterior probability using Eq.(2)
and Eq.(3) for each user. To address the randomness, we
repeat the above steps for 100 iterations and calculate the
average value.

6.3.2 Results and Analysis

Fig.4 plots cumulative distribution function (CDF) versus
the AUC score achieved by the Bayesian inference model
under different inference settings. We observe that decreas-
ing the size of grid area (i.e., increasing the number of
grids) or increasing data collection granularity/frequency
results in higher mean AUC scores. For instance, the mean
AUC score for the setting of 10 x 10 grid size and time
granularity 1 hour is 0.72. While for the same grid size but
time granularity of 2 hours, the mean AUC score is 0.66.

10x10 1hr
- 10x10 2hr
4 20x20 1hr
20x20 2hr

'
X ¢

0.2 0.4 0.6 0.8 1.0

Figure 4: PHO'’s inference capability under different
inference settings.

We also plot PL over different inference settings as
shown in Fig.5. This indicates the relative belief gain of the
PHO over its initial random guess which reflects the impact
of the Bayesian inference on the privacy loss of each user. We
observe that for a certain infected rate, PL increases as the
size of grid decreases or as the time granularity increases.
For example, 20 x 20 grid size and 1-hour time granularity
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Figure 5: Privacy loss per-user under different infer-
ence settings.

gives the mean PL score 0.31; but for the same grid size and
time granularity 3-hours, the mean PL score is 0.22.

7 COUNTERMEASURE TO INFERENCE ATTACK

The take-away from above simulations is that small aggre-
gation group size (or anonymity set) and continuous statisti-
cal observation are the major obstacles to the privacy preser-
vation. Thus, we intend to develop a mechanism to protect
user’s privacy from the aforementioned statistical inference
attack. To the best of our knowledge, existing solutions
include creating a larger aggregation area (e.g., by zipcode)
[31], obfuscating individual or statistical data (e.g., location
and health data) [32], changing users’ pseudonyms fre-
quently at mix zone [27], [33], etc. However, these approaches
have their inherent disadvantages: the large aggregation
spatial region could compromise the sensitivity of disease
analysis [34]; and updating pseudonyms is burdensome for
mobile users which may discourage them from participation
[35]. In this section, we propose a game-theoretic approach
to incentivize participation and also naturally create a large
anonymity group so that every user’s data is “hidden in the
crowd”.

7.1 Game-theoretic Approach

As illustrated earlier in Section 1, a general volunteer-based
data collection system could be limited by the participatory
rate and data representiveness. Our system bears the similar
issue if user privacy is not properly preserved. Therefore,
we will explore how much incentive PHO should provide to
a user so that it would compensate user privacy loss and thus
motivating her to contribute the data. By proper design, PHO
could obtain sufficient data for infectious disease analysis
while preserving the user’s data privacy.

We formulate the problem by resorting to the Stackelberg
Bayesian game model [36], where the self-interested users
(i.e., the followers) determine their optimal strategy (partic-
ipate or not) based on the incentive offered by PHO (i.e., the
leader). Firstly, we characterize each user’s utility function
as 5i

Ui =siyP-0i——

j=157
where user i’s potential strategy s; € {0,1} indicates her
decision on contributing data (s; = 1) or not (s; = 0). P is

7

the amount of incentive paid by PHO to each participatory
user, and we apply consistent P without customizing it
for different users. y is a system parameter unifying user’s
received incentive and its privacy level. Recall that a user’s
privacy level is related to adversary’s inference capability.
Without assuming the awareness of such inference capabil-
ity, user’s privacy level can be simply characterized by using

the k—anonymity concept, which is —x*—. Note that in prac-

. . . . ‘I:l . .
tise where adversaries have side information, k—anonymity

could be sacrificed so our defined privacy level serves an
upper-bound for different adversarial settings. 6; captures
user i’s type which characterizes her valuation (or weight) of
privacy. Note that one user could be oblivious of others’ type
and thus the utility function. Hence, we are dealing with
the incomplete information scenario and the game played
among users is a Bayesian Game. To address the uncertainty,
we follow the classical work by Harsanyi [37] where users
are only aware of the distribution # from which user’s type
6; is sampled. Besides, user i’s utility function could be
further re-written as follows due to the discrete nature of
Si.

Sj

0 S,‘ZO

U; (5, S-i;0:,0-;) = { y’P _9 5i=1 4

1
ITHS 057

On the other hand, by incentivizing users to contribute
their data, PHO receives the following payoff:

N N
U =log(1+)_ s)=P) s )

where A is a system parameter like y and the logarithmic
function reflects PHO’s diminishing return on the number
of participating users for its Kulldorff scan statistic analysis.

Under this game-theoretic model, the objective of PHO
is to find the optimal value of P to maximize Eq.(5),
while each user’s goal is to find her optimal strategy s; to
maximize Eq.(4) given other users’ strategies S_; and the
incentive P. This model falls into the category of Stackelberg
Bayesian game where PHO is the game leader initiating a
payment P and users are the game followers responding
their participating strategies given P. In what follows, we
start with the game of followers and determine users’ best
responses as a function of the payment P. We then find the
optimal incentive strategy P* of PHO based on the result of
followers’ game to maximize Eq.(5).

Due to the incomplete information game of followers,
we have the following definition of the equilibrium state:

Definition 7.1 (Bayesian Nash Equilibrium (BNE)). Given
the user’s belief about the types of other users 6; and others’
strategies S_;, a strategy profile S* = {s], 8%, .... Sy } is a BNE
if 57 for every user i maximizes her expected utility. That is to say,

57(0;) = argmax Y f(0-) X Uy (51, 82;01,0-)  (6)
i 0

Since users’ types are sampled from the same distribu-
tion ¥ and the user’s utility is a non-increasing function of
type, the best response can be determined in a threshold
structure [35], [38] as follows:

0, 6; >t*
si0) =4 0/1,  gi=r @)
1, 0; <t*
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where 1* is the type gap between two actions 0 and 1. Thus,
determining the user’s optimal strategy s} (6;) is equivalent
to finding ¢*. Interestingly, we see that the user of type ¢* has
no preference over action 0 or 1 so we have the following
theorem to determine the strategy threshold.

Theorem 7.1. Given the incentive P offered by PHO, the optimal
strategy profile of users at the Bayesian Nash Equilibrium is in
Eq.(7), where the strategy threshold is as follows:

—(1—~v-N.P\¥ i 1
o 1-(1-y-N-P)V, lfP<.7N ®)
1, otherwise

Proof. See Appendix B. ]

This finding concludes the solution for the game of
followers and our next attempt is to determine the opti-
mal incentive strategy P* for PHO given users’ responses
in Eq.(7). As the types of users are unknown to PHO,
instead of maximizing the utility function in Eq.(5), PHO
should find P* that maximizes its expected payoff. Based
on the type distribution # and Eq.(7), we know that the
probability of action 1 being taken is F (t*), which is the
cumulative distribution function (CDF) evaluated at ¢*. If
we let z = Z;V: 1 5} be the event indicating the number of
participating users, z follows a binomial distribution with
success/ true probability F (t*) and we denote it as G. Hence,
PHO's expected payoff function can be written as follows:

%:Z[/llog(l+z)—P-z] %X g(z2), 9)

where g(z) is the probability mass function (PMF) of G
evaluated at z. The PHO'’s attempt is to find the optimal
incentive strategy, i.e., P* = arg mgx% where P € [0, o).

Unfortunately, Eq.(9) is in discrete nature due to z and
when the number of users gets large, the closed form of
Eq.(9) is infeasible to track which results in the inefficiency
in solving the optimal value P*. In light of this, we transform
Eq.(9) by first obtaining the expected number of participating
users. This heuristic will lead PHO’s objective into the
following form:

Uy =Alog[1+N-F ()] =P-N-F (), (10)

where ¢* is obtained from Eq.(8) and PHO needs to find the
optimal incentive such that P* = arg max 2. Then, we have
the following result which will facilitate for the search of P*.

Theorem 7.2. There exists a unique Stackelberg Equilibrium
(P*,8*) in the leader’s game, where P* is the unique maximizer
for Eq.(10) over P € [0, o).

Proof. Assume that user type 6 is uniformly distributed over
[0,1]. Then, by taking Eq.(8) into Eq.(10), we can easily
calculate the second order derivative of U, as

Uy X N - xRy
dP? Y2
2N-1

—P-N(N-1)X ¥

<0

where X = (1-y-N-P)and Y = (1+N—N~Xﬁ).There-

fore, the transformed payoff function W(; is strictly concave
with respect to (w.r.t.) P for P € [0, c0), albeit not smooth at

8

P = yl—N Besides, ‘ZI(') is 0 when P = 0; while ‘Ll(') is —oo as
P goes to +co because of F(t*) = 1 for P = +co. There exists
a unique maximizer P* that can be efficiently computed by
bisection or Newton’s method [39]. [

8 PERFORMANCE EVALUATION

In this section, we numerically evaluate the incurred com-
putation overhead for HC and PHO during the SMC-based
data fusion phase.? Moreover, we examine how the game-
theoretic approach could motivate users’ participation and
thus improve their privacy against Bayesian inference at-
tack.

8.1 Simulation Setup

We use a workstation with 3.4GHz Intel(R) Core(TM) i7
CPU and 32GB memory to emulate running environment
for users, LC/HC and PHO. We employ 2048-bit modulus
as the secret key length, as with RSA, in the Paillier cryp-
tosystem. The implementation is based on the open-source
platform by John Bethencourt [40] which was built upon
the GNU Multiple Precision Arithmetic Library (GMP) in C
language.

We exploit one dataset which is the cancer incidence at
New York State [41] for Kulldorf scan statistics. It was con-
structed by collecting 67,217 tumor incidences from 2005-
2009 out of an average of 19.34 million population (2010
population census) covering 13,848 spatial groups. Given
this dataset, we only filter the lung tumor incidence and
apply the random-drop scheme to adjust the number of
users, the disease count and the number of clusters, which
are control variables to examine the performance of our
designed scheme.

Furthermore, we explore how to steer users’ behaviors
under different incentives to “hide” users’ private data in a
large sample group. Suppose there are N = 200 users inside
one geographical grid. The system parameters y and A are
set as control variables that represent user’s bias between
the incentive and privacy and the PHO’s preference of
utility over payment, respectively.

8.2 Computation Overhead Analysis

In our preliminary work [1], we illustrated the theoretical
element-wise analysis on the computation overhead for ev-
ery protocol step, so we omit it here and focus on examining
numerically the performance of the SMC-based data fusion
design.

Specifically, we demonstrate an end-to-end computation
overhead, which consists of running SMC protocol to ob-
tain the statistical data and using Kulldorff scan statistic
to find the spatial clusters. In so doing, we aim to com-
pare how much additional overhead is incurred due to
the non-functional security design. On the one hand, we
implement the KOIPE-based SMC protocol based on John
Bethencourt’s Paillier platform [40]. On the other hand, we
use the simulator provided by the open-source SaTScan as
in [42] to perform Kulldorff scan statistic. The setting is that

2. The results of communication overhead were given in our prelim-
inary work [1] thus are omitted here.
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Figure 6: Computation overhead for PHO and HC.

inhomogeneous Poisson process is used to test whether an
area of disease over-density is indeed statistically significant
among others. In every statistical analysis, we generate
R = 999 replications and set p to 0.05. Both SMC and
SaTScan simulations are run for 10 independent times to
remove randomness.

The results is shown in Fig.6, and key observations
from this simulation are three-fold. (1) The SMC runtime
is larger than SaTScan runtime and such effect becomes
more evident as we have more users and finer grids. (2)
The SaTScan runtime is only dependent on the granularity
of spatial grids, but irrelevant to the number of users. (3)
HC’s runtime is much larger than PHO’s. For our first
observation, the incurred overhead due to the SMC proto-
col is acceptable (in minute-scale) considering that a city-
level disease monitoring system may only collect data in
hourly or daily basis. For the second observation, this is
due to the nature of Kulldorff scan statistic which analyzes
spatial clusters while the disease and user counts are nor-
malized according to Eq.1. For the third observation, the
reason is that PHO only runs arithmetic modular exponen-
tiation/multiplication while HC computes both Paillier’s
encryption and decryption functions.

8.3 Privacy and Incentive under Game-theoretic Ap-
proach

Since y and A are system parameters, their selections can
greatly impact the solution to the game-theoretical model. In
Fig.7, we demonstrate how the optimal payment/incentive
P changes w.r.t. ¥ and 1. Obviously, PHO inclines to offer
higher P as y decreases for any A. This is because users lean
towards privacy preservation, especially when y < 1, and as
a result, PHO has to offer higher incentive P to maximize its
utility. Another interesting observation is that as A increases
for any v, PHO's incentive increases exponentially and then
remains constant after a threshold level. This threshold
implies the minimum P that invites all users to participate.

Based on above numerical guideline for parameter se-
lection, next we examine how the PHQO'’s incentive affects
users’ decision and in turn impacts PHO’s own payoff. In
this evaluation, we set y = 0.005 and 4 = 80, implying
that user prefers privacy to incentive while PHO prefers
utility to payment. Fig.8 shows the results for users’ strategy
and PHO’s payoff w.r.t. the incentive provided by PHO.
We observe that the threshold ¢* increases slowly at first
and steeply at the end as the PHO’s payment increases,
which implies that most users choose not to participate for

0.5

0.4 -

0.3 -

0.2 ~

0.1

Figure 7: Selection and Impact of system parameters.

a small incentive (otherwise, privacy will be sacrificed), but
all of them decide to join simultaneously when the payment
can compensate their privacy loss and a large anonymity
set is formed. Besides, for P > 1, t* = 1 always holds.
Clearly, the consensus in participation is users’ best strategy
as it provides them the largest aggregation group with the
minimum privacy loss. On the other hand, PHO’s payoff
is maximized when all users participate, but it drops as
payment continues to increase which is due to an obvious
reason — utility remains the same while overall payment
increases as shown in Eq.(10). Therefore, the optimal strat-
egy for PHO is to offer a minimum payment, here P = 1,
that can invite all users to participate.
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Figure 8: Users” and PHO's strategy under the game
model.

Guided by the optimal strategy obtained from the game
theoretic approach, Fig.9 shows how the minimum require-
ment for the aggregation group size could impact on user
privacy. The simulation is run based on the same setup
as mentioned in Section 6.3.1. The infection rate is set to
10%, the grid size to 10 x 10, and the inference frequency
to 1 hr. It can be observed that privacy loss decreases
when more users contribute to the aggregation statistics.
For instance, for a small aggregation size of 20 users, the
average privacy loss can be reduced by as large as 28% (from
0.24 in Fig.5 to 0.18 in Fig.9). In addition, this strategy is
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shown to benefit the outlier users whose PL was 1 when no
privacy-preservation was in place as shown in Fig.5. Nev-
ertheless, most users’ privacy cannot be perfectly protected
(i.e., privacy loss = 0) because the game-theoretic model, as
a strategy-making model for agents of conflicting interests,
in general falls short of offering provable privacy. One may
seek stronger privacy concepts such as differential privacy
[43] to remedy it.
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Figure 9: The impact of the minimum aggregation
group size on user privacy loss.

9 CONCLUSION

In this paper, we have examined the privacy threat to a
multi-cloud secure data fusion model for infectious-disease
analysis. By designing a simple yet effective Bayesian infer-
ence technique, we have shown its impact on user’s privacy
loss due to the reveal of just statistical data from a devel-
oped secure multi-party computation protocol. To preserve
privacy, a game-theoretic approach is proposed to defend
against Bayesian inference attacks and incentivize rational
users to contribute their data for public health. Numerical
simulations based on real-life dataset are conducted and
have quantitatively demonstrated the design overhead and
privacy gain.
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