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Abstract—Priority plays a crucial role in distinguishing the
diverse demands of applications and improving the performance
of underlying networks. However, application-provided priority is
insufficient to cope with wide variations in traffic characteristics
and dynamic network conditions. When assigning priorities to
flows, existing proposals are limited to constrained dimensions,
rendering them inadequate for accurately and rapidly identifying
flow importance. To address this problem, we present Firapam, a
novel priority assignment strategy that systematically combines
important traffic states to achieve fine-grained and dynamic
priority assignments. Firapam employs convex optimization
to adaptively respond to changes in requirements and the
environment, and implements admission control for flow
priority in a distributed manner. Consequently, Firapam
significantly reduces the flow completion time and deadline
miss rate. We analytically and experimentally demonstrate that
Firapam can effectively support existing priority assignments
with significant performance improvements. Compared to
state-of-the-art priority assignment methods, Firapam exhibits
a remarkable decrease in deadline miss rate by 14.5% to 52.3%,
across diverse traffic patterns. Moreover, it reduces the flow
completion tail by 17.9% and ensures a minimum reduction of
72.3% in deadline miss rate under high network loads.

Index Terms—Datacenter network, traffic priority, deadline,
fine-grained priority assignment

I. INTRODUCTION

Modern datacenters provide a wide range of services,
including cloud computing, virtualization, storage, and data
processing [1], [2], all of which have diverse demands and are
crucially reliant on the underlying network for performance.
These services support two common types of applications
in datacenters. The first comprises user-oriented applications
such as recommendation system, web search, and social
network [3]–[5]. This type of applications expands rapidly
in recent years, generating a diverse mix of large and small
flows with strict latency requirements (e.g., deadline). The
second comprises enterprise-class applications such as parallel
computing and high-performance storage [6]–[8]. This type
of applications exhibits increasing demands for performance,
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generating flows that require ultra-low latency and high
throughput to minimize flow completion times (FCTs).

With the expansion of datacenter networks (DCNs) and the
enrichment of application types, service providers in data-
centers face the challenge of managing incoming application
streams to achieve both rapid completion (users’ goal) and
high resource efficiency (providers’ goal) [9]. Unfortunately,
service network performance currently exhibits high hetero-
geneity, with each of the network components/resources being
dynamically shared by numerous competing services with
diverse workloads, making it particularly challenging to meet
the above requirements. Firstly, due to the diverse demands of
applications and the strict performance requirements of critical
traffic, services in DCNs must accommodate a diverse set of
workloads in terms of resource and performance requirements.
However, changes in network conditions may benefit some
services while degrading others [10], thereby subjecting some
services with unique requirements to performance limitations.
Secondly, operators often lack prior knowledge of the
workload and demand characteristics, thereby hindering their
capability to achieve optimal traffic management or resource
allocation. Consequently, as traffic complexity increases, the
imperative of achieving reliable traffic classification intensifies
significantly, playing a crucial role in ensuring system
performance and scalability.

Priority is a powerful tool for marking traffic importance and
enhancing network performance [11], [12], which significantly
contributes to achieving the above goals. For example, in the
design of application layer protocols, priority fields related to
Quality of Service (QoS) can be added to label the packet’s
priority and achieve traffic classification. Under limited
available capacity, applications utilize priorities to prioritize
the traffic, providing the DCN with a clear understanding
of flow importance and urgency [13]. By setting priorities
based on the importance of traffic, switches can achieve traffic
isolation and differentiated service quality according to the
priorities. In this way, performance-critical traffic with high
priority is permitted to move ahead of lower-priority traffic
to prevent congestion from impeding the flow of vital traffic,
thereby ensuring that critical applications and services obtain
the bandwidth required for optimal operation.

Understanding how to prioritize and keep network traffic
running smoothly for every flow is pivotal for effectively lever-
aging priority to differentiate critical flows from non-critical
flows and enhance overall performance. This process of
determining the priority is known as priority assignment (PA).
Existing proposals implement PAs from different demand
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perspectives, which can be the flow states (e.g., flow size,
deadline) [14], [15] and service level objectives (SLOs) [12].
However, existing PAs are still deficient in meeting the actual
requirements of complex flows. First, existing PAs only refer
to constrained dimensions of flow state, which is unable to
accurately describe flow importance and urgency in traffic
with mixed demands. When the selected flow state is not
the best measure, PAs may assign inappropriate priorities and
give rise to the priority inversion problem [12], [16], [17],
leading to some flows to starve while others to be overserved.
Second, existing PAs cannot swiftly identify flow importance
in dynamic network environments with wide variations of
traffic characteristics. Typically, existing PAs adopt fixed
or heuristic methods to assign priorities, which require
classifying priority levels periodically based on historical
information or global traffic information. However, due to the
long update cycle that surpasses the end-to-end delay, their
responsiveness to network dynamics (e.g., flow distribution
changes, network load changes, and link quality changes) is
limited. Consequently, as traffic characteristics change within
the network, their effectiveness may drop considerably over a
period of time.

Our analysis reveals that existing PA methods are still
far from perfection. Due to their reliance on limited traffic
information and coarse-grained strategies, they are only
able to provide a restricted range of service quality. To
address this problem, PA methods should refer to additional
traffic information, such as multi-dimensional flow state and
real-time network metrics, to analyze flow importance from
multiple perspectives. However, coupling this information
to achieve precise and detailed priority assignment presents
significant challenges. Priorities assigned from different
demand perspectives may block each other. For example,
large flows with higher priorities can block delay-sensitive
small flows with lower priorities. Moreover, PA needs to
be more responsive to network dynamics to provide reliable
delay guarantees for critical flows under changing network
conditions. Incorporating real-time network states into PA
to optimize the proportion of high-priority flows within the
network also presents additional challenges.

From the above insights, we design a novel priority
assignment strategy, named Firapam, to achieve fine-grained
assignment of available priorities for flows in DCNs. Firapam
implements admission control on existing flow priorities
and carefully divides the traffic importance based on more
contextual information. By adapting the PA method to the
diverse demands of traffic and the real-time state of the
network, Firapam significantly enhances the service quality.
We design a utility function that effectively couples the
multi-dimensional state of traffic and network dynamics.
The network utility captures both flow characteristics and
current network states for every control action, providing
rapid and accurate responses to changes in network status,
traffic distribution, and requirement distribution. Firapam
continuously improves the network utility through convex
optimization and adjusts the admission control for flow
priorities. In our work, we demonstrate that Firapam
effectively prevents low-priority flows from experiencing

ultra-long flow completion times (FCTs) and achieves a
more equitable allocation of network resources compared
to existing PA methods. Extensive simulation experiments
show that Firapam outperforms state-of-the-art PA methods
across key metrics, including FCT, deadline miss rate,
fairness, and convergence, resulting in significant performance
gains for priority-based proposals. Evaluated across bursty
traffic environment and high workload environment, Firapam
reduces the deadline miss rate of existing PA methods
by 14.5%∼52.3%, and reduces the 99th percentile flow
completion tail by 0.2%∼17.9% and deadline miss rate by
72.3%∼82%, respectively.

This paper makes the following main contributions:
• We introduce an analytical framework for priority

assignment in DCNs, which constructs the assignment
laws of PA methods from different demand perspectives,
reveals their drawbacks, and introduces the concept of
demand rate to achieve optimal priority assignment.

• We design Firapam, a novel priority assignment strategy
to optimize the performance of diverse application
workloads within modern DCNs. Firapam systematically
combines multi-dimensional state of traffic to conduct
reliable admission control for flow priorities, and
leverages convex optimization to achieve rapid response
to changes in both requirements and the environment.

• We show analytically and experimentally that Firapam
possesses desirable properties of stability, convergence,
and fairness. The benefits of Firapam are evaluated in
traditional DCNs across several workloads.

The rest of this paper is organized as follows. Section II
introduces the PA methods adopted by existing priority-based
proposals. Section III proposes a framework to define existing
PA methods and analyze their basic problems, and provides
a detailed motivation for our work. Section IV presents our
fine-grained priority assignment strategy, Firapam, and proves
its advantageous properties. Section V provides an in-depth
performance evaluation of Firapam. Finally, Section VI
concludes the paper.

II. BACKGROUND AND MOTIVATION

To motivate our design, we summarize the PA methods
adopted by prevailing priority-based proposals, and show
the performance trade-offs with different PA methods when
handling mix-flows.

A. Priority Assignment in Datacenter Networks

In numerous proposals within DCNs, the utilization of
priority is crucial in effectively managing queue accumulation
and achieving the lowest possible latency. These proposals
include self-adjusting at endpoints [18], flow scheduling and
load balancing at switches [19]–[21], in-network caching [22],
and priority-based flow control [23].

The traditional priority assignment in DCNs revolves around
the attributes of flows, i.e., the sizes and requirements of
flows. Flow requirements typically manifest through the flow
characteristics of Quality of Service (QoS), including delay,
jitter, and throughput. Table I summarizes the PA methods
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TABLE I
BYTES-BASED AND LATENCY-BASED PRIORITY ASSIGNMENT METHODS OF EXISTING PRIORITY-BASED PROPOSALS

Proposal Priority at the application level Admission control Description
Bytes-based priority assignment

pFabric [24] p = SremF no admission control Every packet carries a single priority set based on
the remaining flow size.

PIAS [25] p = fCE (Bsent, α)

=

 p1, Bsent < α1 (highest)
pi, αi−1 ≤ Bsent < αi

pk, αk−1 ≤ Bsent (lowest)

no admission control A Central Entity (CE) periodically (a long period
of time) collects the traffic information (i.e., flow
size) reported from each end host to calculate the
demotion threshold set {α}.

Aalo [26] p = fCE (Bsent, α) no admission control Uses exponentially-spaced thresholds {α} set by
the operator in advance.

Karuna [16] p = p1, deadline flow (highest)

or
{

SJF (SF , β) , know size
fCE (Bsent, α) , others

no admission control A CE periodically collects traffic information
to calculate threshold sets {α} and {β}, then
distributes them to the end-host modules.

Auto [27] p = CDFCS (SF , α) no admission control A Central System (CS) collects global traffic
information to optimize and set {α} by deep
reinforcement learning (DRL).

Homa [14] p = CDFreceiver (SF ) no admission control Each receiver determines the priorities according
to the message size distribution.

Latency-based priority assignment
DeTail [28] p = p (latencyrm) no admission control Only two priority levels are actually used, p is set

by the application based on flow deadlines.
PASE [11] p = p (latencyrm) padmit

=

{
2, ADH ≤ C
0, ADH > C

Arbitrators dynamically change the mapping of
flows to queues and make decisions in a bottom
up fashion.

Aequitas [12] p = pRPC

=

 PC, Performance-critical
NC, Non-critical
BE, Best-effort

padmit

=


min (padmit + a, 1) ,
latency/SF < target

max (padmit − b · SF , f loor) ,
latency/SF > target

Senders makes QoS admit or QoS degrade
decisions for an remote procedure call (RPC)
through admission control based on the satisfactory
degree for RPC latency to latency target.

Poche [22] p = p (latencyrm) no admission control Categorizes traffic into a given number of priorities
related to the latency requirements of flows.

of existing priority-based proposals, where SF represents
flow size, SremF is the remaining flow size, Bsent is the
number of bytes that have been sent, latencyrm is the latency
requirement of a flow. ADH is the sum of demands of
flows with priority higher than current flow, C is the link
capacity, target is the SLO target of current QoS level. When
0 ≤ padmit < 1, the priority p of a flow is mapped to the
lowest priority level with a probability of (1− padmit). When
1 ≤ padmit ≤ 2, p is mapped to the highest priority level with
a probability of (padmit − 1).

The PA methods shown in Table I are fundamentally limited
to one of the two dimensions (bytes or latency requirement),
which can be divided into two types: bytes-based PA methods
and latency-based PA methods.

1) Bytes-based PA methods: The first category of methods
prioritizes traffic based on byte-related metrics, such as
flow size, remaining flow size, and bytes that have been
sent. Consequently, this category of methods tends to favor
small flows: small flows typically receive higher priorities
compared to large flows and are more likely to be placed
in the first few high-priority queues. Representative proposals
employing such methods include pFabric [24], PIAS [25],
Aalo [26], Karuna [16], Auto [27], and Homa [14].
Bytes-based PA methods emphasize factors like throughput
and fairness, making them more suitable for applications with
high tolerance for latency and network quality fluctuations.
Specifically, in pFabric, every packet carries a single priority
set based on the remaining flow size. PIAS and Karuna
both require a central entity (CE) to periodically collect

traffic information (i.e., flow size) reported from each end
host to calculate the demotion thresholds α. Aalo uses
exponentially-spaced thresholds preset by the operator to
determine the priorities of flows of different sizes. In Auto,
a central system (CS) collects global traffic information to
optimize α via deep reinforcement learning (DRL). Homa
computes the cumulative distribution function (CDF) of flow
size at the receiver to determine the range of message sizes
for each priority level, so as to evenly distribute traffic among
all priority levels.

2) Latency-based PA methods: The second category of
methods prioritizes traffic based on latency-related metrics,
such as deadline [3] and service level objective (SLO).
Representative proposals employing such methods include
DeTail [28], PASE [11], Aequitas [12], and Poche [22].
Latency-based PA methods focus on guaranteeing the
timeliness and effectiveness of data, with the goal of reducing
flow completion tail and improving worst-case application
performance. Specifically, DeTail uses two priority levels
and allows applications to set the priority based on flow
deadlines. PASE deploys arbitrators to dynamically adjust the
mapping of flow priorities to queues and make decisions in
a bottom-up fashion. The source ends provide the arbitrators
with two key pieces of information: criteria for scheduling
(i.e., flow size, deadline or task ID) and demands (i.e.,
maximum rate allowed by the source end to send data).
Aequitas maps RPC priority classes to network QoS levels
based on the satisfactory degree of RPC latency to latency
target, so as to ensure a consistently high-quality network
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Fig. 1. The operating principle of the WFQ.

experience for performance-critical traffic. Poche categorizes
traffic into a given number of priority levels related to the
latency requirements of flows.

In summary, existing PA methods mainly adopt fixed
or heuristic strategies for determining the priority of each
flow, with some methods refer to the global or local traffic
information. However, in DCNs with dynamically changing
traffic patterns, the timeliness of historical information
diminishes significantly, making PAs based on historical traffic
information unable to achieve accurate results.

B. Trade-offs in Different Priority Assignment Methods

Modern datacenter applications have diverse transmission
requirements, with the generated traffic exhibiting varying
demands for latency and bandwidth. However, traffic with
differentiated requirements can conflict with each other within
the network [16], posing challenges for existing priority-based
proposals. Focusing solely on a certain dimension of
requirements during priority assignment will inevitably lead
to compromised performance for other types of traffic with
dissimilar requirements.

To illustrate this problem, we conduct simulations using
YAPS [29], and demonstrate from a scheduling perspective
that applying bytes-based or latency-based PA methods hurts
the performance of different types of flows in mixed scenarios.
In our experiments, all hosts are interconnected via switches,
and Weighted Fair Queuing (WFQ) is adopted on the switches
for queue scheduling and congestion management. Both
bytes-based and latency-based PA methods are applied at
the end hosts to determine the priority of each flow. As
shown in Fig. 1, flow priorities are mapped to WFQ QoS
levels, and the allocation of bandwidth for each queue
is subsequently refined by WFQ on the switches, thereby
ensuring a greater share of bandwidth for incoming packets
from high-priority flows. There are two types of flows in
the simulated network: deadline flows (T1) and background
flows (T2). A simulated query/response application generates
queries through a Poisson process, and controls the flow sizes
and deadlines of the response flows (i.e., deadline flows).
Meanwhile, the background flows are generated using a similar
Poisson process. The sizes of all flows are drawn from realistic
traffic traces [30]–[33], and the average workload is set to
8Gbps (0.8× load).

Case against bytes-based PA: In the first experiment, we
set priorities and schedule flows strictly based on their sizes.
As depicted in Fig. 2(a), the implement of bytes-based PA
results in a detrimental impact on the deadline miss rate
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Fig. 2. Existing priority assignment methods lead to suboptimal performance
in handling traffic with differentiated requirements.

of deadline flows. Specifically, as the percentage of small
background flows (T2) increasing to 20%, bytes-based PA
leads to over 30% of the T1 flows missing their deadlines.
This is because flow size alone determines which packets to
go first, which prevents deadline flows, especially the larger
ones, from meeting their deadlines. Consequently, the greater
the percentage of T2 flows with sizes smaller than T1 flows,
the higher the deadline miss rate of T1 flows.

Case against latency-based PA: In the second experiment,
we set priorities and schedule flows based on their deadlines,
and give strict priority to deadline flows over background
flows. Fig. 2(b) shows that the average FCT of T2 flows
increases as the percentage of T1 flows in overall traffic rises.
Specifically, as the percentage of T1 flows increasing from 0
to 30%, the average FCT for delay-sensitive short T2 flows
(size<10KB) increases by 42.4%; and for all T2 flows, the
average FCT increases by 50.2%. This is because T1 flows
are processed with priority, allowing them to quickly take up
a significant portion of the available bandwidth. Consequently,
the higher the proportion of T1 flows, the worse the completion
efficiency of T2 flows.

III. ANALYTICAL FRAMEWORK FOR PRIORITY
ASSIGNMENT PROBLEMS

We design an analytical framework for the priority
assignment problem in DCNs and construct the assignment
laws from different demand perspectives. First, we build the
traffic model and requirement model of the network. Then, we
construct the assignment laws of different PA methods on the
basis of these models, and analytically identify the drawbacks
of existing assignment laws from a theoretical perspective.
Finally, we outline the fundamental design goals of our priority
assignment strategy.

A. Network Traffic Model and Requirement Model

Suppose flows in the network can be divided into N classes
according to their flow sizes, and the average flow size of class
n is Sn. So the flow size model S can be expressed by a matrix:

S = [S1, S2, · · · , SN ]
⊤
, (1)

where 0 < S1 < S2 < · · · < SN .
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The total number of flows in this network is ft. Let the
proportion of flows in class n to the total number of flows be
Gn, and set a diagonal matrix G = diag (G1, G2, · · · , GN ),

where
N∑

n=1
Gn = 1. So the traffic model T that describes the

traffic distribution characteristics from the perspective of flow
size can be expressed as:

T = ftGS = ft[G1S1, G2S2, · · · , GNSN ]
⊤
. (2)

Then, suppose flows in the network can be divided into M
classes according to their latency requirements (e.g., deadline),
and the average latency requirement of class m is Lm. So the
flow requirement model D can be expressed by a matrix:

D = [L1, L2, · · · , LM ]
⊤
, (3)

where 0 < L1 < L2 < · · · < LM .
For a flow size class n, assume that the flows in class n

have differentiated latency requirements, and the distribution
of latency requirement is Kn = [ln1, ln2, · · · , lnM ], where
M∑

m=1
lnm = 1, lnm ≥ 0. It means the proportion of flows with

latency requirements of Lm in class n is lnm to the number
of flows in class n, and lnm ·Gn to the total number of flows.
The latency requirement distribution L for all flows is:

L = [K1,K2, · · · ,KN ]
⊤
=

 l11 . . . l1M
...

. . .
...

lN1 · · · lNM

 . (4)

So the requirement model R that describes the traffic
distribution characteristics from the perspective of latency
requirement can be expressed as:

R = ftGLD. (5)

B. Assignment Laws of Existing Priority Assignment Methods
and Their Limitations

As discussed in Section II-A, from different demand
perspectives, PA methods can be broadly classified into two
types: bytes-based PA and latency-based PA.

1) Assignment Laws of Bytes-based PA: Bytes-based PA
methods are widely used in most proposals. This category of
methods is flow-size-critical, whose assignment laws have no
relation with latency requirement but flow size, and can be
represented as:

pS = fS (SF ) = [γS (SF − αS)]
eS + βS , (6)

where SF denotes flow size, γS > 0, eS < 0, αS and βS

jointly control the upper and lower limits of available priority
levels. Parameter γS denotes the exponential moving average
parameter related to T. Set the standard deviation of T as σ,
and we have:

γS = kσ (k > 0). (7)

2) Assignment Laws of Latency-based PA: Latency-based
PA methods are mainly used in proposals that aim to satisfy
flow deadlines or provide predictable latency guarantees. This
category of methods is FCT-critical, whose assignment laws
can be represented as:

pL = fL (LR) = [γL (LR − αL)]
eL + βL, (8)

where LR denotes latency requirement, eL < 0, αL and
βL jointly control the upper and lower limits of available
priority levels. The exponential moving average parameter γL
is irrelevant to T.

The larger the value of pS or pL, the higher the priority
of flows. Priority determines the scheduling opportunity or
bandwidth resource available to a flow. With limited network
capacity, we assume that flows with higher priority will be
processed preferentially, and flows will be transmitted in the
order of their priorities. So for any flow r, its average sending
rate is proportional to its priority pr, i.e., λr = µpr, where µ is
a constant that describes the proportional relationship between
the two variables.

3) Limitations of Existing PA Methods: In this section, we
aim to illustrate the inefficiencies of different PA methods in
dealing with network dynamics and differentiated demands.

First, we solve the flow completion time (FCT) and deadline
miss rate of bytes-based PA methods. For all traffic in the
network (i.e., T), their overall flow completion time FCTB

all

is calculated as:

FCTB
all =

ft∑
i=1

FCTB
i =

T
µfS (T)

=
1

µ
·

N∑
n=1

Sn

γSeS (Sn − αS)
eS + βS

,

(9)

which can be expressed as a function of γS−eS :

FCTB
all = F1 (G) = F1

(
γS

−eS
)
= a1γS

−eS + b1, (10)

where a1 > 0, b1 > 0.
The overall deadline miss rate of T can be expressed as a

function of G:

RB
DM = R1 (G) =

N∑
n=1

Gn

f1(Ld,FCTB
n )∑

m=1

lnm, (11)

where f1
(
Ld, FCTB

n

)
= d when Ld ≤ FCTB

i < Ld+1. As
T changes from uniform distribution to uneven distribution, σ

and FCTB
n both increase, and

∑f1(Ld,FCTB
n )

m=1 lnm increases
correspondingly, resulting in increased RB

DM and more flows
in T missing their deadlines.

By combining Eq. (10) with Eq. (7), we observe that
FCTB

all increases as σ increases, which means FCTB
all is

influenced by network traffic distribution. In instances where
the majority of bytes are concentrated within a few flow
size classes, FCTB

all will be notably higher compared to a
uniformly distributed situation, even if the total number of
bytes remains constant. Therefore, bytes-based PA methods
are likely to experience performance degradation when a large
number of similarly-sized flows burst. Moreover, bytes-based

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3429402

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 24,2024 at 14:43:32 UTC from IEEE Xplore.  Restrictions apply. 



6

PA methods cannot adapt well to network dynamics. Their
ability to achieve optimal priority assignment mainly depends
on the distribution characteristics of traffic. As network traffic
characteristics change, large flows may suffer from starvation
and extended FCTs due to their low priorities, consequently
increasing the overall FCT and impeding delay-sensitive flows
from completing in time.

Second, we solve the FCT and deadline miss rate of
latency-based PA methods. The overall flow completion time
FCTL

all of T can be calculated as:

FCTL
all =

ft∑
i=1

FCTL
i =

T
µfL (R)

=
1

µ
·

N∑
n=1

GnSn

M∑
m=1

lnm [γLeL(Lm − αL)
eL + βL]

,
(12)

which can also be expressed as a function of Gn and lnm (i.e.,
G and L):

FCTL
all = F2 (G,L) . (13)

Let FCTL
Sn,Lm

= Sn

µfL(Lm) , the overall deadline miss rate
of T can be expressed as a function of R:

RL
DM = R2 (R)

=

N∑
n=1

Gn

M∑
m=1

f2
(
Lm, FCTL

Sn,Lm

)
· lnm,

(14)

where f2
(
Lm, FCTL

Sn,Lm

)
= 1 when Lm < FCTL

Sn,Lm
, or

else f2
(
Lm, FCTL

Sn,Lm

)
= 0.

In Eq. (12), FCTL
all varies with the requirement distribution

L in the same traffic model T. And in Eq. (14), because
f2

(
Lm, FCTL

Sn,Lm

)
is known for Lm and Sn, RL

DM is mainly
affected by traffic distribution G and latency requirement
distribution L. RL

DM increases both when the proportion
of large flows increases or the overall latency requirement
decreases, and flows with larger sizes in T are more likely
to miss their deadlines. Due to the finite priority queues and
buffer resources within DCNs, if some large flows are set
with short latency requirements, although their FCTs will
decrease correspondingly, the cost is to occupy the resources
of small flows at the same priority level and increase their
deadline miss rate. Similarly, a small portion of large flows
with long latency requirements may also experience ultra-long
FCTs, contributing to an increase in FCTL

all. Therefore,
latency-based PA methods exhibit limited adaptability to
complex traffic.

C. Observations and the Notion of Demand Rate

We derive two key observations from the above analysis:
First, both bytes-based and latency-based PAs fail to

accurately meet the diverse demands of flows. Bytes-based PA
is desirable for ensuring fast completion of most flows, at the
expense of the performance of large flows. However, due to the
fact that flow size and flow importance are often misaligned,
the priority inversion problem [16], [17] occurs frequently in
bytes-based PA. Latency-based PA allows flows with short

latency requirements to complete quickly with smaller FCT,
yet this is unnecessary for meeting their deadlines and instead
takes up network resources for other flows.

Second, bytes-based and latency-based PAs essentially only
refer to limited flow states and cannot adapt well to complex
and ever-changing network environments. Once the modeled
network differs significantly from the real network, it leads to
a surprising degree of mismatch between actual flow priorities
and their supposed importance in the network. This makes it
difficult to allocate limited resources to performance-critical
flows based solely on application-provided priorities, resulting
in serious performance losses based on existing PA methods.

Based on these observations, we introduce the concept of
demand rate to systematically combine multi-dimensional flow
states (e.g., number of bytes and latency requirement), thereby
designing a fine-grained priority assignment strategy capable
of reducing both FCT and deadline miss rate. Notably, our
analysis of Eq. (11) and Eq. (12) suggests that deadline miss
rate and FCT are related to the ratio of number of bytes to
latency requirement, which is defined as demand rate. Demand
rate is formally represented as:

DR = Br/δ
o
r , (15)

where Br and δor are the number of bytes and the deadline
of flow r, respectively. We further investigate the accurate
relationship of demand rate and priority assignment in the
next section.

IV. FINE-GRAINED PRIORITY ASSIGNMENT STRATEGY

Based on our observations in Section III, we design a
fine-grained priority assignment strategy, called Firapam,
which references multi-dimensional flow states and network
states to dynamically map the expected priority (e.g.,
application-defined priority) to actual priority through convex
optimization. For Firapam, the priority of a flow is not
fixed but can be dynamically adjusted. Firapam determines
what traffic should get access to limited resources when
demand exceeds network bandwidth by priority downgrades
or upgrades. Through fine-grained and precise priority
assignments, Firapam can adapt well to network dynamics and
further improving the performance of priority-based proposals
in DCNs characterized by high throughput, low latency, data
bursts, and fluctuations.

A. Firapam Overview

A high-level system diagram of Firapam is depicted in
Fig. 3. Firapam spans the application layer and the transport
layer, and communicates with applications above it and
network or transport stacks below it. Firapam does not
interfere with underlying controls and does not require any
modifications to existing hardware. Instead of deploying a
central entity (CE) or central system (CS) to collect global
information to determine priorities, Firapam uses a distributed
algorithm implemented at sending hosts to assign the priority.

Firapam maintains padmit on a per-(source host, destination
host, priority) basis to implement a distributed admission
control algorithm, and probabilistically admits the flow on
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Fig. 3. Firapam system overview.

a given priority based on padmit. Firapam controls padmit

and conducts admission control for flow priority according
to Algorithm 1. The key idea behind this algorithm is simple:
At each source host, for each priority class, Firapam collects
the sending rate and packet loss rate of each flow to capture
network status and transmission conditions. Then, it uses this
information as well as application requirements as superior
signals to adjust padmit, thereby achieving more accurate and
flexible responses.

The adjustment of padmit relies on a framework based
on convex optimization [34], with the goal of maximizing
the network utility to ensure that multiple competing flows
converge to a stable priority configuration that is fair and
near-optimal. In the optimization process, Firapam employs
a convex optimization algorithm based on gradient ascent to
adjust priority configurations, which gradually approaches the
optimal solution that maximizes the utility, thereby achieving
swift reaction to changes, and fast and stable convergence.

B. Distributed Priority Admission Control of Firapam

Firapam utilizes a distributed algorithm implemented
completely at sending hosts to map the expected priority
to actual priority. Through regulating an admit probability
padmit, Firapam determines whether to admit a given flow
on its requested priority (i.e., expected priority) or to
downgrade/upgrade it, based on current network states and
flow requirements. For unadmitted flows, Firapam issues them
at a lower priority level; for flows in urgent need of network
resources to meet their deadlines, Firapam issues them at their
requested priority level or at a higher priority level.

1) Preparatory Work: Before implementing the admission
control of Firapam, the priority of a flow is preliminarily given
at the application level, called the expected priority, which can
be calculated as pexp = p (ν, α), where threshold set α divides
priority into several levels, ν is the indicator used to determine
the priority. For example, if ν is the flow size, the application
adopts a bytes-based PA method to set the expected priority.

However, due to the importance of a flow is determined by
multiple factors and the relative importance of a flow changes
from time to time, the priority set at the application level

Algorithm 1: Admission Control of Firapam

1 Notation:
2 Pnum: total number of priority levels;

Downgrade Info: downgrade information;
Upgrade Info: upgrade information.

3 Initialization:
4 begin
5 for i = 1, 2, · · · , Pnum do
6 padmit[i] = 1;

7 On the Issue of Flow (flow r, pexp):
8 begin
9 i← pexp;

10 if 0 < padmit[i] ≤ 1 then
11 pro temp← random(); // Generate a random

floating-point number between 0 and 1
12 if pro temp ≤ padmit[i] then
13 pact = pexp;

14 else
15 pact = max (pexp − 1, 1);
16 Downgrade Info← True;

17 else if 1 < padmit[i] < 2 then
18 pro temp← random();
19 if pro temp ≤ 2− padmit[i] then
20 pact = pexp;

21 else
22 pact = min (pexp + 1, N);
23 Upgrade Info← True;

24 Flow Issue(flow r, pact); // Issue this flow with
the actual priority

25 On the Completion of Flow (Br, δor , δr, lr, pact):
26 begin
27 i← pact;
28 Calculate the utility u according to Eq. (16);
29 DR

now[i]← Br/δr; unow[i]← u;
30 g = (unow[i]− ulast[i]) /

(
DR

now[i]−DR
last[i]

)
;

31 DR
last[i]← DR

now[i]; ulast[i]← unow[i];
32 // Update the admit probability corresponding to

the current priority level
33 padmit[i] =

max {min (padmit[i] + a · g, bup) , blow};

is not always accurate. Therefore, Firapam further conducts
admission control for flow priority to adapt the existing PA
methods to the diverse demands of traffic and the real-time
state of the network. By dynamically mapping the expected
priority to the actual priority, Firapam achieves the optimal
priority assignment under current network states.

2) Firapam’s Utility Framework: Firapam divides time into
consecutive monitor intervals (MIs). At the end of each MI,
the sending host calculates the numerical utility value of flow
r according to the following utility function:

u (Br, δ
o
r , δr, lr) =

(
DR

)t − bDR (δor − δr)− cDRlr, (16)
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where parameters t, b, and c are constants, 0 < t < 1, b ≥ 0,
c > 0. DR is the demand rate of flow r, we have DR =
Br/δ

o
r , where Br and δor represent the number of bytes and

latency requirement of flow r, respectively; δr is the latency
that flow r actually achieved; lr is the observed packet loss
rate. By default, we define Br as the remaining flow size, δor
as the deadline, and δr as the expected FCT or achieved FCT
under current conditions (e.g., network states, priorities, and
sending rate), which can be calculated as the ratio of flow size
and actual sending rate of a given flow.

The utility function (Eq. (16)) is strictly convex when t < 1,
which means that the local optimum is also the unique global
optimum. Therefore, by continuously adjusting the priority
configuration according to the gradient direction, the algorithm
can gradually approach and ultimately achieve the goal of
maximizing the network utility.

Overall, Firapam’s utility function captures demand rate
(DR) to measure the absolute importance of a flow, as well
as the actual performance (δr) and current network states
(lr) to measure the relative importance. Intuitively, Eq. (16)
forms a reward when δr > δor , and is punished when lr
increases. If δor − δr < 0, it indicates that maintaining the
current priority may cause flow r to miss its deadline. To
prevent flow r from missing the deadline, it is necessary to
raise the priority of flow r to increase its importance. On
the contrary, if δor − δr ≥ 0, flow r can meet its deadline
by maintaining current priority and even suitably lower its
priority to free up network resources for more important flows.
When lr increases, it indicates that there may be too many
competitive flows in the current priority level, so issuing some
of them at lower priorities is conducive to easing the conflict.

3) Translating Utility Gradients to Admit Probabilities: At
the end of k-th MI, the sending host calculates the numerical
utility value of MI k − 1 and MI k according to Eq. (16),
denoted by uk−1 and uk, respectively. So the gradient of the
utility function at MI k is:

gk =
uk − uk−1

DR
k −DR

k−1
, (17)

where DR
k and DR

k−1 represent the demand rate of a flow
at MI k and MI k − 1, respectively.

Firapam utilizes the utility gradient gk to deduce the
direction and extent by which padmit should be adjusted, and
converts gk into a change (i.e., step size) in padmit (lines 25-33
of Algorithm 1). The admit probability in the next MI can be
calculated as:

padmit(k + 1)

= max {min (padmit(k) + a · gk, bup) , blow} ,
(18)

where a > 0, 0 < blow < 1, 1 < bup < 2; a denotes the
conversion factor and is set to a conservative small value.
When padmit drops to 0, the requested priority level will not
accept new flows. We set the lower bound of padmit, denoted
by blow, to prevent starvation caused by small padmit; bup
denotes the upper bound of padmit, which prevents a large
number of flows from being admitted on higher priority levels.

By converting the utility gradient into the admit probability,
Firapam can equitably and effectively regulate the rate of flow
issuance at different priority levels.

4) Determining the Actual Priority: For each flow, Firapam
probabilistically maps its expected priority pexp to the actual
priority pact based on the admit probability padmit[pexp] (lines
7-24), where padmit[pexp] represents the admit probability
corresponding to priority pexp. More specifically:

• If 0 < padmit[pexp] ≤ 1, Firapam issues this flow
at its requested priority with a probability of padmit;
alternatively, it maps pexp to the next lower priority level
with a probability of 1− padmit, i.e., pact = pexp − 1. If
pexp is already the lowest priority level, set pact = pexp.

• If 1 < padmit[pexp] < 2, Firapam issues this flow at
its requested priority with a probability of 2 − padmit;
alternatively, it maps pexp to the next higher priority level
with a probability of padmit − 1, i.e., pact = pexp +1. If
pexp is already the highest priority level, set pact = pexp.

In the event of a flow being downgraded or upgraded,
Firapam explicitly notifies the application of this information
(line 16 and line 23), thus informing the application of network
overload and congestion. Furthermore, the application can
leverage the downgrade or upgrade information to discern
critical flows and regulate the issuing of flows with higher
priorities to prevent downgrades.

C. Handling Non-deadline Flows

Some applications in datacenters such as VM migration
and data backup [16] generate flows devoid of strict latency
requirements. These flows have no explicit deadline and can
only provide limited byte-related information (e.g., flow size,
remaining flow size, and bytes that have been sent), which
impedes Firapam from precisely obtaining the exact demand
rate of these flows.

To solve this challenge, we redefine certain variables in
Eq. (16) for non-deadline flows. We count the maximum
deadline dmax and its corresponding flow size Bmax of other
deadline flows within the current priority level over a period
of time, and modify the utility function for non-deadline flow
r as:

u (Br, dmax, δr, lr)

= (Br)
t − bBr

(
Br

δr
− Bmax

dmax

)
− cBrlr,

(19)

where Br is the remaining flow size, δr is the expected FCT
or achieved FCT of non-deadline flow r.

To ensure that more deadline flows meet their deadlines,
while impacting the other flows as little as possible, Eq. (19)
uses Bmax

dmax
to limit the sending rates of non-deadline flows.

As the value of Br

(
Br

δr
− Bmax

dmax

)
increases, non-deadline

flows tend to occupy a larger bandwidth share that potentially
exceeds the maximum available bandwidth share of deadline
flows, resulting in a reduction of the utility value of flow
r. Additionally, aggressive control over admit probability is
adopted beyond the maximum available share to quickly
consume the bandwidth left over by deadline flows.

Except for the utility function, the adjustment of admit prob-
ability and determination of actual priority for non-deadline
flows by Firapam are the same as for deadline flows (see
Section IV-B).
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D. Properties of Firapam

We demonstrate the main properties of Firapam to provide
strong theoretical guarantees. We show that the assignment
law of Firapam has a unique equilibrium point, it also ensures
rapid convergence to equilibrium and achieves fairness in case
of network perturbations or changes in traffic distribution.

Theorem 1 (Stability). Firapam’s assignment law has a
unique equilibrium point where the FCT of a flow converges
to a fixed configuration δe such that δe ≤ δo.

Proof. For any flow r, let λr = Br

δr
, and Eq. (16) can be

rewritten as:

u = λr
t − b (δor − δr)λr − clrλr, (20)

where λr is the actual sending rate of flow r. When t ≤ 1, the
family of utility functions in Eq. (20) falls into the category
of “socially-concave” in game theory [34]. Divide both sides
of the equation by dλr, we derive the utility dynamics as:

u̇ (λr) =
du

dλr
= tλr

t−1 − b (δor − δr)− clr, (21)

substitute λr = Br

δr
into (21), when u̇ (λr) = 0, we have

bBr
1−t

t
δr + δr

1−t =
Br

1−t

t
(bδor + clr) . (22)

Let C denote the capacity of the bottleneck link. According
to the design in [35], Eq. (16) and Eq. (20) are θ-loss-resilient
when c = tCt−1

θ , which means they do not decrease the
sending rate under random packet loss rate of at most θ. So
when lr ≤ θ, we assume cBr

1−tlr/t = 0 to simplify analysis,
and it is easy to observe that Eq. (22) has a unique equilibrium
point δer such that u̇ (δer) = 0 and δer ≤ δor .

Theorem 2 (Convergence). After a network perturbation
or change in traffic distribution, Firapam’s assignment law
exponentially converges to equilibrium with a time constant
1
γr

= γ·TMI

a·|g| , where TMI is the duration of one MI.

Proof. Let hk be the distance of objective value δk at time k
to optimality δe, and we have hk = h (δk) = u (δk)− u (δe).
ηk is the step size, γ is the condition number of utility function
u such that γ = t. Let λk = B

δk
, we have

hk+1 − hk = u (δk+1)− u (δk)

= λk+1
t − λk

t − (bδo + cl) ηk ≤ −
|ηk|
t

hk.
(23)

According to Eq. (18), Firapam adopts a dynamic step size
related to the utility gradient and converges with a period of
TMI , so we set ηk = a · gk · γ∗ and obtain

hk+1 ≤ hk

(
1− a · |gk| · γ∗

t

)
≤ hk · e−

a·|gk|
γ·TMI . (24)

Let γr = a·|g|
γ·TMI

for |g| = 1
k

∑k
i=1 |gk|, we get hk+1 ≤

h1 ·e−γrk. Therefore, Firapam’s assignment law exponentially
converges to equilibrium and optimality δe with a time
constant γ·TMI

a·|g| . The farther δk is from δe, the larger |gk| is,
and the faster Firapam converges to an FCT close to δe.

Definition 1. The system achieves relative fairness if network
resources are reasonably allocated to all flows to maximize
their satisfaction. Therefore, instead of dividing network
resources equally among all flows with diverse demands, a PA
method aims to minimize the deadline miss rate: the more flows
that meet their deadlines, the better the system’s fairness. So
the fairness of a PA method can be expressed as a minimization
problem of deadline miss rate:

minimize RDM , (25)

where RDM is the overall deadline miss rate.

Theorem 3 (Fairness). Firapam achieves relative fairness.
Its assignment law ensures the reliable allocation of network
resources by minimizing the overall deadline miss rate.

Proof. Suppose the expected FCT shifts from δe to δnew after
a network perturbation or change in traffic distribution, and
takes T = kn

γr
time to converge to a value less than the

deadline, i.e., δe + (δnew − δe) · e−knγr ≤ δo. For flows
with deadlines longer than T (account for 1 − Ok), Firapam
guarantees that they all complete within the deadline; for flows
with deadlines shorter than T (account for Ok), they meet their
deadlines with probability padmit (padmit ≤ 1). So the overall
deadline miss rate is RDM = (1− padmit) · Ok, where Ok

is affected by convergence time T and latency requirement
distribution L. So the problem described in Eq. (25) can be
transformed into a maximization problem of kn · |g|:

max
δe→δnew

kn · |g| . (26)

Because Eq. (16) satisfies d2u
dλ2 < 0 and has a maximum

value u (δe), the maximum of kn · |g| is the utility gradient
gnew after the perturbation, i.e.,

max
δe→δnew

kn · |g| = gnew =
u (δnew)− u (δe)

B/δnew −B/δe
. (27)

Therefore, by solving the utility gradient gnew and applying
it to padmit, Firapam minimizes the deadline miss rate after
any perturbation or change, thereby achieving fairness among
flows of different importance.

On the whole, Firapam’s distributed and fine-grained
priority assignment algorithm can respond quickly to changes
in both network traffic and requirement distribution. It
prioritizes limited network resources to more important flows
while avoiding starvation of less important flows to reduce
the overall deadline miss rate, thus achieving relative fairness.
As a result, Firapam can better support existing proposals that
take advantage of the priority, which is conducive to further
improving their performance. It is also more real-time and
easier to deploy than existing methods that rely on a central
entity (CE) to update priority assignment laws regularly.

V. EVALUATION

We implement Firapam in the simulation platform, which
utilizes a packet-level simulator built atop YAPS [29] to realize
event-driven simulations.

We conduct a comprehensive performance evaluation of
Firapam and compare it with existing priority assignment
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Fig. 4. Different scales of topologies used in the simulation.

(PA) methods. Our evaluation mainly focuses on four aspects:
Firapam’s gains on existing bytes-based and latency-based
PAs, Firapam’s adaptability to varying traffic distribution
and requirement distribution, Firapam’s ability to reduce the
overall deadline miss rate, and Firapam’s performance under
high workload and bursty traffic patterns.

A. Setup

Our evaluation is based on a packet simulator YAPS [29].
We evaluate Firapam extensively in packet-level simulations.

Topology: We employ the leaf-spine topology proposed
in pFabric [24], and use two different scales of topologies.
The small-scale topology interconnects 33 hosts through 3
leaf switches connected to 1 spine switch in a full mesh,
as depicted in Fig. 4(a). The large-scale topology consists of
more nodes, including 144 hosts, 9 leaf switches, and 4 spine
switches, as depicted in Fig. 4(b). Each leaf (or top-of-rack)
switch has 16 10Gbps downlinks (to the hosts) and 1 100Gbps
uplink (to the spine).

Traffic pattern: We adopt two traffic patterns: all-to-all
traffic pattern where each host sends flows to other hosts with
Poisson arrivals, and incast traffic pattern where multiple hosts
simultaneously send flows to one host.

Priority class: To clearly measure the effectiveness of
different PA laws, we use three priority classes in the
experiment, namely priorityH , priorityM , and priorityL.
Class priorityH has the highest priority and is usually
associated with real-time interactive applications or key
control traffic. Class priorityM is less stringent on the latency
relative to class priorityH . priorityH and priorityM flows are
assigned with deadlines by which they must be completely
transmitted or will lose value. Class priorityL has the lowest
priority and is associated with unimportant flows, which have
loose latency targets or require completion only. Hence, the
deadline miss rate of priorityL flows is given less emphasis.
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Fig. 5. Three cumulative distributions of flow size used to evaluate Firapam.

Configuration: The granularity of monitor interval (MI)
depends on the type of protocol used by the scheme: for
most priority-based proposals, MI is set to the round-trip
time (RTT); for schemes designed based on remote procedure
call (RPC) (e.g., Aequitas [12]), MI is set to the end-to-end
RPC latency, which is the time between the first RPC packet
arriving at the transport layer and the last RPC packet
being acknowledged at the transport layer. Unless specified
otherwise, we default to the settings recommended in [35]:
t = 0.9, b = 900, c = 11 in Eq. (16) and a = 25 in Eq. (18).

Workload: We design three traffic distribution scenarios
based on realistic DCN workloads: D1 for the workload of
accessing a collection of servers at Facebook [30], D2 for the
workload of Google search application [31], and D3 for the
aggregated workload from all applications running in a Google
datacenter [31]. Fig. 5 depicts the cumulative distributions
of flow size in three scenarios. The average flow sizes for
scenarios D1, D2, and D3 are 61.5MB, 17.1MB, and 1.6MB,
respectively. Additionally, we set short latency requirements
to account for 50%, middle latency requirements to account
for 40%, and long latency requirements to account for 10%
of all flows in each of the three scenarios.

B. Supporting Existing Priority Assignment Methods

We first evaluate the performance of Firapam within a
small-scale topology illustrated in Fig. 4(a). We choose the
PA methods of Homa [14] and PASE [11] as representatives
of bytes-based and latency-based PA methods, respectively.

TABLE II
THE PRIORITY DISTRIBUTION OF DIFFERENT CASES IN THREE SCENARIOS

Bytes-based PA Latency-based PA
PD(%) D1 D2 D3 D1 D2 D3
Case1 30,50,20 55,25,20 70,20,10 50,40,10 50,40,10 50,40,10
Case2 33,34,33 33,34,33 33,34,33 33,34,33 33,34,33 33,34,33
Case3 30,20,50 20,25,55 10,20,70 10,30,60 10,30,60 10,30,60

When adopting bytes-based PA methods, smaller flows
are assigned with higher priorities, so the proportion of
priorityH , priorityM , and priorityL flows in three scenarios
mainly depends on the flow size distribution. In contrast,
when adopting latency-based PA methods, the ideal priority
distribution for each scenario is consistent with its respective
latency requirement distribution. However, as discussed in
Section III, fluctuations in traffic distribution or requirement
distribution can lead to a heavy degree of mismatch between
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TABLE III
THE DEADLINE MISS RATE (DMR) OF BYTES-BASED PAS UNDER

CHANGING TRAFFIC DISTRIBUTION

Deadline
miss rate (%)

D1 D2 D3
DMRH DMRM DMRH DMRM DMRH DMRM

C
as

e1 PA+Firapam 14.32 19.12 21.8 12.86 20.78 5.1
PA+Aequitas 16.56 22.62 26.54 14.26 36.6 6.74
PA only 23.42 38.8 47.92 19.86 48.72 7.46

C
as

e2 PA+Firapam 15.54 15.4 16.36 16.5 9.52 11.54
PA+Aequitas 18.26 17.68 19.24 18.98 14.12 16.62
PA only 26.2 26.08 27.86 28.14 16.46 19.4

C
as

e3 PA+Firapam 14.3 10.34 10.84 13.42 2.26 4.82
PA+Aequitas 16.7 11.76 22.76 19.62 2.6 6.46
PA only 23.22 14.62 15.64 20.86 2.76 7.14

TABLE IV
THE DEADLINE MISS RATE (DMR) OF LATENCY-BASED PAS UNDER

CHANGING TRAFFIC DISTRIBUTION

Deadline
miss rate (%)

D1 D2 D3
DMRH DMRM DMRH DMRM DMRH DMRM

C
as

e1 PA+Firapam 19.84 16.7 20.94 17.74 16.62 12.58
PA+Aequitas 24.4 19.78 25.54 21.24 27.98 18.82
PA only 39.8 31.02 43.9 33.44 33.76 21.5

C
as

e2 PA+Firapam 15.54 15.4 16.36 16.5 9.52 11.54
PA+Aequitas 18.26 17.68 19.24 18.98 14.12 16.62
PA only 26.2 26.08 27.86 28.14 16.46 19.4

C
as

e3 PA+Firapam 6.12 14.16 5.62 15.1 2.32 7.92
PA+Aequitas 6.54 16.1 6.08 18.0 2.66 11.8
PA only 7.16 22.88 7.14 24.88 2.76 13.46

the actual priorities of flows and their supposed importance in
the network, resulting in the priority inversion problem [12],
[16], [17] that undermines the benefits brought by priorities
and significantly degrades network performance.

Hence, we change the priority distribution (PD) in different
scenarios to reflect different mismatch levels, the proportion of
priorityH , priorityM , and priorityL flows changes as shown
in Table II. With an all-to-all traffic pattern, average 0.8×
workload, and dynamic 1.4× burst load, the deadline miss
rate (DMR) of bytes-based and latency-based PA methods, as
well as their performance after the deployment of Firapam for
different cases are listed in Table III and Table IV, respectively.
We also choose a priority admission control method based
on additive increase multiplicative decrease (AIMD) (see
Aequitas [12]) for comparison, and calculate the performance
of different PA methods after deploying Aequitas.

As shown in Table III and Table IV, when priority
downgrade or upgrade is disabled in the PA, changes in
traffic distribution or requirement distribution significantly
affect the deadline miss rate of both bytes-based and
latency-based PAs. After adopting the AIMD-based priority
downgrading scheme, for those performance-critical flows,
Aequitas reduces the DMR of priorityH flows (DMRH ) by
3.6%∼44.6%. Firapam’s dynamic allocation strategy based on
convex optimization brings further performance improvements
to existing PAs. Firapam can promote efficient resource
allocation and better support performance-critical flows by
identifying flow importance more rapidly and precisely. As
a result, Firapam successfully minimizes the deadline miss
rate. It reduces DMRH by 14.5%∼52.3% and the DMR
of priorityM flows (DMRM ) by 38.1%∼46.9% compared

1 . 0 × 1 . 4 × 1 . 8 × 2 . 2 × 3 . 0 × 5 . 0 ×0

2 0

4 0

6 0

8 0

  F i r a p a m  -  D M R      P A  o n l y  -  D M R  
  F i r a p a m  -  a v g  F C T      P A  o n l y  -  a v g  F C T  
  F i r a p a m  -  9 9 t h  F C T      P A  o n l y  -  9 9 t h  F C T  

B u r s t  l o a d

De
adl

ine
 m

iss
 ra

te (
%)

1 0 4

1 0 5

1 0 6

 ��
��

��
�	

��
��

��

�

��	
��

��
�

(a) Scenario D1

1 . 0 × 1 . 4 × 1 . 8 × 2 . 2 × 3 . 0 × 5 . 0 ×0

2 0

4 0

6 0

8 0

  F i r a p a m  -  D M R      P A  o n l y  -  D M R  
  F i r a p a m  -  a v g  F C T      P A  o n l y  -  a v g  F C T  
  F i r a p a m  -  9 9 t h  F C T      P A  o n l y  -  9 9 t h  F C T  

B u r s t  l o a d

De
adl

ine
 m

iss
 ra

te (
%)

1 0 4

1 0 5

1 0 6

 ��
��

��
�	

��
��

��

�

��	
��

��
�

(b) Scenario D3

Fig. 6. The deadline miss rate and flow completion time with flow size
distributions of D1 and D3 under different burst loads.

with PA with no downgrade or upgrade (PA only), and
further reduces DMRH by 6.4%∼40.6% and DMRM by
12%∼33.2% compared with Aequitas. These results also
indicate that a straightforward allocation of high priorities
to most flows is not helpful in improving the overall DMR
but increases the likelihood of flows with strict latency
requirements missing their deadlines.

C. Dealing with Bursty Traffic Patterns and High Workloads

We then evaluate the performance of Firapam within
a large-scale topology shown in Fig. 4(b). Under high
workloads, low-priority flows may suffer from long-term
starvation. To verify whether Firapam can timely capture the
delays caused by network overload, congestion, and queuing,
we gradually increase the burst load of the network and
calculate the DMR and FCT of the strategy.

With an average 0.8× workload and a latency-based PA,
we adopt the flow size distributions of scenario D1 and D3,
respectively, and increase the burst load from 1× to 5×. The
DMR, average FCT, and 99th percentile flow completion tail
for different flow size distributions are illustrated in Fig. 6.
As the burst load increases, the DMR of PA with and without
Firapam both increase. However, it is clear that the DMR after
Firapam’s deployment is better than PA only in all cases. The
traffic includes some flows that cannot be completed within the
deadlines even if sent at line rate, which forms a fixed DMR
that increases with the burst load. Firapam can minimize the
deadline miss rate of flows other than these, so its DMR only
increases linearly at a slow rate as the burst load increases.
Meanwhile, Firapam reduces the DMR at the cost of slightly
increasing the total FCT. Although PA only achieves a lower
overall FCT, it only allows a subset of high-priority flows to
complete quickly, and more flows will miss their deadlines
due to the lack of network resources.

Subsequently, we increase the average network workload to
0.99× and utilize an incast traffic pattern. We simulate a large
number of flows with the same priority erupt simultaneously,
and compare the performance of different PAs before and after
Firapam’s deployment. The results are presented in Fig. 7. In
Fig. 7(a), we set all flows to a uniform size of 61.5MB and
assign the same priority to most flows. When priorityH flows
account for 90%, the DMRH of PA without Firapam reaches
up to 90.4%, which means that priorityH flows compete
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Fig. 7. The deadline miss rate (DMR) of different PAs when incast occurs.

fiercely for resources but still fail to complete in time. After
Firapam’s deployment, only important flows are retained in
priorityH , while less urgent flows are downgraded to lower
priority levels to prevent them from seizing network resources
from performance-critical flows, thereby reducing the DMR by
72.3%∼73.9%. At the same time, flows that are downgraded to
priorityM or upgraded to priorityH can also achieve a lower
deadline miss rate than PA only. In Fig. 7(b), we adopt the
traffic distribution of D1 and set the same latency requirement
to most flows. Similarly, Firapam reduces the DMR of PA only
by 81.2%∼82%. Overall, when Firapam is disabled, traditional
PAs struggle to effectively determine what traffic should get
access to limited resources, resulting in higher deadline miss
rate when a large number of same-priority flows emerge. This
problem is particularly severe under incast traffic patterns.

D. Convergency

Firapam not only reacts quickly to reduce the deadline miss
rate, but also features good convergency. In this section, we
focus on the effective throughput at application level, which is
the throughput of flows that meet their deadline requirements.

The effective throughput will converge to the neighborhood
of 100Gbps when the aggregate requirement of flows
fits the network capacity. We take the set of deadlines
corresponding to this aggregate requirement as the baseline,
represented as Rbase. Then, we change the deadlines of
priorityH and priorityM flows to simulate different degrees
to which aggregate requirement exceeds network capacity,
where different sets of deadlines can be expressed as different
multiples of the baseline (e.g., 1.0 × Rbase). With average
0.99× workload and dynamic 3× burst load, when priority
assignment is performed in a Firapam manner and an AIMD
manner (i.e., Aequitas), respectively, the convergence of
effective throughputs is shown in Fig. 8.

Fig. 8(b) indicates that the convergence speed of AIMD
adjustment is independent of the matching degree between
network capacity and traffic requirement. And when the
aggregate requirement does not fit the network capacity, its
effective throughput requires about 25 RTTs to converge.
Moreover, AIMD adjustment considers less on the urgency of
performance-critical flows and results in more flows missing
deadlines, thus only achieving the effective throughput of less
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Fig. 8. The convergence of effective throughputs under different requirements.

than 75Gbps. On the contrary, as shown in Fig. 8(a), Firapam
converges its effective throughput to more than 90Gbps, a
38.85% improvement over AIMD adjustment, and achieves
a dynamic convergence speed depending on the matching
degree between network capacity and traffic requirement. The
greater the gap between aggregate requirement and baseline
Rbase is, the faster Firapam’s effective throughput converges to
equilibrium, which accords with the conclusion in Theorem 2:
the convergence speed of Firapam is related to |g|, that is, to
the gap between requirement and actual capability |δo − δ|.

E. Large-scale Evaluation with Production Workloads

To further investigate the application potential of Firapam
in real-world environments, we evaluate the performance of
Firapam in the large-scale topology with several production
workloads. Specifically, we adopt two production DCN
workloads, W1 [32] and W2 [33], which are the Web search
workload for DCTCP [32] analysis and the workload on the
Hadoop cluster at Facebook, respectively. W1 is dominated
by large flows, with an average flow size of 12.2MB and
flows larger than 10MB account for 30%. While small
flows dominate W2, of which flows with sizes ranging from
100B to 1KB account for 61%, and the average flow size
of W2 is 0.41MB. We also increase the burst load (i.e.,
the maximum instantaneous load) on the link to 15× its
capacity to simulate the situation of extreme overload that
can occur in real environments. To facilitate the analysis, we
set the same latency requirements for flows in each priority
class, represented as service level objective (SLO). Firapam’s
performance under workloads W1 and W2 is illustrated in
Fig. 9 and Fig. 10, respectively.

Under workloads W1, Firapam reduces the tail latency
in priority classes priorityH and priorityM by 74.12% and
63.44% respectively compared with PA only, and by 51.64%
and 41.77% compared with Aequitas. Under workloads
W2, Firapam reduces the tail latency in priorityH and
priorityM by 66.67% and 81.69% compared with PA only,
and by 15.38% and 65.79% compared with Aequitas. Overall,
Firapam achieves a tail latency lower than the SLO or very
close to the SLO, which means it can effectively meet the
performance requirements of applications to achieve higher
stability. Even under extreme overloads that can occur in
production, Firapam still meets SLOs well. In addition,
according to Fig. 9(b) and Fig. 10(b), we find that Firapam
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Fig. 9. Firapam’s performance in the large-scale topology with production
workload W1.
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Fig. 10. Firapam’s performance in the large-scale topology with production
workload W2.

downgrades most of the coarse-grained high priorities set at
the application level to lower priority classes (e.g., priorityL)
through admission control, making the actual priorities of
flows better match their supposed importance in the network.
As a result, although Firapam downgrades 41%∼50% of
flows with higher priorities to priorityL, it still achieves
the lowest deadline miss rate. Firapam reduces the overall
DMR by 53.11%∼59.17% compared with PA only, and by
22.11%∼47.07% compared with Aequitas.

In conclusion, Firapam is effective in handling bursty traffic
and incast traffic under high workloads. By providing flexible
and precise admission control for flow priority and quickly
converging to the fair share in the current network state,
Firapam notably reduces the deadline miss rate and achieves
favorable fairness compared to existing PAs.

VI. CONCLUSION

Up to this point, DCNs lack effective methods other
than centralized control to appropriately assign priorities
to flows with diverse demands in a shared environment,
resulting in increasing challenges in providing precise
differentiated services. In this paper, we presented Firapam,
a novel fine-grained priority assignment strategy, to push
the performance limits of priority-based proposals in DCNs.
Firapam stands out by reacting to both current network
states and flow characteristics to achieve dynamic priority
assignment, thus facilitating efficient allocation of network
resources and meeting diverse traffic requirements to a greater
extent. We demonstrated that Firapam possesses several
desirable properties, including stability, fast convergence, and

fairness. Compared with existing priority assignment methods,
Firapam notably reduced the deadline miss rate and displayed
swift responsiveness to fluctuations in network states, making
it especially well-suited for dynamic DCN environments.
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