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Abstract—With the rapid development of the Internet of Things
(IoT) and cloud applications, cloud service providers have rented
out access to servers to IoT devices for computing and storage
purposes, providing users with a variety of services and function-
ality. The prevalence of malware attacks against IoT devices has
led to serious and critical concerns with respect to cyber security.
In response to this growing threat, many IoT security providers
are adopting cloud-based, centralized malware detection systems.
However, this may cause back-and-forth communication, which
violates the real-time requirement of malware detection. The ever-
growing edge computing has resulted in the development of new and
more efficient data processing. By exploiting the proximity benefits
and the computation capacity of edge computing, we propose a hier-
archical IoT malware detection framework (namely TransMalDE)
to migrate user computation-intensive malware detection tasks to
neighboring edge computing nodes, which improves the efficiency
of malware detection. Moreover, considering the rigidity of the
current network infrastructure and the complexity of AI-enabled
malware detection tasks, we construct a Transformer-based detec-
tion model to capture the latent behavioral patterns of evolving
malware attacks. Experimental results show that our TransMalDE
consistently outperforms the existing state-of-the-art systems in
malware detection on four benchmark datasets.
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I. INTRODUCTION

R EMARKABLY, using smartphone to access the Internet
has become the norm in people’s daily lives, which can

be seen almost everywhere. The popularity of IoT [1] attracted
widespread attention from malware developers. The past sev-
eral years have witnessed a burgeoning software development
business in online app marketplaces, such as the Google Play
Store. Under the circumstances, Android malware detection
systems have gained a significant role in IoT network security.
Anti-malware providers strongly prefer scalable and lightweight
methods to cope with the numbers of apps [2].

An increasing number of IoT services can be remotely con-
ducted through Android platforms. Meantime, untrustworthy
third-party markets provide many smart IoT applications for
some specific IoT scenarios, such as various smart home services
to control lightings and thermostats. IoT applications are grow-
ing phenomenally by powering a vast spectrum of the Android-
based IoT devices. In IoT network, an operating system of a
capable hardware device manages and controls massive number
of sensors. Applications deployed on user devices send data
and instructions to other devices or edges, providing convenient
personalized services to users [3]. For example, the Android-
based IoT devices gather information from all the connected
remote smart devices and sensors, and upload data to the edge
data center.

Another topic of discussion is that existing detection systems
are not proving satisfactory to combat the sophisticated and
well-designed IoT malwares [4]. Although traditional analytics
methods like cloud-based centralized analytics [5], [6], [7],
[8], [9] can discover threats by continuous monitoring of the
system, in many cases, there is not enough time to prevent the
occurrence of the threats on Android Things. In comparison,
edge computing is closer to the terminals, which can provide
lower latency. In this new scenario, applying deep learning to the
edge intelligence for service deployment has become an ideal
solution. It is clear that edge computing is able to analyze IoT
data in near real-time. The edge nodes are most likely to perform
reaction and predictive analytics, while the cloud farther from
the end users performs model training on large-scaled dataset
due to higher computing power. Thus, large-scale deep learning
models are more suitable to be created and trained in the
cloud to help the threat detection. Specifically, the detection
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model will be retrained periodically to update its detection
capabilities. However, uploading applications from unauthen-
ticated unofficial markets or third-party resources directly to
the cloud for security verification is also a time-consuming
task due to the high network transmission overhead [10].
Therefore, it is reasonable to design a more effective malware
security system in edge computing to improve the efficiency of
malware detection.

Besides, modeling behavior information of malware is a fun-
damental topic in malware detection. Existing efforts on mal-
ware detection have focused on various static features, such as
behavioral-based features [5] and API-based features [9], [11],
[12]. Azmoodeh et al., [13] proposed an Internet of Battlefield
Things (IoBT) malware detection system to extract and learn the
OpCodes features, and used a deep learning model to classify
malicious and benign applications. Sun et al., [14] proposed a
behavioral-based malware framework that realizes a two-phase
detection mechanism to identify malware. However, most of
these methods cannot fully represent the latent behavioral infor-
mation contained in the static features while deriving a new
set of features is rather difficult. Although shallow machine
learning models are widely used in malware detection, it is
challenging to cope with the continuously evolving IoT malware
without exploring the latent information. This motivates us to
develop new detection model to capture the program semantic
of malware. In this article, we obtain the behaviors information
(i.e. API) of malware provided by static analysis methods, which
had demonstrated good performance in the literature and are
relatively easy to obtain.

In this article, we design a hierarchical IoT malware detection
framework (TransMalDE) to ensure that the services provided
to users are safe, reliable, and credible. This framework can keep
the malware detection problem sufficiently tractable, where the
edge computing nodes are used for performing the computation-
intensive tasks initiated by user devices to improve the efficiency
of malware detection. This design is sufficient to ensure the
security of the IoT applications deployed on the users’ devices.
Specifically, in this framework, the cloud is designed to train a
large-scale deep learning model due to its powerful computing
power. Moreover, we use a lightweight feature extraction to
extract sensitive subgraph features to reflect the latent behavior
patterns of malware, while reducing the computing overhead
of Mobile-IoT devices. Finally, we construct a Transformer-
based detection model to extract the textual semantic patterns
from malware. The fact that the superior performance of the
Transformer-based IoT malware detection method indicates that
the Transformer model is a worthwhile exploration.

Our major contributions are as follows:
� We propose a hierarchical IoT malware detection frame-

work, which can provide a safe and trusted environment for
the deployment of malware detection, while improving the
efficiency of malware detection by migrating computation-
intensive tasks to neighboring edge computing nodes.

� We propose a sensitive subgraph-based graph mining ap-
proach that can reflect the latent behavior patterns of mal-
ware. Moreover, we construct a Transformer-based detec-
tion model to extract the textual semantic patterns from

malware for modeling higher-level semantic concepts and
facts in malware.

� Experimental results on four benchmark dataset demon-
strate that the proposed TransMalDE reduces the latency
and achieves substantial improvement over various neural
model baselines.

In the rest of the article, we overview the related work in
Section II. And then we describe the security model and ad-
versary model in Section III. Section IV gives the edge-based
security system in detail. In Section V, we evaluate the proposed
system and analyze the experimental results. Finally, Section VI
concludes the article.

II. RELATED WORK

The popularity of IoT networks attracted malicious adver-
saries to constantly generate and evolve new IoT malware, which
can be hardly detected by most existing security products [13],
incurring serious security concerns for users to deploy Mobile-
IoT applications in Android-based IoT devices. For Android
malware detection, a typical approach is the Opcode-based
static analysis provided by anti-malware providers. Amin et
al. extracted Opcode-based features from the Android Package
Kit bytecode, which was then fed into deep neural networks
for malware detection. Specifically, they used a variety of
neural network models to detect malware, such as generative
adversarial networks [15], bidirectional long short-term memory
(BiLSTMs) [16], and fully connected networks (FCN) [17].
Moreover, Aidin et al. [18] proposed a novel watermarking
algorithm for the dynamic authentication of IoT signals to detect
cyber-attacks. Liu et al. [19] proposed a reflection backdoor (Re-
fool) approach based on the mathematical modeling of physical
reflection models, which implanted reflections as a backdoor
into a victim model [19], [20]. Quiring et al. [21] proposed a new
scheme to hide traces of operation and overlays of clean-label
poisoning by combining poisoning and image-scaling attacks.
Rasthofer et al. [22] proposed a FuzzDroid framework that
combines static and dynamic analyses to automatically gener-
ate an execution environment. In this environment, the hidden
malicious behaviors of malware are exposed. However, they
may fail in complex situations. Malware developers often adopt
various obfuscation techniques to evade detection by the analysis
system. The obfuscation techniques require more modification
of its bytecode, strings, or resource files compared to the past,
making applications more difficult to be analyzed by manual or
automated tools. In this article, we develop a lightweight feature
extraction model and evaluate the effectiveness of our system
against obfuscated malware on a wide variety of datasets.

Recently, various graph analysis techniques have been pro-
posed for malware detection, such as Opcode graph, frequent
sub-graph, control flow graph (CFG), and function call graph
(FCG). Moreover, Fairbanks et al. [23] used a graph machine
learning approach to process the CFG. Li et al. [11] proposed
a hybrid feature encoder to capture semantic information from
different types of API arguments. In [24], Wu et al. reinter-
preted opcode sequences to unify user-defined function calls,
and then used the Graph2vec method to capture the semantics
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TABLE I
COMPARISON BETWEEN MALWARE DETECTION METHODS

of the function-call relationships. By using a weighted graph
matrix normalization method, Zhang et al. [12] converted the
graph adjacency matrix into three symmetric graph matrices
describing different aspects of node information interaction.
Then, they proposed a behavior feature-based malware detection
method that learns node information interactions from the three
symmetric graph matrices. Jia et al. [25] proposed a two-stage
learning approach to solve Open Set Recognition (OSR) prob-
lems. They first extracted function call graphs (FCGs) and
then used a detransformation autoencoder (DTAE) to detect
the malware. However, the above solution requires analyzing
the entire CFG/FCG with thousands of nodes, which is clearly
computationally more expensive and complex. To cope with
this challenge, this artilce proposes a sensitive subgraph-based
graph mining approach, which can reduce the graph’s size while
learning the latent behavior patterns of malware. Table I lists
some representative malware detection methods.

Most existing studies on malware detection have discussed
the cloud-based malware detection systems, which move heavy
computing tasks to the cloud. Vahedi et al. [5] first extracted
behavioral features from malware files, and then sent them to a
cloud-based malware detection platform for the behavioral sim-
ilarity test against known malware families. To defend against
malware attacks in the cloud, Kimmell et al. [6] proposed cloud-
based online malware detection, which runs different malware
families in the cloud to collect process-level features. In [7], the
authors implement a dynamic malware detection solution for
cloud environments that uses virtualization-based techniques
to collect runtime utilization and memory object information
from the target virtual machine (VM). Nahmias et al. [8] used
the cloud’s virtualization technology to analyze malicious pro-
cesses. During this process, the malware is unaware. Similarly,
Mishra et al. [9] collected the runtime behavior of malware by
performing virtual memory introspection from the hypervisor.
However, these cloud-based malware detection methods may not
have enough time to prevent the occurrence of malware attacks
on IoT devices, and cannot meet the real-time requirements of
IoT users for malware detection.

Moreover, there are some on-device malware detection stud-
ies. For on-device malware detection, the deep learning-based
malware detectors are trained on servers and then transplanted to
mobile devices. Yuan et al. [26] proposed a broad learning-based
lightweight on-device malware detection method, which uses

one-shot computation for model training. Feng et al. [27] pro-
posed an effective malware detection system, which is deployed
on mobile devices to provide real-time and responsive detec-
tion. Niu et al. [28] proposed a fusion feature-based malware
detection model to detect malware attacks on IoT devices in
autonomous driving. However, on-device malware detection is
hard to implement due to the limited resources of mobile devices.
Inspired by edge computing, this article considers moving heavy
computing tasks to edge to deal with security issues. Edge
computing can perform reactive and predictive analytics faster
than the cloud, while also alleviating the lack of computing
resources for IoT devices.

III. SYSTEM ARCHITECTURE AND THREAT MODEL

A. System Architecture

Edge security is an important guarantee for edge computing,
which can improve the ability of edge to resist various security
threats. There are many researches on the security aspects of
edge, but most of which lay more emphasis on the network
and routing security with none specifically targeting malware
in edge computing ecosystem. We provide a holistic view of
a hierarchical security framework for defending against mal-
ware, which consists of IoT devices, edge computing nodes
and the cloud. It provide a safe and trusted environment for
the development of edge computing. Fig. 1 shows the primary
security handling of each layer of this structure. The detailed
classification description is explained in Section IV.

1) The First Layer - IoT Devices: The edge network contains
numerous end devices that are often programmed to complete
a specific simple task. Here there are a set of applications and
services at a given smart device. Malicious applications can be
widely run on various IoT devices distributed geometrically to
achieve the malicious intents. Therefore, our goal is to collect
the applications, and then upload them to the upper layer for
processing.

2) The Second Layer - Edge Computing Nodes: This layer
consists of edge computing nodes, each of which performs
computing tasks. Obviously, these computing nodes have signif-
icantly more computing power than end devices. Additionally,
in comparison to the cloud, the analytics and detection system
deployed on the edge server is able to take steps to prevent the
occurrence of the issue in near real- time. These computing nodes
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Fig. 1. The proposed hierarchical IoT malware detection framework.

are used for performing the computing task requests initiated by
edge devices. Furthermore, the detection model is deployed on
this layer to help in execution. This means that edge servers, as
the core of checking service of the received computing requests,
either automatically or by user submission, from the end devices,
should be paid more attention to have a greater impact. This
layer is used to identify threat patterns on the data streams
input from end devices by continuous system monitoring. It
categorizes suspicious behavior and responds to deployment
requests of applications. The goal is to return detection results to
the end device for classification and alert. Furthermore, the quick
feedback control mechanism will make a local reflex decisions
to control the infrastructure, once suspicious applications and
services are detected by our system.

3) The Third Layer - Cloud: Cloud computing can be used
for large-scaled behavior analysis and threat detection. Complex
deep learning models are more suitable for construction and
training at this layer due to the powerful computing performance.
Meanwhile, it is necessary to establish a virus database, which
can help edge computing nodes to quickly query and determine
the threat level. It is able to aggregate the statistics information
from the edge of the network, train a large-scale deep learning
model, and perform a more powerful analysis. In addition, in
the case of large-scale service interruption of edge network (i.e.
edge nodes cannot work under cyber-attacks and other network
anomalies), the cloud is able to support response and resource
management.

B. Threat Model

Therefore, mobile IoT applications play an important role in
the IoT network, and their security needs to be guaranteed by
service providers. Fig. 2 gives an example of security analysis.
We list possible malware threats against the IoT network.
� T1: IoT applications can not only control and operate

purchased IoT devices, but even provide them with Internet
connectivity, such as cameras, smart door locks, smart

Fig. 2. An example of security analysis.

watches and other smart devices. Adversaries may write
malicious codes and infringe on the legitimate rights and
interests of users.

� T2: Companion applications control and operate IoT de-
vices through low-power wireless communication (eg,
Bluetooth), and communicate with the cloud through Inter-
net connections provided by smart mobile devices. Adver-
saries rely on the companion applications to control smart
IoT devices. This may lead to the blindness of IoT devices
to edge servers, when malware deliberately blocks certain
messages.

� T3: The IoT devices have limited in team of computational
power, memory space, etc. Attackers can plan an attack to
any region in the edge network, and malware cannot be
processed quickly by these limited devices.

� T4: Without explicitly prompting the user or obtaining
permission, malware could be performed on IoT devices,
stealing and analyzing users’ personal information, secrets
and privacy data.

As a result, a security protection system against malware
needs to be established to protect the edge infrastructures, net-
works, applications, privacy data, and so on.

C. Security Analysis

IoT networks are now facing more targeted malware attacks.
Because adversaries can leverage third-party IoT applications
deployed on IoT devices to access critical external physical
system controllers or create rules to control sensors to interact
with servers. To prevent malware attackers from attacking IoT
infrastructure, such as unauthorized access, Trojan attacks, de-
vice hijacking, etc., this article builds a hierarchical IoT malware
detection framework to continuously monitor the IoT network
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Fig. 3. An overview of our framework.

to detect malware threats. This framework extends the malware
detection system to the cloud-edge-end architecture. In this
framework, the edge computing platform provides computing
services through an open API interface, which can be used for
resource access authorization, data collection, and analysis. It
can improve the efficiency of malware detection by migrating
computation-intensive detection tasks to neighboring edge com-
puting nodes. Specifically, we use the cloud computing platform
to train a large-scale deep learning model, which is then deployed
on the edge computing platform for quicker malware detection
and turnaround.

IV. OUR PROPOSED DETECTION SCHEME

In this section, we propose a novel deep learning framework
(TransMalDE), which extracts sensitive API call features. Then,
we introduced word embedding (word2vec) technology to ex-
tract the potential semantic patterns from the set of sensitive API
calls, which are then fed to the classification model for malware
detection. The framework conducts three major processes; fea-
ture extraction, semantic vector generation and classification.

A. Static Code Analysis on IoT Device

There is a set of applications on a given smart device. The
device is in charge of collecting and pre-processing the Android
app files. The goal is to identify potential malicious behaviors
and patterns from applications by continuously monitoring ap-
plications. In such a case, our system only collects the features
specified by the feature extractor. Fig. 3 shows the system model.
A topic worth discussing is how we extract malware domain
knowledge from IoT applications. Due to the complexity of
malware, it is imperative to develop a well-designed malware
representation to obtain good malware detection performance.
To achieve this, in our case, we build a function call graph
(FCG) [29] by utilizing a disassembly tool (Androguard) and
a graphical visualization software (Gephi), which extracts the
callers and the callees from the Dalvik code of an given IoT
application. Then, we give the definition of FCG as follows.

Definition 1. FCG: Let G = (V, E) be a FCG, where V
represent the set of N nodes, and E represent the set of M
edges. The node vi ∈ V in the FCG corresponds to a function in
a given IoT application. The edge ei,j ∈ E represents the calling

relation between the caller function vi and the callee function
vj .

Specifically, FCG can reflects the program behaviors. How-
ever, it is clear that housands of nodes can be found in FCG, re-
sulting in inefficient FCG analysis. In practice, we found that the
function call graph (FCG) contained some sensitive API calls,
which implies the potentially malicious behaviors of malware.
This helps distinguish malware from benign apps. Moreover,
Fan et al., [30] shows that different malware in the same family,
even if their codes may be obfuscated, often invoked sensitive
API calls via similar patterns. For example, multiple sensitive
API calls are sequentially invoked in the different methods of
different malware. Following this work [30], we designed a
lightweight static code analysis mechanism to extract the sensi-
tive API nodes (SAPI ) [31] and their corresponding neighbors
from the FCG, which can reflect the specific behavior patterns of
malware. Then, we define a set of sensitive API calls as follows.

APIsen = {api1, api2, . . ., apin} . (1)

This strategy allows for obtaining good performances while
minimizing the manual intervention and the computation over-
heads of battery-powered devices.

B. Detection System on Edge Computing Node

Our system is mainly used to check applications and issue the
corresponding permissions or warnings to users. It is clear that
edge computing is able to analyze IoT data in near real-time. The
edge nodes are most likely to perform reaction and predictive
analytics. Therefore, deep learning-based detection system is
deployed on the edge computing node. We make the necessary
modification for the centralized mechanism to fit it on the real
applications. In our case, the edge server will check whether a
given application has malicious intent. As shown in Fig. 3, our
system primarily consists of data management module, learning
and analysis module, and alarm module. The data management
module first collects and stores the API features extracted by the
IoT devices distributed geospatially, and then transforms them
into semantic vectors. By doing this, the learning and analysis
module fed the semantic vertors into the detection model to
perform the malware detection, and give the inference results.
After the detection process, the alarm module will transmit an

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 12:29:28 UTC from IEEE Xplore.  Restrictions apply. 



DENG et al.: TRANSMALDE: AN EFFECTIVE TRANSFORMER BASED HIERARCHICAL FRAMEWORK FOR IOT MALWARE DETECTION 145

Algorithm 1: Semantic Vector Generation.
Input: IoT applications
Output: Semantic embedding vectors
1: Construct a FCG for a given app;
2: Create a sensitive API call sequence

APIsen = {api1, api2, . . ., apin} from FCG;
3: // Create a sensitive subgraph sequence

FSSubG = {fs1 , fs2 , . . ., fsn} using (2)–(5);
4: for each apii ∈ APIsen do
5: ssubgi ← ∅;
6: for each vk ∈ V do
7: if dis(apii, vk) ≤ k then
8: ssubgi ← {apii};
9: end if

10: end for
11: SSubG← ssubgi;
12: fsi = I(ssubgi) ·m(ssubgi);
13: FSSubG ← fsi ;
14: end for
15: F ← ∅ // Create semantic embedding vectors.
16: for each fi ∈ FSSubG do
17: Obtain a semantic embedding vector

fi ← {Emb(fsi)}Ni=1;
18: F ← fsi ;
19: end for
20: return F = {f1, f2, . . ., fn}.

alarm message to the users if there is malware. Then, an IoT
device is convinced that the designated application is safe based
on the results.

1) Sensitive Subgraph Representation on Edge Computing
Node: In this part, we introduce the TF-IDF technology to
pay different attention to sensitive APIs and enhance feature
representation. Intuitively, the sensitivity of a sensitive API apii
is positively related to the amount of malware that calls it. We
define the maliciousness degree as follows.

Mapi = {m(api1),m(apin), . . .,m(apin)} , (2)

where m(apii) is the maliciousness degree of i-th sensitive
API apii. Let |Mal|total and Numb be the total number of
malware and benign apps that have called the sensitive API node
apii, respectively. Let |Mal|apii and |Ben|apii be the number
of malware and benign apps that have called the sensitive API
node apii, respectively. We have:

m (apii) = Pm (apii) ∗ log |Mal|total + |Ben|total
|Mal|apii + |Ben|apii

(3)

where Pm(apii) represents the percentage of malware that calls
apii. Then, we define a set of sensitive subgraph as SSubG =
{ssubg1, ssubg2, . . ., ssubgn}. For each sensitive API node
apii corrordings a sensitive subgraph as ssubgi, which involves
calling other functions that can be other sensitive API nodes or
not. We define a distance function dis(apii, vk), which finds the
shortest execution path between the sensitive API node apii and
its k-hop neighbor vk, where k is used to control the size of a

sensitive subgraph ssubgi. For each sensitive subgraph ssubgi,
we also calculate its maliciousness degree as follows.

m (ssubgi) =
∑

apii∈Mapi(ssubgi)

m (apii) (4)

Intuitively, the importance of each sensitive subgraph ssubgi
is different for benign and malicious software. Therefore, as-
signing the same weight to each sensitive subgraph ssubgi
may make it difficult to distinguish benign and malicious apps,
affecting the malware detection accuracy. To solve this problem,
we propose an adaptive weight allocation method to adaptively
select a weight to measure the malicious degree of each sensitive
subgraph ssubgi as follows.

I (ssubgi) = max

{
1,
|ssubgi| ∗ n∑n
j=1 |ssubgj |

}

where |ssubgi| is the size of a sensitive subgraph ssubgi, and n
is the size of the set of sensitive subgraph SSubG. Finally, we
can extract a sensitive subgraph feature set as follows.

FSSubG = {[I (ssubg1) ·m (ssubg1)] ,

[I (ssubg2) ·m (ssubg2)] ,

. . . , [I (ssubgn) ·m(ssubgn)]}
= {fs1 , fs2 , . . ., fsn} . (5)

2) Semantic Vector Generation: The extracted the sensitive
subgraph features in the previous process are stored in a text
database. In order to model higher-level concepts and facts in
malware, we tried to extract the potential semantic patterns from
this text database. In our case, we use the word embedding
method to inject the semantic feature into a embedding vector
space, which reflects the latent behavioral patterns of malware.
In this vector space, the semantic vector, denoted by Vsem, is
represented by a set of hidden variables, and each sensitive API
node apii from the sensitive subgraph SSubG is represented by
a specic instantiation of these variables. This method is spatially
insensitive, regardless of the order of words or local patterns. By
doing this, the semantic feature verctors for each malware maps
the semantic-knowledge into a fixed two-dimensional matrix
EM,K , where M and K represent the maximum number of se-
mantic features and the embedding size of vectors, respectively.
Finally, we transform sensitive subgraph features FSSubG into
semantic features as follows:

F = {f1, f2, . . ., fn} . (6)

After that, the semantic features F are fed into the detection
model as an input. Those semantic patterns are aggregated at
lower levels, which promotes the representation of higher-level
domain knowledge, and enables us to better identify patterns of
features.

3) Frequency Statistics Analysis: To investigate the effec-
tiveness of the semantic features, we analyze some relevant
statistics based on the semantic features. Fig. 4 shows the fre-
quency statistics of the semantic features on the AZ dataset. Most
semantic features appear only a few times, which may introduce
additional bias into the evaluation. It will create sparser context
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Fig. 4. Frequency statistics.

descriptions and words that share contexts are not enough in
the embedded vector space. Thus, it is hard for a learning
model to train high-quality embeddings to capture sequential
patterns due to the diversity and low-frequency of those semantic
expressions. This effect can be countered by ignoring the low
frequency features when calculating the embedding vector of
each semantic feature. This strategy enables our model to refine
contextual information and train on a larger dataset. In fact, some
specific API calls are frequently used. This is important for
revealing malicious behavior patterns, and provides effective
information gain for model learning since the differences in
feature frequency distribution can reflect the inconsistencies
between malware and benign apps.

C. Model Training and Updating on Cloud

It is clear that the cloud farther from the end users has high
computing power. The large-scale deep learning models are
more suitable to be created and trained in the cloud to help
the threat detection. Specifically, the detection model will be
retrained periodically to update its detection capabilities.

In this article, we first extract the sensitive subgraph features
from a malware. Then, we build the Transformer-based mal-
ware detection model to capture remote context dependencies.
Transformer is an attention-based sequence-to-sequence model.
Since each sensitive subgraph feature contributes differently
to malware detection, the Transformer model uses attention to
focus on the key sensitive subgraph features that are important
to the semantic representation. In our case, the attention acts
somewhat as an optimized feature extractor on the sequences
of features. In addition, considering that the lack of location
information will lead to the confusion of contextual semantic
information of the output sequence, it is difficult for the learning
model to train high-quality embedding to capture sequential
patterns. To address this, the Transformer model uses location
embedding as an input to improve the modeling ability of the
learning model to integrate forecast knowledge. The overall flow
of the proposed algorithm is shown in Fig. 5 and Algorithm 2.

For more details, given the linear projections Q,K, V , the
attention used in Transformer maps them to an output, which
can be treated as a compatibility function that calculates the
probability distribution of attention. In our case, the attention
computes the attention weights by the dot products of the query
Q with the corresponding keys K. Then, we use a softmax
function to compute the weights on the values. This process

Fig. 5. The proposed model architecture.

Algorithm 2: Learning Model on the Cloud.
Input: The semantic embedding vectors
F = {f1, f2, . . ., fn} extracted from the sensitive subgraph
sequence FSSubG;

Output: The optimized learning model;
Initialize all the model parameters;
Feed the semantic embedding vectors
F = {f1, f2, . . ., fn} into the learning model;
while not converged do

Optimize learning model using (7)–(10);
Update model parameters.

end while
return The optimized learning model.

can be described as:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (7)

where dk is the dimension of the input queries Q and keys K,
and 1√

dk
is a scaling factor.

Moreover, we use the multi-head attention to attend to infor-
mation from different representation subspaces at different po-
sitions. Compare to the single attention, the multi-head attention
performs the attention function in parallel, which projects Q,K
and V h times with different linear projections to dk, dk and
dv dimensions, respectively. In this case, each attention yields
a output vector. Finally, the outputs from h attention function
are concatenated together, which then yields a final output by
the linear layer with Softmax function. Multi-head attention
enables our model to capture important features in different
subword spaces, where the sensitive API features in different
spaces contribute differently to the final representation. Fig. 6
give the details of multi-head attention mechanism. This process
can be described as follows.

MultiHead(Q,K, V ) = Concat (head1, . . . , headh)W
O,

(8)

headi = Attention
(
QWQ

i ,KWK
i , V WV

i

)
, (9)
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Fig. 6. Multi-Head attention mechanism used in our model, which consists of
several attention layers running in parallel.

where WQ
i ∈ R

dmodel ×dk ,WK
i ∈ R

dmodel ×dk ,WV
i ∈ R

dmodel ×dv

and WO ∈ R
hdv×dmodel . are the parameter matrices of linear

transformations. In this article, we set the number h of heads
(i.e., the attention function in the multi-head attention) as 8.
Specifically, we employ residual connection and normalization
techniques in the multi-head attention. The residual connection
can pass the local representation of the lower layer to the upper
layer to obtain a higher-level local representation. Furthermore,
we adopt a fully connected feed-forward network FFN . Then,
the output vectors from the multi-head attention layer are fed
into the FFN layer to obtained the hidden representations. It
can be described as:

FFN(x) = max (0, xW1 + b1)W2 + b2, (10)

where W1 and W2 are the weight matrices. b1 and b2 are the
biases.

V. EXPERIMENTS AND EVALUATION

In IoT network, IoT devices typically have multiple applica-
tions installed. Assuming that the purpose of the adversaries is
to install their malwares on the target Mobile-IoT devices whlie
spreading the malwares for infecting more devices. Therefore,
we should carefully check these applications to ensure the
security of IoT devices. In the following section, we give the
details of the experimental setup for evaluating the proposed
TransMalDE in malware detection and conduct a large number
of experiments to evaluate the effectiveness of TransMalDE.

Using the Tensorflow and Keras platforms, we implement the
Transformer-based malware detection model, and use word2vec
to extract the semantic embeddings. The evaluation shows that
our method can detect malware effectively.

TABLE II
MAIN DATASETS USED IN OUR EVALUATION STUDIES

A. Datasets

The availability of representative data is a key challenge in
malware detection. We used four publicly available data sets to
evaluate TransMalDE’s performance. Drebin (DR) [30] contains
5560 malware samples collected from August 2010 to October
2012, each labeled as one of 179 malware families, such as
DroidDream, FakeDoc, Geinimi, etc. All labels are created after
being scanned by different Anti-Virus (AV) scanners. MalDroid
(MD) [32] is the latest Android malware dataset collected from
December 2017 to December 2018. This dataset is intentionally
spanning five distinct categories: Adware, Banking malware,
SMS malware, Riskware, and Benign. In our experiment, we
randomly selected 10,320 malware samples. VirusShare [33] is
an online site, and we collected 11,497 malware samples from
VirusShare to build the VS dataset. AndroZoo (AZ) [34] dataset
contains all published applications from 2010 to the present,
including benign apps and malware. Specifically, each malware
in this dataset has been analyzed by tens of different AV scanners.

It is worth mentioning that the previous detection system
has the problem of class imbalance during the model training.
However, the detection model trained on imbalanced data is not
enough to truly reflect performance to measure whether the de-
tection model provides results that are statistically generalizable.
To make a fair comparison, we set the same number of malware
and benign applications during training to prevent the dataset
from being highly unbalanced. Therefore, to be fair, we collected
benign samples from the Google App Store to balance out the
datasets. This means that the number of benign and malicious
samples is equal in our experiment. Table II provides a summary
of the various datasets used in this article.

B. Evaluation Metrics

In our experiment, we used some commonly used machine
learning performance evaluation metrics to evaluate the classi-
fication results of the TransMalDE model, including accuracy,
precision, recall and F-score (F). In addition, we also use Re-
ceiver Operating Characteristic (ROC) curves to evaluate the
performance of our model in malware detection. Our goal is to
achieve high accuracy and F1 values.

C. Comparative Classification Performance

To highlight the significance of this study, we compared
TransMalDE to a number of shallow machine learning models,
including Linear regression (LR), Random Forest (RF) and
support vector machine (SVM). Evaluation results are shown
in Table III. It is clear that our TransMalDE achieved better
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Fig. 7. TransMalDE versus baselines for malware detection on four benchmark datasets.

TABLE III
TRANSMALDE VERSUS SHALLOW MACHINE LEARNING MODELS FOR

MALWARE DETECTION ON FOUR BENCHMARK DATASETS

performance than the LR and SVM models on the four bench-
mark data sets. Compared with these two models, RF achieves
a relatively better result. Moreover, we compared the proposed
TransMalDE model with previous state-of-the-art models, such
as CNN [35], LSTM [36], and DNN [37]. Table IV and Fig. 7
show the evaluation results. It can be observed that CNN has the
worst performance on the four benchmark datasets, which may
be because CNN is more used in the field of computer vision
and it is difficult to extract beneficial information from semantic
features. Moreover, we can see that Muti-Att is closest to our
TransMalDE model in F-score on the four benchmark datasets.
Compared with the proposed TransMalDE model, Muti-Att uses
only multi-head attention to learn the semantic information,
which models the hidden contextual by calculating the attention
weights. The excellent performance of Muti-Att on four bench-
mark datasets verifies the effectiveness and necessity of multi-
head attention, which can reveal malicious behavior patterns.

Moreover, the baseline LSTM has achieved good perfor-
mance, which utilizes the hidden contextual representation to
model the semantic information. GRU and SimpleRNN achieve
the best performance on the MD dataset, even exceeding our
proposed TransMalDE model, with an improvement of 0.1%
and 0.14%, respectively. This may be because they take into
account the contextual information in the processing sequence,
which can retain a lot of local information. This result shows
the effectiveness and powerful generalization of GRU and
SRNN in detecting malware. However, GRU and SimpleRNN

perform less competitive than the proposed TransMalDE model
on the other three benchmark datasets. Overall, the proposed
TransMalDE produces the best performance under all metrics,
which helps the model to obtain more information related to
malware behaviors. This demonstrates the superiority of our
model proposed in this article.

D. Length of Sensitive Subgraph Sequence

The maximum length of sensitive subgraph sequence is an
important parameter in constructing semantic vector, which di-
rectly affects the amount of the semantic information contained
in the semantic vectors. Fig. 8 shows the performance of the
model’s evaluation index when the maximum sequence length
is 200. It is clear that the best value of length is 500 for both
DR And VR datasets. With the larger value of length, the more
semantic information is contained in the sensitive subgraph
sequence. For MD and AZ datasets, the best value of length
is 300 and 200, respectively. Although the amount of semantic
information becomes larger, performance changes over time.
However, semantic information that is too far away has little
effect on the current learning of the model.

E. Dimension of Semantic Vector

The dimension of semantic vectors plays an important role in
the TransMalDE model. We explore the effect of the dimension-
ality of semantic vectors on model performance. Specifically,
we change the dimension of the semantic vector in the range
[30, 50, 100, 150, 200]. Fig. 9 summarizes the performance of
the TransMalDE model in the dimensions of different semantic
vectors. For DR, VR and AZ datasets, the TransMalDE model
achieves the best performance when the dimension of the seman-
tic vector is set to 100. As the dimension of the semantic vector
increases, the more semantic information it contains, the better
the performance of the TransMalDE model gradually becomes.
In this case, sufficient semantic information can enhance the
representation ability of the TransMalDE model. In addition,
for MD dataset, the TransMalDE model achieves the best per-
formance when the dimension of semantic vectors is small.
However, as the semantic dimension is gradually increased, we
find that the performance of the TransMalDE model degrades.
This indicates that too much semantic information will introduce
noise to the model, resulting in poor model performance. Specif-
ically, the changing trend shows that our TransMalDE always
maintain a high F-score on four benchmark datasets.
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TABLE IV
TRANSMALDE VERSUS BASELINES FOR MALWARE DETECTION ON FOUR BENCHMARK DATASETS

Fig. 8. Comparative classification performance in various feature numbers.

Fig. 9. Comparative classification performance in various semantic vector dimensions.

F. Efficiency of TransMalDE

To illustrate our training progress, we plotted performances
of TransMalDE. In our case, TransMalDE is trained for 50
epochs, and then its performance saturates at a certain point.
Fig. 10 shows the evolution of the training loss and accu-
racy of our TransMalDE over 50 epochs. We can see that
the training loss and accuracy of our TransMalDE on the
four benchmark datasets are similar. The model can con-
verge to the similar validation accuracy in all four benchmark
datasets. The learning curves on the four datasets ascend to a
plateau quickly. This means that our TransMalDE can converge
quickly in the training process. Overall, the results indicate

that the proposed TransMalDE has a beneficial performance on
malware detection.

G. Robustness

To evaluate the resiliency of TransMalDE for sophisticated
obfuscation schemes, we used four obfuscation datasets consist-
ing of samples from the AZ and PG datasets. The percentage of
obfuscated malicious samples denoted by obf in Fig. 11. As we
expect, even malicious samples were increasingly obfuscated,
TransMalDE can still achieve good performance. The ROC
results corroborated the robustness merits of TransMalDE. This
is because the embedding operations count the frequency of
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Fig. 10. Evolution of the training loss and accuracy of our TransMalDE during training on four benchmark datasets.

Fig. 11. Classification evaluation of different obfuscated datasets.

occurrence of words directly from the source texts and the
attention focus on words with higher frequency. This approach
designed mitigates the effects of obfuscation techniques that
introduce a large number of useless system calls.

In addition, malware developers also often confuse their
malware by renaming properties (such as classes, fields, and
methods). We also can effectively reduce the impacts of such
confusing schemes to some extent by focusing on behavioral
information (e.g. sensitive and confusing-related API calls).
Overall, the ROC results show that TransMalDE performs con-
sistently well on all datasets, even in the presence of com-
plicated obfuscation. Another interesting find is that, despite
various obfuscated schemes used, we achieved similar results
to what were reported by DroidCat [38] and MamaDroid [39].
Thus, our approach is comparable to the two state-of-the-art
approaches [38], [39].

VI. CONCLUSION

Edge computing paradigm provides a greater quality of ser-
vice (QoS) by massive Internet of Things (IoT) applications,
which enables computing services at the edge of network. How-
ever, this raises the potential risk of being attacked by malware.
Existing malware detection systems based on deep learning
methods are difficult to deploy battery-powered iot devices be-
cause they are limited by resources and computation. To address
this challenge, we designed a hierarchical security architecture

to detect malware, where users computationally intensive tasks
migrate to adjacent edge computing nodes. The main advantage
of TransMalDE is the high execution efficiency of malware
detection against the rival malware detection systems. In the
future research, we will try to build a more effective hierarchical
architecture to further help improve the operation efficiency of
the malware detection system.

In this article, we used the static analysis method to extract
sensitive subgraph features, which provides useful information
for subsequent model learning. Dynamic analysis can provide
a more thorough malware detection mechanism, and effectively
reduce false positives, but the computational cost is much higher
than that of static analysis. Future research will consider com-
bining static and dynamic analysis methods to improve malware
detection performance. In addition, we plan to improve the
proposed Transformer based malware detection model, such as
replacing components in the Transformer model with newer,
better performing versions.
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