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Abstract—As a promising implementation of Information-
Centric Networking (ICN), Named Data Networking (NDN)
has potential advantages over the TCP/IP network in con-
tent distribution, mobility support, etc. However, the research
on NDN is still in its infancy, and congestion control, NDN’s
most important functional element, poses many challenges, such
as congestion detection, excessive window reduction for non-
congested paths, and unfairness. In this paper, we propose an
Intelligent Edge-Aided Congestion Control (IEACC) scheme for
the NDN network based on Deep Reinforcement Learning (DRL).
The proposed IEACC provides a proactive congestion detector
that utilizes intermediate routers to transmit accurate congestion
information along the path to consumers through data packets.
Furthermore, considering the multi-source transmission in NDN,
IEACC divides data packets into different congestion degrees by a
lightweight clustering algorithm and provides suitable inputs for
DRL, thereby obtaining a reasonable transmission rate. Then, it
distributes the estimated bandwidth resources to consumers with
transmission needs to maintain fairness. Finally, we implement
our proposed scheme in the simulation platform and evaluate the
performance in different scenarios. The results show that it can
improve data transmission rate, reduce packet loss, and maintain
fairness compared with others.

Index Terms—Named data networking, congestion control,
reinforcement learning, fairness.

I. INTRODUCTION

DUE to the fast-growing access demands of numerous
mobile devices, data delivery volume on the Internet has

risen dramatically in recent years. The vast mobile traffic has
led to an emerging trend of addressing the mobility problem
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of the Internet. Meanwhile, the increase of video data, cur-
rently accounting for 66% of all mobile data traffic is expected
to increase to 77% in 2026 [1], also intensifies the task of
content distribution. They make host-based transmission a
long-standing challenge in the existing Internet architecture.

Information-Centric Networking (ICN) [2] brings a new
transmission mode to meet various distribution requirements
of multiple network services and enhance mobility support.
It changes the focus of the Internet architecture from the
current “where” (location) to “what” (content). Named Data
Networking (NDN), proposed by Zhang et al. [3], is one of
the most typical ICN architectures, which identifies content
by specific name and may cache content in original content
repositories and caches of intermediate routers. Thus, con-
sumers in NDN can obtain content from multiple content
sources based on content name, which overcomes the pitfalls
of end-to-end communications for mobile transmission and
content distribution. NDN also provides two unique features
for its multi-source transmission mode: the receiver-driven
pull method and the one-interest-one-data principle. The for-
mer means that a receiver requests content by sending interest
packets and the data source routers satisfying the requirements
return the data. The latter restricts that one interest retrieves
at most one data packet. Therefore, NDN controls the trans-
mission rate of data packets by controlling the rate of interest
packets.

Though the multi-source transmission mode has the poten-
tial for faster content distribution and great mobility support,
it brings new challenges to congestion control. 1) Congestion
Detection: As interest requests in NDN may be responded to
through different sources with discrepant Round Trip Time
(RTT), the estimation of Retransmission Time Out (RTO)
is inaccurate, making RTT-based and RTO-based congestion
detection unreliable. Moreover, there is no ACK mecha-
nism, rendering the detection method utilizing duplicated-ACK
invalid. Therefore, NDN can only depend on inaccurate RTOs
to detect congestion with a high cost of massive packet losses.
2) Congestion Adjustment: The multi-source transmission
mode increases the difficulty to predict data packets’ respond-
ing location in NDN. Besides, the forwarding strategy [4] of
interest requests further intensifies the complexity of data dis-
tribution. In this case, traditional congestion control methods
may reduce the transmission efficiency when applied to NDN.
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Fig. 1. The challenges of congestion control in NDN.

As shown in Fig. 1(a), when Consumer1 treats data from
two different sources uniformly, it will halve the window if it
senses a loss packet to Producer2, which causes unnecessary
traffic decrease for non-congested paths to Producer1.

Fairness is also one of the urgent issues to be solved in
NDN. Padhye et al. [5] proposed that competing flows attain
throughputs inversely proportional to their RTTs. In NDN,
popular content is usually located closer to consumers with
the existence of in-network caches and can be obtained with
less delay. Thus, if a consumer grows its sending window when
it receives data packets according to the predefined rules, the
consumer that requests for popular content may occupy the
bandwidth of others, which leads to unfairness problems [6].
As shown in Fig. 1(b), Consumer1 requesting popular content
that returns with smaller RTTs may occupy more bandwidth
resources at the bottleneck compared with Consumer2.

The traditional receiver-based methods usually utilize
heuristic algorithms that adjust the congestion window
size following static pre-defined policies inherited from
Transmission Control Protocol (TCP) [7], [8]. Most existing
works think that distinguishing multiple paths can solve the
above problem. They proposed to add Path Tag to data packets
to identify alternative paths and to execute congestion control
similar to TCP flows [9], [10]. As the location of the content is
changing with caching strategies and complex requests in the
network, fixing forwarding paths may limit the flexibility of
NDN content acquisition. Other work implements congestion
control at intermediate nodes that can obtain more accurate
congestion information. However, they usually have strong
assumptions about known path bandwidth [11], [12], [13], or
need to maintain a considerable amount of information and
utilize the forward strategy to adjust the traffic load of each
interface [14], [15].

Therefore, we give up the strong assumptions about for-
warding and caching strategies of the NDN network and retain
flexible content acquisition of NDN. We deploy the congestion

control module at the consumer (or edge router), which adap-
tively adjusts the transmission rate depending on the network
status of the in-network. However, designing the rate control
scheme that adapts to the complex and changeable responding
locations in NDN is challenging. The traditional methods using
pre-defined strategies are powerless and may reduce transmis-
sion efficiency. Thus, we solve this problem using emerging
new technologies, in which Deep Reinforcement Learning
(DRL) can process a large amount of data, mine information
from its experience data, and learn the optimal strategy itself.
Lan et al. [16] already utilized DRL in their scheme DRL-CCP.
They provided a limited discrete action space and leveraged
RTT as the congestion signal, which leads to misjudgments.
Besides, they implemented the DRL model in each consumer,
which causes a huge overhead.

In this paper, we propose an Intelligent Edge-Aided
Congestion Control (IEACC) scheme consisting of three mod-
ules: Proactive Congestion Detector (PCD), Intelligent Rate
Adjustment (IRA), and Fair Resource Allocation (FRA).
Specifically, PCD is a proactive congestion notification strat-
egy that monitors data packet queue length at intermediate
routers to feedback accurate congestion information to con-
sumers through data packets. Furthermore, to reduce the
deployment overhead of DRL and maintain fairness, IEACC
implements the DRL agent for rate control at the edge router. It
leverages IRA to adjust the rate of interest packets injected into
the in-network through DRL. Then, it utilizes FRA to maintain
fairness by allocating the estimated transmission resources by
DRL to consumers, who regularly update their sending rates
accordingly.

The main contributions of this paper are summarized as
follows:

• We propose an intelligent edge-aided congestion con-
trol scheme called IEACC for the NDN network, which
achieves adaptive congestion control by DRL. The state,
action, and reward functions of IEACC are specially
designed based on the unique data acquisition mode of
NDN. As deployed at the edge, one DRL model can
serve multiple consumers, which reduces the deployment
overhead of DRL in the NDN network.

• We further provide a proactive congestion detector, which
enables intermediate routers to sense and feedback accu-
rate local congestion information through data packets.
Then, the edge router can derive the congestion status
of the global network from the returned information by
a lightweight clustering algorithm, which improves the
DRL performance.

• We implement the IEACC scheme in the simulation plat-
form and evaluate the performance in different scenarios.
For communication between the DRL agent and NDN
simulated hosts, we extend the original ndnSIM with
a data processing method and interactive interfaces. In
both static and dynamic network environments, the results
reveal that IEACC can improve the data transmission
rate, up to 100.82% and 34.84% compared to ICP and
DRL-CCP, respectively.

The rest of this paper is organized as follows. In Section II,
we present the background of NDN, RL, and our motivation.
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The related work and our solution are illustrated in Section
III and Section IV, respectively. Subsequently, we give
performance evaluation in Section V. Finally, we conclude our
work in Section VI.

II. BACKGROUND AND MOTIVATION

In this section, we firstly provide background knowledge of
NDN network, Reinforcement Learning (RL), and then present
our motivation.

A. NDN Network

NDN was first proposed by Jacobson et al. [17] and then
attracted attention from many researchers and got support via
NSF projects [3]. It redesigns the network architecture and
changes the end-to-end transmission mode of the traditional
network to a content-centric network identified by specific
content name. There are two kinds of packets in NDN: interest
and data, and each NDN router has three types of data struc-
tures: Forwarding Information Base (FIB), Content Store (CS),
and Pending Interest Table (PIT). The basic communication
process of NDN is presented as follows: A consumer sends
out an interest packet carrying the name that identifies the
requested data. When a NDN router receives an interest packet,
it searches its CS and sends the data back to consumers if
it has the data packet matching the request. Otherwise, it
checks the PIT table and adds it to the corresponding entry if
there already exists the request, or else it forwards the interest
request according to the FIB. Correspondingly, when a data
packet returns to a router, it checks the PIT table and sends
the data to the interfaces with the request. Otherwise, it drops
the packet. In the transmission of data packets, routers can
decide whether to cache the content to their CSs according
to cache strategies [18]. Thus, some interest requests can be
flexibly responded to by multiple resources including original
content repositories and intermediate routers.

The objective of congestion control in NDN is, the same
as in traditional networks, to avoid packet loss during trans-
mission and maximize network utilization. NDN provides the
receiver-driven “pull” mode and one-interest-one-data princi-
ples for congestion control, which restricts that one interest
packet at most receives one data packet. Thus, in NDN,
congestion control algorithms adjust the number of interest
packets sent by consumers to control the number of data
packets transmitted in the network.

B. Deep Reinforcement Learning

The RL problem is formalized as a discrete time stochastic
control process, in which the agent interacts with its environ-
ment in the following way: at each discrete decision epoch t,
the agent observes the state st of the environment in the state
set S , and then selects the act at from action set A accord-
ing to its policies and gets the corresponding reward rt . Thus,
the main task of an agent is to find a policy μ(s) mapping a
state to an action, μ(s) : S → A (deterministic), or denotes
the probability that action a may be chosen in the state s,
μ(s , a) : S × A → [0, 1] (stochastic), to maximize the total

future reward

Rt = rt + γrt+1 + · · ·+ γT−trT , (1)

where T is the last decision time, and γ ∈ (0, 1] is the discount
factor.

The DRL was introduced by Mnih et al. [19], who extend
the well-known Q-Learning using tables to represent Q(s , a)
to Deep Q-Network (DQN) utilizing a DNN to derive the cor-
relation between each state-action pair (st , at ). When training
the neural network, DRL optimizes a loss function. That is,
the goal of DRL is to minimize the loss function (the deviation
between the target and network output):

L(θQ) = E

[
yt −Q

(
st , at |θQ

)]
. (2)

Where yt is the target value of training for each state-action
pair derived from the Bellman equation

yt = r(st , at ) + γQ
(
st+1, μ(st+1)|θQ

)
. (3)

Although DQN performs well in low-dimensional obser-
vation spaces with DNN, it is still incapable of congestion
control in NDN that needs continuous control. In recent stud-
ies, Lillicrap et al. [20] introduced an actor-critic approach
based on DNN and the deterministic policy gradient [21]
called Deep Deterministic Policy Gradient (DDPG) for contin-
uous control. Specifically, DDPG maintains two DNNs: The
actor part is used to approximate the policy function μ(st |θμ)
and generate actions to interact with the environment. The
critic part is responsible for approximating the value function
Q(st , at |θQ) and evaluating the performance of the actor in
each interaction cycle.

C. Motivation

Firstly, we analyze how congestion occurs in NDN
networks. In NDN, there is no fixed end-to-end connec-
tion because of its multi-source transmission mode. However,
the cause of congestion in NDN is still the same as that
of TCP/IP networks. If consumers send too many interest
requests, returned data packets may exceed the link bandwidth
and queue in the transmission buffer. When the queue length
exceeds the buffer capacity, it causes packet loss, then con-
gestion occurs. It reveals why traditional schemes that adopt
TCP-like congestion control algorithms still make sense in
NDN networks. However, the cost of using packet loss as
a congestion detector is expensive because consumers can
only sense packet loss through RTO in NDN. Therefore, we
enable the intermediate routers to monitor data packet queue
length for accurate congestion detection and explicitly inform
consumers by carrying information in data packets.

Although with accurate congestion information, suitable
congestion control is still some way off. Specifically, data
packets may come from different content storing locations,
which are constantly changing according to cache strate-
gies [18] and cache replacement schemes [22]. The traditional
methods using pre-defined strategies are powerless to adapt
to changeable responding locations in NDN and may reduce
transmission efficiency. Therefore, we leverage the emerg-
ing technology DRL that can mine information and learn the
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optimal strategy by itself. However, deploying DRL on each
consumer may have a higher cost, so we need new designs.
In this paper, we propose to implement DRL at edge routers,
which can not only avoid congestion by adjusting the traf-
fic flowing into the in-network but also be a trusted neutral
to maintain fairness. Firstly, with the development of equip-
ment, NDN routers may have higher computing power than
that of ordinary routers. The edge router, because of its spe-
cial location (connecting users and intranets), are considered
to have higher processing capabilities. There are many arti-
cles that perform more complex processing at the edge [23],
[24], [25]. It is reasonable for its computing power to support
the DRL application in IEACC. There are also other advan-
tages: the edge router with more comprehensive transmission
information from multiple consumers is more suitable to train
and update the DRL model and improve rate control efficiency.
It can reduce deployment overhead as the number of edge
routers is far less than that of consumers. Besides, edge-aided
congestion control can integrate with multiple NDN secu-
rity policies, such as access control [23] and content integrity
authentication [24], to form a more secure and effective NDN
network.

The usual way to implement congestion control is to main-
tain a congestion window, which grows and decreases as data
packets are returned and lost. Packets with low transmission
delay come back faster. Thus, when transmission delays of
paths are different, their window growth rates are different,
which causes unfairness. In this paper, we avoid the imbalance
caused by transmission delays by allocating transmission rates
to consumers instead of maintaining a window. Consumers
with the same window size may send different data pack-
ets within a certain period of time if they have disparate
transmission delays, however, the same transmission rate does
not.

As for the selection of the DRL algorithms, we con-
sider both training difficulty and data processing ability. The
first algorithm that comes to mind is DQN [19], which
is the most common algorithm of DRL. It has low train-
ing difficulty and converges rapidly for utilizing only one
neural network. However, it is only suitable for low dimen-
sion data inputs and can only output discrete action values
in the predefined action space. To achieve fine-grained rate
adjustment in NDN networks, we need continuous control
algorithms that can choose any value in the action space
according to the status of the environment. As far as we
know, Deep Deterministic Policy Gradient (DDPG) [20],
Asynchronous Advantage Actor-Critic (A3C) [26] and Twin
Delayed Deep Deterministic Policy Gradient (TD3) [27] are
commonly used algorithms for continuous control. These algo-
rithms are all suitable for transmission rate control in the
NDN network, though, with different training overhead. Both
A3C and TD3 are more difficult to converge for having more
than two neural networks. However, the DDPG algorithm with
only two DNNs has lower training difficulty and good stabil-
ity. Thus, we adopt DDPG to implement rate control in our
scheme.

III. RELATED WORK

The congestion control mechanism is one of the key ele-
ments of NDN, which has attracted much attention from
researchers. According to the control mode, the existing works
of congestion control in NDN are classified into three cate-
gories: receiver-based control, hop-by-hop interesting shaping,
and hybrid method [6].

The receiver-based mechanism consists of single-source
and multi-source algorithms, which maintains one or more
congestion windows at the consumer side to restrict the
number of interest packets injected into networks. One
of the typical single-source algorithms is Interest Control
Protocol (ICP) [7], which utilizes the Additive Increase and
Multiplicative Decrease (AIMD) algorithm for window adjust-
ment. Others provided extensions of ICP [8], [28], they still
have many congestion misjudgments for relying on RTT.
Ren et al. [29] proposed an Explicit Control Protocol (ECP),
which monitors the queue status at intermediate routers, and
sets fixed thresholds to distinguish different congestion lev-
els (Free, Busy, and Congestion). However, single-source
algorithms are incompatible with the multi-source transport
characteristic, which may cause unnecessary traffic reduc-
tion of non-congested paths and adjust window size based
on inaccurate RTOs. Some works maintain a separate win-
dow for each source [30], each path [31], or each Content
Store (CS) [32]. Ye et al. [9] proposed Path-specified Transport
Protocol (PTP), which introduces a Path Tag in the data packet
to record the interface identification of each router along the
path to destination sources. Thus, consumers can maintain a
separate window for each path to avoid excessive reduction on
non-congested paths. Wu et al. [10] also proposed a multi-path
discovery and multi-path congestion control scheme, named
MPCC, which utilizes Path Tag in both interest and data packet
to discover new paths and record path information. Then,
it utilizes the Upper Confidence Bound algorithm to select
sub-paths and maximize the network throughput. However,
these algorithms may restrict the flexible content acquisition
in NDN. There is also a scheme that utilizes DRL technol-
ogy [16], which trains a DQN model to make finer window
adjustments. However, it ignores the multi-source character-
istic in the NDN network, still utilizes inaccurate RTTs as
congestion notifications. Besides, it can not maintain fairness
in NDN.

The hop-by-hop algorithms implement congestion control at
intermediate routers, which adjust the interest forwarding rate
or transfer data traffic from the congested interface to free
ones. Some of them utilized strong assumptions about know-
ing path bandwidth to adjust transmission rate at intermediate
routers [11], [12], [13]. Schneider et al. [15] provided Practical
Congestion Control (PCON) scheme, which detects conges-
tion based on the CoDel AQM and marks certain packets to
explicitly transmit congestion information. The downstream
routers divert traffic to alternative interfaces to avoid conges-
tion, and consumers can reduce their interest sending rates
based on marked packets. Nikzad et al. [33] proposed a
Responsibility-based Transport Control (RTC) method, where
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Fig. 2. The architecture of the proposed scheme.

the intermediate routers can decide on accepting or refus-
ing to take responsibility for forwarding a newly received
interest packet. In [14], the Coordinate Congestion Control
Protocol (3CP) proposed by Hashemi et al. decouples for-
warding and congestion control plane. It adds several new
formats in interest and data packets to transmit congestion
information and estimated resources along the path. It adjusts
the forwarding probability to certain interfaces and consumer’s
sending windows according to the positive and negative signals
conveyed by data packets. Although these algorithms utilize
the complex operations at intermediate routers to obtain more
accurate transmission rates, their extremely high overhead for
rate control at each intermediate router cannot be ignored.
Also, their approach is extremely difficult to deploy.

The hybrid method combines the former two methods,
which implements both interest shaping at intermediate routers
and window adjustment at consumers [34]. The more precise
rate control may lead to better efficiency, which is also com-
plicated and introduces huge computational burdens to the
network. Besides, there are possible conflicts between con-
sumers and intermediate routers when using two rate control
methods together.

Our solution can be classified as the receiver-based method,
which maintains a rate value for a interface at the edge
router and does not make any assumptions about caching and
forwarding strategies at intermediate routers.

IV. INTELLIGENT EDGE-AIDED CONGESTION CONTROL

In this section, we introduce our Intelligent Edge-Aided
Congestion Control (IEACC) scheme, which is proposed for
NDN to cope with the challenges in inaccurate conges-
tion detection, excessive window reduction, and consumer
unfairness. We present the design details in the following.

A. Design Overview

Firstly, we provide a design overview to present an overall
idea of the scheme. As shown in Fig. 2, IEACC consists

Fig. 3. The new format of interest and data packet.

of three modules: Proactive Congestion Detector (PCD),
Intelligent Rate Adjustment (IRA), and Fair Rate Allocation
(FRA). The PCD enables intermediate routers of NDN to
proactively monitor the queue length of data packets. For
each passing data packet, it updates the current maximum
queue length value and conveys the congestion information
to consumers. The IRA and FRA methods are both imple-
mented at the edge router. Specifically, IRA collects path
information within the in-network, classifies data according to
their congestion degrees to provide suitable inputs for DRL,
and outputs a reasonable transmission rate for interest pack-
ets. Then, FRA allocates the estimated transmission resources
to consumers with requirements. It calculates the updated
transmission rate on the basis of ensuring the consistent trans-
mission bandwidth of each consumer, which is then conveyed
to consumers through data packets. Thus, the consumers detect
new transmission rates carried in data packets and send interest
requests accordingly. Therefore, with the accurate congestion
information delivered by the intermediate routers, IEACC uses
DRL to control the interest packets injected into the core
network and updates consumers’ transmission rate according
to the principle of bandwidth consistency. It can not only
improve network transmission efficiency but also maintain
fairness among consumers.

We present the detailed descriptions of the three proposed
algorithms in the following sub-sections.

B. Packets Format

To transmit auxiliary control information between NDN
nodes with little cost, we design new packet formats as shown
in Fig. 3. The functions of new adding fields are elaborated
as follows:

• Later Prefix: Prefix is an important components of content
name, which is the basis for caching and routing decisions
in NDN networks and is useful for providing prediction
of future traffic. Each consumer sets this field by its later
interest requests, which is transmitted to the edge router
and then will be deleted before being transmitted to the
core network to reduce transmission cost.

• Congestion Info: Each intermediate router modifies this
field to transmit the maximal congestion degree to con-
sumers.

• Allocated Rate: The edge router updates this field accord-
ing to the rate allocation strategy to deliver new rate to
consumers.
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C. Proactive Congestion Detector

In the original implementation of NDN, NACK [35] is
usually used as a signal of congestion conditions, which is
triggered when queue length exceeds the predefined threshold.
The consumers who receive a NACK packet will slow down
their sending rate to avoid packet losses. Although NACK can
convey congestion information, it can only transmit conges-
tion signals of “yes” or “no” and is unable to transmit specific
congestion conditions, which has a limited effect.

To get accurate congestion information, IEACC provides a
proactive congestion detector, which transmits explicit con-
gestion information to consumers through data packet with
little cost. There are many options that can be used as conges-
tion signals including RTT, data packet queue length, interest
packet queue length, and the transmission delay of adjacent
routers. Among them, we choose the queue length of the
data packet because data packets are the main cause of traf-
fic congestion. Besides, the queue length is not affected by
transmission delay.

As shown in Fig. 3, IEACC appends an additional
“Congestion Info” field in the original data packet to con-
vey the queue information of intermediate routers along the
path. Although it is able to carry the congestion status of each
intermediate node for more fine-grained analysis, the design
also introduces more overhead, especially when the path is
long. Thus, IEACC conveys only the maximal queue length
that indicates the highest congestion degree along the path to
consumers. Specifically, the appended field is 16-bit and can
convey the queue length value smaller than 65535, which is
sufficient for the existing implementation in ndnSIM [36]. For
more accurate control, each intermediate router timely updates
its queue length when a data packet arrives or is forwarded to
obtain instant congestion information. Before forwarding the
data packets, each router compares the current queue length
with the stored value in the data packet and rewrites the stored
value if it has a higher congestion level.

D. Intelligent Rate Adjustment

With accurate congestion information, the edge router uti-
lizes DRL method to obtain a reasonable transmission rate by
the IRA module. Specifically, IRA utilizes data from multiple
interfaces of the edge router to train the model and outputs
the updated transmission rate for each interface through its
input. In this case, the model is decoupled from the network
topology and can be flexibly applied to various topological
environments. As shown in Fig. 4, a DRL agent is composed of
the state, action, and reward, which are elaborated as follows:

State: A reasonable state design can not only accelerate con-
vergence but also reduce the training complexity and overhead
of the DRL model.

As mentioned before, the congestion information carried in
data packets is the local information of each path. However,
data in NDN networks may go through different paths with
disparate congestion states to reach the edge router. To achieve
a more accurate transmission rate, we need global network sta-
tus. Thus, IRA contains a lightweight clustering algorithm for
data analysis, which further provides more accurate inputs for

Fig. 4. The network of the DDPG model.

Algorithm 1: Data Processing
Input: The DRL agent updating interval T , congestion

level set q = [], data collection time t = 0, initial
group number n = 2, classification parameter
θ = 0.25;

1 while t ≤ T do
2 for coming data, append the congestion level to q ;
3 t grows with the passing time;
4 end
5 g1 = min{q}, g2 = max{q};
6 for i ≤ lens{q} do
7 dn,i = min{‖ qi − g1 ‖, . . . , ‖ qi − gn ‖};
8 end
9 l = min{q − g1, g2 − q};

10 if max{dn} ≥ l · θ then
11 n ++;
12 gn = qk (dn,k = max{dn});
13 l = min{l , ‖ gn − q ‖};
14 go to the line 6;
15 end
16 for i ≤ lens{q} do
17 for j ≤ n do
18 Li ,j =‖ qi − gj ‖;
19 end
20 qi belongs to category k , Li ,k = min{Li ,1, . . . ,Li ,n}
21 end

DRL. Specifically, it introduces the monitoring interval to col-
lect data and separates them by the interval to maintain Markov
property. Then, it utilizes a moderately modified Max-Min-
distance algorithm to cluster received data with acceptable
computational overhead. The specific processing is shown in
Algorithm 1.

Suppose that, in a data processing interval T, the maximum
data queue length carried by the ith packet is qi . IRA first
selects g1 = min{q1, . . . , qN } and g2 = max{q1, . . . , qN } as
the center points of the first two categories, and calculates q̄ ,
the average value of q. Then, it computes the distance from the
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remaining data congestion levels to g1 and g2, and generates
a new classification according to the following formula:

max
i

[ min [di ,1, di ,2]] ≥ l · θ, i = 1, 2, . . . ,N , (4)

where θ is the classification parameter, l · θ is the boundary
of new category, and

di ,j = ‖qi − gj ‖, j = 1, 2, i = 1, 2, . . . ,N .

l = min{q̄ − g1, g2 − q̄}.
Then, it repeats the above formula until no new centers are
generated. After confirming the number of categories and the
cluster centers, the data can be sorted into various categories
according to the principle that it has the minimum distance
to the belonging cluster center as illustrated from Line 16
to Line 20. So the final number of categories is related to
the distances among the received data, however, the state
dimension of the reinforcement learning model is a certain
number. Thus, IRA takes the classification of g2 that has
the maximum average queue length (congestion level) as the
first category namely “bottleneck data”, and the others as the
second category namely “normal data”.

Specifically, for each interface of the edge router, its input
state at the specific epoch t is St = [Gbt ,Gnt ,Q

avg
t ,Lt ,Pt ],

where Gbt and Gnt denote the goodput of “bottleneck data”
and “normal data”, respectively. Qavg

t is the average value of
queue length obtained from the PCD. Lt represents the number
of lost packets in the epoch t, which may include interest
and data packets notified by RTO. That is, if a sent interest
packet does not return the corresponding data packet within the
RTO time, a packet loss has occurred, and the value of Lt is
increased by 1. We use the default RTO update algorithm and
periodically transmit packet loss information from consumers
to the edge router. Pt denotes the distribution of subsequent
interest requests obtained from the “Later Prefix” contained in
interest packets. Specifically, Pt = [p1, p2, . . . , ph ] is a one-
dimensional vector that denotes the subsequent distribution of
interest requests. Where pi represents the request proportion of
the ith popular content to all requests. The process of obtaining
Pt is as follows: when the edge router receives an interest
packet from consumers, it gets the prefix of later requests from
the “Later Prefix” field. Then, it records the number of requests
for various types of contents from consumers in the monitor
interval to obtain the popularity prediction of local contents.
At the start of the next interval, the edge router calculates
Pt and inputs the prediction information into the model. The
value of h can be adjusted with requirements, and we provide
overhead and efficiency tests for several h values in Section V
for reference.

It’s worth noting that though we consider only two cate-
gories of data in our design, it can be easily extended to the
scenario with more categories of data for fine-grained control
by modifying the input dimension of DDPG model.

Action: The existing congestion control algorithms, such as
ICP, ECP, and DRL-CCP, mainly control the sending rate of
interest packets by adjusting cwnd size. They only consider
discrete action space, which has a limited effect on rate con-
trol that is continuous. However, the DDPG algorithm in our

DRL model can output continuous action through a neural
network. As for the threshold setting of the action space,
we refer to TCP algorithms in the traditional network. As
far as we know, most loss-based TCP algorithms including
NewReno [37], Cubic [38], and SCTP [39] follow a principle
that the cwnd variation does not exceed exponential change.
Specifically, the window grows up to twice the original size in
the best case, and it is halved when a packet loss occurs. Thus,
we provide continuous action space from 0.5 to 2, that is, the
action is a ∈ [0.5, 2]. It is able to avoid great performance
fluctuations. Thus, transmission rate in the epoch t can be
calculated by

Ratet = Ratet−1 · a. (5)

Reward: The design of reward is consistent with the objec-
tive of maximization network utility. It contains goodput (Gt )
representing the current capacity of the interface, the loss value
(Lt ), and average queue length (Qavg

t ) indicating the con-
gestion degree of transmission states. Specifically, the reward
function is:

Rewardt = α · log(Gt )− β ·Qavg
t − γ · Lt , (6)

where

Gt = 1 +
Dt · Nt · 8

d · 1024 · 1024 , (7)

and

Q
avg
t =

(
Nt∑
i=1

Qi

)
/Nt , (8)

in which Nt is the number of received data packets in the
epoch t that is composed of “bottleneck data” and “normal
data”, and d is the action interval, which is 0.2 in our design.
Dt denotes the average size of received valid data packets.
The computation of the Goodput is done by Eq. (7), where 8
and 1024 are to complete unit conversion. The computation of
average queue (Qavg

t ) is shown in Eq. (8), in which Qi denotes
the maximum data queue length carried by the ith packet, and
Nt is the total number of received data packets in the epoch
t. In Eq. (6), α, β, and γ are the parameters that represent
the importance of Goodput, queue length, and packet loss,
respectively. These parameters are all positive, which means
that the reward expects to increase the goodput, but at the same
time to reduce the average queue length and packet loss. The
exact values of these parameters have a significant influence
on the presentation of the model. We do a lot of tests and
finally set α = 0.9, β = 1/32, and γ = 1/100.

Implementation: In this part, we mainly introduce the detail
of neural network design and some useful optimization strate-
gies for algorithm operation. For the design of actor and
critic networks, IRA utilizes three-layer fully-connected feed-
forward neural networks. It introduces non-linear function
approximators into the network to explore more complex data
relations in NDN, where there are 30 neurons in each layer
with the Leaky Rectifier for activation. The critic network can
be trained as a regular DQN, which outputs the corresponding
Q-value for a given action-state pair using

Qπ(st , at ) = Ert ,st+1∼E [r(st , at ) + γE[Qπ(st+1, at+1)]].
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When the target policy is deterministic μ : S ← A, the inner
expectation can be avoided. Thus, the above equation can be
written as:

Qμ(st , at ) = Ert ,st+1∼E [r(st , at ) + γQμ(st+1, at+1)].

To learn parameter μ, the updating algorithm based on the
gradient is usually adopted [40]. The main step is to calculate
the gradient of the sum of expectations. For the actor network,
DDPG maintains a parameterized actor function μ(s |θμ) that
specifies the current policy by deterministically mapping states
to a specific action. The chain rule is applied to the expected
cumulative reward J considering the actor parameters:

�θµJ ≈ E

[
�θµQ

(
s, a|θQ

)
|s=st ,a=μ(st |θµ)

]

= E

[
�aQ

(
s, a|θQ

)
|s=st ,a=μ(st ) ��θµμ

(
s, a|θμ)|s=st

]
.

In the training, IRA utilizes the replay buffer and target
network techniques to ensure the convergence of approximate
functions as DQN. It also gains more benefit from a set of
uncorrelated transitions and utilizes batch training. The update
mode is changed to soft updates as

θQ
′ ← τθQ + (1− τ)θQ

′
,

θμ
′ ← τθμ + (1− τ)θμ

′
,

for the target actor and critic networks, rather than directly
copy the weights used in DQN. We also normalize the input
value included in the state to eliminate the magnitude differ-
ence among various types of data, such as Gbt and Gnt may
reach ten thousand while Lt is much smaller.

E. Fair Resource Allocation

The fairness problem of the NDN network is still an open
issue due to the multi-source transmission mode, various con-
tent requests from consumers, and uncertain access paths. We
provide a preliminary algorithm, which is committed to pro-
viding fairness for consumers that are connected to the same
edge. We leave other complex cases as our future work.

Mainly, we achieve fairness through resource allocation
strategies, which include centralized decision-making and
decentralized decision-making [41]. The main difference
between the two types is whether the executor of resource allo-
cation is the resource owner or the consumer (edge). IEACC
utilizes the latter method to adjust transmission rate according
to consumers’ transmission requirements and congestion feed-
back from in-network through the IRA module. Thus, the FRA
module introduces a simple and effective centralized decision-
making strategy to fairly allocate the estimated bandwidth to
consumers. However, consumers may have different transmis-
sion delays to the edge router, which leads to unfairness if
they independently increase window size when data packets
return. Thus, the edge router allocates a transmission rate to
each consumer to avoid the effect of consumer-to-edge delay
and ensure fairness.

Suppose that there are m consumers connected to the edge
router E with n interfaces, where the transmission rate of
interface i after the last rate adjustment of DDPG model is

xi . Then, edge router conveys the rate

Ralloc =

∑k=n
k=0 xk
m

+
η · Buffer − ocbuff

d ·m
to each consumer connected to it through the field of
“Allocated Rate”. The first part is the equal share of the trans-
mission rate of each interface, and the second part is the
basic rate provided by the edge buffer to prevent bandwidth
underutilization when some interest packets only go to specific
interfaces. Buffer denotes the total interest queue buffer of the
edge router, ocbuff is the occupied buffer size, and d is the
action interval. The parameter η ∈ (0, 1) adjusts the percentage
of buffer size used for containing excessive interest requests
from consumers. In general, buffer queue occupation is a rea-
sonable signal to reveal the congestion level of routers [42].
The setting of queue occupancy is closely related to transmis-
sion efficiency. Specifically, ensuring 100% buffer occupancy
can improve bandwidth utilization, however, it often results
in packet losses and increased queuing delay of data pack-
ets. If the router guarantees low queue occupancy (close to
zero), there will be no packet loss, and the transmission delay
also reduces. Nevertheless, in this case, the bandwidth utiliza-
tion is hard to guarantee. Therefore, we choose the occupancy
value of 50% to achieve a trade-off. To some extent, it can
ensure bandwidth utilization, avoid severe packet losses, and
reduces excessive queuing delay. Thus, in our experiment, we
set η = 0.5.

Besides, to prevent severe fluctuations in the quality of ser-
vice at consumer side, IEACC also provides upper and lower
thresholds when consumers modify the rate to the specified
value after receiving a new rate. As presented in the Eq. (9),
a consumer with a current rate Rold receives a new allocated
rate Ralloc , then it firstly compares whether Ralloc is larger
than Rold . If so, it sets the new rate to be no more than twice
of the original rate and takes the new allocated rate Ralloc as
the upper bound. Otherwise, it ensures the new rate to be no
less than half of the original rate and takes the new allocated
rate Ralloc as the lower bound.

Rnew =

{
min{Ralloc , 2 · Rold}, if Ralloc > Rold

max{Ralloc ,
1
2 · Rold}, if Ralloc < Rold

(9)

It needs to note that, edge routers can also monitor the num-
ber of interest packets sent by each consumer to detect greedy
consumers that do not obey the defined protocol. If a greedy
consumer is found, the edge router can discard its interest
requests to implement punishment. Beside, if resources are
sufficient, the DRL model can also be deployed on each con-
sumer, which can achieve fairness when consumers share the
same bottleneck.

V. PERFORMANCE EVALUATION

We evaluate the performance of our proposed scheme
IEACC via a simulation environment based on ndnSIM (ver-
sion 2.7, an ns-3 based NDN simulator) [36] under the Ubuntu
18.04 virtual machine with 4 cores and 8GB memory. The
receiver-based algorithms with which we compared include
ICP [7], ECP [29], and DRL-based algorithm DRL-CCP [16]
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using DQN. Specifically, ICP is the typical receive-based con-
gestion control algorithm adjusting cwnd in an AIMD mode,
and ECP is a control method based on explicit feedback that
utilizes NACK to notify congestion. DRL-CCP is a method
that maintains a single window and utilizes a discrete action set
to perform window adjustment by DRL. Besides, we also com-
pare IEACC with the popular hop-by-hop congestion control
algorithm PCON [15]. Because IEACC has no load balancing
measures at intermediate routers, the comparison is limited to
specific scenarios for fairness. We measure the transmission
efficiency and reliability of algorithms through data comple-
tion time (with specific transmission requirements), average
transmission delay, and packet loss. It is worth noting that the
packet loss of algorithms except ECP refers to the loss of data
packets, while the ECP algorithm includes a part of interest
packets. Although the loss of interest packets has a lower cost
than data packets, it also causes other problems. For example,
consumers can only know lost packet by waiting for RTOs.
It will increase the out-of-order degree of data and the time
of delivering data to the application layer (data must be com-
plete before uploading). Moreover, we also present fairness
performance by comparing the data transmission rate of each
consumer.

A. Experiment Setting

Before showing the experimental results, we first introduce
the basic environment settings and some selection references
of important parameters.

1) Basic Environment: To implement the DRL algorithm
in ndnSIM, we extend the latest AI interface ns3-AI [43]
under ns3 to ndnSIM. Specifically, we add an interaction
interface between ndnSIM and reinforcement learning algo-
rithms, which separates computational processes related to the
DRL algorithms from data transmission in the pipeline. Thus,
the computational complexity of DRL algorithms has very lit-
tle impact on network communications. Besides, the DNNs
included in the framework (i.e., the actor and critic networks)
are implemented using PyTorch [44]. Moreover, to show the
effect of our scheme, we consider two different topologies,
as shown in Fig. 5. The linear scenario has a single interface
at the edge router, while in the complex scenario, the edge
has three interfaces connected to five content producers. In
both scenarios, C1 denotes the consumer that send interests
according to congestion algorithms, CP1 to CP5 denote con-
tent producers storing different content, and R1 to R8 are
routers. BK is a node that sends interest requests randomly to
manufacture background flows. We utilize the default routing
strategy in ndnSIM and run every testing twenty times to show
the results. Moreover, we combine offline pre-training with
online selective training and updating to ensure efficiency. In
the model training, we constantly change transmission delay,
bandwidth, and requested data distribution to simulate vari-
ous network environments. Generally, the IEACC agent runs
for over 1000 episodes containing 250000 transition samples,
where the training time varies from ten to twenty hours. When
applying the model for congestion control, its computation
time is acceptable, about 0.5ms.

Fig. 5. The topologies of performance testing.

Fig. 6. The effect of h on transmission efficiency and training overhead.

2) Parameter Selection: Before the actual tests, we made a
performance analysis to select the optimal parameters suitable
for the environment. We mainly provide analysis for param-
eters h in the scheme. It denotes the top h “Later Prefix”
introduced in the IRA model.

As shown in Fig. 6, we provide the training overhead and
transmission efficiency for eight different values of parameter
h. Specifically, we train models for different h values by main-
taining other environment settings the same in all scenarios.
We record the number of episodes required before the model
converges to present the training overhead. Then, we show
the transmission efficiency of models by testing the number
of data packets transmitted within 50s in the topology shown
in Fig. 5(a). From Fig. 6, we can see that the training over-
head shows an upward trend as h increases, except for a slight
decrease when h is 6. The amount of transmitted data shows a
trend of increase then falling, and the transmission efficiency
reaches the highest when h is 5. Thus, the parameter h is set
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Fig. 7. Transmission performance of different algorithms in stable bandwidth environment.

to 5 to maximize the transmission efficiency in subsequent
experiments.

B. Linear Scenario

We first show the efficiency of algorithm in the linear sce-
nario as shown in Fig. 5(a), where we consider stable and
randomly varying bandwidth and delay situations.

1) Stable Scenario: In this scenario, we set the bottleneck
bandwidth from Edge router to Router to be 50Mbps, and the
other paths are all set to 100Mbps. The delay between any
two adjacent routers is 10ms.

In Fig. 7(a), we first introduce the performance of algo-
rithms in data completion time where the amount of data
transmitted ranges from 150000 packets to 750000 packets.
We can see that IEACC and DRL-CCP both have high data
transmission rates and complete data transmission faster than
ICP, ECP, and PCON. Specifically, when the data require-
ment is 750000 packets, it takes IEACC and DRL-CCP for
about 132s to complete the transfer, while ECP and ICP cost
163.8s and 190s, respectively. PCON, with explicit congestion
mark, takes 167.804s to complete transfer, which is compara-
ble to ECP and much better than ICP. Thus, compared with
the ICP algorithm, IEACC improves the transmission rate by
about 32.1%, which is a remarkable improvement. In Fig. 7(b),
we show the packet loss of each algorithm during transmis-
sion, where the number of packet losses of each algorithm
within 150s is relatively low in the stable environment. Among
them, IEACC has the lowest packet loss. ICP suffers higher
loss packets at the beginning of transmission because of the
slow start-up. ECP that adjusts transmission rate when the link
queue capacity is occupied for 100% suffers the highest loss.
The packet loss rate of PCON that uses interval congestion
marking and BIC algorithm for fast recovery shows a regular
fluctuations. DRL-CCP with a window larger than the actual
requirement because of slower RTT feedbacks also has slightly
higher packet loss.

In Fig. 7(c), we show the average transmission delay of each
algorithm in a box diagram style, where the five lines from
bottom to top represent the minimum, lower quartile, median,
upper quartile, and maximum respectively, and small black
diamonds are outliers. We can observe that although the data
transmission rate is significantly improved, IEACC still has a

lower transmission delay. It is because our model adopts the
data queue length explicitly transmitted by the intermediate
router to convey the degree of congestion. It can effectively
and timely control the transmission rate, thereby reducing the
data packet queue length to avoid congestion, so that it has a
lower transmission delay. Due to the aggressive fast recovery
strategy, PCON is unable to empty its queue, so its average
transmission delay is the largest.

2) Varying Scenario: In reality, the effective transmission
bandwidth and delay of a flow changes with the network
traffic traveling through the path. Therefore, we next show
the efficiency of algorithms under flexible bandwidth changes
and varying transmission delay scenarios to demonstrate the
performance of IEACC.

Varying bandwidth: We randomly change the bottleneck
bandwidth in the testing to show the performance of IEACC in
real network. More specifically, we select twenty timing points
in 200s, and then randomly change the bottleneck bandwidth
from 20Mbps to 50Mbps.

In Fig. 8, we show the corresponding results. We can see
that IEACC, DRL-CCP, and PCON perform better than ICP
and ECP. When 300000 packets are transmitted, the com-
pletion time of IEACC is 66.63s, and that of DRL-CCP
and PCON are 67.55s and 80.76s. But ICP and ECP take
194.83s and 115.99s, respectively. Therefore, compared with
ICP, IEACC can reduce the completion time by about 65.8%,
which is remarkable. Compared to PCON, IEACC can also
reduce transmission time by 17.5%. As for the average delay,
algorithms present upward trends compared with that of the
stable situation. Among them, DRL-CCP suffers the largest
transmission delay with an average value of 64.8ms compared
with 60.6ms in IEACC. ICP has a minimal delay because
it constantly reduces the window as bandwidth changes ran-
domly. The average transmission delay of PCON is 61.5ms,
which is lower than DRL-CCP and higher than other algo-
rithms. The packet loss rate increases distinctly compared with
the stable situation, and algorithms also show significant dif-
ferences. Specifically, the maximal packet loss rate increases
from 0.2% to 5.9%, where ECP and DRL-CCP have relatively
larger increases. Because ECP utilizes a predefined interest
PIT length threshold to detect congestion, it is too stiff to
control transmission rate reasonably in a dynamic scenario
and thus results in many packet losses. PCON that marks data
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Fig. 8. Transmission performance of different algorithms in dynamic bandwidth environment.

Fig. 9. Transmission performance of different algorithms in varying delay environment.

packets according to queue delay performs well in dynamic
bandwidth environment, which has a low packet loss rate.

Varying delay: In this scenario, we vary the transmis-
sion delay stepwise to show the performance of algorithms.
Specifically, we start to change transmission delay after run-
ning the algorithm for 30s. Then, we increase the delay at
the transmission bottleneck by 1ms every 0.5s until it changes
from original 10ms to 30ms, and then remains unchanged.

In Fig. 9, we present the corresponding results. We can
see that IEACC and PCON perform very well, which are far
better than DRL-CCP when transmission time exceeds 30s.
Specifically, when 250000 packets are transmitted, the com-
pletion time of IEACC and PCON are 46.87s and 59.24s,
while DRL-CCP, ICP, and ECP take 119.19s, 76.68s, and
129,36s, respectively. IEACC utilizes data packet queue length
for congestion detection and explicitly conveys the accurate
congestion information to DRL model for rate adjustment.
However, DRL-CCP utilizes RTT as congestion signal, and
it thus suffers misadjustment of congestion and performs ter-
rible in the delay varying scenario. PCON detects congestion
by observing the queuing delay of data packets at intermediate
routers, which can still make accurate congestion judgments
in scenarios where the delay changes, so it performs well.
Packet loss rate is shown in Fig. 9(b). We can observe that
before starting the delay variation, all the algorithms has a low
packet loss rate. After 30 seconds, when transmission delay
changes with time, the packet loss rate of DRL-CCP and ECP
increases significantly, while IEACC and PCON still perform

well for accurate congestion detection. Specifically, compared
with performance in a stable network, the maximum packet
loss rate in the varying transmission delay scenario increases
from 0.2% to 10.2%. The packet loss rate of different algo-
rithms also varies significantly, and the proposed IEACC still
performs the best.

There are small differences in transmission delay
performance of these algorithms, where they all suffer
a wide variation because of varying delay. Compared with
other algorithms that empty data queue due to misjudgment,
IEACC and PCON have a slightly higher average latency.

To sum up, in the simple linear topology, IEACC performs
superb transmission rate control through the DDPG model in
both stable and dynamic situations. Besides, it also presents
acceptable transmission delay and remarkable transmission
reliability with a lower packet loss rate. Compared with
IEACC, DRL-CCP presents terrible data transmission rate,
suffers from high transmission delay and non-negligible packet
loss in the delay varying scenario. Furthermore, compared
with methods using DRL, traditional schemes such as ICP
and ECP suffer excessive window reduction for using a lim-
ited predefined window adjustment method. They usually have
poor performance in dynamic bandwidth and varying delay
scenarios. However, PCON perform prominently in dynamic
networks because of explicit congestion detection methods.
However, as a heuristic algorithm that can only implement
discrete window adjustment strategies, it still has gaps when
compared with IEACC.
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Fig. 10. Transmission performance of different algorithms in complex scenario.

C. Complex Scenario

In this part, we present the performance of our algorithm
in a more complex “net” scenario as shown in Fig. 5(b),
where the Edge router has three interfaces, namely Interface0
to Interface2 from top to bottom, connecting to five content
produces. The content producers CP2 and CP4 can respond to
a part of requests without going to CP3. For IEACC, we main-
tain a single window at consumer for data requests to multiple
produces and implement a DDPG model at edge for three
interfaces at the edge router. For other algorithms, we maintain
a separate window for each producer, that is, C1 independently
maintains three windows for requests to CP1,CP5 and that to
CP2/CP3/CP4. Therefore, IEACC will perform more signif-
icantly if other algorithms maintain a single window for all
content producers as IEACC. As we already showed the great
performance of IEACC in the dynamic environment above, we
only consider a stable situation in this scenario. Besides, in this
part, we present the performance of each algorithm when the
response ratio of different CPs changes. Specifically, we vary
the content stored in CP2 and CP4 to change the data reply
proportion from different CPs.

In Fig. 10, we show the performance of each algorithm
through completion time, packet loss, and average transmis-
sion delay when data respond ratio from CP3 to CP2/CP4 is
‘8:2’. From Fig. 10(a), we can observe that IEACC utilizes
smaller time than the other algorithms including DRL-CCP,
which performs as well as IEACC in the linear environment.
Taking the data transmission of 150000 packets as an exam-
ple, the completion time of IEACC and DRL-CCP is 15.9s
and 18.94s, respectively, and that of ECP and ICP is 20.15s
and 31.93s, respectively. Specifically, compared with DRL-
CCP and ICP, IEACC can reduce the completion time by
19.2% and 100.82%. IEACC has a higher data transmission
rate mainly because it can obtain more accurate congestion
information and adjust the interest rates accordingly to avoid
congestion and also pursue higher network utility. However,
other algorithms treat data from different congestion levels the
same, and thus causes a lower data transmission rate. It needs
to note that the performance improvement of IEACC will be
more significant if other algorithms maintain a single window
at the consumer.

In Fig. 10(b), we also record the packet loss rate in
transmission and provide a comparison among different

algorithms to verify the transmission reliability of IEACC. We
can observe that ICP has a high packet loss at the beginning
of simulation because of bandwidth probe at slow-start phase.
ECP and DRL-CCP detect congestion by PIT interest length
and RTTs, which are easy to make erroneous judgments in a
complex scenario that has different types of data. Thus, they
have a high loss rate because of error congestion estimation
for not distinguishing data with different congestion degrees.

In Fig. 10(c), we compare the average transmission delay
of these algorithms, as there are three consumers in other
algorithm, we only present the results of Interface1. Among
them, IEACC has a relatively higher value, which is 60.9ms,
while the others are about 60.03ms. Thus, IEACC increases the
transmission delay by about 0.87ms. Indeed, IEACC suffers
a little higher delay when facing two different types of data.
However, this transmission cost is negligible when it compares
to the throughput improvement. We can also observe that all
of these algorithms have outliers at 40ms, which is caused by
content from intermediate routers that can respond to requests
before reaching content producers. Thus, it also proves that
NDN with the capability of storing content at intermediate
routers has a great advantage in reducing transmission delay
compared with TCP/IP networks.

From above analysis, we observe that IEACC that classifies
data with their congestion degree and treats them differently
can better adapt to the NDN scenarios with multi-source
characteristics. In the following, we test different ratio of
data distribution to further show the superiority of IEACC.
As is shown in Fig. 11, we vary the interest requests to
CP3 and CP2/CP4 from ‘10:0’ to ‘6:4’ and show the aver-
age transmission rate and delay of IEACC and DRL-CCP,
respectively.

From Fig. 11(a) we can observe that the data transmis-
sion rate of IEACC increases as the ratio responded at the
intermediate router grows. Specifically, when all the data are
from the content repository, the transmission rate of IEACC is
79.21Mbps, which increases to 94.41Mbps when the ratio is
‘7:3’. The rate grows to 101.74Mbps when the ratio is ‘6:4’,
which improves the transmission rate by 28.44% compared
with the baseline (10:0). Besides, it has a transmission rate
improvement of up to 54.94% compared with DRL-CCP when
the ratio is ‘6:4’. This improvement is mainly because of fine
congestion detection and control, where it divides all of the
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Fig. 11. Transmission performance with different data distribution ratio.

coming data into categories and treats them differently. Thus,
when there is no congestion, IEACC may grow rate more
aggressively by considering the proportion of data that does
not need to go through the bottleneck to obtain data. When
the model detects congestion, it decreases rate more reasonably
rather than simply reducing rate by half and avoids excessive
traffic reduction of the non-congested path.

Compared with IEACC with data classification, DRL-CCP
performs worse when the ratio increases. The transmis-
sion rate of DRL-CCP increase from 78.64Mbps at baseline
to 81.85Mbps when the ratio is ‘9:1’. However, as the
ratio further increases, the data transmission rate decreases.
More specifically, its throughput decreases to 68.74Mbps and
65.67Mbps at the ratio of ‘7:3’ and ‘6:4’, respectively. That
is, DRL-CCP decreases the transmission rate by about 16.49%
where data responded at intermediate routers occupies sixty
percent of all data. The main reason for a transmission rate
decrease is that DRL-CCP treats each data the same and
utilizes RTT for congestion signal leading to misjudgement
on congestion. When a small part of data from intermediate
routers with a smaller RTT, DRL-CCP will increase its
window, as the smaller RTT is a signal of good path con-
dition. However, when a large proportion of data comes from
intermediate routers, DRL-CCP will compute a reasonable
window suitable to the smaller RTT for congestion control.
Thus, when data from content producers with a higher RTT,
it will decrease the window despite the fact that there might
be no congestion.

In Fig. 11(b), we show average delay in this scenario. In the
baseline where the ratio is ‘10:0’, IEACC has a lower trans-
mission delay than DRL-CCP, which reduces by 3.5s. When

Fig. 12. The topology of fairness testing.

the ratio is less than ‘8:2’, the transmission delay of IEACC
increases with the proportion of data answered at intermediate
routers, which is slightly larger than DRL-CCP in the sce-
nario of ‘8:2’. When the ratio continues to rise, the packets
from intermediate routers that have less transmission delay
also grows, so both IEACC and DRL-CCP have lower delays.
On average, DRL-CCP has a slightly smaller transmission
delay than IEACC when the ratio increases. However, it is not
because of the advantages of great congestion control. It is
mainly because the unreasonable window adjustment leads to
fewer packets transmitted along the path, which decreases the
transmission queue, resulting in decreased transmission delay.

We can summarize that IEACC treats data differently
according to the congestion information monitored by the PCD
module, which is suitable for the multi-source characteristic
of NDN. It can not only adjust the interest rate to avoid con-
gestion at the bottleneck but also maximize network utility
by considering that some interests may be responded to at
intermediate routers without going through congestion paths.
Compared with the DRL-CCP scheme that also uses DRL,
IEACC not only improves data transmission rate remarkably
but also maintains good transmission reliability with a smaller
packet loss. As for the performance of transmission delay,
there is not much difference.

D. Fairness

In this part, we show the performance of IEACC in fair-
ness. The topology we used is as shown in Fig. 12, where we
connect two consumers to the edge router. We dynamically
control consumers to stat or complete transmission to show the
performance of FRA in dynamic environments. Specifically,
consumer C1 transmits at the beginning of the transmission
simulation, and consumer C2 joins the transmission at 20s
later. They end their transmission at 40s and 60s, respectively.
In order to show the difference between popular content and
unpopular content, consumer C1 requests popular content that
is responded at the CP1, while consumer C2 requests unpop-
ular content responded at the CP2 . The transmission delay of
popular and unpopular content is 40ms and 60ms, respectively.

In Fig. 13, we show packet transmission rate of each con-
sumer. IEACC performs the best among the five considered
algorithms, while the other four algorithms present various
degrees of unfairness. ICP, ECP, and PCON have similar
performance. When the new consumer joins, they suffer great
transmission fluctuation, and the transmission rate of consumer
C1 is significantly higher than that of consumer C2 because the
window of consumer C1 with shorter transmission delay grows
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Fig. 13. Fairness performance of different algorithms.

faster. DRL-CCP changes transmission rate smoothly when
a new consumer joins, which can maximize network utiliza-
tion as IEACC. However, its popular content obtains a higher
transmission rate, which is unfair. IEACC can achieve fairness
perfectly, even when consumers have different transmission
delays by adjusting consumers’ transmission rate in time.
When a consumer completes the transmission, the remaining
consumer can increase its rate to maximize the network uti-
lization. Besides, consumers can reach the rate allocated by
the edge router in a short time because they double their rate
at the beginning of a transmission.

VI. CONCLUSION

In this paper, we proposed a congestion control scheme,
named IEACC, for the NDN network. It consists of PCD,
IRA, and FRA to ensure accurate congestion detection, obtain
a reasonable transmission rate, and maintain fairness, respec-
tively. Specifically, PCD enables intermediate routers to attach
congestion status to passing data packets and convey them
to consumers. IRA provides reasonable transmission rates
through the DRL agent, for which the edge classifies data
packets into different congestion degrees by the lightweight
clustering algorithm to provide suitable inputs. FRA equi-
tably distributes the resources estimated by the DRL agent to
consumers with transmission needs to maintain fairness. Our
experiments show that IEACC performs better than traditional
algorithms, such as ICP and ECP, in terms of transmission rate
in linear and complex topologies. At the same time, IEACC

considering the multi-source characteristic of NDN has a trans-
mission rate improvement of up to 34.84% compared with
DRL-CCP.
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