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Abstract—With the development of datacenter networks
(DCNs) towards high bandwidth and low latency, the demands
of high-level datacenter applications are heading towards
high performance and high reliability, which makes traffic
congestion one of the most notable problems in DCNs and
brings new challenges to transport protocols. Proactive transport
protocols are gaining prevalence due to their ability to
provide accurate feedback and precise end-to-end control, while
multipath transmission is having a broader application space
in the multi-path topology of large-scale DCNs. However, these
advanced transport protocols aim to improve their performance
by addressing some specific congestion problems, but fail to
handle multiple congestion problems caused by incast, high
workload and load imbalance. Their performance in terms of
flow completion time (FCT), delay, robustness, and balance still
has room for further improvement. In this paper, we propose
ProactMP, a novel proactive multipath transport protocol for
further improvement of datacenter communications. ProactMP
utilizes the rich resources of parallel paths in modern DCN
and spreads the load across available network paths to improve
network efficiency. ProactMP deploys a credit-based bandwidth
allocation strategy to achieve low delay and zero packet loss, and
overcommits receiver downlinks to ensure high link utilization.
We have implemented ProactMP in the Linux system. Our
testbed experiments show that ProactMP outperforms the TCP
variants, MPTCP variants and a leading proactive transport
protocol in FCT, link utilization, fairness and latency.

Index Terms—Datacenter network, proactive transport,
multipath transmission, transport protocol, multipath TCP.

I. INTRODUCTION

Datacenter has become an indispensable infrastructure in
modern networks. Currently, the scale and link speed of
datacenter networks (DCNs) are expanding continuously [1],
with Internet traffic experiencing exponential growth.
High-performance datacenters contain a large scale of nodes
up to 10k∼100k. With the availability of next-generation
100Gbps spine blocks, advanced aggregation blocks can
support 51.2Tbps of burst bandwidth while achieving
ultra-low latency that reaches microsecond (µs) level [2].
These performance metrics of high bandwidth and low
latency, along with the traffic characteristics in DCNs, create
new operating conditions for network transport protocols, but
also introduce new challenges and some unique problems.

Due to the deployment of high-speed, large-scale and
low-latency DCNs, traffic congestion has become one of the

R. Zhuang, J. Han, K. Xue, J. Li, Q. Sun and J. Lu are with the School
of Cyber Science and Technology, University of Science and Technology of
China, Hefei, Anhui 230027, China.

Corresponding Author: J. Han (e-mail: jphan@ustc.edu.cn), K. Xue (e-mail:
kpxue@ustc.edu.cn).

COERS1 COERS2

AGGS1 AGGS2

TORS1 TORS2

S1 S2 S3 C1 C2

TORS3 TORS4

AGGS3 AGGS4

... ... ... ...

Congestion Point 1:

ToR uplink port

Cause:

Fan-in

Congestion Point 2:

Spine downlink port

Cause:

Path collapse

Congestion Point 3:

ToR downlink port

Cause:

Fan-out, traffic incast

... ... ... ...

Location:

ToR uplink port

Cause:

Fan-in

Location:

Spine downlink port

Cause:

Path collapse, congestion

Location:

ToR downlink port

Cause:

Fan-out

21

3

Fig. 1. Three common congestion problems in DCNs and their causes.

most important problems in DCNs, which seriously affects
the transmission performance and brings more challenges to
congestion control [3]. There are three common congestion
problems in DCNs, which are illustrated in Fig. 1.

The first and the third congestion problems in Fig. 1 occur
in Top of Rack (ToR) uplink port and ToR downlink port,
respectively, and are mainly caused by traffic incast. Incast
happens when multiple senders send “fan-out” requests to
many workers, which respond simultaneously with “fan-in”
responses, resulting in a drastic decrease in throughput and
gross under-utilization of link capacity in many-to-one and
many-to-many communication modes [4]. Meanwhile, the
shallow switch buffer at the receiver end is more prone to
congestion and overflow when handling incast traffic [5],
which greatly increases the queuing delay and makes it more
challenging to meet the requirement of ultra-low delay [6].
The second congestion problem exists in spine downlink port.
Due to the growing need for network bandwidth to handle
cloud applications, mixed media downloads and uploads, etc.,
spine blocks have become the dominant bottleneck that limits
the compute power and server capacity of DCNs with Clos
topologies [7], insufficient bandwidth or collapse of spine
blocks will lead to waste of expensive server capacity and
system imbalance [2]. However, imbalances still persist in
datacenter fabrics. As observed in [8], some ToR switch
ports and fabric switches are busy while their equivalents are
relatively idle. Therefore, distributing traffic to different spine
blocks to reduce imbalance and avoid congestion is of great
significance for improving the effective capacity of network
and ensuring user experience.

Numerous proposals have been proposed in recent years to
overcome the above problems and obtain better transmission
performance in DCNs, including new architectural designs [2],
improved TCP variants [6], [9], [10], and various new
protocols [11]–[14], among which emerging proactive
transport protocols driven by the receiver get increasing
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attention from academia due to their unique designs and
advantages. In proactive transport, link capacity is allocated
proactively to each active sender as credits, either by receivers
or a centralized controller, which ensures that senders can
send packets at the optimal shared link rate to ensure high
bandwidth utilization, low queuing delay, and zero packet
loss. Therefore, existing proactive transport protocols are
efficient in solving the first and the third congestion problems.
However, as existing proactive transport protocols are limited
to single-path transmission, their gains in efficiency and
reliability are still limited, and cannot effectively solve the
second congestion problem. When a certain spine block is
congested or suffers path collapse, they cannot seamlessly
utilize the bandwidth on the equivalent blocks with good
link states, resulting in throughput loss. Therefore, a practical
solution that simultaneously takes delay, incast, robustness and
balance into account is still in urgent need.

Multipath transmission enables a connection to utilize
multiple paths in parallel, which brings benefits in load
balancing, resource utilization, and connection resilience.
Therefore, multipath transmission has great potential in
solving the second congestion problem. As the topology
of DCNs heading towards multi-path topologies [15]–[18],
multipath capabilities have a broader application space,
creating new conditions for further improvement of the
transmission performance in DCNs. However, the performance
of existing multipath transport protocols, represented by
MultiPath TCP (MPTCP) [14], is unsatisfactory in DCNs.

First, the congestion control of MPTCP mainly responds to
feedback information, such as network states and variations.
However, the delay of feedback can seriously reduce the
effectiveness of control strategies in DCNs with low latency
and shallow buffer, and easily lead to buffer overflow and
increased Round-Trip Time (RTT). Especially when incast
occurs, concurrent data from multiple servers can quickly fill
up the switch buffer, resulting in heavy loss of packets and
timeouts. Therefore, existing multipath transmission does not
effectively address the first and third congestion problems.
Second, although MPTCP can achieve higher aggregate
bandwidth and provide stable transmission for large flows,
its gains for small flows to occupy bandwidth and complete
quickly are very limited, making it difficult to handle the
complex traffic generated by modern datacenter applications.

In conclusion, practical transmission solutions that can
effectively address the three common congestion problems
remain absent in modern datacenters. From a multipath
perspective, the overall performance of proactive transport
protocols in DCNs still has room for further improvement,
that is, utilizing multipath capabilities to improve bandwidth
utilization and reliability. And the multipath transmission in
DCNs can also achieve more accurate congestion control by
referring to the control methods of proactive transports.

Therefore, in this paper, we combine multipath transmission
with proactive transport to effectively solve the three
congestion problems shown in Fig. 1. We design ProactMP,
a proactive multipath transport protocol for datacenters.
ProactMP provides connectionless transmission control
to achieve flexible and low-cost multipath management.

ProactMP seamlessly utilizes the rich bandwidth resources
of the multi-path topology in datacenters, and performs
load balancing and congestion migration between multiple
paths to improve overall performance. It also employs
a receiver-driven credit allocation method to control the
amount of in-flight data within an appropriate range, thereby
addressing the three common congestion problems in DCN
transport. To achieve the above-mentioned benefits, we
design the important operations and functions of ProactMP,
including connection initialization, subflow establishment,
packet scheduling and reassembling, coupled congestion
control with overcommitment, and loss recovery, to ensure
efficient and correct data transmission through multiple
paths. We implement ProactMP in the Linux system, and
demonstrate its effectiveness compared to both existing
single-path and multipath protocols. The experiments show
that ProactMP achieves higher network utilization to accelerate
the completion time of different-sized flows. Moreover, it
reduces queuing delay and tail RTT to diminish the impact
of incast on transmission performance.

The main contributions of this paper are as follows:
• We propose a proactive multipath transport protocol

named ProactMP. ProactMP deploys packet scheduling,
coupled congestion control and loss recovery to aggregate
bandwidth from different paths and support data
transmission using parallel subflows.

• We design a receiver-driven control loop for ProactMP to
perform proactive congestion control. This loop enables
cooperation between the sender and receiver to allocate
network bandwidth to reduce queuing delay and buffer
overflow, and uses an overcommitment-based credit
allocation method to ensure high bandwidth utilization.

• We conduct a comprehensive evaluation of ProactMP
in our datacenter testbed. Experimental results show
that, compared with typical reactive transport protocols,
ProactMP improves the efficiency in completing small
flows and large flows by 17%∼175%. It reduces tail
RTT by 71%∼77% during incast events and also exhibits
better adaptability to complex and ever-changing network
traffic in practical applications. Furthermore, ProactMP
enhances the ability to utilize bandwidth and balance load
by utilizing multipath capabilities.

The rest of this paper is organized as follows: We
introduce the limitations of connection-oriented protocols in
DCNs and some related works in Section II. The detailed
design of ProactMP is proposed in Section III, including the
basic architecture, operations and functions of ProactMP. To
validate the effectiveness of ProactMP, we test ProactMP and
existing protocols in our self-constructed datacenter testbed,
and present the results and analysis in Section IV. At last,
conclusions and plans for future work are drawn in Section V.

II. BACKGROUND AND RELATED WORK

Transmission Control Protocol (TCP) is one of the most
entrenched standards of the last forty years. Although TCP
has a long and successful history in the Internet and is the
protocol of choice for most datacenter applications, it faces
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challenges in modern datacenter networks. TCP and MPTCP
introduce overheads at many levels [19], thereby limiting
the application-level performance. The datacenter environment
contains millions of cores and thousands of machines
that interact on microsecond timescales, which brings
unprecedented challenges to reactive transport protocols. In
this section, we analyze the limitations and problems of
reactive transport protocols, represented by TCP, MPTCP, and
their enhancements, and then introduce the emerging proactive
transport protocols aiming to address these problems.

A. Limitations of TCP and MPTCP in Datacenter Networks

TCP is a connection-oriented protocol, which establishes
and uses a connection to ensure proper data transmission.
TCP provides reliable stream delivery services and is widely
used in Internet communications. However, this reliability
comes at the cost of maintaining a long-running state between
the client-server pair during the communication, resulting
in undesirable overhead for applications in datacenters that
could have hundreds or thousands of connections. Similarly,
as an extension of TCP, MPTCP faces the same problem
as TCP, with even higher space and time overheads due
to the necessity of maintaining multiple subflows. As a
response to these challenges, researches on connectionless
protocols are becoming more practical and valuable. Homa’s
Linux implementation [19] provides a message-based API and
implements Remote Procedure Calls (RPCs) to eliminate the
overheads associated with connections.

In addition, the performance of TCP and MPTCP in DCNs
is compromised for several reasons. First, TCP and MPTCP’s
congestion controls (CCs) mainly react to feedback, such
as network states and variations. However, in DCNs, the
feedback delay can significantly reduce the effectiveness of
control strategies, leading to queue overflow and consequent
RTT increase. Some proposals adopt cautious adjustment
methods to converge slowly and accurately to the appropriate
sending rate, but at the cost of increasing the FCTs of large
flows and reducing the ability of small flows to compete
for buffers [20]. Second, there are a wide variety of flows
in DCNs, with different sizes and different requirements. At
present, applications that generate small flows predominate in
real production datacenters [20]. Although Raiciu et al. [21]
proved that using MPTCP in datacenters provides better
performance and robustness than single-path TCP, such gains
are relatively constrained and insufficient to support the
complex types of traffic generated by modern datacenter
applications. MPTCP ensures stable transmission for large
flows by utilizing the aggregate bandwidth and alleviate the
uneven distribution of network traffics. But unfortunately, it
has limited effect on small flows to occupy bandwidth or
complete quickly. This is because MPTCP’s first subflow has
to perform slow start, and its second subflow takes several
RTTs from establishment to data transmission, while small
flows get no gain in this process but a longer base delay caused
by handshake and convergence.

B. Reactive and Proactive Transport Protocols

The common transport control schemes in DCNs can be
divided into two types: sender-driven control schemes based on
forward detection, and receiver-driven control schemes based
on reverse detection.

Currently, sender-driven control schemes are the mainstream
in DCNs. Transport protocols deployed with this kind of
scheme are reactive transport protocols. TCP, MPTCP
and their enhancements (e.g., DCTCP [6], TIMELY [22],
HPCC [9], PowerTCP [10] and DCQCN [23]) are typical
representatives. Their general method is to first build a
model through theoretical analysis, then heuristically adjust the
sending rate or congestion window (cwnd) at the sender based
on the network feedback (e.g., delay, packet loss, queue length,
Explicit Congestion Notification (ECN), and variations). For
example, DCTCP uses ECN to mark packets after the buffer
occupancy of switches exceeds a certain threshold, and adjusts
cwnd at the sender according to the proportion of marked
packets returned. However, due to the fact that reactive
transport protocols can only react after receiving feedback,
and feedback typically requires one RTT to reach the sender,
reactive transport protocols have limitations in DCNs. In
DCNs characterized by high bandwidth and traffic bursts, the
delay of one RTT can reduce the effectiveness of feedback,
making it difficult for sender-driven control schemes to adjust
cwnd based on current network states, and inevitably lead
to buffer backlog and congestion, as well as unstable queue
length and throughput loss.

In order to achieve low latency, low buffer occupancy, and
high network utilization to meet the increasing performance
requirements, proactive transport protocols that adopt
receiver-driven control schemes are booming in recent years.
The basic control principle of proactive transport protocols
is to explicitly allocate the bandwidth of bottleneck links
between active flows to prevent congestion proactively.
Typical proactive transport protocols adopt receiver-driven
control schemes, which regard bandwidth as credits, allowing
receivers to control the sending rate of credits according to
the acceptance ability of bottleneck links. Meanwhile, senders
can send a specified number of bytes only after receiving
credits, thereby preventing packets from accumulating in the
network and eliminating congestion proactively. For example,
Fastpass [24] implements a packet scheduling strategy with
global sense. ExpressPass [5] and pHost [11] explicitly
schedule the arrival of data packets from different senders by
controlling credits at the receiver. NDP [12] and Homa [13]
further improve the above methods by trimming packets
and using network priorities, respectively. Bolt [3] utilizes
programmable data planes to provide precise congestion
signals, and proactively generates granular feedback to reduce
the control loop delay to sub-RTT levels. Hostping [25]
automatically identifies the traffic source on overloaded links
by monitoring and diagnosing intra-host bottlenecks, thereby
improving network performance. Protego [26] implements
a credit-based admission control strategy that regulates the
rate of incoming requests to a server based on marginal
improvements in throughput.
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III. DESIGN OF PROACTIVE MULTIPATH TRANSPORT
PROTOCOL

As a proactive multipath transport protocol, ProactMP
aims to provide higher completion efficiency, higher effective
throughput, lower delay, and better robustness for transport
protocols in datacenters by utilizing proactive capabilities
and multipath capabilities. In this section, we introduce the
architectural, operational, and functional designs of ProactMP.

A. ProactMP: An Overview

Operates at the transport layer, ProactMP consists of the
proactive transport component and the multipath component,
where the proactive transport component performs the
functions of endpoint identification and message sending,
and the multipath component consists of a set of additional
functions over the proactive transport component to manage
multiple subflows with proactive transport below it.

To realize connectionless, ProactMP implements the
fundamental data transport through RPC, which uses a
request-response message-passing mechanism to accomplish
client-server interaction. Except for the Request message sent
from a client to a server and the returned Response message
that each RPC consists of, ProactMP mainly uses three packet
types to facilitate the operations of the sender and the receiver.
Table I explains the three packet types.

TABLE I
PACKET TYPES USED BY PROACTMP

Packet type Explanation
GRANT Sent from receiver (client) to sender (server). Contains

the total available credits for the sender.
DATA Sent from sender to receiver. Contains a certain number

of bytes, as well as an offset and a length to indicate
the range of bytes within a message.

RESEND Sent from receiver to sender. Contains the first range
of missing bytes within a message, and instructs the
sender to retransmit the specified bytes.

B. Important Operations in ProactMP

Connection initialization and subflow establishment are
the two important operations in ProactMP. Connection
initialization refers to establishing a connection between host
pairs to support subsequent data transmission along with
multiple paths. Subflow establishment refers to selecting
appropriate paths among multiple paths to improve the
efficiency and reliability of data transmission.

1) Initiating a ProactMP Connection: Each ProactMP
connection initially starts with the first subflow and then
adds additional subflows. The Pro Capable option will
be carried by the Request message, first DATA packet
and returned GRANT packet, so as to verify whether the
remote host supports ProactMP and wants to select multipath
working mode. The detailed process of initiating a ProactMP
connection is illustrated in Fig. 2(a). It should be noted
that the meaning of “connection” mentioned in this paper
differs from that of TCP or MPTCP. ProactMP’s connection
is essentially a cluster of identifiers (IDs), which is used to
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Fig. 2. Detailed process and information of initiating a ProactMP connection
and starting a new subflow.

indicate which ProactMP subflows are included in a ProactMP
connection. Each subflow has a unique ID and is associated
with the message ID to differentiate between different requests.
ProactMP only maintains the states of active subflows, and
subflows belonging to the same connection are mutually
independent except for some coupled controls.

After both of the communicating parties successfully
confirm Pro Capable, ProactMP establishes the first subflow
and enters ESTABLISHED state. Otherwise, if the remote
host does not support multipath transmission or does not
want to select multipath working mode, ProactMP returns to
single-path proactive transport. It is worth mentioning that the
control functions of ProactMP are the same for connections
with only one subflow and connections with multiple subflows.

2) Starting a New Subflow: Subsequent subflows can
be started and associated with a ProactMP connection
after its initial subflow is established. A path manager
provides functionalities for establishing, adding, and removing
subflows. To manage paths, each ProactMP endpoint maintains
a list of IP addresses, consisting of the IP addresses of
each interface, and establishes new subflows between different
source and destination IP address pairs based on the lists of
source and destination hosts. As shown in Fig. 2(b), during
the establishment of new subflows, the Pro Join option will
be carried by the Request message, Response message, and
GRANT packet, which allows the communicating parties to
confirm the proper establishment of a new subflow.

When s host recognizes that a new subflow is established,
it confirms and stores the ID of this subflow and the ID of the
connection that advertises this subflow. ProactMP stores the
IDs of subflows, and associates them with connection IDs to
ensure that all advertised subflows are knowable and available
to the respective connection.

C. Functions Implemented in ProactMP

In order to manage multiple subflows and ensure successful
data transmission, ProactMP possesses the functions of
packet scheduling, data transmission and reassembling,
congestion control, and loss recovery. These functions work
synergistically to achieve optimal transmission performance.
Packet scheduling and data reassembling are basic to multipath
transmission, they ensure that packets can be balanced across
multiple paths and reassembled into complete messages in
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sequence. Congestion control plays a crucial role in avoiding
packet loss and network congestion, thereby enhancing both
fairness and efficiency. Loss recovery serves as the last
remedy to ensure data correctness and integrity. The functional
decomposition of ProactMP as well as the transmission
process of data packets are illustrated in Fig. 3.

1) Packet Scheduling of ProactMP: Packet scheduling is
one of the key methods to improve the throughput of parallel
multipath transmission, especially in heterogeneous network
environments. The packet scheduler receives data from
applications and sends them to each subflow after segmenting
and processing. Considering that ProactMP is mainly deployed
in datacenter networks, and adopts a credit-based control
strategy to effectively balance load and avoid buffer overflow,
we expect the quality difference between multiple paths to
be very small in ProactMP. Moreover, given that ProactMP is
connectionless and does not require ordered delivery of the
data, the major problem affecting the performance of parallel
multipath transmission, i.e., Head-of-Line (HoL) blocking, can
be negligible in ProactMP.

Therefore, we adopt a simplified design in ProactMP’s
scheduler for high bandwidth utilization and efficiency in the
common case. The scheduler of ProactMP first sends data
on subflows with the lowest RTT until the window with the
size of OWDbytes is filled, and then starts sending data
on subflows with the second lowest RTT, and so on. Packet
scheduling takes effect only for established subflows. If a
ProactMP connection has only one subflow, the scheduler will
keep sending data to this subflow until additional subflows are
established. The data amount of OWDbytes is calculated as:

OWDbytes = OWDbase ·Bdl, (1)

where OWDbase is the base one-way delay (OWD) of the
client-server pair and Bdl is the bandwidth of the ToR
downlink. OWDbytes is used to ensure that senders transmit
enough bytes to cover the OWD between sender and receiver
without introducing additional delays.

2) Data Transmission and Reassembling of ProactMP:
A sender of ProactMP can transmit all its data through
different subflows in parallel, and the data will be sorted and
reordered at the receiving end. Each DATA packet contains
the information of its offset and length, indicating the range
of bytes within this message. Therefore, ProactMP does not
require ordered delivery of the data, DATA packets can arrive

in any sequence, which effectively avoids the negative impact
of disorder caused by multipath transmission. ProactMP
performs protocol processing and message reassembly at the
receiver. The message data received from each subflow will be
uniformly stored in a list and sorted according to the offsets
carried in the packets. The receiver’s buffer is limited, if the
pool of unprocessed messages grows too large, ProactMP will
stop receiving data.

3) Coupled Congestion Control of ProactMP: Congestion
control in ProactMP is implemented on both the receiver
and sender sides. A receiver invites senders to transmit all
bytes in the message up to a given offset, and controls the
offset according to its acceptance ability. A sender allocates
the offset to each subflow based on the feedback from all
subflows, and instructs them to send an appropriate number
of bytes. Therefore, as shown in Fig. 3, ProactMP congestion
control consists of two components: the credit allocation
(pCA) component at the receiver, which allocates bandwidth
as credits to incoming flows, and the credit control (pCC)
component at the sender, which controls the data amount sent
by each subflow.

Allocating bandwidth as credits to senders ensures low
queuing delay and high link utilization, but accordingly also
brings the delay of at least one RTT for calculating and
delivering credits. With the rapid growth of DCN link rate, the
bandwidth wasted in the first RTT due to waiting is having a
greater impact on the completion efficiency of DCN flows.
Therefore, data should be sent immediately after the first
arrival rather than waiting for credits or grants [5], [24]. So far,
some existing proactive transport designs (e.g., Homa [13] and
Aeolus [27]) have shown that most flows in DCNs can benefit
from sending data immediately after arrive. They propose to
accelerate small flows by fully utilizing the spare bandwidth
in the first RTT. We adopt this design in ProactMP and divide
ProactMP congestion control into two phases: pre-grant phase
and granted phase.

1⃝ Pre-grant phase: For the initially established subflow of
each ProactMP connection, the sender skips slow start and
enters pre-grant phase directly. It blindly sends OWDbytes
of data (unscheduled bytes) right after receiving a Request
message in the first RTT. Subsequently, the remaining bytes
are defined as scheduled bytes, and are transmitted only in
response to explicit GRANTs from the receiver. Such bursts
in the first RTT guarantee that bandwidth is not wasted due to
waiting for credits, thereby achieving shorter FCTs for small
flows. In most cases, the shared pools of buffers provided by
modern switches in datacenters are sufficient to hold the burst
bytes in the first RTT [19], [28]. And ProactMP limits the
amount of data blindly sent in pre-grant phase to a small range,
which prevents unscheduled bytes from excessive usage of
bandwidth and buffers [19].

2⃝ Granted phase: In the subsequent RTTs, the sender stays
in granted phase and performs coupled congestion control.
Except for the first subflow used to initiate a ProactMP
connection, other subflows do not burst in the first RTT after
startup but wait for authorization before transmitting scheduled
packets. ProactMP does not use explicit acknowledgments. It
allows the Response message to serve as an acknowledgment
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for the request, and the GRANT packet to serve as an
acknowledgment for the data sent from the sender. The
receiver requests the transmission of scheduled bytes by
sending GRANT packets, prompting the sender to release
scheduled bytes upon receiving any GRANT.

ProactMP congestion control in granted phase relies on
the cooperation between sender and receiver. As depicted in
Fig. 3, to effectively support credit control (pCC) at the sender,
ProactMP first performs essential credit allocation (pCA) at the
receiver. On the one hand, the pCA component at the receiver
reasonably allocates credits according to its acceptance ability,
aiming to ensure that the bandwidth of ToR downlink is fully
utilized with no queue buildup, thus laying the foundation
for congestion control at the sender. On the other hand, the
primary role of the pCC component at the sender is to allocate
the total credits contained in a received GRANT packet to each
subflow, so as to achieve parallel transmission and congestion
migration between multiple subflows, thereby enhancing the
effective throughput and robustness of large flow transmission.

With the above thought, pCA and pCC components are
designed to work as follows:

pCA component: Each time the receiver receives data,
it allocates the amount of data that can be sent (i.e.,
the total credits) in the next round according to the
current idle bandwidth, and returns this amount of data,
represented as creditsall, to the sender along with the
GRANT packet. When allocating the total available credits,
the receiver considers connection k as a whole, without
distinguishing specific subflows. The calculation method of
creditsall is given by Algorithm 1, which involves the design
of an overcommitment-based credit allocation method in
ProactMP. A detailed discussion of this method is provided
in Section III-C4.

pCC component: After receiving a GRANT packet, pCC
component at the sender undertakes the task of credit
allocation between subflows. Suppose connection k consists
of n subflows, and transmits data between hosts A and B.
Every subflow i ∈ k has a weight wi (i = 1, 2, . . . , n), which
is initialized to 0 when a subflow is newly established. The
RTT of subflow i is defined as the time interval between the
last data sent and the GRANT packet obtained this time. Upon
receiving a GRANT packet, the sender becomes aware of the
status of each subflow and can identify the specific subflow
to which this GRANT belongs. On each received GRANT
belonging to subflow i, wi is increased by 1. The main role
of pCC is to allocate the total credits to all subflows of a
connection each time the sender receives a GRANT packet.
Suppose the sender receives a GRANT packet at time t,
which contains the total allocated credits creditsall. So for
any subflow r ∈ k, the credits allocated to subflow r is:

Gr
t = creditsall ·

wr

/
RTTr

2∑n
i=1 wi

/
RTTi

2 , (2)

where Gr
t indicates the offset that subflow r is allowed to

send, and it will send Gr
t bytes of data in the next round.

When calculating Gr
t according to Eq. 2, the sender has

received at least one GRANT packet, therefore we have∑n
i=1 wi/RTTi

2 > 0.

Algorithm 1: Credit Allocation Method based on
Overcommitment at the Receiver

1 Upon receiving a Response message / DATA packet
from any sender:

2 begin
3 Tnext ← the time of receiving the response;
4 creditsall ← the allocated credits of the response;
5 // update the remaining quantity of credits
6 creditsrem+ = creditsall;
7 if creditsrem ≥ 0 then
8 // the receiver still has spare credits
9 creditsall = creditsrem + f (Tnext, Tlast);

10 creditsrem− = creditsall;

11 else if 0 > creditsrem ≥ −OWDbytes then
12 // there is no available credit, but has free

bandwidth for overcommitment
13 creditsall = f (Tnext, Tlast);
14 creditsrem− = creditsall;

15 else
16 // stop overcommitting
17 Withholding credits until

creditsrem ≥ −OWDbytes;

18 Tlast = Tnext;
19 return creditsall

4) Overcommitment of ProactMP: A receiver of ProactMP
guides active flows to transmit the appropriate amount of data
by allocating credits, and can stop the transmission of a flow
by withholding credits. Suppose we keep all incoming flows
active at all times, just like TCP and most other existing
protocols. In that case, ProactMP is likely to suffer from higher
buffer occupancy, as well as higher latency from the credit
allocation that loops frequently between flows, both of which
contribute to high tail latency.

In some proactive transport designs (e.g., pHost [11]),
each receiver can only allow one active flow at a time. But
simulation results [13] show that the network utilization would
be low under high load if only one active flow is allowed. In
addition, due to the delay of credits transmission, a receiver
is unable to authorize other incoming flows while waiting
for the response from a particular sender. If the sender does
not respond to the authorized credits or does not respond
immediately, the ToR downlink has to remain idle even if it
can be used by other senders.

Therefore, considering the fact that a receiver has no idea
whether one particular sender will respond to credits, and
suffers from low bandwidth utilization due to waiting for
responses from the sender, we use an overcommitment-based
credit allocation method in ProactMP to ensure full utilization
of the ToR downlink, whose pseudo-code is given by
Algorithm 1.

The receiver conducts credit allocation upon receiving a
Response message / DATA packet from any sender. We define
a function f (Tb, Ta) to calculate the idle credits generated in
the process of waiting for responses. Assume that the receiver

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3399028

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 12,2024 at 17:05:21 UTC from IEEE Xplore.  Restrictions apply. 



7

No Overcommitment

Sender 1 Receiver

Sender Receiver

Request message

First data packet

Credits (allocated)

Response data

total credits = OWDbytes

credits (allocated) = OWDbytes ,
credits (remaining) = 0

credits (remaining) = 0 + OWDbytes ,
credits (allocated) = OWDbytes

credits (remaining) = 0 + OWDbytes ,
credits (allocated) = OWDbytes

Sender 2

no credit to allocate Idle bandwidth

credits (remaining) = 0 + OWDbytes ,
credits (allocated) = OWDbytes

Overcommitment

Sender 1 Receiver

total credits = RTTbytes

credits (allocated) = RTTbytes ,  remaining credits = 0

remaining credits = - RTTbytes/2 + RTTbytes = RTTbytes/2 ,
credits (allocated) = RTTbytes/2

remaining credits = 0 + RTTbytes/2 ,  credits (allocated) = RTTbytes/2

Sender 2

overcommitment
credits (allocated) = RTTbytes/2 ,  remaining credits = - RTTbytes/2

remaining credits = 0 + RTTbytes/2

remaining credits = 0 + RTTbytes/2 ,  credits (allocated) = RTTbytes/2

remaining credits = 0 + RTTbytes/2 ,  credits (allocated) = RTTbytes/2

Overcommitment

Overcommitment

Sender 1 Receiver

total credits = OWDbytes

credits (allocated) = C1 = OWDbytes ,  credits (remaining) = 0

credits (remaining) = OWDbytes - C2 ,
credits (allocated) = C3 = OWDbytes - C2 + f (T3, T2)

Sender 2

credits (allocated) = C2 = f (T2, T1) ,  credits (remaining) = - C2

credits (remaining) = OWDbytes - C5 - C6 + C5 = OWDbytes - C6

credits (remaining) = OWDbytes - C2 - C3 + C2 ,
credits (allocated) = C4 = OWDbytes - C3 + f (T4, T3)

T1

T2

T3

T4

T5

T6

T7

…… 
credits (remaining) = OWDbytes - C4 - C5 + C4 ,
credits (allocated) = C6 = OWDbytes - C5 + f (T6, T5)

T1

T2

Tm

…
…

 

OWD

ReceiverSenders

Credits (allocated)

Response data

Overcommitment

T1

T2

Tm

…
…

 

OWD

ReceiverSenders

Tm-1

(a) Overcommitment within one OWD

No Overcommitment

Sender 1 Receiver

Sender Receiver

Request message

First data packet

Credits (allocated)

Response data

total credits = OWDbytes

credits (allocated) = OWDbytes ,
credits (remaining) = 0

credits (remaining) = 0 + OWDbytes ,
credits (allocated) = OWDbytes

credits (remaining) = 0 + OWDbytes ,
credits (allocated) = OWDbytes

Sender 2

no credit to allocate Idle bandwidth

credits (remaining) = 0 + OWDbytes ,
credits (allocated) = OWDbytes

Overcommitment

Sender 1 Receiver

total credits = RTTbytes

credits (allocated) = RTTbytes ,  remaining credits = 0

remaining credits = - RTTbytes/2 + RTTbytes = RTTbytes/2 ,
credits (allocated) = RTTbytes/2

remaining credits = 0 + RTTbytes/2 ,  credits (allocated) = RTTbytes/2

Sender 2

overcommitment
credits (allocated) = RTTbytes/2 ,  remaining credits = - RTTbytes/2

remaining credits = 0 + RTTbytes/2

remaining credits = 0 + RTTbytes/2 ,  credits (allocated) = RTTbytes/2

remaining credits = 0 + RTTbytes/2 ,  credits (allocated) = RTTbytes/2

Overcommitment

Overcommitment

Sender 1 Receiver

total credits = OWDbytes

credits (allocated) = C1 = OWDbytes ,  credits (remaining) = 0

credits (remaining) = OWDbytes - C2 ,
credits (allocated) = C3 = OWDbytes - C2 + f (T3, T2)

Sender 2

credits (allocated) = C2 = f (T2, T1) ,  credits (remaining) = - C2

credits (remaining) = OWDbytes - C5 - C6 + C5 = OWDbytes - C6

credits (remaining) = OWDbytes - C2 - C3 + C2 ,
credits (allocated) = C4 = OWDbytes - C3 + f (T4, T3)

T1

T2

T3

T4

T5

T6

T7

…… 
credits (remaining) = OWDbytes - C4 - C5 + C4 ,
credits (allocated) = C6 = OWDbytes - C5 + f (T6, T5)

T1

T2

Tm

…
…

 

OWD

ReceiverSenders

Credits (allocated)

Response data

Overcommitment

T1

T2

Tm

…
…

 

OWD

ReceiverSenders

Tm-1

(b) Overcommitment out of one OWD

Fig. 4. Allocations of credits at a receiver with our overcommitment-based
method given by Algorithm 1.

allocates credits at time Ta and Tb respectively, so the idle
credits generated from Ta to Tb can be calculated as:

f (Tb, Ta) =
min {Tb − Ta, OWDbase}

OWDbase
·OWDbytes. (3)

The receiver needs to overcommit in moderation, otherwise,
excessive overcommitment will consume too much buffer
space in the ToR and result in congestion. We evaluate the
availability of credits based on both the remaining quantity
and allocated quantity of credits. The availability of credits
determines how many credits a receiver can currently advance
to an incoming active flow. Algorithm 1 specifies three
different credit availability levels:

1⃝ The receiver still has spare credits (line 7∼10). It can
use all of the remaining credits and the idle credits generated
in the process of waiting for responses after the last allocation.

2⃝ There are no spare credits (line 11∼14). At this point,
all the available credits reserved by the receiver have been
allocated, while free bandwidth is still available on the ToR
downlink. Therefore, the idle credits generated in the process
of waiting for responses can still be overcommitted to improve
the utilization of ToR downlink.

3⃝ Overcommitting more credits to senders might result in
queue buildup (line 15∼17). New flows can only be authorized
to send data once any sender successfully responds to the
previously allocated credits.

Theoretically, the overcommitment-based credit allocation
method provided by Algorithm 1 can achieve a maximum of
100% utilization of ToR downlink in each RTT.

Assume that within one one-way delay (OWD), a receiver
allocates credits to multiple senders at time T1, T2, · · · ,
Tm(m ≥ 2) respectively, i.e., T1−Tm < 1 ·OWD. As shown
in Fig. 4(a), overcommitment is involved in all the allocations
except for time T1. So the allocated credits creditsall and
remaining credits creditsrem at different time points can be

represented as:

T1

{
creditsall = OWDbytes = C1,
creditsrem = 0,

T2

{
creditsall = f (T2, T1) = C2,
creditsrem = −f (T2, T1) ,

· · ·

Tm

{
creditsall = f (Tm, Tm−1) = Cm,
creditsrem = −

∑m
i=2 f (Ti, Ti−1).

(4)

Then the total quantity of credits Ctotal allocated in this
OWD is:

Ctotal =
∑m

i=1
Ci

= OWDbytes+
Tm − T1

OWDbase
·OWDbytes. (5)

So the maximum downlink utilization U we can achieve is:

Umax =
lim

Tm−T1→OWDbase

Ctotal

RTTbytes
=

2 ·OWDbytes

RTTbytes
= 100%,

(6)
where RTTbytes is the amount of data that can exactly cover
the RTT between sender and receiver without introducing
additional delays, and there is RTTbytes = 2 ·OWDbytes.

Therefore, the downlink utilization approaches 100% as
Tm−T1 approaches OWDbase. Even if certain senders do not
respond to credits, the ToR downlink still remains available for
other senders to use.

Similarly, assume the time interval between T1 and Tm is
greater than one OWD but less than one RTT. As shown in
Fig. 4(b), there is 1 ·OWD < T1−Tm < 1 ·RTT . According
to Algorithm 1, the receiver overcommits credits at time T2,
· · · , Tm−1, and Tm to maintain full utilization of the downlink.
So we still have:

Ctotal = C1 +
min {(Tm − T1) , OWDbase}

OWDbase
·OWDbytes

= 2 ·OWDbytes = RTTbytes, (7)

and the downlink utilization U is:

U = RTTbytes/RTTbytes = 100%, (8)

In summary, ProactMP with overcommitment can achieve
up to 100% downlink utilization without exceeding the
downlink’s capacity, which is a significant improvement over
the utilization of no overcommitment. And such improvement
brought by overcommitment remains unaffected by the number
of active flows or the timing of receiving responses from
senders. Even in scenarios with only one active ProactMP
connection, overcommitment can still be self-triggered by
multiple subflows contained in this connection.

It is worth mentioning that we use RTT/2 to calculate the
OWD in this paper. In practice, the delay of the forward path
and the delay of the return path are not always equal, which
leads to the inability to accurately estimate the OWD using
RTT/2. But ProactMP’s multipath capabilities and function
of overcommitment protect it from the impact of inaccurate
OWD estimates: Even if the delay of the forward path and
the return path are not equal, ProactMP ultimately ensures
the allocation of 2 · OWDbytes = RTTbytes credits to the
sender, thus fully utilizing the downlink.
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5) Loss Recovery of ProactMP: We expect lost packets to
be rare in ProactMP. This is because the two main causes
of packet loss, namely link failure and buffer overflow, are
very uncommon in datacenter networks with ProactMP. Firstly,
modern datacenter networks adopt multiple methods to deal
with network faults, which can almost completely mask the
effect of packet loss caused by link failure or corruption for
transport layer protocols [29]. Secondly, ProactMP adopts a
proactive control method to reduce buffer usage and effectively
avoid buffer overflows. Therefore, we optimize lost-packet
handling in ProactMP to improve its efficiency in common
cases of no packet loss.

ProactMP delegates the task of detecting and notifying lost
packets to the receiver. ProactMP does not use any explicit
acknowledgment for lost packets, but uses a timer-based
mechanism to detect lost packets periodically. According to the
offset and length in each received DATA packet, the current
range of received bytes and missing bytes can be obtained
from the list. If the receiver does not receive any packet of a
message within a certain period of time (Tout, set to several
RTTs), it will send a RESEND packet to the sender, which
contains the first range of missing bytes in the list. And the
sender will retransmit the specified bytes.

The loss recovery of ProactMP also addresses the loss
of GRANT packets. When a GRANT packet is lost during
transmission, the sender will not send any data due to lack of
credits, resulting in the receiver receiving no additional packet
of this message and continuing waiting. When the waiting time
exceeds Tout, it triggers ProactMP’s loss recovery and sends
a RESEND packet to the sender. The sender can continue to
transmit data after receiving the RESEND packet.

We also simplify the response of ProactMP congestion
control to packet loss. ProactMP congestion control has no
need to identify the occurrence of packet loss or give feedback
to lost packets; consequently, packet loss does not affect credit
allocation at the receiver and the sender.

IV. PERFORMANCE EVALUATION

We implement ProactMP as a module in the Linux system,
and deploy it in our testbed for datacenters. The ProactMP
implementation utilizes the RPC framework provided by
Dubbo [30] and uses the key networking features in the Linux
kernel (e.g., TCP/IP).

A. Test Setup

The topology of our testbed is depicted in Fig. 5. Our
testbed adopts the classic Clos [7] (e.g., Fat-Tree [15]) DCN
topology, which can implement scenarios such as single-path
transmission, multipath transmission, shared bottleneck and
numerous traffic concurrency. We add ProactMP traffic and
the traffic of contrastive schemes in the left half of Fig. 5,
and add background traffic in the right half. We have 3
server hosts (S1, S2, S3) connected to 2 client hosts (C1,
C2) through a core switch using 6Gbps links. Each host is a
GIGABYTE GB-BSi7HA-6500 machine, with 2.5GHz 64-bit
2-Core Intel Core i7-6500U processor, 4GT/s, 4MB cache,
32GB 2133MT/s DDR4 RAM, and a Intel i219LM 1GbE NIC.

CORES1 CORES2

AGGS1 AGGS2

TORS1 TORS2

S1 S2 S3 C1 C2

TORS3 TORS4

AGGS3 AGGS4

CORES1 CORES2

AGGS1 AGGS2

TORS1 TORS2

S1 S2 S3 C1 C2

TORS3 TORS4

AGGS3 AGGS4

Our Experimental Platform

CORES1 CORES2

AGGS1 AGGS2

TORS1 TORS2

S1 S2 S3 C1 C2

TORS3 TORS4

AGGS3 AGGS4

CORES3 CORES4

  Subflow 1   Subflow 2   Background Traffic

Fig. 5. Topology of our self-constructed testbed for datacenter networks.

The base RTT of our testbed is 2µs, which the minimum RTT
between two hosts (e.g., S1 and C1) passing through a core
switch. So in the ProactMP implementation for 1Gbps ToR
downlink bandwidth, OWDbytes is set to 125B.

Various transport protocols and congestion control
algorithms are deployed in the hosts. We choose TCP variants
(DCTCP [6], Cubic [31], Vegas [32], BBR [33]), MPTCP
variants (Olia [34], Balia [35], wVegas [36]) and a proactive
transport protocol (Homa [19]) as the contrastive schemes.
All the above schemes have Linux implementations, and are
deployed in each host. All the hosts are running on Linux
ubuntu 18.04 OS with kernel version 4.19.234 [37]. The path
manager of MPTCP is set to “ndiffports”, and the scheduler
is set to “min-RTT”, the detailed description of configuring
MPTCP can be seen in [38].

B. Transmission Performance for Different Flow Sizes

DCN is filled with flows of various sizes. We analyze
five workloads, including the Web search workload for
DCTCP analysis [6] (W1), the workload of the Google search
application (W2), the aggregate workload of all applications in
a Google datacenter (W3) from literature [13], the workload on
a collection of memcached servers at Facebook [39] (W4), and
the workload on the Hadoop cluster at Facebook [40] (W5).
Large flows dominate W1, flows larger than 1MB account
for 30% and the maximum size reaches more than 50MB.
In W2, W3, and W5, flows with sizes ranging from 100B
to 1KB account for about 60%, while 10% of the flows in
W5 are larger than 100KB. In W4, nearly 40% of the flows
are smaller than 10B, and more than 95% are smaller than
1KB. Therefore, we choose flows with sizes of 20B, 200B,
1KB, 50KB, 500KB, 10MB, 50MB, and 500MB to verify
the performance of different schemes when transmitting small
flows and large flows. With no background traffic, we have C1
request a flow of a given size from S1, which then transmits
the flow separately with the support of different schemes. All
of the multipath schemes utilize two subflows, which pass
through spine switches CORES1 and CORES2, respectively,
while the single-path schemes only use one path that passes
through CORES1. The distribution of flow completion times
(FCTs) is shown in Fig. 6, which is the time duration from
the request being sent to the message being completed. We
can see that ProactMP has the lowest or close to the lowest
FCT no matter transmitting what size of flows, its FCT is also
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Fig. 6. Distribution of FCTs for flows of different sizes.

more stable than the other schemes and rarely experiences
large fluctuations.

When the flow size is 20B, the FCTs of ProactMP and
Homa have similar distribution patterns, and this is because
they both adopt burst strategy in the first RTT, and 20B size
of data is enough to be transmitted within OWDbytes in the
first RTT. As the flow size increases to 200B, ProactMP and
Homa need more than one RTT to complete the transmission.
Although ProactMP has a lower bound of FCT similar to
Homa, it can generally guarantee a lower and more stable
FCT than Homa. Compared with TCP variants and MPTCP
variants, ProactMP significantly improves the FCT of small
flows because its bursting in the pre-grant phase can make
good use of the idle bandwidth in the first RTT.

When transmitting large flows, the contrast between the
FCTs of Homa and ProactMP becomes more pronounced.
As the flow size increases to more than 500KB, Homa’s
performance gradually approaches that of TCP variants, and
does not demonstrate obvious superiority in transmitting
large flows larger than 10MB, while ProactMP achieves
shorter FCTs. The different overcommitment methods adopted
by Homa and ProactMP lead to their performance gap in
practical use. Specifically, Homa deploys a priority-based
overcommitment mechanism that overcommits at most one
flow for each available priority level. This means that
Homa’s overcommitment does not take effect when there
is only one Homa flow in the network or all flows are
given the same priority. Therefore, Homa does not achieve
notable performance when there is no competition. Instead,
ProactMP’s overcommitment mechanism calculates its credits
based on the current available capacity, which is free from
the restriction of the number of priorities or flows, thus
achieving higher bandwidth utilization and shorter FCTs in
non-competitive situations. MPTCP variants are limited by the
design concept of ensuring fairness [41], which makes them
obtain similar FCTs to TCP variants despite utilizing multiple
subflows, and inferior to DCTCP and BBR in some cases.

Overall, compared with TCP variants, ProactMP improves

the efficiency in completing small flows by 133%∼135%
and large flows by 17%∼175%. And compared with MPTCP
variants, ProactMP improves the efficiency in completing
small flows by 102%∼128% and large flows by 30%∼154%.
Therefore, it is conducive to supporting the transmission of
complex data traffic in DCNs.

C. Bandwidth Utilization and Fairness

Modern datacenters support a wide range of protocols,
making it necessary to consider whether ProactMP can coexist
gracefully with existing protocols. The primary reason existing
protocols are difficult to coexist gracefully and fairly is that
they inevitably interact with each other via queuing in the
network [42]. As TCP is a dominant transport protocol in
production DCNs, we take TCP as an example. TCP variants
include loss-based TCP (e.g., Cubic) and delay-based TCP
(e.g., Vegas). Loss-based TCP adopts an aggressive window
adjustment strategy, which continuously increases its cwnd
until packet loss occurs, so it occupies the queue quickly
and squeezes the throughput of other protocols. Delay-based
TCP, on the other hand, adjusts its cwnd differently.
Delay-based TCP is sensitive to network conditions, once the
bottleneck queue is built and RTT increases accordingly, it
decreases its cwnd. As a result, delay-based TCP has limited
competitiveness, and its throughput can be easily exhausted
due to excessive concession.

In order to provide a demonstrable effect for comparison,
we choose an extremely aggressive scheme (Cubic) and an
extremely conservative scheme (Vegas) as the background
traffic, respectively. We use iPerf [43] to generate traffic,
and test the throughput of different protocols at increasingly
higher network loads to measure their ability to utilize network
bandwidth. The results of network sharing between different
protocols and network utilization limits are shown in Fig. 7.
We let a Cubic flow or a Vegas flow go through the same
bottleneck link of 1Gbps with a certain number of competing
flows, and vary the number of competing flows from 1 to 4.
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Fig. 7. Network sharing of single-path schemes and multipath schemes with Cubic and Vegas.
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Fig. 8. JFIs of Cubic/Vegas with a certain number of competing flows.

The colored rectangles in each figure represent the percentage
of bandwidth occupied by different flows, while the gray
rectangles represent the percentage of unused bandwidth. To
evaluate the fairness of resource allocation among traffic
flows, we also calculate the Jain’s fairness index (JFI) [44]
of different cases. The JFI curves along with the number of
competing flows are shown in Fig. 8.

When competing with an aggressive Cubic flow, DCTCP,
Homa, ProactMP and Olia all obtain JFIs close to 1 and
get their fair share of bandwidth while achieving high link
utilization of over 90%. But no protocol achieves 100%
utilization, they all waste network bandwidth to some extent
in certain cases. Homa wastes the most bandwidth when
there is only one competing flow, and its unused bandwidth
gradually increases as the number of flows increases. This
is because Homa uses priority levels for flow control, and
when all of the scheduled priority levels are allocated, senders
will not be able to respond, resulting in the idleness of
the receiver’s downlink. Such waste of bandwidth becomes
increasingly serious as the overall network load increases.
But ProactMP’s overcommitment mechanism overcomes this

problem, and achieves the highest bandwidth utilization while
ensuring fairness. By contrast, as a delay-based MPTCP CC
scheme, wVegas is far less competitive than the others. wVegas
obtains JFIs close to the lower bound, which means the
bandwidth resources are almost monopolized by the Cubic
flow. Even as the number of competing flows increases,
wVegas’s bandwidth share and link utilization still show no
significant improvement.

When competing with a conservative Vegas flow, all
protocols show strong aggressiveness. Even wVegas, a
delay-based scheme like Vegas, achieves twice the throughput
as Vegas. As the number of competing flows increases,
DCTCP, Homa, Olia, and wVegas achieve higher network
utilization, but always fail to share bandwidth fairly with
Vegas. We can see from Fig. 7(j) that both Vegas and wVegas
have poor capacity to utilize bandwidth. Even in the case
of multiple active flows, they are still unable to overcommit
their ToR downlinks. This observation also indicates that
the improvement in bandwidth utilization in other test
groups has nothing to do with Vegas. Overall, Vegas’s
conservative window adjustment strategy makes it challenging
for ProactMP and other protocols to share bandwidth with
Vegas with perfect fairness. However, as shown in Fig. 8(b),
with the increase of flow number of ProactMP, ProactMP’s
JFI continues to increase to close to 1 and outperforms the
fairness provided by delay-based wVegas. Although the JFI of
ProactMP is lower than that of wVegas when the number of
competing flows is less than 3, this is mainly due to Vegas’s
poor capacity to utilize bandwidth. ProactMP can achieve high
bandwidth utilization at the downlink without compressing
Vegas through a reasonable credits control strategy at the
receiver, and gradually achieves a fair share of the bandwidth
with conservative flows.
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Fig. 9. Cumulative distribution of RTT of a 10-to-1 incast.

D. Delay Performance during Incast Conditions

Incast is a common problem in DCNs, which is usually
caused by the many-to-one and many-to-many communication
mode. When a host sends a request to a group of nodes (e.g.,
server cluster or storage cluster), all the nodes in this cluster
will receive the request and respond almost simultaneously. As
a result, multiple nodes will send data streams to this host at
the same time, leading to a “micro burst of flows”. The incast
problem will be particularly more apparent when using TCP
in an environment of high bandwidth and low latency [45].
To study the impact of incast on different protocols, we
conduct 10-to-1 incast experiments in our testbed. We set
host C2 as one client node and let it send 10 requests
simultaneously to different servers. Finally, all respond flows
will be concentrated in the downlink of TORS4, whose
bandwidth is 1Gbps.

TABLE II
MEAN, MAXIMUM AND TAIL RTT OF EACH PROTOCOL, AND THE

AVERAGE THROUGHPUT OF TEN FLOWS

Protocol 100B
latency
(µs)

Mean
(µs)

Max
(µs)

99th-p
RTT
(µs)

Average
throughput
(Mbps)

Cubic 3.54 89.61 141060 459 83.71
DCTCP 3.71 126.56 197714 516 86.77
Homa 2.28 101.87 197300 490 80.24
Olia 3.70 132.33 150923 492 83.66
wVegas 3.69 55.21 163912 408 75.13
ProactMP 2.09 48.16 136438 119 93.85

We count the RTT distribution of 6 different protocols in 10
seconds during incast, and display the cumulative distribution
of RTT in Fig. 9. Table II shows the basic performance of 6
protocols, where 100B latency is measured end-to-end at the
application level with 100-byte requests and responses, 99th-p
RTT is the 99th percentile of RTT. The RTT of ProactMP for
short flows (i.e., 100B latency) is 8% lower than that of Homa,
and more than 40% lower than those of TCP or MPTCP.

We believe that a protocol with longer RTTs has
experienced longer queuing delay, and thus has a weaker
ability to handle incast. ProactMP has the shortest mean RTT,
about 80% of its RTTs are lower than 33µs, with more than
97% of its RTTs lower than 100µs, and its proportion of RTTs
within 10µs is the highest among all protocols. Olia behaves
similarly to DCTCP. The RTT of delay-based wVegas has
the most centralized distribution pattern. We can see from
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Fig. 10. Throughput curves of a Homa flow and two ProactMP subflows
when congestion occurs on CORES1.

Fig. 9 that RTTs within the range of 10∼30µs account for
about 50% of the total. However, as a reactive transport
protocol, the window adjustment strategy of wVegas inevitably
has a certain lag and cannot send the optimal amount of
data according to the usage of ToR downlink. Therefore,
wVegas is still impossible to avoid buffer overflow and timeout
caused occasionally by excessive data transmission, resulting
in ultra-long RTTs accounting for 4.5%. Similar problems are
observed in other reactive protocols driven by the sender, such
as Cubic, DCTCP, and Olia. However, ProactMP reduces the
proportion of ultra-long RTT to about 2.5% and improves
tail RTT by 71%∼77% compared to previous sender-driven
protocols. ProactMP also handles incast better than Homa. It
improves tail RTT by 76% and mean RTT by 53% compared to
Homa. Although Homa is also a receiver-driven protocol like
ProactMP, its flow control strategy based on network priorities
is less effective against incast. This is because when all of the
scheduled priority levels are allocated, the receiver of Homa
will be unable to overcommit even if its downlink has idle
bandwidth, while most senders experience longer latency due
to waiting for responses. Therefore, the performance of Homa
tends to be inferior to Cubic overall.

E. Load Balancing and Congestion Migration

ProactMP aims to provide better transmission performance
for proactive transport protocols by utilizing multipath
capabilities. To verify ProactMP’s ability to balance load
and migrate congestion, we change the load on a spine
block to simulate non-congestion and congestion scenarios,
and compare the performance of proactive transport with
and without multipath capabilities. We maintain a 60-second
transmission between S1 and C1. ProactMP utilizes two
subflows, which pass through spine switches CORES1 and
CORES2 respectively. While Homa, a single-path scheme
for comparison, uses only one path that passes through
CORES1. During the transmission, we add 50% network load
on CORES1 within 15s ∼ 45s and then remove it after 45s,
while the load on CORES2 remains unchanged in 60 seconds;
so as to simulate the scenario where a certain spine block is
congested and becomes the bottleneck that limits the overall
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link speed. The throughput curves along with time of one
Homa flow and two ProactMP subflows are depicted in Fig. 10.

When there is no congestion on CORES1 and CORES2,
the spine block is not the bottleneck to limit the link
speed. As shown in Fig. 10, controlled by the receiver (C1),
Homa achieves an average throughput of 0.8387Gbps, while
ProactMP fairly distributes the load between two subflows
and achieves an average total throughput of 0.9235Gbps. Both
Homa and ProactMP achieve high downlink utilization.

However, as the load increases and congestion occurs
on CORES1, the throughput of Homa is obviously limited
by the spine switch. Although the downlink of C1 still
has a lot of idle bandwidth, Homa’s average throughput
only reaches 0.4265Gbps, and is not recovered until 45s,
which means that congestion on the spine block has become
the bottleneck limiting Homa’s throughput and downlink
utilization. Unfortunately, Homa uses only one single path and
thus cannot eliminate this bottleneck, resulting in its average
throughput in 60 seconds being reduced to only 0.6326Gbps.

On the contrary, although the throughput of ProactMP on
subflow 1 also decreases with the occurrence of congestion on
CORES1, the sender (S1) of ProactMP can detect the decline
of path quality on subflow 1 by observing the difference
between the RTTs of subflows. It can be seen in Fig. 10(b)
that ProactMP quickly transfers part of the load on subflow 1
to subflow 2 as congestion occurs, and reduces the amount of
data sent on subflow 1 to relieve the congestion on CORES1.
During the congestion on CORES1, ProactMP ensures that
each subflow experiences the same degree of congestion by
balancing load among multiple subflows, thus still achieving
an average total throughput of 0.9134Gbps, which is not
significantly lower than that with no congestion. ProactMP’s
average total throughput in 60 seconds reaches to 0.9185Gbps,
an increase of 45.2% compared to that of Homa, which
means that ProactMP successfully eliminates the bottleneck
generated by spine blocks by utilizing multipath capabilities
and improves the overall performance.

F. Performance under Realistic DCN Traffics

In this section, we use realistic datacenter network traffics to
verify the performance of ProactMP in practical applications,
and evaluate whether ProactMP’s performance in practical
environments meets the expectations. We adopt two realistic
DCN workloads, W1 [6] and W5 [40]. We randomly inject
traffic into the network based on the flow size and flow
distribution of W1 and W5, respectively, to simulate the
network load of realistic datacenters, and control the total
number of flows in the network to 300. We calculate the
FCTs of ProactMP and two MPTCP variants under different
workloads, the cumulative distribution function (CDF) of
FCTs for different schemes is shown in Fig. 11.

As shown in Fig. 11, ProactMP achieves the shortest overall
FCTs under both W1 and W5 workloads. Compared with Olia
and wVegas, it ensures that more small flows are completed
in a shorter time and achieves shorter tail FCT for large flows.
Under workload W1, ProactMP reduces the average FCT by
34.3% compared to Olia and 24.05% compared to wVegas.
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Fig. 11. Cumulative distribution function of FCTs for different schemes under
two realistic DCN workloads.

Under workload W5, ProactMP reduces the average FCT by
53.74% compared to Olia and 46.94% compared to wVegas.
wVegas cannot guarantee the fast completion of small flows
smaller than 10KB, but its delay-based window adjustment
strategy reduces the buffer occupancy and overflow, thus still
achieving an average FCT of over 12.8% shorter than Olia.
Overall, ProactMP can adapt to the complex and ever-changing
network traffics in practical applications, and provides a better
user experience than typical multipath schemes.

On the whole, compared with other protocols, ProactMP
can ensure a lower queuing delay and a more stable RTT
when incast occurs, and avoid the serious consequences caused
by excessive buffer occupation and overflow. It also ensures
that all participating flows can achieve the highest average
throughput during incast, thus realizing a reasonable balance
between delay and throughput. When the load increases
or congestion occurs on a spine block, ProactMP can still
ensure the connection throughput and improve the overall
performance of the network by achieving load balancing and
congestion migration between multiple subflows. In addition,
ProactMP achieves the lowest average FCT when dealing with
realistic DCN traffics, and ensures that most flows can be
completed with shorter FCTs.

V. CONCLUSION

In this paper, we proposed ProactMP, a proactive multipath
transport protocol for datacenters. ProactMP is designed to be
connectionless, it transmits a certain amount of data blindly in
the first RTT, so as to better support small flows in low-latency
networks and achieve the best delay for small flows even
under high loads. ProactMP deploys a coupled congestion
control mechanism with overcommitment to ensure efficient
and correct data transmission through multiple paths, which
globally adopts a receiver-driven rate control strategy and
locally allocates the transmit quantity of data at the sender.
Therefore, it guarantees that each connection or subflow has
an appropriate number of bytes in flight in the network, and
thus achieves load balance and avoids buffer overflow. We
implemented ProactMP in the Linux system and conducted
a series of experiments in our datacenter testbed to verify
its effectiveness. Experimental results show that ProactMP
achieved better flow completion time, link utilization, fairness
and latency than TCP variants, MPTCP variants, and a leading
proactive transport protocol.
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