
2652 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 3, SEPTEMBER 2023

TCCC: A Throughput Consistency Congestion
Control Algorithm for MPTCP in Mixed
Transmission of Long and Short Flows

Jiayu Yang, Graduate Student Member, IEEE, Jiangping Han , Member, IEEE,
Kaiping Xue , Senior Member, IEEE, Yansen Wang, Jian Li , Member, IEEE,

Yitao Xing , Graduate Student Member, IEEE, Hao Yue , Member, IEEE,
and David S. L. Wei , Life Senior Member, IEEE

Abstract—Existing congestion control algorithms for MPTCP
that care about only long flow transmission aim at the
Congestion-Avoidance (CA) phase and they need a long time to
reach convergence states. We verified that the exponential growth
of congestion window (cwnd) in the uncoupled Slow-Start (SS)
leads to not only unfairness to TCP but also buffer overflow due
to burst data. Moreover, these algorithms cannot support fair
bandwidth sharing among TCP/MPTCP flows before reaching
convergence at the bottleneck, which may reduce the transmis-
sion efficiency of short flows and even hurts long flows. In this
paper, we propose a Throughput Consistency Congestion Control
(TCCC) algorithm consisting of Coupled Slow-Start (CSS) and
Aggressive Congestion Avoidance (ACA). To prevent packet loss
caused by excessive burst data, CSS couples the increment of sub-
flows’ cwnd and reset the ssthresh value to safely move the flows
to CA when it achieves expected throughput. Based on CSS, ACA
periodically detects path states and allocates the same throughput
increment as the best TCP to subflows to achieve fair bandwidth
share in CA. Finally, we implement TCCC in both NS3 and real
testbed. The results show that TCCC reduces retransmissions,
improves transmission efficiency, and maintains better fairness.

Index Terms—Multi-path TCP, congestion control, transmis-
sion efficiency, fairness.

I. INTRODUCTION

W ITH the rapid development of various network access
technologies, network access devices are usually

Manuscript received 14 March 2022; revised 24 July 2022; accepted 22
January 2023. Date of publication 6 February 2023; date of current ver-
sion 9 October 2023. The work is supported in part by the National Natural
Science Foundation of China (NSFC) under Grant No. 61972371, and Youth
Innovation Promotion Association of the Chinese Academy of Sciences (CAS)
under Grant No. Y202093. The associate editor coordinating the review of this
article and approving it for publication was C. Avin. (Corresponding authors:
Jiangping Han; Kaiping Xue.)

Jiayu Yang, Jiangping Han, Kaiping Xue, Jian Li, and Yitao Xing are
with the School of Cyber Science and Technology, University of Science
and Technology of China, Hefei 230027, Anhui, China (e-mail: jphan@
ustc.edu.cn; kpxue@ustc.edu.cn).

Yansen Wang is with the Department of Electronic Engineering and
Information Science, University of Science and Technology of China, Hefei
230027, Anhui, China, and also with the Natural Language Processing
Research Department, Meituan Group, Beijing 100102, China.

Hao Yue is with the Department of Computer Science, San Francisco State
University, San Francisco, CA 94132 USA.

David S. L. Wei is with the Department of Computer and Information
Science, Fordham University, Bronx, NY 10458 USA.

Digital Object Identifier 10.1109/TNSM.2023.3242419

equipped with multiple interfaces. For instance, mobile
devices have WiFi and 3G/4G wireless interfaces, and data
center networks often provide alternative paths between two
hosts [1]. Though transmission efficiency can be improved
when multiple interfaces are utilized simultaneously, TCP can
only transmit over one interface at a time. To provide the capa-
bility of simultaneous use of multiple paths between multi-
homed end-hosts, Multi-path TCP (MPTCP) is recommended
by IETF [2]. It is not only compatible with regular TCP but
also able to aggregate bandwidth and improve robustness.

Congestion Control is one of the key issues affecting the
transmission efficiency of MPTCP. It controls the data injected
into the network through the congestion window (cwnd) to
reduce packet loss and retransmissions caused by congestion.
Usually, congestion control algorithms consist of two parts
including Slow-Start (SS) and Congestion-Avoidance (CA)
with disparate cwnd adjustment strategies. Most algorithms
grow cwnd exponentially to rapidly increase the transmission
rate in SS. In CA, to prevent congestion, they augment cwnd
with a slower pace. Raiciu et al. [3] proposed that MPTCP con-
gestion control algorithms should satisfy the following design
goals: (1) Improve throughput: MPTCP should achieve at least
the same throughput as a single TCP connection when there
is no congestion. (2) Do no harm: MPTCP takes up no more
capability than regular TCP at the shared bottleneck.

So far, many popular congestion control algorithms of
MPTCP have been proposed to achieve the two goals [3],
[4], [5]. However, these algorithms only couple cwnd growth
of subflows in the CA phase, and each subflow still behaves
like independent TCP in SS. Thus, compared with TCP that
may cause buffer overflow at routers due to the exponential
increase of cwnd in SS, MPTCP suffers more severe packet
loss (with multiple subflows in SS). This is adverse to the
transmission efficiency of short flows, which become more
and more popular in the current network environment [6]
and account for 95% of real Multi-path TCP traffic [7].
Moreover, although many algorithms aim to satisfy the sec-
ond design goal, the performance of MPTCP is restricted.
Their throughput is much less than that of a TCP flow before
reaching convergence when they compete at the same bot-
tleneck [8]. Therefore, these algorithms, with uncoupled SS
and excessive restrictions on cwnd in CA, will undoubtedly

1932-4537 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 12,2023 at 13:53:38 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-1674-8884
https://orcid.org/0000-0003-2095-7523
https://orcid.org/0000-0002-6979-4510
https://orcid.org/0000-0002-8123-0347
https://orcid.org/0000-0002-4112-6684
https://orcid.org/0000-0002-3839-5576


YANG et al.: TCCC ALGORITHM FOR MPTCP IN MIXED TRANSMISSION OF LONG AND SHORT FLOWS 2653

reduce the transmission efficiency of short flows and affect the
performance of long flows.

Although some works try to solve the above problems, they
mainly focus on one of the scenarios of long flows or short flows.
For example, to improve the performance of short flows using
MPTCP, Barik et al. [9] and Li et al. [10] proposed different meth-
ods to slow down the cwnd increment of MPTCP in SS. There
are also schemes dedicated to improving the transmission effi-
ciency of both long and short flows. Thomas et al. [11] speeds up
the convergence process of MPTCP algorithms, which couples
cwnd increment in both SS and CA phases. Kheirkhah et al. [12]
and Lee et al. [13] only work in special environments of data
centers and 5G networks. Additionally, some algorithms use
emerging machine learning technology [14], [15], [16], [17].
Compared with heuristic algorithms, they may adjust cwnd
more accurately, however, having high overhead and facing the
problem of controlling lags.

The real network, with the requirement to transmit data of
various sizes, is usually a mixed transmission of long flows
and short flows with disparate characteristics. The existing way
of judging short flow and long flow is empirical. Specifically,
some related works distinguish them by the file size, for exam-
ple, Zhao et al. [18] and Kheirkhah et al. [19] illustrated that a
majority (90%) of the flows are short flows with a size smaller
than 1MB. Some suggest that short flows can be judged by
completion time, which may never leave the Slow-Start phase
with a small congestion window [20]. In our scheme, short
flows are connections transmitting files smaller than 1MB,
whose transmission efficiency is mainly affected by the SS
algorithm. Long flows, with larger transmission files, consume
most of their life during the CA phase and are mainly affected
by the CA algorithm. Besides, fairness (bottleneck fairness) is
also one of the important metrics in our design, which aims to
enable MPTCP flows to achieve the same throughput as TCP
flows at the bottleneck [21].

In this paper, we jointly consider fairness transmission
for both short and long flows and propose a Throughput
Consistency Congestion Control (TCCC) scheme. It is a
heuristic algorithm that consists of two parts: Coupled Slow-
Start (CSS) and Aggressive Congestion-Avoidance (ACA)
algorithms. Mainly, TCCC couples the increment of cwnd
in both SS and CA phases based on the throughput consis-
tency principle, which means, TCCC is committed to ensuring
that MPTCP achieves the same throughput as the best TCP.
Specifically, when multiple subflows are in the SS phase, CSS
couples the cwnd growth of each subflow to prevent buffer
overflow caused by high-speed window increase. Then, all
the subflows actively move to the CA phase after reaching
the maximum throughput limitation to ensure that MPTCP
achieves the same throughput as TCP in the whole SS pro-
cess. Based on CSS, the ACA algorithm updates the coupling
coefficient for window growth periodically. It records the path
state of each subflow within an updating interval and computes
the estimated throughput increment of MPTCP according to
the best TCP flow. Then, it allocates throughput increments
to subflows and updates their coupling coefficients. The main
contributions of this paper are summarized as follows:

• To improve the performance of MPTCP in the mixed
transmission of long and short flows while ensuring

fairness with TCPs, we propose a TCCC scheme com-
posed of CSS and ACA. CSS couples the exponential
growth factor of multiple subflows to avoid severe packet
losses in SS and improves the efficiency of short flows.
ACA periodically maintains the throughput increment of
all subflows in MPTCP equal to the best TCP flow’s to
achieve fairness. It provides new adjustment factors of
cwnd to strive for high throughput and better performance
for long flows.

• We further analyze the fairness of the TCCC by using a
fluid model first proposed by Peng et al. [5]. By com-
paring the aggressiveness of each algorithm through the
provided utility coefficients, we reveal that TCCC can
maintain fairness with TCP.

• We implement TCCC in both software simulation and
real testbed and evaluate the performance of short and
long flows. The results reveal that TCCC can bring a
goodput gain of up to 40% for short flows, and increases
the bandwidth share of MPTCP at the bottleneck to
97.9% of TCP for long flows.

This paper inherits the basic idea of our conference
paper [22]. They differ mainly in the following aspects: We
further consider the scenario of long flow transmission, which
is out of the scope of CSS but is important for the cur-
rent Internet, and provide a new algorithm called ACA. Thus,
TCCC can improve the efficiency of MPTCP in mixed long
and short flows, and maintain fairness with TCP flows at the
same bottleneck. We also provide the theoretical analysis of
fairness performance for CSS and ACA and reproduce the
original experiments. Meanwhile, we expand the experimental
testing from software simulation to the real testbed and reveal
the efficiency of our proposed algorithm through various tests.

The rest of this paper is organized as follows. In Section II,
we introduce several popular congestion algorithms and illus-
trate the performance issues of the current MPTCP. Our
proposed TCCC is described in detail in Section III and we
present the theoretical analysis in Section IV. Subsequently,
we give a performance evaluation in Section V and conclude
our work in Section VI.

II. RELATED WORK AND PROBLEM STATEMENT

Congestion control is the key issue in transport protocol
design, which plays a crucial role in efficient transmissions.
TCP congestion control has developed rapidly from TCP
Reno [23], NewReno [24] to S-TCP [25], CUBIC [26] and
till now [27], [28]. These algorithms treating packet loss as
the notification of path congestion are classified as loss-based
ones, which decrease window size if a loss occurs.

The loss-based congestion control algorithms of MPTCP
are mostly extended from the existing TCP Reno algorithm.
For example, SCTP [29] is a straightforward extension of the
single-path TCP, which uses independent TCP Reno in each
subflow and occupies multiple sources compared with TCP.
Although simple, it will seriously occupy the bandwidth of
the TCP flows at the same bottleneck. To maintain fairness
with TCP flows, Equal-Cost Multi-Path TCP (EMTCP) [30]
adds 1√

n
(n is the number of subflows of MPTCP) to the

adjustment coefficient of cwnd to increase the window more
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 12,2023 at 13:53:38 UTC from IEEE Xplore.  Restrictions apply. 



2654 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 3, SEPTEMBER 2023

gently. However, it does not consider differences between
paths and would not make efficient use of the network. So
another two methods Coupled [31] and LIA [3] are proposed,
which remove traffic to the least congested path while also
maintaining some in the congested one to improve transmis-
sion efficiency. Khalili et al. also proposed a new method
OLIA [4], which adds a correction factor to the adjustment
factor of LIA to achieve Pareto-optimal. Peng et al. [5] further
demonstrated that there is a tradeoff between responsiveness
and TCP-friendliness in MPTCP. So they put forward a more
balanced solution called BALIA to ensure fairness with TCP.

Most of the congestion control algorithms mentioned above
are optional algorithms applied in the MPTCP kernel and capa-
ble to maintain fairness between TCP and MPTCP to some
extent. However, all of them only couple the cwnd increment
factor of each subflow in the CA phase and behave like inde-
pendent TCP in SS. Zhang et al. [32] revealed that a single
TCP may cause buffer overflow at routers due to the exponen-
tial increase of cwnd in SS. It can be reasonably inferred that
MPTCP with multiple uncoupled subflows in the SS phase
is more likely to suffer severe packet loss. It becomes even
inevitable as the increase of buffer size of commodity switches
is significantly outpaced by that of the link speed [33]. The
packets that are lost during transmission need to be retrans-
mitted through dup-ACKs or waiting for Retransmission Time
Out, which undoubtedly seriously affects the efficiency of
short flows. Moreover, these algorithms also face problems at
the CA phase as they excessively reduce the competitiveness
of MPTCP to fully meet the second design goal of MPTCP.
Kato et al. [8] conducted experiments in the Linux operat-
ing system and revealed that LIA is weaker than Reno [24].
Through experiments (illustrated in detail in Section V), we
also perceive that LIA can only obtain about 80.7% of the the-
oretical bandwidth when it competes for bandwidth with TCP
at the same bottleneck. BALIA and OLIA are also unable to
achieve fair bandwidth allocation. Therefore, these algorithms
that are unable to fairly share the bandwidth with TCP at the
bottleneck also reduce the transmission efficiency of MPTCP
for long flows.

So far, some work is devoted to solving the above problems,
however, they are mainly focused on solving the problem of
the SS or CA phase. For example, Barik et al. [9] noticed
that uncoupled SS of MPTCP may lead to a buffer overflow,
which is harmful to short flows. So they proposed a conges-
tion control named LISA, which adjusts the initial value of
cwnd according to the window size of existing subflows and
keeps the sum of cwnd remains unchanged. In [10], Li et al.
proposed Halfback, which suggests pacing out the data up to
the threshold amount in one RTT in the JumpStart phase. They
also provide reverse-ordered proactive retransmission notified
by NACK to improve reactiveness if JumpStart fails. It needs
routers to support the priority queue and NACK notification.

In [11], Thomas et al. discovered that most existing MPTCP
algorithms suffer high convergence latency, rendering them
ineffective for short flows. Thus, they proposed NMCC
scheme, which achieves friendliness faster by normalizing the
throughput growth rate of flows rather than the throughput

itself. Moreover, they introduced the extended NMCC proto-
col that caters to friendliness upon both throughput growth
and throughput reduction epochs.

In [34], Dong et al. proposed mVeno that modifies the
addictive increment of Veno to effectively couple subflows.
Specifically, mVeno calculates the backlog at the queue to
notify network states and distinguishes packet losses caused
by a random error of wireless links or by network congestion.
Then, it provides different weights for subflows with disparate
flow characteristics to improve the overall performance of
MPTCP over wireless networks.

Wei et al. [35] utilized Explicit Congestion Notification
(ECN) signals to detect congestion and discover the shared
bottleneck flows. Then, they defined different congestion
degrees in constrained additive increase and provided cou-
pled congestion control algorithm with bottleneck-fairness.
Moreover, they developed a forward prediction packet schedul-
ing scheme to model the subflow’s future behavior and
preschedule data transmission to achieve fine-grained control.

MMPTCP [12] and DEFT [13] are two methods proposed
to improve the transmission efficiency for both long and
short flows for data centers and 5G networks, respectively.
Though involving different traffic characteristics compared to
an Internet-like network, their joint consideration of short and
long flows in congestion control design is still worth introduc-
ing. MMPTCP runs in two phases. Initially, it scatters all the
packets in the network under a single congestion window to
exploit available paths. Short flows that ever are squeezed by
the long flows can complete transmission faster. During the
second phase, MMPTCP runs as standard MPTCP to pursue
throughput. DEFT provides a novel window control algo-
rithm considering the state of the millimeter, which shows fast
responsiveness when the link changes. Besides, it includes a
delay-equalizing algorithm that minimizes additional reorder-
ing delay in the receiver buffer.

There are also methods using emerging new techniques.
Li et al. [14] and He et al. [17] both proposed a deep reinforce-
ment learning framework to generate the congestion control
rules for MPTCP. They conduct appropriate window adjust-
ment factors in the online decision stage based on offline
training. Xu et al. [15] provided a hierarchical tile coding
algorithm to partition the high-dimensional state space into
discrete tiles for state representation. Pokhrel and Walid [16]
proposed a deep Q-learning-based congestion control scheme,
which learns and acts from its experience of optimal con-
gestion control using deep Q-learning. Despite more flexible
window adjustment, these methods have a high training over-
head and face the problem of controlling lag. Specifically,
Xu et al. [15] and He et al. [17] both revealed that it cost an
hour to several hours to train a model for a given network sce-
nario. To improve transmission efficiency, they usually need to
train model in multiple different network scenarios, which is
a high overhead compared with traditional algorithms. When
using the model, the online interference time varies from
0.5ms to 1ms, which causes controlling lags.

Compared with the algorithms mentioned above, the
proposed TCCC focuses on improving the efficiency of

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 12,2023 at 13:53:38 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: TCCC ALGORITHM FOR MPTCP IN MIXED TRANSMISSION OF LONG AND SHORT FLOWS 2655

MPTCP on the premise of maintaining fairness with TCP con-
nections. It simultaneously solves the problems of the two
stages of MPTCP congestion control improving the transmis-
sion efficiency of short flows and long flows. However, if both
types of flows are treated in the same way, long flows may
block the transmission of short flows, which is a common
problem for schemes that control sending rate at end nodes
including ours. It can be solved by splitting flow queues at
intermediate routers, which we leave as our future work.

III. THROUGHPUT CONSISTENCY CONGESTION CONTROL

In this section, we introduce our Throughput Consistency
Congestion Control (TCCC) scheme in detail. We elaborate
on the two algorithms that work in the SS and CA phases,
and explain the efficient improvement of the transmission for
both long and short flows.

A. Design Overview

Firstly, we provide a design overview to present an overall
idea of the scheme. TCCC consists of two parts includ-
ing Coupled Slow-Start (CSS) and Aggressive Congestion-
Avoidance (ACA) algorithms. They aim to solve the serious
packet loss caused by the uncoupled window increase in SS,
and the excessive restriction on cwnd growth in CA, respec-
tively. Thus, the states of subflows determine which algorithm
to use. Specifically, CSS works when MPTCP subflows are
in the initial SS phase, which couples window increment and
actively moves subflows to the CA phase, where ACA takes
over control of window adjustment. Both CSS and ACA fol-
low the principle of throughput consistency, that is, they strive
to maintain the overall throughput of MPTCP consistent with
that of the best TCP at the same bottleneck. Specifically, CSS
couples the cwnd increment factor of multiple subflows in
SS to avoid serious packet loss. When reaching the maximum
throughput limitation, it actively moves to CA to maintain fair-
ness in the SS process. Based on this, ACA periodically detects
path states and maintains the expected throughput increment
of MPTCP is equal to the best TCP flow within the updat-
ing interval. Then it allocates the throughput increment to
subflows and provides new factors of cwnd adjustment to
improve the aggressiveness of MPTCP when competing with
TCP. We present the mathematical notation used in the system
and derivation in Table I. The design details are shown in the
following.

B. Coupled Slow-Start Algorithm

In this subsection, we introduce the Coupled SS algo-
rithm [22] that can improve the performance of short flows’
transmission using MPTCP. It consists of two parts: Coupled
Ssthresh and Linked Smooth Growth. The former leverages an
estimating method to reset the ssthresh value of MPTCP so
that it can actively move subflows to the CA phase. The lat-
ter couples subflows and provides a slower and more friendly
cwnd increment parameter, which can avoid serious packet
loss caused by exponential growth. The two modules work
together to adjust cwnd reasonably and achieve fairness and
efficiency improvement. Moreover, Coupled SS algorithm only

TABLE I
MATHEMATICAL NOTATION USED IN SYSTEM AND DERIVATION

plays a part in the initial SS phase of MPTCP. Because when
subflows of MPTCP are in different phases, it requires much
extra consideration to maintain fairness with TCP, we leave it
as our future work.

1) Coupled Ssthresh: Coupled Ssthresh is mainly dedicated
to enabling MPTCP to quit SS timely and avoid exces-
sive window growth and packet losses in SS. Specifically, it
leverages the existing threshold estimation method (shown in
detail in Section IV-B) to estimate the optimal TCP threshold.
Afterward, it computes the expected throughput of the best
TCP (It is the best path available to the user. In the shared
bottleneck scenario, it is the path with the smallest RTT in
our design.) in SS by the estimated threshold and the min rtt

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 12,2023 at 13:53:38 UTC from IEEE Xplore.  Restrictions apply. 



2656 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 3, SEPTEMBER 2023

Algorithm 1: CSS Algorithm

1 Initialize ini_SS = true, α = 1.5;
2 for each subflow r do
3 ini_SSr = true;
4 end
5 con_ssth = ssth;
6 exp_th = con_ssth

min rtt ;
7 if a new subflow joins then
8 Totcd =

∑
r=1 cwndr ;

9 NewTotcd = Totcd + IW ;
10 CT = logα

con_ssth
Totcd ;

11 α = CT

√
con_ssth
NewTotcd ;

12 end
13 if subflow r receives a new ACK then
14 if ini_SS == true then
15 rttr = g · rttr + (1− g) · rttr ;
16 cur_th =

∑
r

cwndr
rttr

;
17 if cur_th ≤ exp_th then

18 αr = α
rttr

min rtt ;
19 cwndr+ =

min(MSS , (αr − 1) · acked_Bytes);
20 else if cur_th > exp_th then
21 ini_SS = false
22 for each subflow r do
23 ssthr = cwndr ;
24 ini_SSr = false;
25 // subflows actively enter CA
26 end
27 end
28 else
29 cwndr+ = acked_bBytes ;
30 end
31 end

of subflows. To ensure fairness between TCP and MPTCP, it
takes the expected throughput of the best TCP in the SS phase
as the expected throughput of MPTCP. It is also a condition for
MPTCP to actively move to CA. The details of the algorithm
are illustrated in Algorithm 1.

Coupled Ssthresh algorithm firstly sets the flag of ini-
tialSS = true, and than uses the existing method to estimate
the ssth values and rtt of paths available to it. Afterwards,
it leverages the value of con_ssth = ssth and the minimum
value of RTTs to calculates the expected throughput exp_th
of MPTCP in SS as Line 6. Finally, the expth provides a judg-
ment condition for MPTCP to actively quit SS. Thus, it ensures
transmission efficiency of MPTCP but also guarantees fairness
among MPTCP and TCP in SS phase. Specifically, CSS can
compare the current throughput of MPTCP with the expected
throughut, and quit SS if MPTCP has reached the expected
throughput. Then, it resets the initial SS flag to false and
makes each subflow enter CA without packet loss. Therefore,
the algorithm ensures that MPTCP achieves the same through-
put as the best single TCP at the end of SS if no packet loss
occurs. When the threshold estimation is not accurate or there

is packet loss in TCP SS, it still plays a role in improving fair-
ness for reducing the gap between TCP and MPTCP, which s
presented in detail in Section IV-C.

2) Linked Smooth Growth: Although the Coupled Ssthresh
algorithm can guarantee fairness with TCP at the end of SS,
the exponential window increment of multiple subflows may
still cause a buffer overflow. To eliminate packet losses caused
by the exponential growth of multiple subflows and main-
tain fairness with TCP during SS, CSS includes the Linked
Smooth Growth algorithm. Unlike other algorithms that give
fixed parameters for window increment, CSS can continu-
ously adjust its coupling factor as a new MPTCP subflow
enters. Specifically, when a new subflow is added, it calculates
the sum of cwnd of all current subflows as the current total
cwnd and adds IW as the new value of Total cwnd notified as
NewTotcd. Using the given coupling factor and the calculated
completion time, CSS computes the basic coupling factor α
by remaining the expected completion time unchanged. In our
setting, the initial value of α is 1.5 because the receiver usu-
ally uses a delayed ACK [36]. The new basic coupling factor
is lower than before, which is consistent with the intuition that
MPTCP should slowdown cwnd the growth of each subflow
after a new subflow is added.

However, because different subflows have disparate link
states, MPTCP cannot adjust its window according to the base
coupling factor. CSS considers the impact of RTT to induce
different window increase rates. Specifically, when the subflow
receives an ACK, CSS computes the smoothed RTT value,
where the parameter g is the smoothing factor whose value
is 0.5. Then, it leverages the min rtt and basic parameter α
obtains the coupling factor of each subflow as Line 20. Finally,
according to the obtained coupling factor of each subflow, it
utilizes the Byte Counting algorithm [36] to adjust the cwnd
reasonably.

C. Aggressive Congestion-Control Algorithm

In this subsection, we introduce the Aggressive CA algo-
rithm that maintains fairness between MPTCP and TCP in
CA. specifically, ACA estimates the TCP throughput accord-
ing to the TCP algorithm and confirms that MPTCP and
TCP have the same throughput increment over the estima-
tion period. Then it allocates total throughput increment to
multiple subflows by ensuring that the traffic transfers to
the subflow with better link quality. Besides, considering the
throughput decrement caused by packet losses, ACA maintains
the balance of increase and decrease in window adjustment
to achieve a stable state. It’s worth noting that ACA is also
motivated by the TCP NewReno (with the Additive Increase
Multiplicative Decrease scheme) as LIA and BALIA. So
we only analyze and guarantee fairness with TCP NewReno
connections.

Suppose there are an MPTCP and a TCP connection at a
common bottleneck. Their connection information is as fol-
lows: there are n subflows in an MPTCP connection, the RTT
value of subflowr is rttr , the current congestion window is
cwndr , and the smallest RTT of subflows is min rtt . The win-
dow of TCP connection is cwnd tcp . If MPTCP and TCP have

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 12,2023 at 13:53:38 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: TCCC ALGORITHM FOR MPTCP IN MIXED TRANSMISSION OF LONG AND SHORT FLOWS 2657

the same throughput, we have:
n∑

r=1

cwndr
rttr

=
cwnd tcp

min rtt
. (1)

For the TCP connection using Reno algorithm in the CA
phase, its cwnd is increased by 1 in each RTT. As for MPTCP
connections, we denote the window increment of subflowr in
each rttr as αr . Thus, to achieve fairness, the throughput of
TCP and MPTCP satisfies

n∑

r=1

(
cwndr
rttr

+
t · αr

rttr

)

=
cwnd tcp

min rtt
+

t

min rtt
(2)

where cwnd tcp is the cwnd of a TCP-like flow on the best
available path (the one with the minimal RTT). The throughput
of the best TCP can be estimated by cwnd tcp/min rtt . Based
on SS fairness, the above formula can be simplified to

n∑

r=1

αr

rttr
=

1

min rtt
. (3)

For each period of T, we achieve the fairness requirement
between TCP and MPTCP.

Then, we allocate the estimated throughput increase to each
subflow based on its path states enabling MPTCP to remove
the traffic from the congested path to the non-congested path.
Firstly, the change in the throughput of a flow is proportional
to the change in its congestion window size divided by its
RTT

� throughput ∝ �cwnd

rtt
. (4)

Thus, to share the throughput increment to all subflows rea-
sonably, we should increase their congestion window size
proportional to the RTT value observed in each route r. Taking
two subflows subflowi and subflowj as an example, their
windows are computed by

cwndi
cwndj

=
αi · rtti
αj · rttj . (5)

Then, by substituting Eq. (5) into Eq. (3), ACA allocates
throughput increment to MPTCP subflows. The cwnd incre-
ment factor of subflowr at each RTT is

εr =
cwndr/rttr

min rtt ·∑n
k=1

cwndk
rtt2k

. (6)

Next, considering throughput decrement caused by packet
losses, ACA calculates the window reduction to achieve a sta-
ble state. It assumes that the packet loss rate of the subflow r
is pr , the increasing factor is εr , and the decreasing factor is
ηr . In the process of CA, the increases and decreases of the
window size must balance out, i.e., the rate of ACKs × aver-
age increase per ACK must equal the rate of drops × average
decrease per drop. That is:

(1− pr ) · εr
cwndr

= pr · cwndr
2
· ηr . (7)

If subflows have the same packet loss rate, making the
approximation that pr is small enough that 1 − pr ≈ 1, it

Algorithm 2: ACA Algorithm

1 when ini_SS == false:
2 if subflow r receives a new ACK then
3 if cwndr < ssth then
4 cwndr+ = acked_Bytes ;
5 else
6 cwndr+ = 1

rttr ·min rtt ·∑n
k=1

cwndk
rtt2

k

;

7 end
8 else if subflow r experiences packet loss then
9 if subflows have the same packet loss rate then

10 cwndr− =
min rtt ·(∑n

k=1 cwndk/rttk )
2

2·rttr ·∑n
k=1 (cwndk/rtt2k )

;

11 else
12 cwndr− = cwndr

2 ;
13 end
14 end

can be obtained that cwnd tcp =
√

2/pr . Under the fair-
ness requirement of consistent throughput, cwnd tcp meets
the requirements shown in Eq. (2). Substituting approxima-
tion condition and the value of εr , the value of ηr can be
calculated as follow:

ηr =
min rtt · (∑n

k=1 cwndk/rttk )
2

rttr · cwndr ·
∑n

k=1

(
cwndk/rtt

2
k

) . (8)

If subflows have different packet loss rates, ACA uses the same
window decrease strategy as TCP, that is, halving the window
and ηr = 1; Thus, the CA algorithm can be written as

cwndr =

{
cwndr +

εr
cwndr

,

cwndr − cwndr
2 · ηr , (9)

where εr and ηr are obtained by Eq. (6) and Eq. (8), respec-
tively. The total process is shown in Algorithm 2. We
theoretically analyze the fairness performance of the algorithm
and discuss the details of implementation in the next section.

IV. METHOD ANALYSIS

In this section, we analyze the fairness of TCCC and discuss
the impact of ssthresh estimation and link bottleneck on con-
gestion control algorithms. Specifically, we use the fluid model
to uniformly represent the algorithms. Then, we compare the
available metrics of algorithms’ aggressiveness to present the
fairness performance of TCCC.

A. Fluid Model

Firstly, we present the fluid model utilized to analyze the
theoretical efficiency of ACA. As described in [5], the model
considers a network that consists of a set L = {1, . . . , |L|}
of links with finite capacity cl is shared by a set of sources
S = {1, . . . , |S |}. Each source s ∈ S is available to a fixed
collection of routes (or paths) r, and R := r |r ∈ s , s ∈ S is
the collection of all routes. The routing matrix H ∈ 0, 1|L|x |R|
denotes the relationship between links and routes, where
Hlr = 1 if link l is in route r, and 0 otherwise. Each

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 12,2023 at 13:53:38 UTC from IEEE Xplore.  Restrictions apply. 



2658 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 3, SEPTEMBER 2023

source s maintains a congestion window cwndr (t) and round
trip time rttr at time t for every route r ∈ s to cal-
culate the sending rate xr (t) := cwndr (t)/rttr . For each
link l, yl (t) :=

∑
r∈R Hlrxr (t) is the aggregate traffic

rate. Let pr (t) :=
∑

l∈LHlrpl (t) represents the approxi-
mate packet loss probability. Where pl (t) denotes a congestion
price at time t for link l. Thus, each route r ∈ s asso-
ciate three variables (xr (t), cwndr (t), qr (t)), and each source
s ∈ S can be presented by (x s(t),w(s)t , q s(t)), where
(x s(t) := (xr (t), r ∈ s)), (w s(t) := (cwndr (t), r ∈ s)),
(q s(t) := (qr (t), r ∈ s)).

Motivated by the AIMD algorithm of TCP NewReno,
Peng et al. [5] model MPTCP algorithm as follows, where
time t is omitted for simplicity:

ẋr = kr (x s)(φr (x s)− pr )
+
xr

r ∈ s s ∈ S , (10)

ṗl = γl (yl − cl ) l ∈ L (11)

where (a)+x = a for x > 0 and max{0, a} for x ≤ 0, and
γl is a positive parameter determining the dynamic property.
Suppose a source s increases its window at the return of each
ACK and the increment is denoted by Ir (ws) and decreases
the window on route r when a packet loss occurs and the
decrement is denoted by Dr (ws) when a packet loss occurs.
Then, kr (xs) and Dr (xs) can be computed by

{
kr (xs) =

xr
rttr

Dr (ws),

φr (xs) = Ir (ws)/Dr (ws).
(12)

The MPTCP algorithm installed at source s can be specified
by (Ks ,Φs ), where Ks(x s) := (kr (x s), r ∈ s) is a vector of
positive gains that determines the dynamic properties of the
algorithms, and Φs (x s) := (φr (x s), r ∈ s) determines the
equilibrium properties of the algorithms. Beside, the shape of
vectors (Ks ,Φs ) also rank the different variants with respect
to their friendliness and responsiveness (For the full details,
see [5]). More specifically:

Theorem 1 (Friendliness): Under certain assumptions
(which are intuitive and usually (but not always) satisfied), an
MPTCP algorithm (K̃ , Φ̃) is friendlier than another algorithm
(K̂ , Φ̂) if Φ̃s(xs) ≤ Φ̂s(xs).

Theorem 2 (Responsiveness): For two MPTCP algorithms,
if one has a smaller eigenvalue real part of Jacobian J �

λ̄(J �) = max

⎧
⎪⎨

⎪⎩

xH
[
∂Φs
∂xs

]+
x

xHΛ−1
k x + pHΛ−1

γ p

⎫
⎪⎬

⎪⎭
, (13)

it is more responsive, where Λk = diag{kr (xs), r ∈ R}, Λγ =

diag{γl .r ∈ L}, and ∂Φs
∂xs

are evaluated at the equilibrium
point. The theorem can be simplified as: An MPTCP algorithm
with a larger Ks(xs) and more negative definite ∂Φs

∂xs
is more

responsive.

B. Fairness Analysis

In this part, we provide fairness analysis of our scheme that
includes ACA and CSS, respectively.

TABLE II
MODEL PARAMETERS OF SEVERAL REPRESENTATIVE ALGORITHMS

1) ACA Analysis: We use the fluid model proposed by
Peng [5] to analyze the theoretical efficiency of ACA. We
take TCP-NewReno as an example to show the function of
this model. As TCP-NewReno adjusts the window as

• For each ACK on route r, cwndr ← cwndr +
1

cwndr
,

• For each loss on route r, cwndr ← cwndr
2 ,

its model coefficients can be expressed as

kr (xs) =
1

2
x2r , φr (xs) =

2

rtt2r x
2
. (14)

When subflows have the same packet loss rate, according to the
definition of the model, the window increment and decrement
rates of TCCC can be expressed as

Ir (ws) =
1/(rttr ·min rtt)
∑

k∈s xk/rttk
,

Dr (ws) =
min rtt · (∑k∈s cwndk/rttk

)2

2rttr ·
∑

k∈s cwndk/rtt2k
. (15)

Thus, the corresponding performance parameters are

kr (xs) =
xr ·min rtt · (∑k∈s xk

)2

2 · rtt2r ·
∑

k∈s cwndk/rtt2k
,

φr (xs) =
2

min rtt2 · (∑k∈s xk
)2 . (16)

For readers to clearly follow the fairness analysis of the
ACA algorithm, we also give the model parameters of several
representative algorithms in Table II.

To take advantage of known theories, we prove that TCCC
satisfies the required constraints and verified that TCCC satis-
fies the required conditions (The specific details of conditions
from C0 to C5 are shown in [5].) as Coupled. Then, we prove
the friendliness and responsiveness performance of the scheme
according to the given theorems.

Firstly, we present “friendliness” performance of algorithms
by comparing values of Φr :

φCoupled
r ≤ φBALIA

r < φEWTCP
r < φTCP

r ,

φCoupled
r ≤ φTCCC

r < φEWTCP
r < φTCP

r . (17)

It can be easily deduced that when there are n subflows in
MPTCP, the order of the Φ value of algorithms is consistent
with the above. From the Theorem 1, we can prove that TCCC
and BALIA all behaves no better friendly than Coupled.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 12,2023 at 13:53:38 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: TCCC ALGORITHM FOR MPTCP IN MIXED TRANSMISSION OF LONG AND SHORT FLOWS 2659

Next, we compare the “responsiveness” performance of dif-
ferent algorithms. We suppose that all subflows of MPTCP
have the same RTT, then we obtain that

kr (x s)
TCCC =

xr
(∑

k∈s xk
)2

2
(∑

k∈s xk
) ≥ 1

2
x2r . (18)

Thus, for each s, we deserve:

Ks
TCCC ≥ Ks

BALIA ≥ Ks
Coupled . (19)

By comparing the Ks value and Φ̃s of different algo-
rithms, we prove that TCCC is more responsive than Coupled
based on the Theorem 2. However, when compared with
BALIA and EWTCP, we cannot directly achieve responsive-
ness performance according to the simplified theorem because
their relation of Ks and Φs are staggered. Thus, we utilize
the basic “Responsiveness” theorem to compare their λ(J

�
).

In the special cases where all states of MPTCP subflows are
equal, we have

λ
(
J
�
)BALIA ≤ λ

(
J
�
)TCCC ≤ λ

(
J
�
)TCP

. (20)

Therefore, we can be obtained that TCCC is more aggres-
sive than BALIA, but it still does not exceed TCP. The same
conclusion can also be proven when subflows have different
packet loss rates. Thus, we can conclude that TCCC maintains
fairness with TCP.

We must note that, the response to packet loss of the e-
NMCC algorithm is more involved than the model prescribes
and our analysis is carried out under special conditions. In the
next section, we present the performance through detailed sim-
ulation testing and actual tests in our testbed for more specific
measurements of the algorithm.

2) CSS Analysis: As the SS window adjustment follows a
simple formula, we prove its fairness performance by mathe-
matical deduction. We assume that there are a TCP connection
and an MPTCP connection with n subflows competing bottle-
neck bandwidth. The ssthresh value of TCP and MPTCP’s
subflow_r obtained by the estimation algorithm is ssth and
ssthr , respectively. The corresponding RTT is rtt, rttr , and
min rtt denotes the minimum rtt of all paths.

As for the uncoupled SS algorithms (e.g., LIA and BALIA),
their maximal throughput in SS is

∑r=n
r=1

ssthr
rttr

at the end
of SS, while the throughput of TCP is ssth

rtt . If rttr is the
same as rtt, it is reasonable to deduce that ssthr equals ssth.
Thus, MPTCP algorithms with uncoupled SS have n times
of throughput at the end of SS if the estimation of ssthresh is
accurate. If these algorithms don’t use the threshold estimation
method and set the ssthresh to its default value. Algorithms
usually suffer packet loss before reaching the value. MPTCP
algorithms with uncoupled SS still have a higher window
increase rate compared with TCP. While in CSS, it utilizes
con_ssth = max{ssthr} to actively enter the CA phase when
it achieves the expected throughput. Thus, the throughput of
CSS is con_ssth

min rtt , which equals the estimated throughput of
the best TCP connection. Besides, CSS continuously adjusts
the coupling factor of each subflow as a new MPTCP subflow
enters maintaining fairness during SS.

C. Ssthresh Estimation

In TCP, the SS phase aims to discover the available network
bandwidth effectively, and the ssthresh is the upper bound
of cwnd to prevent serious packet loss caused by burst data.
However, the SS ssthresh is still a fixed value in the exist-
ing network environment, which is highly likely to cause
continuous packet loss and performance degradation for TCP
transmission. There is some work devoted to finding a proper
ssthresh to solve the problem of continuous packet loss caused
by fixed values in TCP connection. In [37], Hoe et al.
revealed that data packets sent closely spaced may arrive at
the receiver at the rate of the bottleneck link bandwidth. Thus,
they proposed to calculate an approximation of the ssthresh
by using the least-squares estimation on three closely-spaced
ACKs received at the sender and their respective time of
receipt. Zhang et al. [32] proposed to adjust the value of
parameter ssthresh dynamically according to the bandwidth,
packet loss, and current RTT. With a reasonable approxima-
tion, our scheme can prevent the excessive window increase
that leads to multiple packet losses. Thus, it may improve
transmission reliability, reduce transmission delay, and ensure
friendliness among TCP and MPTCP.

Next, we discuss the impact of estimation accuracy, which
may decrease with the dynamic changes of networks, on CSS
algorithms. If the maximum throughput limitation is too low,
the sender would prematurely switch to the additive increase
mode, and the transfer time would be longer. If the approxi-
mation is too high, MPTCP and TCP both suffer packet loss
before reaching the ssthresh value. In this case, compared
with those decoupled schemes, our algorithm can still play
a role in reducing burst data for slowing down the window
increase rate. Therefore, we use the average estimated value
when the network is stable and choose a larger estimation
value to ensure transmission efficiency in dynamic networks.

D. Bottleneck Detection Problem

When the subflows of MPTCP do not share a bottle-
neck, using the principle of network fairness to couple the
growth of congestion window will significantly reduce the
transmission efficiency of MPTCP. To achieve higher algo-
rithm efficiency, we utilize the existing bottleneck detection
schemes to detect bottlenecks, and then decouple the growth
rate of subflows when they do not share bottlenecks. We
investigated the existing related works in bottleneck detec-
tion in detail and find three reliable solutions: DWC [38],
MPTCP-SBD [39], and SB-CC [35]. They detect bottlenecks
by observing delay increase and packet loss during the same
period, specifically, comparing three key statistics of one-way
delay, leveraging packet loss signals during the observation
window, and using ECN signals, respectively. Among them,
the SB-CC strategy is more reliable and more adaptable to
dynamic networks than others. Besides, SB-CC provides a sec-
ondary judgment process to ensure detection accuracy. Thus,
in scenarios that support ECN, we integrate our scheme with
SB-CC to improve the efficiency of MPTCP under shared bot-
tleneck and non-shared bottleneck scenarios. However, how
determining whether to use the coupling algorithm in the SS

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 12,2023 at 13:53:38 UTC from IEEE Xplore.  Restrictions apply. 



2660 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 3, SEPTEMBER 2023

Fig. 1. Topologies used for TCCC evaluation.

is still an unsolved problem. MPTCP is prone to packet losses
due to exponential growth of cwnd in SS when the buffer size
is small. Thus, we use a coupled algorithm in SS at the begin-
ning of the connection and change to an uncoupled algorithm
when detected that subflows do not share a bottleneck.

V. PERFORMANCE EVALUATION

In this section, we evaluate the effectiveness of TCCC on
short flows and long flows through the NS3 simulator and a
real testbed implemented with the Linux kernel of MPTCP.
In addition, the algorithms we used for performance compar-
ison are mainly LIA, LISA, BALIA, and e-NMCC. As in [3]
and [5], all TCP connections use the TCP NewReno algo-
rithm. In order to ensure the accuracy of data, we run each
experiment 50 times and present the average result and its
standard deviation. Next, we show the performance of TCCC
in simulation and the real platform, respectively.

A. Setup

First, we introduce the experimental environment topology
and related configurations in the two scenarios.

1) Simulation Setup: We evaluate our mechanism proposed
on NS3 simulator [40] with the MPTCP NS3 code provided
by google MPTCP group [41]. We consider two experimental
scenarios: the shared bottleneck scenario as shown in Fig. 1(a)
and the non-shared bottleneck scenario as shown in Fig. 1(b).
In the shared bottleneck scenario, there is an MPTCP connec-
tion with two subflows that shares a common bottleneck with
a TCP connection. Specifically, MPTCP client and MPTCP
server are both multi-homed, and they establish two subflows

between them. The TCP client and TCP server are single-
homed and they share a bottleneck from Route1 to Route2 with
MPTCP connection. BG client and BG server are to simulate
background traffic. Its bandwidth occupation fluctuation from
1% to 5% of the bottleneck bandwidth to simulate dynamic
networks.

In the non-shared bottleneck scenario, two subflows of
MPTCP travel through different bottlenecks independently,
and each subflow competes for bandwidth with one TCP con-
nection. The background traffic is generated the same as the
shared bottleneck scenario. Moreover, the bandwidth at the
bottleneck is set to 5Mbps and the delay is 30ms. The band-
width of other paths is 100Mbps and the delay is 10ms. The
buffer size at the bottleneck is set to 47 packets, which equals
the Bandwidth-Delay Product of the path. Besides, the packet
size is set to 1400 bytes in our simulations.

2) Testbed Setup: The real testbed is used to present the
performance of TCCC in real networks. We focus on the
shared bottleneck scenario and utilize the same topology as the
simulation shown in Fig. 1(a). The testbed includes eight PCs
running on 64 bits Ubuntu 16.04, and their roles are as follows:
one MPTCP client, one TCP client, two routers, two corre-
sponding servers using Apache2 [42], and two clients generate
background traffics. Both MPTCP client and MPTCP server
are implemented with the MPTCP 0.94 [43]. Background traf-
fic is a TCP connection made by iperf [44]. We use wget to
download files with a specific size and compare the average
download time and bandwidth share of MPTCP in the bottle-
neck. Besides, The link information is the same as that in the
software simulation.

B. NS3 Simulation

In this subsection, we show how TCCC performs in the
ns3 simulation environment. In this scenario, we simulate short
flows and long flows by file transfer. Specifically, we transfer
files with a number of packages less than 700 to simulate short
flows and transfer files that are larger than 10000 packets to
simulate long flows. We consider both shared bottleneck and
non-shared bottleneck situations and present the efficiency of
algorithms with varying buffer sizes and file sizes.

1) Short Flows: We first show the performance of TCCC
for short flows by downloading small files (less than 1MB).
We consider both the impact of file size and buffer size of
the bottleneck on transmission efficiency. Next, we present
the performance under shared bottleneck and non-shared
bottleneck scenarios, respectively.

Shared Bottleneck Scenario: To show the performance of
our algorithm on short flows in the shared bottleneck sce-
nario, we set the bottleneck buffer size to 47 packets and
download files of different sizes from 100 packets (140KB) to
700 packets (980KB) with an interval of 200 packets between
each one. Fig. 2(a) shows the average file completion time and
Fig. 2(b) shows the corresponding retransmissions. We can
observe that by coupling SS and slowing down the growth rate
of the congestion window, TCCC suffers less packet loss and
completes the file transfer within a shorter time. Specifically,
compared with LIA, TCCC reduces the download time by

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 12,2023 at 13:53:38 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: TCCC ALGORITHM FOR MPTCP IN MIXED TRANSMISSION OF LONG AND SHORT FLOWS 2661

Fig. 2. File transfer with fixed buffer size (47 packets) in the shared
bottleneck scenario.

Fig. 3. File transfer with fixed file size (400 packets) in the shared bottleneck
scenario.

0.5s on average and 2.2s in the best case. It also reduces the
download time by 0.4s compared with e-NMCC. When the
number of packets is smaller than 100, the transmission com-
pletion time of LISA is less than that of LIA and BALIA, since
LISA removes the excessive increase of new-added subflow.
As the file size increases (larger than 100 packets), LISA per-
forms badly because it is unable to solve packet losses caused
by exponential window increments.

Since the buffer size of the bottleneck can significantly
affect the performance of short flows, we change the buffer
size at the bottleneck to evaluate the adaptability of TCCC in
various network environments. Specifically, we vary the buffer
size from 20 to 80 packets (200% of the path’s BDP) and
download the file size of 400 packets (560KB). The average
file completion time and the corresponding retransmissions
are shown in Fig. 3(a) and Fig. 3(b), respectively. It can be
observed that with the increase in buffer size, the completion
time of all algorithms decreases. This is because a larger buffer

can accommodate more burst data and reduce the possibility
of packet loss. Thus, with a larger buffer size, these algorithms
can reduce the number of retransmitted packets and complete
the transmission earlier. When the buffer size is 20 packets,
the completion time of all algorithms is larger, since all the
algorithms suffer more packet loss than in the case where the
buffer is small. In this case, TCCC still performs best and it
reduces the completion time by about 1s compared with the
worst one. When the buffer size exceeds 40 packets, TCCC
can drastically reduce packet loss, and continuously bring a
goodput gain over LIA and BALIA, e.g., up to 40% at the
buffer size of 60 packets. From Fig. 3(b), we can observe that
the number of retransmissions of TCCC decreases significantly
with the increase in buffer size. When the buffer varies from
40 packets to 60 packets, the number of retransmitted pack-
ets of TCCC is reduced by 57.45%. When the buffer size is
80 packets, TCCC experiences no packet loss. Therefore, its
completion time reaches the minimum. These minimums are
caused by their upper bounds on total cwnd, i.e., the ssthresh
and con_ssth.

In order to avoid buffer overflow at the bottleneck, TCCC
sets con_ssth to exit SS in advance and enter the CA phase
smoothly. However, this may lead to throughput reduction of
MPTCP when it exits SS with a too-small cwnd. To eval-
uate the impact of this tradeoff, we test how the Sum of
cwnd of MPTCP algorithms varies with the buffer size at
the bottleneck after 400 packets (560kb) are transmitted. As
shown in Fig. 3(c), with the increase of buffer size, the Sum
of cwnd of all algorithms increases. Specifically, when the
buffer size varies from 20 packets to 80 packets, the Sum of
cwnd of TCCC, e-NMCC, LIA, and TCP increases by 30.77%,
24.14%, 36.73%, and 45.45%, respectively. When the buffer
size increases from 20 packets to 60 packets, the Sum of cwnd
of TCCC is still the largest of all algorithms. This is because
it couples the increment of cwnd and reduces the packet loss
in transmission. Therefore, the window drops down caused by
packet loss is less than that of other algorithms, which results
in a larger final Sum of cwnd. However, when the window size
is 80 packets, TCCC is inferior to LIA and BALIA because
the larger buffer can also reduce packet loss. Although TCCC
does not perform well when the buffer size is too large, it is
still better than e-NMCC, and it is best when the buffer is
small.

Non-shared Bottleneck Scenario: In this part, we present the
performance of different algorithms in a non-shared bottleneck
scenario. At first, we fix the buffer size from Route1 to Route2
to 47 packets(one BDP) and vary the file size from 100 packets
(140KB) to 700 packets (980KB). Fig. 4(a) and Fig. 4(b) show
the average completion time and the corresponding retrans-
missions, respectively. We observe that TCCC performs better
and reduces the completion time by about 1.2s on average
as compared with other algorithms, which is mainly due to
the decrease in retransmissions. Specifically, TCCC reduces
the transmission time of the file with 300 packets by 42.37%,
42.35%, 46.71%, and 17.87% as compared with LIA, BALIA,
LISA, and e-NMCC, respectively.

To evaluate the adaptability of TCCC in a non-shared bot-
tleneck scenario, we vary the bottleneck buffer size from

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 12,2023 at 13:53:38 UTC from IEEE Xplore.  Restrictions apply. 



2662 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 3, SEPTEMBER 2023

Fig. 4. File transfer with fixed buffer size (47 packets) in the non-shared
bottleneck scenario.

Fig. 5. File transfer with fixed file size (400 packets) in the non-shared
bottleneck scenario.

20 packets to 80 packets to download the file with the size of
400 packets (560KB). Fig. 5(a) shows the average completion
time and Fig. 5(b) shows the corresponding retransmissions.
With the increase in buffer size, the number of retransmit-
ted packets of TCCC decreases significantly. When the buffer
size is smaller than 60 packets, TCCC reduces packet loss
and brings a goodput gain of up to 45.35% as compared
to LIA. When the buffer size exceeds 60 packets, TCCC is
inferior to other algorithms. The reason is the same as in a
shared bottleneck scenario with a large buffer size. We can
also conclude that the buffer size of the bottleneck also has
a significant effect on the transmission of short flows in a
non-shared bottleneck scenario.

Though the con_ssth is good for short flows, it may hurt
the performance of MPTCP for long flows when its subflows
do not share a bottleneck. We present how the Sum of cwnd
varies with the buffer size at the bottleneck after completing
the transfer of 400 packets (560KB). As shown in Fig. 5(c),

when the buffer size is smaller than 60 packets, TCCC has a
larger Sum of cwnd than other algorithms. That means, TCCC
can still improve the transmission efficiency of long streams
when the buffer size is less than 60 packets. However, when
the buffer size exceeds 60 packets, the buffer is large enough
to prevent LIA, BALIA, and LISA from packet loss during
SS. As a result, these algorithms perform better than TCCC
for a higher cwnd. Although the performance of TCCC is not
ideal when the buffer size is large, it still performs best when
the buffer size is very small and this problem can be solved
by accurate threshold detection.

We can conclude that using coupled SS can effectively
reduce packet loss caused by burst data and improve the trans-
mission efficiency of short flows when the buffer is small. We
also demonstrate that the buffer size has a significant impact
on the transmission of short streams. TCCC not only performs
well in shared bottleneck scenarios but also works in non-
shared bottleneck scenarios when the buffer size is smaller
than BDP. Specifically, TCCC can reduce the transmission
time by about 1.5s compared with LIA and BALIA, and its
completion time is 17.87% lower than e-NMCC at the best
time.

2) Long Flows: Then, we show the effect of our algo-
rithm on long flows by downloading larger files (larger than
10MB). We also consider the impact of different file sizes
and buffer sizes on transmission efficiency. As there are only
two flows (MPTCP flow and TCP flow) competing bottleneck
bandwidth in our testing, we show the fairness performance
of algorithms by comparing the bandwidth occupation ratio
of each algorithm to TCP. Although the presentation pat-
tern is different, the result is consistent with that of using
Jain’s fairness index [45]. Moreover, we evaluate the algorithm
performance in both the shared Bottleneck and non-shared
Bottleneck scenarios.

Shared Bottleneck Scenario: Similar to tests on short flows,
we first present the performance of MPTCP algorithms in
the shared bottleneck scenario. We fix the size of the buffer
to 47 packets and download the data of different sizes
from 10000 packets (14MB) to 50000 packets (70MB), and
the result is shown in Fig. 6(a). By comparing the aver-
age file completion time, We can deserve that TCCC with
a more aggregative increasing factor is superior to other algo-
rithms and completes the transmission earlier. Specifically,
TCCC reduces the transmission time by 28.83% as com-
pared with LIA, and by 9.77% with e-NMCC in downloading
10000 packets situation.

Then, to show the impact of buffer size on the long flows,
we adjust the buffer size from 20 to 80 packets to download the
same data with 10000 packets. As can be seen from Fig. 6(b),
the effect of buffer size on the completion time of long flows
is less significant than that of short flows. When the buffer is
larger than 40 packets, the completion time does not decrease
with the increase in the buffer size, because the window adjust-
ment has reached a relatively stable state in long flows. When
the buffer is 20 packets, the completion time of each algo-
rithm is larger than that of other buffer sizes because of burst
data. Thus, when the buffer is limited, long flows will also suf-
fer packet loss and retransmissions. Anyway, TCCC still has

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 12,2023 at 13:53:38 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: TCCC ALGORITHM FOR MPTCP IN MIXED TRANSMISSION OF LONG AND SHORT FLOWS 2663

Fig. 6. The performance of long flows in the shared bottleneck scenarios.

less completion time than LIA, BALIA, and e-NMCC under
buffer changing scenarios. We take a buffer size of 40 pack-
ets as an example: TCCC reduces the transmission time by
28.57% compared with LIA, by 25.7% compared with LISA,
and by 14.67% compared with e-NMCC.

To verify the fairness of MPTCP algorithms, we compare
the bandwidth ratio of a single TCP and MPTCP. In this situa-
tion, TCP starts to transmit at the beginning of the simulation
like MPTCP and ends at the same time when MPTCP com-
pletes the transmission to fairly compare the performance of
TCP and MPTCP algorithms. Besides, we compare the band-
width ratio of each MPTCP algorithm compared with TCP,
where we take the average throughput of all algorithms under
test as their bandwidth and then calculate the bandwidth pro-
portion. From Fig. 6(c) we can see that TCCC’s bandwidth
share is not more than TCP, but the bandwidth share of TCCC
is improved compared with other algorithms. It is because
other algorithms restrict the increment of cwnd in CA to sat-
isfy the second design goal of MPTCP congestion control.
Therefore, TCCC can improve the competitiveness of MPTCP
and make full use of bandwidth resources without affecting the
efficiency of TCP.

In general, for long flow transmission, TCCC performs
well at the shared bottleneck in the simulation environ-
ment. Through the relevant test, we can conclude that the
more aggressive window adjustment factors of TCCC in the
CA phase can improve its competitiveness at the bottleneck.
Compared with LIA and BALIA, it can improve the transmis-
sion efficiency of MPTCP at the bottleneck based on ensuring
fairness with TCP. Moreover, different from the transmis-
sion of short flows, buffer size has little effect on long flow
transmission.

Fig. 7. The performance of long flows in the non-shared bottleneck scenario.

Non-shared Bottleneck Scenario: In this part, we present the
efficiency of our algorithm in the non-shared bottleneck sce-
nario. We still consider the impact of different file sizes and
buffer sizes and present the fairness of our algorithm by com-
paring the bandwidth ratio of a single TCP. Besides, TCCC+
and e-NMCC+ represent the algorithm that uses coupled algo-
rithms in SS and decouples in CA, which aims to present the
effect of algorithms with bottleneck detection mechanisms.

First of all, we fix the size of the buffer to 100 packets
(one BDP) and study the efficiency of algorithms by down-
loading different sizes of data. We download files with the
size of 10000 packets to 50000 packets and repeat the exper-
iment fifty times to obtain the average completion time as the
final download time. As shown in Fig. 7(a), TCCC can still
effectively reduce the file download time in the non-shared
bottleneck scenario. Specifically, TCCC can reduce file down-
load time by 13.13% compared with LIA when the file size
is 30000 packets. Moreover, in the sharing bottleneck sce-
nario, the gap between TCCC, and LIA is smaller and LIA
performs better than LISA. For example, when the file size
is 30000 packets, the gap between LIA and TCCC is reduced
from 31.55% to 13.13% compared with the sharing bottleneck.
This is because the coupled SS makes the window growth
slower than the uncoupled SS algorithms, while the packet loss
caused by burst data in the non-shared bottleneck scenario is
less than that in the shared scenario.

To show the results after using bottleneck detection algo-
rithms, we still use the coupled SS for TCCC and e-NMCC,
but we assume that the bottleneck detection is completed after
the subflow enters the CA phase, and then uses the decoupled
window adjustment method. The TCCC and e-NMCC using
the decoupled algorithm if subflows do not share a bottleneck
after bottleneck detection is called TCCC+ and e-NMCC+.
We can see that TCCC+ and e-NMCC+ can greatly reduce
the completion time of files compared with LIA and BALIA,
and TCCC+ performs better than e-NMCC+. Besides, when
the file size is fixed and the buffer size is gradually increased,
we observe that similar to the shared bottleneck scenario, the
impact of buffer size on the average completion time of a file
is relatively small, so we do not present the results anymore.

We also study the fairness performance of MPTCP algo-
rithms in non-shared bottleneck scenarios. By comparing the
bandwidth value of MPTCP with that of TCP flows, we calcu-
late the bandwidth ratio of MPTCP algorithms relative to the
sum of TCP1 and TCP2. As shown in Fig. 7(b), the coupled

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 12,2023 at 13:53:38 UTC from IEEE Xplore.  Restrictions apply. 



2664 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 3, SEPTEMBER 2023

Fig. 8. Long flows Performance in shared bottleneck under our testbed.

TABLE III
BANDWIDTH RATIO OF MPTCP TO TCP USING WGET

TESTING IN SHARED BOTTLENECK SCENARIO

congestion algorithms will seriously damage the efficiency
of MPTCP when the subflows are not sharing bottlenecks.
Coupled SS with decoupled CA can still effectively improve
the efficiency of MPTCP in non-shared bottleneck scenarios.

C. Real Testbed

In this part, we present the performance of TCCC in our
testbed, where we consider two aspects including file com-
pletion time and real-time transfer rate. First, we show the
transmission efficiency of TCCC under the shared bottle-
neck scenario, and the topology is shown in Fig. 1(a). In the
non-shared bottleneck scenario, we consider an asymmetric
environment shown in Fig. 10, where two subflows of MPTCP
have a large difference in transmission delay.

Firstly, We use wget to download files of different sizes from
32MB to 128MB and present the mean download time and cor-
responding bandwidth ratio during transmission, respectively.
From Fig. 8, we can see that TCCC and e-NMCC can effec-
tively reduce the download time as compared with LIA and
BALIA. Specifically, when downloading 128MB, TCCC can
reduce the time by 20.16% and 9.05% as compared with LIA
and BALIA, and it can also bring a better goodput by 2.97%
as compared with e-NMCC.

To analyze the fairness of algorithms in the transmission
process, we record the bandwidth during the transmission of
128MB and show the bandwidth ratio to TCP of each algo-
rithm in Table III. We can see that, in the whole transmission
process, LIA can only get 80.4% bandwidth compared with
TCP. And its weak competitiveness at the bottleneck is the
main reason for the longer transfer time. TCCC, whose band-
width ratio value is 0.9799, ensures fairness with TCP sharing
the same bottleneck while reducing the transmission time com-
pared with other algorithms. Thus, we can conclude that TCCC
can significantly improve the transmission efficiency compared
with LIA and BALIA for the transmission of long flows.

In addition to comparing the achieved bandwidth at the end
of file transmission, we also use iperf to initiate both MPTCP
and TCP connections at the same time and record the aver-
age bandwidth per second in a duration of 100s to present

Fig. 9. Fairness performance of different MPTCP congestion algorithms at
the bottleneck within 100s.

the bandwidth changes of each algorithm. From Fig. 9 we
can see that the bandwidth of LIA is lower than that of TCP
until 75s, and BALIA can reach almost the same bandwidth
as TCP in 12s. As for e-NMCC and TCCC, TCP connection
has no obvious advantage at the beginning of transmission. By
comparing the curves of TCCC and e-NMCC, we deserve that
TCCC is smoother than e-NMCC. Thus, we can conclude that
in the real testbed, TCCC can not only ensure fairness with
TCP at the bottleneck but also has stronger competitiveness
and effectively reduces the file transfer time. It also achieves
fairness faster than LIA and BALIA and has a smoother
window adjustment compared with e-NMCC. We repeat the
tests twenty times to present the fairness performance of each
algorithm. Specifically, we calculate the average value and
fluctuations of the throughput ratio obtained by MPTCP rela-
tive to that obtained by TCP, which is shown in Table IV. We
can obtain that TCCC performs best in fairness.

Finally, to further demonstrate the usability of TCCC in a
practical environment, we also consider the performance of
MPTCP when two subflows are heterogeneous. We study the
performance of algorithms in the asymmetric scenario, where
we utilize the topology as shown in Fig. 10. The link con-
ditions of the two subflows are as follows: the bandwidth of

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 12,2023 at 13:53:38 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: TCCC ALGORITHM FOR MPTCP IN MIXED TRANSMISSION OF LONG AND SHORT FLOWS 2665

TABLE IV
BANDWIDTH RATIO OF MPTCP TO TCP USING IPERF

TESTING IN SHARED BOTTLENECK

Fig. 10. The asymmetric testing topology.

Fig. 11. The performance of algorithms in the asymmetric scene.

subflow1 is 5Mb and the latency is 10ms, while those of sub-
flow2 are 10Mb and 50ms. We download the files of sizes
from 10000 packets to 30000 packets and record the average
completion time. From Fig. 11, we can perceive that BALIA,
which performs better than LIA on fairness performance with
TCP, performs poorly in the asymmetric scenario. For the
transmission of 30000 packets, it takes about 10s more than
TCCC to complete the transmission. Compared with LIA,
BALIA, and e-NMCC, TCCC still improves the algorithm
efficiency in the non-shared bottleneck scenario, and it still
performs well in asymmetric paths.

VI. CONCLUSION

In this paper, we considered the fairness and responsibil-
ity of MPTCP for both short and long flows. We proposed
a throughput consistency congestion control method named
TCCC, which consists of CSS and ACA algorithms. CSS cou-
ples the window adjustment of subflows to reduce the burst
data caused by the exceptional increment of cwnd in SS and
resets the Ssthresh to safely enter the CA phase. ACA com-
putes a more aggressive window adjustment factor in the CA
phase to compete for more bandwidth on the condition of
ensuring fairness. By testing the performance of short flows
and long flows, we show the performance of TCCC in both
shared bottleneck and non-shared bottleneck scenarios in soft-
ware simulation and our testbed. Our results verify that for
both long flows and short flows, wherever they are in shared

bottleneck or non-shared bottleneck scenarios, TCCC ensures
fairness and high throughput for MPTCP.

REFERENCES

[1] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving datacenter performance and robustness with
multipath TCP,” ACM SIGCOMM Comput. Commun. Rev., vol. 41, no. 4,
pp. 266–277, 2011.

[2] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design, imple-
mentation and evaluation of congestion control for multipath TCP,” in
Proc. USENIX Symp. Netw. Syst. Des. Implement. (NSDI), vol. 11, 2011,
pp. 99–112.

[3] C. Raiciu, M. J. Handley, and D. Wischik, “Coupled congestion control
for multipath transport protocols,” IETF, RFC 6356, 2011. Accessed:
Jan. 2023. [Online]. Available: https://www.ietf.org/rfc/rfc6356.txt

[4] R. Khalili, N. Gast, M. Popovic, and J.-Y. Le Boudec, “MPTCP is not
Pareto-optimal: Performance issues and a possible solution,” IEEE/ACM
Trans. Netw., vol. 21, no. 5, pp. 1651–1665, Oct. 2013.

[5] Q. Peng, A. Walid, J. Hwang, and S. H. Low, “Multipath TCP: Analysis,
design, and implementation,” IEEE/ACM Trans. Netw., vol. 24, no. 1,
pp. 596–609, Feb. 2016.

[6] A. M. Abdelmoniem and B. Bensaou, “Hysteresis-based active queue
management for TCP traffic in data centers,” in Proc. IEEE Int. Conf.
Comput. Commun. (INFOCOM), 2019, pp. 1621–1629.

[7] B. Hesmans, H. Tran-Viet, R. Sadre, and O. Bonaventure, “A first look
at real multipath TCP traffic,” in Proc. Int. Workshop Traffic Monitor.
Anal. (TMA), 2015, pp. 233–246.

[8] T. Kato, A. Diwakar, R. Yamamoto, S. Ohzahata, and N. Suzuki,
“Experimental analysis of MPTCP congestion control algorithms; LIA,
OLIA and BALIA,” in Proc. Int. Conf. Theory Pract. Modern Comput.
(TPMC), 2019, pp. 135–142.

[9] R. Barik, M. Welzl, S. Ferlin, and O. Alay, “LISA: A linked slow-start
algorithm for MPTCP,” in Proc. IEEE Int. Conf. Commun. (ICC), 2016,
pp. 1–7.

[10] Q. Li, M. Dong, and P. B. Godfrey, “Halfback: Running short flows
quickly and safely,” in Proc. Int. Conf. Emerg. Netw. Exp. Technol.
(CoNEXT), 2015, pp. 1–13.

[11] Y. Thomas, M. Karaliopoulos, G. Xylomenos, and G. C. Polyzos,
“Low latency friendliness for multipath TCP,” IEEE/ACM Trans. Netw.,
vol. 28, no. 1, pp. 248–261, Feb. 2020.

[12] M. Kheirkhah, I. Wakeman, and G. Parisis, “Short vs. long flows: A
battle that both can win,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 45, no. 4, pp. 349–350, 2015.

[13] C. Lee, J. Jung, and J.-M. Chung, “DEFT: Multipath TCP for high
speed low latency communications in 5G networks,” IEEE Trans. Mobile
Comput., vol. 20, no. 12, pp. 3311–3323, Dec. 2021.

[14] W. Li, H. Zhang, S. Gao, C. Xue, X. Wang, and S. Lu, “SmartCC: A
reinforcement learning approach for multipath TCP congestion control in
heterogeneous networks,” IEEE J. Sel. Areas Commun., vol. 37, no. 11,
pp. 2621–2633, Nov. 2019.

[15] Z. Xu, J. Tang, C. Yin, Y. Wang, and G. Xue, “Experience-driven
congestion control: When multi-path TCP meets deep reinforcement
learning,” IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1325–1336,
Jun. 2019.

[16] S. R. Pokhrel and A. Walid, “Learning to harness bandwidth with
multipath congestion control and scheduling,” IEEE Trans. Mobile
Comput., vol. 22, no. 2, pp. 996–1009, Feb. 2023.

[17] B. He et al., “DeepCC: Multi-agent deep reinforcement learn-
ing congestion control for multi-path TCP based on self-attention,”
IEEE Trans. Netw. Service Manag., vol. 18, no. 4, pp. 4770–4788,
Dec. 2021.

[18] J. Zhao, J. Liu, H. Wang, and C. Xu, “Multipath TCP for datacenters:
From energy efficiency perspective,” in Proc. IEEE Int. Conf. Comput.
Commun. (INFOCOM), 2017, pp. 1–9.

[19] M. Kheirkhah, I. Wakeman, and G. Parisis, “MMPTCP: A multipath
transport protocol for data centers,” in Proc. IEEE Int. Conf. Comput.
Commun. (INFOCOM), 2016, pp. 1–9.

[20] P. Dong et al., “Reducing transport latency for short flows with multipath
TCP,” J. Netw. Comput. Appl., vol. 108, pp. 20–36, Apr. 2018.

[21] J. Mo and J. Walrand, “Fair end-to-end window-based conges-
tion control,” IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 556–567,
Oct. 2000.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 12,2023 at 13:53:38 UTC from IEEE Xplore.  Restrictions apply. 



2666 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 3, SEPTEMBER 2023

[22] Y. Wang, K. Xue, H. Yue, J. Han, Q. Xu, and P. Hong, “Coupled slow-
start: Improving the efficiency and friendliness of MPTCP’s slow-start,”
in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2017, pp. 1–6.

[23] V. Jacobson. “Modified TCP congestion avoidance algorithm.” 1990.
[Online]. Available: http://www.postel.org/pipermail/end2end-interest/

[24] A. Gurtov, T. Henderson, S. Floyd, and Y. Nishida, “The NewReno
modification to TCP’s fast recovery algorithm,” IETF, RFC 6582,
2012. Accessed: Jan. 2023. [Online]. Available: https://www.ietf.org/rfc/
rfc6582.txt

[25] T. Kelly, “Scalable TCP: Improving performance in highspeed wide area
networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 33, no. 2,
pp. 83–91, 2003.

[26] S. Ha, I. Rhee, and L. Xu, “CUBIC: A new TCP-friendly high-speed
TCP variant,” ACM Spec. Interest Group Oper. Syst. Rev., vol. 42, no. 5,
pp. 64–74, 2008.

[27] W. Sun, L. Xu, S. Elbaum, and D. Zhao, “Model-agnostic and effi-
cient exploration of numerical congestion control state space of real-
world TCP implementations,” IEEE/ACM Trans. Netw., vol. 29, no. 5,
pp. 1990–2004, Oct. 2021.

[28] M. Chen, R. Li, J. Crowcroft, J. Wu, Z. Zhao, and H. Zhang, “RAN
information-assisted TCP congestion control using deep reinforcement
learning with reward redistribution,” IEEE Trans. Commun., vol. 70,
no. 1, pp. 215–230, Jan. 2022.

[29] S. Fu and M. Atiquzzaman, “SCTP: State of the art in research, prod-
ucts, and technical challenges,” IEEE Commun. Mag., vol. 42, no. 4,
pp. 64–76, Apr. 2004.

[30] M. Honda, Y. Nishida, L. Eggert, P. Sarolahti, and H. Tokuda, “Multipath
congestion control for shared bottleneck,” in Proc. Int. Workshop
Protocols Future Large-Scale Diverse Netw. Transports (PFLDNT),
vol. 357, 2009, p. 378.

[31] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, and D. Towsley, “Multi-
path TCP: A joint congestion control and routing scheme to exploit
path diversity in the Internet,” IEEE/ACM Trans. Netw., vol. 14, no. 6,
pp. 1260–1271, Dec. 2006.

[32] D.-G. Zhang, K. Zheng, D.-X. Zhao, X.-D. Song, and X. Wang, “Novel
quick start (QS) method for optimization of TCP,” Wireless Netw.,
vol. 22, no. 1, pp. 211–222, 2016.

[33] W. Bai, S. Hu, K. Chen, K. Tan, and Y. Xiong, “One more config
is enough: Saving (DC)TCP for high-speed extremely shallow-buffered
datacenters,” IEEE/ACM Trans. Netw., vol. 29, no. 2, pp. 489–502,
Apr. 2021.

[34] P. Dong, J. Wang, J. Huang, H. Wang, and G. Min, “Performance
enhancement of multipath TCP for wireless communications with
multiple radio interfaces,” IEEE Trans. Commun., vol. 64, no. 8,
pp. 3456–3466, Aug. 2016.

[35] W. Wei, K. Xue, J. Han, D. S. L. Wei, and P. Hong, “Shared bottleneck-
based congestion control and packet scheduling for multipath TCP,”
IEEE/ACM Trans. Netw., vol. 28, no. 2, pp. 653–666, Apr. 2020.

[36] M. Allman, “TCP byte counting refinements,” ACM SIGCOMM Comput.
Commun. Rev., vol. 29, no. 3, pp. 14–22, 1999.

[37] J. C. Hoe, “Improving the start-up behavior of a congestion control
scheme for TCP,” ACM SIGCOMM Comput. Commun. Rev., vol. 26,
no. 4, pp. 270–280, 1996.

[38] S. Hassayoun, J. Iyengar, and D. Ros, “Dynamic window coupling for
multipath congestion control,” in Proc. IEEE Int. Conf. Netw. Protocols
(ICNP), 2011, pp. 341–352.

[39] S. Ferlin, Ö. Alay, T. Dreibholz, D. A. Hayes, and M. Welzl, “Revisiting
congestion control for multipath TCP with shared bottleneck detec-
tion,” in Proc. IEEE Int. Conf. Comput. Commun. (INFOCOM), 2016,
pp. 1–9.

[40] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” in
Modeling and Tools for Network Simulation. Berlin, Germany: Springer,
2010, pp. 15–34.

[41] “MPTCP NS3 code.” Accessed: Jan. 2023. [Online]. Available: http://
code.google.com/p/mptcp-ns3/

[42] “Apache2.” Accessed: Jan. 2023. [Online]. Available: https://www.
apache.org/

[43] “Multipath TCP—Linux kernel implementation.” Accessed: Jan. 2023.
[Online]. Available: http://www.multipath-tcp.org/

[44] “Iperf.” Accessed: Jan. 2023. [Online]. Available: https://iperf.fr/
[45] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe, “A quantita-

tive measure of fairness and discrimination for resource alloca-
tion in shared computer systems,” Eastern Res. Lab., Digit. Equip.
Corp., Hudson, MA, USA, Rep. DEC-TR-301, 1984. Accessed:
Jan. 2023. [Online]. Available: https://ocw.cs.pub.ro/courses/_media/
isrm/laboratoare/new/a_quantitative_measure_of_fairness_and_d.pdf

Jiayu Yang (Graduate Student Member, IEEE)
received the B.S. degree in information security
from the School of Cyber Security, University
of Science and Technology of China in 2019,
where she is currently pursuing the Ph.D. degree
in information Security with the School of Cyber
Science and Technology. Her research interests
include future Internet architecture design, transmis-
sion optimization, and network security.

Jiangping Han (Member, IEEE) received the B.S.
and Ph.D. degrees from the Department of Electronic
Engineering and Information Science, USTC in
2016 and 2021, respectively, where she is currently
a Postdoctoral Fellow with the School of Cyber
Science and Technology. From November 2019 to
October 2021, she was a Visiting Scholar with the
School of Computing, Informatics, and Decision
Systems Engineering, Arizona State University. She
is currently a Postdoctoral Researcher with the
School of Cyber Science and Technology, USTC.

Her research interests include future Internet architecture design and trans-
mission optimization.

Kaiping Xue (Senior Member, IEEE) received
the bachelor’s degree from the Department of
Information Security, University of Science and
Technology of China (USTC) in 2003, and the
Ph.D. degree from the Department of Electronic
Engineering and Information Science, USTC in
2007. From May 2012 to May 2013, he was
a Postdoctoral Researcher with Department of
Electrical and Computer Engineering, University of
Florida. He is currently a Professor with the School
of Cyber Science and Technology, USTC. He has

authored and coauthored more than 100 technical papers in various archival
journals and conference proceedings. His research interests include next gen-
eration Internet architecture design, transmission optimization, and network
security. He serves on the editorial board of several journals, including
the IEEE TRANSACTIONS OF DEPENDABLE AND SECURE COMPUTING,
the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, and IEEE
TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. He has also
served as a (Lead) Guest Editor for many reputed journals/magazines, includ-
ing IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, IEEE
Communications Magazine, and IEEE NETWORK. He is an IET Fellow.

Yansen Wang received the bachelor’s degree from
the Department of Communication Engineering,
University of Electronic Science and Technology
of China in 2015, and the master’s degree from
the Department of Electronic Engineering and
Information Science, USTC. He is currently an
Engineer with the Natural Language Processing
Research Department, Meituan Group, China. His
research interests include transmission optimization
and natural language processing.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 12,2023 at 13:53:38 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: TCCC ALGORITHM FOR MPTCP IN MIXED TRANSMISSION OF LONG AND SHORT FLOWS 2667

Jian Li (Member, IEEE) received the bachelor’s
degree from the Department of Electronics and
Information Engineering, Anhui University in 2015,
and the Ph.D. degree from the Department of
Electronic Engineering and Information Science,
University of Science and Technology of China
(USTC) in 2020. From November 2019 to November
2020, he was a Visiting Scholar with the Department
of Electronic and Computer Engineering, University
of Florida. From December 2020 to October 2022,
he was a Postdoctoral Researcher with the School

of Cyber Science and Technology, USTC, where he is currently an Associate
Researcher. His research interests include wireless networks, next-generation
Internet, and quantum networks.

Yitao Xing (Graduate Student Member, IEEE)
received the B.S. degree in information security
from the School of the Gifted Young, University of
Science and Technology of China in 2018, where
he is currently pursuing the Ph.D. degree with
the School of Cyber Science and Technology. His
research interests include future Internet architecture
and transmission optimization.

Hao Yue (Member, IEEE) received the B.Eng.
degree in telecommunication engineering from
Xidian University, Xi’an, China, in 2009, and the
Ph.D. degree in electrical and computer engineer-
ing from the University of Florida, Gainesville,
FL, USA, in 2015. He is currently an Associate
Processor with the Department of Computer Science,
San Francisco State University, San Francisco, CA,
USA. His research interests include cyber-physical
systems, cybersecurity, wireless networking, and
mobile computing.

David S. L. Wei (Life Senior Member, IEEE)
received the Ph.D. degree in computer and
information science from the University of
Pennsylvania in 1991. From May 1993 to August
1997, he was on the Faculty of Computer Science
and Engineering, University of Aizu, Japan, (as
an Associate Professor and then a Professor).
He is currently a Professor with the Computer
and Information Science Department, Fordham
University. He has authored and coauthored more
than 140 technical papers in various archival

journals and conference proceedings. He currently focuses his research
efforts on cloud and edge computing, cybersecurity, and quantum computing
and communications. He is the recipient of IEEE Region 1 Technological
Innovation Award (Academic) in 2020, for contributions to information
security in wireless and satellite communications and cyber-physical systems.
He was a Lead Guest Editor or a Guest Editor for several special issues
in the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS,
the IEEE TRANSACTIONS ON CLOUD COMPUTING, and the IEEE
TRANSACTIONS ON BIG DATA. He also served as an Associate Editor for
IEEE TRANSACTIONS ON CLOUD COMPUTING from 2014 to 2018, an
Editor of IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS

for the Series on Network Softwarization and Enablers from 2018 to 2020,
and an Associate Editor of Journal of Circuits, Systems and Computers
from 2013 to 2018. He is a member of ACM and AAAS and a Life Senior
Member of IEEE Computer Society and IEEE Communications Society.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 12,2023 at 13:53:38 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


