
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 16, NO. 4, DECEMBER 2019 1651

Availability Aware VNF Deployment in Datacenter
Through Shared Redundancy and Multi-Tenancy

Defang Li , Student Member, IEEE, Peilin Hong , Kaiping Xue , Senior Member, IEEE, and Jianing Pei

Abstract—By means of network function virtualization (NFV),
dedicated proprietary network devices can be implemented
as software and instantiated flexibly on common-off-the-shelf
servers, in the form of virtual network functions (VNF). NFV
can bring great cost reduction as well as operation flexibility.
However, it also brings new problems, one of which is how to
meet the availability of network services in the VNF deployment
process, because of the error prone nature of software. The avail-
ability aware VNF deployment problem has attracted attention
by academics, and reserving redundancy has been treated as the
de facto technology. Compared with traditional backup schemes
for physical machines, resource orchestration in NFV is more
flexible and the characteristics of software should be considered
to improve resource utilization efficiency. Based on the above con-
siderations, in this paper we further study the availability aware
VNF deployment problem in datacenter networks. To improve the
resource utilization efficiency, the sharing mechanism of redun-
dancy and multi-tenancy technology are taken into account. Then
we formulate the problem mathematically and propose a joint
deployment and backup scheme (JDBS). Finally, we conduct a
numerical simulation in detail and compare it with four con-
trasting schemes in the existing literature. The simulation results
show that JDBS is obviously superior to the contrasting schemes
and can save about 40% resources at most.

Index Terms—Network function virtualization, VNF deploy-
ment, SFC, availability aware, multi-tenancy, redundancy
sharing.

I. INTRODUCTION

NETWORK function virtualization (NFV) can transform
traditional network devices into software and instan-

tiate them on common-off-the-shelf servers [1], [2], which
enhances the flexibilities and conveniences of cloud services.
By leveraging this new technology, many small and medium
businesses can outsource their IT infrastructures to the cloud,
which can save a great of capital expenditures and operat-
ing expenses (CAPEX/OPEX) as a result [3], [4]. For cloud
service providers (CSP), NFV improves their resource utiliza-
tion efficiency and management flexibility. Generally, network

Manuscript received May 6, 2019; revised August 2, 2019; accepted
August 14, 2019. Date of publication August 20, 2019; date of current
version December 10, 2019. The work is supported in part by National
Natural Science Foundation of China (NSFC) under Grants No.61671420
and No. 61672484, and Youth Innovation Promotion Association Chinese
Academy of Sciences (CAS) under Grant No. 2016394. The associate edi-
tor coordinating the review of this article and approving it for publication
was D. Hutchison. (Corresponding author: Peilin Hong.)

The authors are with the Department of Electronic Engineering and
Information Science, University of Science and Technology of China,
Hefei 230027, China (e-mail: ldf911@mail.ustc.edu.cn; plhong@ustc.edu.cn;
kpxue@ustc.edu.cn; jianingp@mail.ustc.edu.cn).

Digital Object Identifier 10.1109/TNSM.2019.2936505

services customized by users are carried out by service func-
tion chains (SFC) in NFV, each of which is composed of a
series of ordered virtual network functions (VNF). Thus, for
simplicity in our work, network service requests are all treated
as SFC requests (SFCR).

To obtain satisfactory quality of experience, the availability
of each service should be guaranteed. Meanwhile, the software
nature of VNF brings both flexibilities and challenges on the
study of availability assurance in NFV.

In this paper, we study the VNF deployment problem in
a datacenter while guaranteeing the availability requirements
of different SFCRs, which is also known as the availability
aware VNF deployment problem [5], [6]. To meet these avail-
ability requirements of different SFCRs, reserving redundancy
is treated as the de facto technology in some existing litera-
tures, such as [5], [7], [8]. However, compared with backup
schemes for physical machines, three following factors should
be highlighted when reserving redundancy in NFV.

A. BRC and Multi-Tenancy

Generally, the resource consumption of a VNF can be classi-
fied into two parts: One part is the virtualization overheads [9]
when instantiating VNFs, e.g., the resource consumption to
maintain the image and related libraries of a VNF, which
is called basic resource consumption (BRC) in our previous
work [10]. The other part is used to accomplish service when
the VNF is in operation. To distinguish from BRC, we name
it as Duty Resource Consumption (DRC).

Virtual machine (VM) and container are two popular vir-
tualization technologies recently, and they have their own
advantages and disadvantages [11]. In this paper, VNFs are
assumed to be implemented in VMs. From the research in [9],
instantiating more VMs on a server will incur more BRC. To
reduce BRC, multi-tenancy technology, one kind of software
structure, can be utilized to make multiple tenants share the
same software instance.

Compared with single-tenancy architecture, by which each
VNFR has its own dedicated VNF instance, multiple VNFRs
of the same type can be hosted on the same VNF instance
with multi-tenancy technology. So multi-tenancy technology
can save BRC by reducing the number of instantiated VNFs.

Fig. 1 gives an example. Fig. 1(a) shows 2 SFCRs and their
DRC demands are labelled on the top left corner respectively.
Fig. 1(b) illuminates the VNFs serving above 2 SFCRs, and
these VNFs are instantiated in multi-tenancy principle. From
the figure, we can see that an SFC can serve more than one

1932-4537 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8254-552X
https://orcid.org/0000-0002-3027-1990
https://orcid.org/0000-0003-2095-7523
https://orcid.org/0000-0003-4180-1421

1652 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 16, NO. 4, DECEMBER 2019

Fig. 1. SFCRs and multi-tenancy based VNFs.

SFCR based on multi-tenancy technology. For each of the
multi-tenant capable VNF, BRC is fixed and DRC is the linear
accumulation of VNFRs’ DRC on it.

B. Redundancy Sharing

Traditionally, there are two kinds of backup schemes: 1:1
scheme and M:N scheme [7], [12], [13]. In 1:1 scheme, each
primary entity has a dedicated backup entity, and both of these
two entities have fixed BRC and DRC, which has a good disas-
ter recovery capability. However, the availability requirements
are not so high for some services and the 1:1 backup scheme is
resource inefficient in this scenario. In M:N scheme, there are
M primary entities and N backup entities, where N is smaller
than M generally. Usually, one backup entity is responsible
for one specific primary entity. In other words, these backup
entities are dedicated. However, in the asynchronous backup
scenario where all primary entities have similar functioning,
these N backup entities can dynamically provide backups for
the M primary entities together and any backup entity can be
selected to replace any primary entity [5].

In this paper, we combine the above two schemes to re-
design the backup scheme in our work. Firstly, a backup
VNF is reserved for each primary VNF. However, all these
backup VNFs work in active-standby mode [14], in which we
just allocate BRC to each backup VNF. According to ETSI
(European Telecommunication Standards Institute)’s technical
report [15], resources can be allocated to VNFs on demand
based on NFV-MANO (NFV Management and Orchestration).
So DRC of backup VNFs can be pooled and shared. Each
backup VNF can communicate with its responsible primary
VNF timely to obtain its working status in the active-standby
mode, and replace the failed primary VNF immediately
when faults are detected. Compared with dedicated redun-
dancy, shared redundancy can improve the availability in a
resource-efficient manner [6].

C. Tradeoff Between BRC and Shared DRC Redundancy

With the help of multi-tenancy, VNFRs from different
SFCRs can be hosted on the same VNF instance. Furthermore,
these VNFRs have the same service availability, which is the
availability of their host VNF.

Consider the following example: there are 6 VNFRs of the
same type; each one needs 5 units of DRC; the availability of
a VNF without backup is 0.999 and the availability of each
backup VNF is also 0.999. If we instantiate 3 VNFs, and each
of which has 2 VNFRs on it, then each VNF needs 10 units
of DRC. With 20 units of shared DRC redundancy for above
3 VNFs, the availability of each VNF will be 0.999 + 0.001 ·
(C0

20.0010 · 0.9992 + C1
20.001 · 0.999) · 0.999 = 0.999998

(The detailed calculating method is shown in Section III-C).
If we instantiate 6 VNFs, and each of which has 1 VNFR on
it, then each VNF demands 5 units of DRC. With 15 units
of shared DRC redundancy for above 6 VNFs, the avail-
ability of each VNF will be 0.999 + 0.001 · (C0

50.0010 ·
0.9995 + C1

50.0011 · 0.9994 + C2
50.0012 · 0.9993) · 0.999 =

0.999999.
Therefore, for the same set of VNFRs, the more VNFs are

instantiated, the less shared DRC redundancy is needed to
get the same availability improvement. However, more VNFs
result in more BRC. So there is a tradeoff between BRC and
shared DRC redundancy, which should be well addressed to
reduce the total resource consumption.

In summary, given a set of SFCRs, we need to deploy a
series of VNFs to serve them in the datacenter, while assur-
ing that the availability requirements of different SFCRs are
satisfied. To improve the resource utilization efficiency, the
redundancy sharing mechanism and multi-tenancy technol-
ogy are introduced. The problem of availability aware VNF
deployment is NP-hard, and a joint deployment and backup
scheme, JDBS, is proposed. Our major contributions can be
summarized as below:

• We consider the software characteristics of VNFs in the
availability aware VNF deployment problem and clarify
BRC and DRC when instantiating a VNF. To improve the
resource utilization efficiency, the sharing mechanism of
redundancy and multi-tenancy technology are introduced.

• We design an availability calculation algorithm for the
shared redundancy based backup scheme, to calculate
modified availability of a VNF.

• We formulate the availability aware VNF deployment
problem mathematically, and propose a joint deployment
and backup scheme, JDBS. Then the performance of
JDBS is compared with solutions in existing literatures.
The simulation results show that JDBS outperforms the
contrasting schemes and can save about 40% resources
at most.

The remainder of our paper is organized as follows. A
literature review is given in Section II. Then we state and for-
mulate the problem in Section III, and the proposed solution
is described in Section IV. After that, Section V demonstrates
the simulation results. Section VI concludes our work. Finally,
we make a discussion about the significance of our research
in Section VII.

LI et al.: AVAILABILITY AWARE VNF DEPLOYMENT IN DATACENTER THROUGH SHARED REDUNDANCY AND MULTI-TENANCY 1653

II. RELATED WORK

A. General VNF Deployment

Mathematically, VNF deployment in the datacenter
networks is usually formulated as an integer linear program-
ming (ILP) [16], [17], mixed integer linear programming
(MILP) [18], or mixed integer quadratically constraints pro-
gramming (MIQCP) problem [19], which is NP-hard in
general. From an optimization perspective, the object can be
minimizing utilized physical machines [20], minimizing the
total resource consumption [16], [21], [22] or minimizing
the total service delay [18]. Mehraghdam et al. [19] made
a discussion about all above three optimization objects.

Furthermore, many researchers considered the VNF place-
ment problem with other features jointly. Luizelli et al. [17]
formalized the network function placement and chaining
problem, then proposed an ILP model to solve it. It is
noteworthy that VNFs are geo-distributed in their model.
Pham et al. [23] studied the VNF placement problem for
SFCs with the purpose of energy saving and traffic-aware
cost minimization. Ye et al. [24] considered the problem
that how to jointly optimize the topology design and map-
ping of multiple SFCs so as to minimize the total bandwidth
consumption.

Different from traditional VNF deployment problem, we not
only consider the deployment of VNFs for a given set of
SFCRs, but also solve how to meet the availability require-
ments of these SFCRs. As a result, non-linear constraints
are introduced when formulating the problem mathematically.
Moreover, when setting the optimization object, we need to
strike a balance between nodes’ resource consumption and
bandwidth consumption.

B. Availability Aware VNF Deployment

Recently, how to guarantee availabilities of NFV based
services have been attracting researchers’ attention. ETSI’s
reports give clear descriptions and requirements about relia-
bility/availability of VNF and SFC [7], [13]. Especially in [7],
the reliability/availability model and principles about how to
assure the end-to-end reliability/availability are demonstrated
clearly.

Liu et al. [25] proposed a framework to evaluate the reliabil-
ity of the NFV deployment, and they described 4 algorithms to
solve the minimum total failure removal problem. Meanwhile,
Di Mauro et al. [26] made an availability evaluation of an SFC
using reliability block diagram and stochastic reward networks.
These two work focus on the availability evaluation, rather
than the specific solution to improve the availability of VNFs.
However, they gave the guidance on how to design a reliable
deployment scheme.

Kang et al. [5] investigated the trade-off between end-
to-end reliability and computational load per server via the
joint design of VNF chain composition and forwarding graph
embedding, under the assumption of a bipartite forward-
ing graph that consists of controller and regular VNFs.
Taleb et al. [27] introduced a framework, along with effi-
cient and proactive restoration mechanisms, to ensure service
resilience of the 5G mobile system. Their focus is on the MME

(mobility management entity) VNF failure restoration process,
not the backup scheme. Fan et al. [8] presented a novel online
algorithm to minimize the physical resource consumptions and
meanwhile guarantee the required high reliability by reserving
redundancy for the most unreliable VNFs. Moreover, they also
proposed a series of methods to allocate backup resource in
order to maximize the number of SFCRs that can be served,
while meeting their heterogeneous availability requirements
in [28]. Ding et al. [29] optimized the solution in [8] by
providing backups for the VNFs with the largest cost-aware
importance measure (CIM).

Although the above-mentioned solutions [5], [8], [28], [29]
are effective to their studied problems, the resource utilization
efficiency of these solutions is low relatively. Because one
backup VNF is corresponding to one particular primary VNF,
which cannot provide backup for other primary VNFs with
potential failures.

Kanizo et al. [30] claimed that a significant cost reduc-
tion can be achieved through resource sharing among different
VNFs. They applied an M:N backup scheme in their solution
and gave a theoretical analysis about the NP-hardness of the
problem. However, they did not consider VNFs as chains, so
the inter-relationships between the VNFs are ignored. Several
measures on how backup resources can be integrated into
the embedding of VNFs are discussed in [31], and a shared
redundancy based resource allocation algorithm is proposed.
Qu et al. [32] jointly maximized the achieved respective reli-
ability of supported network services and minimized these
services’ respective end-to-end delays. Furthermore, they stud-
ied the reliability-aware joint VNF chain placement and flow
routing optimization in [6], and the backup VNF can be shared
by the adjacent VNFs to improve the resource utilization
efficiency.

Compared with existing researches, our proposed backup
scheme is the combination of the dedicated redundancy based
and shared redundancy based backup schemes. In our proposed
solution, we reserve backup VNF for every primary VNF to
support the active-standby mode backup scheme. So BRC of
each backup VNF is reserved in our solution. DRC redun-
dancy can be allocated to the backup VNFs on demand, and
it is pooled and shared by multiple backup VNFs. Besides
above differences, multi-tenancy technology is also considered
in our solution to improve the resource utilization efficiency
further.

C. Multi-Tenancy and BRC

Multi-tenancy is a software architecture in the realm of
software as a service (SaaS) business model [33], which
allows multiple tenants to share the same software instance.
Compared with single-tenant architecture, in which each tenant
gets its own application instance, multi-tenant architecture can
provide higher resource utilization, lower service price, and
more efficient management for CSPs [34]. Medhat et al. [35]
pointed that mobile network operators could share VNFs while
maintaining separate logical data and control planes, and a
framework is evaluated utilizing open-source tools and vir-
tual tenant network techniques. In our paper, multi-tenancy

1654 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 16, NO. 4, DECEMBER 2019

technology is applied to the implementation of VNFs to reduce
the number of VNF instances.

VNFs are network functions implemented in software and
usually run on VMs. As is mentioned in [36], [37], virtu-
alization or instantiating a software needs extra costs, also
known as virtualization overheads. Chen et al. [9] claimed
that virtualization introduces an additional layer of abstraction
that produces resource overheads, which should be consid-
ered in the resource allocation process. Specifically, they made
a detailed measurements about the overheads of some popu-
lar virtualization technologies. For a VNF, it needs at least
an image, an OS, some related libraries and a virtualization
layer to support its regular functioning. So it consumes some
resources to support its regular functioning even in idle state,
and we call this part of resource consumption BRC. We con-
sidered BRC in our previous work [10], which deals with
the resource-efficient VNF placement in a cloud datacenter.
Wen et al. [38] claimed that a server will consume some
resources to instantiate a VNF, which is very similar to the
BRC in our model.

III. PROBLEM STATEMENT AND FORMULATION

A. Network Model

The substrate network is represented as an undirected graph
G = (N s ,E s), where N s indicates the set of total nodes in
the substrate network and E s indicates the link set of the
substrate network. Specifically, P is used to indicate the set of
total servers.

B. Availability Model

1) Availability Model for Single VNF: VNFs are repairable
entities that can be fixed by software updating or reloading.
Assuming that both operational and repair time is governed
by a Markov chain, then we can use the following equation
to calculate the availability of a VNF [7]:

p =
uptime

downtime + uptime
=

MTBF
MTBF + MTTR

, (1)

where uptime is the time that VNF is in operation regularly,
which is also known as mean time between failures (MTBF),
and downtime is the time that VNF is out of service, which
is also known as mean time to repair (MTTR).

2) Availability Model for an SFC: Link and switch fail-
ures are not considered in this paper, as modern datacenters
typically have rich path diversity between any pair of servers
[39], [40], which can effectively resist these failures. So only
VNF failures are considered. Usually, the faults of VNFs are
independent of each other, so the availability of SFC γ can be
calculated as:

pγ =
n∏

i=1

pi , (2)

where n is the number of VNFs in SFC γ, and pi is the
availability of VNF i contained in SFC γ.

Algorithm 1: Modify Availability

1:1:Input: Number of VNFs: N,
Shared DRC Redundancy: Rd ;

2:2:Output: Modified availability of N VNFs.
3:for i in N do
4: q i = pi .
5: Rδ = Rd − r i .
6: �lr = (r1, r2, . . . , r i−1, r i+1, . . . , rN).
7: Calculate the Cartesian power of N − 1 {0,1} sets,

indicated as Ω.
8: for �ω in Ω do
9: Rω = �lr · �ωT .

10: if Rδ ≥ Rω then
11: Calculate the probability of working status ω,

indicated as pω .
12: q i = q i + pbk · (1 − q i) · pω .
13: else
14: Continue.
15: end
16: end
17:end

C. Availability Modification of VNFs Based on Shared
Redundancy

Algorithm 1 is designed to figure out the modified avail-
abilities of the VNFs based on a given block of shared DRC
redundancy.

In Algorithm 1, pi indicates the modified availability of
VNF i, q i indicates the availability of VNF i without any
redundancy (It can be also called the inherent availability.), r i

indicates the DRC demand by VNF i, Rδ indicates the residual
DRC redundancy after reserving redundancy for VNF i, and
Rω indicates the needed DRC redundancy to handle failures of
other VNFs except VNF i. We expound Algorithm 1 through
a simple example as follows:

Assume that there are 3 VNFs, namely VNF e, VNF f, and
VNF g. Their DRCs are re = 3 units, rf = 4 units, and rg =
5 units with inherent availability of pe = 0.94, pf = 0.95
and pg = 0.96 respectively. The availabilities of all backup
VNFs are assumed to be pbk = 0.95. Then we consider the
availability modification of VNF e with 8 units of shared DRC
redundancy, that is to say, Rd = 8 units.

Firstly, we need to set up a {0, 1} set for VNF f and VNF g
respectively. The value 0 indicates that the corresponding VNF
is functioning regularly, and the value 1 indicates that one or
more faults happen on the VNF. For the 2 VNFs, we calculate
the Cartesian power [41] of the two corresponding {0, 1} sets,
where the result is {(0, 0), (0, 1), (1, 0), (1, 1)}. Each tuple
in {(0, 0), (0, 1), (1, 0), (1, 1)} indicates one working status
of VNF f and VNF g.

Then the availability improvement of VNF e is calculated
in each working status based on 8 units of shared DRC redun-
dancy, which is shown in Table I. The parameter If indicates
the working status of VNF f, and Ig indicates the working
status of VNF g. In Table I, Rδ = Rd − re = 5 units. The

LI et al.: AVAILABILITY AWARE VNF DEPLOYMENT IN DATACENTER THROUGH SHARED REDUNDANCY AND MULTI-TENANCY 1655

TABLE I
AVAILABILITY MODIFICATION CASE OF VNF e

parameter Rfg is the needed DRC redundancy to handle the
failures of VNF f and VNF g, which is calculated by Eq. (3).
The availability improvement of VNF e in each working status,
indicated as pe

δ , can be calculated by Eq. (4).

Rfg = If · r f + Ig · rg . (3)

pe
δ = (1 − pe) · [(1 − Ie) · pf + If · (1 − pf)]

× [(1 − Ig) · pg + Ig · (1 − pg)] · pbk. (4)

After calculating the availability improvements of all work-
ing statuses, the modified availability of VNF e given 8 units of
shared DRC redundancy is qe = pe +0.051984+0.000216+
0.000274 + 0 = 0.992474.

Similarly, the modified availability of the other 2 VNFs can
be derived.

D. Problem Statement

In this paper, we study the availability aware VNF deploy-
ment problem given a set of SFCRs. A series of VNFs
need to be deployed in the datacenter to serve them, while
redundancy should be reserved to meet the availability require-
ments of these SFCRs. To improve the utilizing efficiency
of network resource, the redundancy sharing mechanism
and multi-tenancy technology are considered. As stated in
Section I-C, for the same set of VNFRs, the more VNFs
are instantiated, the greater availability improvement can be
obtained based on the same block of shared DRC redundancy.
However, BRC will be more as a result. If the VNFRs are
hosted on a smaller set of VNFs utilizing multi-tenancy tech-
nology, BRC will be less. However, the required DRC by each
primary VNF will be larger. Then the shared redundancy may
increase in order to get the same availability improvement. So
there exists a balance between BRC and shared DRC redun-
dancy. Thus it is crucial to decide which VNFRs should be
hosted on a multi-tenant capable VNF instance.

In our availability aware VNF deployment problem, the
following questions need to be solved.

Q1: How to coordinate the relationship between deploy-
ment and backup.

Q2: Which VNFRs should be hosted on a multi-tenant
capable VNF.

Q3: Where to place the redundancy, and how much the
redundancy should be.

In this paper, we assume that VNFs are imple-
mented utilizing VM. Each VNF is corresponding to an
isolated VM.

TABLE II
NOTATIONS

E. Problem Formulation

In this part, we make a formulation about the availability
aware VNF deployment problem. The main notations are listed
in Table II.

Firstly, constraints about the binary variables are demon-
strated.

For xγ,nν
i ,λ:

∑

λ∈Λ

xγ,nν
i ,λ = 1, (5)

Here, Eq. (5) restricts that a VNFR should be hosted on one
and only one VM (a multi-tenant capable VNF). Moreover,

1656 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 16, NO. 4, DECEMBER 2019

to limit the mutual interference among different VNFRs in a
reasonable degree, the number of VNFRs in the same VM
cannot exceed a threshold:

∑

γ∈Γ

∑

nν
i ∈Ψγ

xγ,nν
i ,λ ≤ η, (6)

η indicates the maximum number of VNFRs that a VM can
host.

For kλ,φ:

kλ,φ =
{

1,
∑

γ∈Γ

∑
nν
i ∈Ψγ

xγ,nν
i ,λ · lγ,nν

i ,φ ≥ 1;
0, otherwise.

, (7)

Eq. (7) indicates that if more than one VNFR demanding for
VNF φ is hosted on VM λ, the VM will become an instance
of VNF φ. Furthermore, a VM can only be instantiated as one
kind of VNF at most, so:

∑

φ∈Φ

kλ,φ ≤ 1, (8)

For zλ,φ,ns
u

:
∑

ns
u∈P

zλ,φ,ns
u

= 1, (9)

Here, Eq. (9) restricts that a VNF instance should be hosted
on one and only one server.

For a given set of SFCRs, considering the tradeoff between
bandwidth optimization and nodes’ resource optimization, the
optimization object is set as minimizing the number of used
servers:

min
∑

ns
u∈P

hns
u
, (10a)

hns
u

=
{

1,
∑

λ∈Λ

∑
φ∈Φ zλ,φ,ns

u
≥ 1;

0, otherwise.
, (10b)

Eq. (10b) indicates that if more than one VNF instance is
mapped on server ns

u , the server has to be activated.
Nextly, nodes’ resource constraints are introduced in. To

simplify the system model, we assume that BRC of each VNF
is fixed, and it is accumulated linearly when multiple VNFs
are placed on the same server. Then the CPU constraints are
as follows:

Rpri,cpu
drc (λ, φ) =

∑

γ∈Γ

∑

nν
i ∈Ψγ

xγ,nν
i ,λ · lγ,nν

i ,φ · cpuγ,nν
i
, (11a)

Rpri,cpu
brc (λ, φ) =

∑

γ∈Γ

∑

nν
i ∈Ψγ

xγ,nν
i ,λ · lγ,nν

i ,φ · brccpu
φ , (11b)

Rbk,cpu
brc (ns

u) =
∑

λ∈Λ

∑

φ∈Φ

ζλ,φ,ns
u
· brccpu

φ , (11c)

∑

λ∈Λ

∑

φ∈Φ

(Rpri,cpu
drc (λ, φ) + Rpri,cpu

brc (λ, φ)) · zλ,φ,ns
u

+ Rbk,cpu
brc (ns

u) + Rbk,cpu
drc (ns

u) ≤ C cpu
ns
u

,

(11d)

where Rpri,cpu
drc (λ, φ) and Rpri,cpu

brc (λ, φ) are CPU DRC and
CPU BRC by the VNFRs mapped on primary VNF (λ, φ),
respectively. The parameters Rbk,cpu

brc (ns
u) and Rbk,cpu

drc (ns
u)

are CPU BRC and shared CPU DRC redundancy by backup
VNFs on server ns

u , respectively. Figuring out ζλ,φ,ns
u

and

Rbk,cpu
drc (ns

u) on each server are the keys of availability aware
VNF deployment problem in this paper.

Similarly, we can get the memory resource constraints.
After setting constraints on nodes’ resource, the bandwidth

constraint of each link is as follows:
∑

γ∈Γ

∑

(nν
i ,nν

j)∈Eν
γ

bγ,nν
i ,nν

j
· yγ,nν

i ,nν
j ,ns

u ,ns
v
≤ C link

(ns
u ,ns

v), (12)

Finally, we should guarantee that the availability require-
ment of each SFCR is satisfied. The availability of SFCR γ
is determined by the VNFs serving it, and for nν

i in SFCR γ,
its availability is:

pγ,nν
i =

∑

λ∈Λ

∑

φ∈Φ

∑

ns
u∈P

xγ,nν
i ,λ · kλ,φ · ζλ,φ,ns

u
· qλ,φ,ns

u , (13)

qλ,φ,ns
u is the modified availability of VNF (λ, φ) whose

backup is on server ns
u . It is the function of shared DRC

redundancy, number of primary VNF instances that share
the same block of redundancy, the inherent availability and
DRC demand of these VNF instances. It is complicated, and
we cannot give an explicit mathematical expression for now.
However, we have designed an algorithm to get qλ,φ,ns

u exactly
given above-mentioned variables, which is Algorithm 1.

Then for SFCR γ, its availability requirement should be
met:

∏

nν
i ∈Ψγ

pγ,nν
i ≥ Aγ . (14)

The VNF deployment problem is NP-hard [20], [21], which
is a sub-question of our problem. So our problem is NP-hard
too. Besides, there are non-linear constraint (Eq. (14)) and
non-explicit relationship (qλ,φ,ns

u) in the formulations. So it
is incapable to solve the problem in theory but practical to
design an efficient heuristic solution.

IV. PROPOSED SOLUTION

A. Framework of JDBS

To solve the questions in Section III-D, we propose a Joint
Deployment and Backup Scheme, JDBS.

In our solution, the processes of VNF deployment and
backup run alternately based on servers. Specifically, a server
is filled with SFCRs (or VNFRs) as much as possible firstly.
Then related VNF instances are deployed on the server; the
shared DRC redundancy and BRC are reserved in its neighbor.
The above processes solve Q1 and the former part of Q3.

As stated before, for the same set of VNFRs, the more VNFs
are instantiated, the less shared redundancy is needed to get
the desired availability improvement. However, BRC increase
with the increasing number of VNF instances. So which and
how many VNFRs should be hosted on the same multi-tenant
capable VNF instance should be addressed carefully, which
will determine the number of VNFs and the DRC demand of
each VNF.

In our solution, an iterative process is designed to make
a balance between BRC and shared DRC redundancy. The

LI et al.: AVAILABILITY AWARE VNF DEPLOYMENT IN DATACENTER THROUGH SHARED REDUNDANCY AND MULTI-TENANCY 1657

Algorithm 2: Joint Deployment and Backup Scheme,
JDBS
1:1:Input: Γ, (N s ,E s)
2:2:Output: Mapping results of Γ to (N s ,E s)
3:Sort all SFCRs in descending order based on their

resource demands.
4:i = 0.
5:while Γ is not empty do
6: Start a new server, i + = 1.
7: Map SFCRs into server i, map sfcrs().
8: Establish routing paths of flows using the shortest

path algorithm.
9: Reserve redundancy for SFCRs in server i,

reserve redundancy().
10: while 1 do
11: if there are VNFRs that can be merged then
12: Merge together VNFRs demanding the same

type of VNF in server i, merge vnfrs().
13: else
14: Break.
15: end
16: if SFCR with least resource demand can be

hosted on server i then
17: Map SFCRs into server i, map sfcrs().
18: Establish routing paths of flows using the

shortest path algorithm.
19: else
20: Break.
21: end
22: end
23: if Γ is not empty then
24: Pick up the SFCR that demands the least

resource, and try to map it into server i,
map last sfcr().

25: Reserve redundancy for SFCRs in server i,
reserve redundancy().

26: Establish routing paths of flows using the shortest
path algorithm.

27: else
28: Break.
29: end
30:end

iterative process settles down which VNFRs should be hosted
on the same multi-tenant capable VNF instance, and then the
DRC demand of the VNF instance is determined by the DRC
demands of VNFRs on it subsequently. The above processes
solve Q2 and the last part of Q3.

Nextly, JDBS is described in detail.

B. Availability Aware VNF Deployment

Algorithm 2 (JDBS) along with Algorithm 3, Algorithm 4,
Algorithm 5 and Algorithm 6 shows the details of JDBS.

JDBS consists of a series of iterative processes (lines 5-30 in
Algorithm 2). Firstly, all SFCRs are sorted in descending order
based on their resource demands (line 3 in Algorithm 2), and

Algorithm 3: Map SFCRS

1:1:Input: Server i, Γ
2:2:Output: Mapping results of Γ to server i
3:while SFCR with the least resource demand can be

hosted on server i do
4: for γ in Γ do
5: if server i can hold SFCR γ then
6: if the first SFCR to be mapped then
7: Map SFCR γ into server i.
8: else
9: if is_relevant(SFCR γ, server i) then

10: Map SFCR γ into server i.
11: else
12: Continue.
13: end
14: end
15: Remove SFCR γ from Γ.
16: else
17: Continue.
18: end
19: end
20: Relax the relativity requirement.
21:end

then they are mapped into servers. During the process, each
SFCR is mapped into a server (server i) as a whole (lines
7 and 17 in Algorithm 2), which means that all VNFRs in the
SFCR are mapped into the same server. In this way, the flows
between VNFRs are restricted in the same server, raising as
less bandwidth consumptions as possible.

Based on above mapping process, the types of VNFRs in
one server can be very various. However, only VNFRs of
the same type can be hosted on the same multi-tenant capa-
ble VNF. So the more types of VNFRs there are, the more
VNFs need to be instantiated in the server, then more BRC
is required as a result. To reduce the types of VNFRs in a
server, the relativity is considered as the measure to decide
which SFCR should be mapped into the server preferentially
(line 9 in Algorithm 3). In the process, the difference between
the types of VNFRs in the SFCR to be mapped and the types
of VNFRs already in the server is used as the measure of rel-
ativity. It is more relevant if the difference is smaller, and we
map the most relevant SFCR firstly. In this way, there are more
copies in a server for the same type of VNFR, so that multi-
tenancy technology can be utilized more adequately, leading to
less VNF instances. Then BRC can be reduced. To reduce the
types of VNFRs in a server as much as possible, we relax the
measure of relativity stepwise (line 20 in Algorithm 3), until
the SFCR with the least resource demand cannot be hosted on
server i.

When the SFCR with least resource demand cannot be
mapped into server i, we stop the mapping process and start
to deploy related VNFs. Initially, VNFs are implemented in
single-tenancy principle, which means that each VNFR is
corresponding to a VNF instance. If the availability require-
ment of any SFCR is not satisfied, redundancy needs to

1658 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 16, NO. 4, DECEMBER 2019

Algorithm 4: reserve redundancy

1:1:Input: Server i , server i + 1
2:2:Output: Server i , server i + 1
3:Redundancy, ϕ1 = 0.
4:Modify the availabilities of VNFs in server i .
5:if all SFCRs’ availability requirements are satisfied.

then
6: return server i , server i + 1.
7:else
8: Find the VNF θ with the least DRC demand in server

i , and its DRC is indicated as θr .
9: while Not all SFCRs’ availability requirements are

satisfied do
10: ϕ1 = ϕ1 + θr , modify the availabilities of all

VNFs in server i , modify availability().
11: end
12:end

be reserved in the nearby server for the VNFs in server i
(line 9 in Algorithm 2). To figure out the volume of needed
redundancy while keeping resource utilization efficiency, the
increment of redundancy in each iterative loop equals to the
least DRC demand of all VNFs in the server (lines 8 and 10
in Algorithm 4).

After the backup process, the availability requirements of
all SFCRs in server i are met. However, the number of VNFs
is high owing to the single-tenant implementation of them, so
the volume of BRC is high. As stated before, the number of
VNFs can be reduced utilizing multi-tenancy technology. So
an algorithm is designed to merge together the VNFRs of the
same type (Algorithm 5). When merging two VNFRs together,
one share of BRC will be saved (resbrc , line 5 in Algorithm 5).
The VNFRs that are going to be merged together are chosen
randomly. After that, VNFs need to be re-instantiated in multi-
tenancy principle, and the availabilities of all VNFs change
owing to the redundancy sharing mechanism. Moreover, the
shared DRC redundancy may need to increase to improve the
availabilities of VNFs in server i.

The binary search method is used to find out the increment
of shared DRC redundancy (lines 7-14 in Algorithm 5). Then
the difference between increment of shared DRC redundancy
and saved BRC is calculated (line 15 in Algorithm 5) to figure
out the final saved resource. If saved resource is less than
before, we think that saved resource reaches maximum value,
and then the merging process of VNFRs is stopped (lines 16
and 17 in Algorithm 5).

After the merging process, free resources will arise in
server i, so new SFCRs can be mapped into the server again
to make the best use of the network resource (line 17 in
Algorithm 2). Then the merging process (Algorithm 5) also
should be done again because of the new added VNFRs.
Therefore, Algorithm 5 and Algorithm 3 form a loop (lines
10-22 in Algorithm 2). If any of the two processes failed, the
loop is broken.

At last, server i cannot host any SFCR as a whole.
Nevertheless, to make the best use of resources in server i,

Algorithm 5: Merge VNFRS

1:1:Input: Server i, server i + 1
2:2:Output: Server i, server i + 1
3:saved_brc = 0.
4:while there are VNFRs that can be merged do
5: saved_brc = saved_brc + resbrc .
6: res_high = saved_brc, res_low = 0.
7: while res_high − res_low > δ do
8: Redundancy increment,

ϕ2 = (res_high + res_low)/2, modify the
availability of all VNFs in server i,
modify availability().

9: if All SFCRs’ availability requirements are
satisfied then

10:

11: else
12: res_high = ϕ2.
13: end
14: res_low = ϕ2.
15: end
16: saved_res = saved_brc − ϕ2.
17: if saved_res > 0 and saved_res is smaller than the

last then
18: Break.
19: else
20: Continue.
21: end
22:end

Algorithm 6: Map Last SFCR

1:1:Input: Last SFCR γl , server i, P
2:2:Output: Server i, P
3:for VNFR in SFCR γl do
4: if Server i can hold the VNFR then
5: Map the VNFR into server i.
6: else
7: Break.
8: end
9:end

10:Map the rest VNFRs into server i + 1 or other servers in
P as a whole.

we can pick out the SFCR that has the least resource demand,
and map part of the SFCR into server i (Algorithm 6). In
Algorithm 6, VNFRs in the SFCR are mapped into the server
one by one in sequence, until one VNFR cannot be hosted
on the server. Then the rest of the SFCR is mapped into the
nearby server. In this way, VNFRs in each of the separated
part are kept in order, which can incur as less extra bandwidth
consumption as possible.

C. Complexity

To figure out the time complexity of JDBS, we must figure
out the time complexity of all included algorithms.

LI et al.: AVAILABILITY AWARE VNF DEPLOYMENT IN DATACENTER THROUGH SHARED REDUNDANCY AND MULTI-TENANCY 1659

For Algorithm 1, the time complexity is at the level of
O(N · 2N) because of Cartesian power. N = C/(ωm +brcu) at
most, C indicates the CPU or memory capacity of the server,
ωm indicates the minimal CPU or memory DRC of all VNFRs
and brcu indicates BRC when instantiating a VNF instance.

For Algorithm 3, the difference of VNFR types is |Φ| at
most, so the while loop runs |Φ| times at most, then the com-
plexity of Algorithm 3 is at the level of O(|Φ| · |Γ|). For
Algorithm 4, the main complexity relies on the while loop
(lines 9-17 in Algorithm 4), and its iteration times is N at
most. So the time complexity of Algorithm 4 is at the level
of O(N2 · 2N).

Then for Algorithm 5, the binary search method is used
to find out the needed redundancy increment, and the time
complexity of the binary search method is O(log2C) at most.
Then the time complexity of Algorithm 5 is at the level of
O(N · log2C ·N ·2N). The time complexity of Algorithm 6 is at
the level of O(1). In summary, the dominate time complexity
relies on Algorithm 5, which is at the level of O(N2 · 2N ·
log2C).

Finally, for lines 8, 18 and 26 in Algorithm 2, the time
complexity of the shortest path algorithm is at the level of
O(|N s | · log2|N s |), |N s | indicates the number of substrate
nodes in the network. We need to establish a path for each
SFCR, so the time complexity of establishing paths is |Γ|·|N s |·
log2|N s |. Furthermore, the time complexity of Algorithm 2
relies on the complexity of Algorithm 3, Algorithm 4 and
Algorithm 5 and the iterative times of the two while loops
in Algorithm 2 is at the level of O(|Γ|2). However, because
log2C · N

2 · 2N � N
2 · 2N. So the total time complexity of

JDBS is at the level of O(|Φ| · |Γ|3 + |Γ|2 · N2 · 2N · log2C +
|Γ| · |N s | · log2|N s |), N = C/(ωm + brcu), which relies on
the number of SFCRs, types of VNFs, the ratio between the
capacities of servers and resource demands of VNFRs, and the
scale of substrate network.

V. NUMERICAL SIMULATION

In this section, the performance of JDBS is compared with 4
contrasting schemes and an analysis about the results is made
in detail. JDBS and the contrasting schemes are implemented
in Python. All experiments are performed on a computer with
one Intel(R) Core(TM) i7-6700 CPU @ 2.6GHz and 16GB of
RAM.

A. Simulation Settings

We use the fat-tree topology as the structure of datacen-
ter [42]. The number of servers in the substrate network is
set to be 1024. For each server, it has 1000 units available
CPU resource and 1000 units available memory resource. The
available bandwidth of each link is also set to be 1000 units.
Both CPU BRC and memory BRC when instantiating a VNF
are set to be 20 units.

For SFCRs, the number of VNFRs in each SFCR is a ran-
dom integer value from [3,4,5,6]. The CPU DRC, memory
DRC and bandwidth demand of each VNFR all obey uni-
form distribution of (10, 50) units. There are 10 types of
VNFs in the simulation. Moreover, both the inherent avail-
ability of primary VNFs and the availability of backup VNFs

obey the uniform distribution of (0.99, 0.999). The number
of SFCRs and the availability requirements of SFCRs are
treated as variables.

δ = 1 in Algorithm 5.

B. Benchmarks

To validate the performance of JDBS, the following con-
trasting schemes from existing literatures are used:

1) RAR_RS_BiG: RAR_RS_BiG is the solution proposed
in [6]. According to RAR_RS_BiG, each SFC is aug-
mented by adding backup VNFs to it firstly, which aims
to have the availability requirement of each SFC sat-
isfied. When reserving backup VNFs, the backup VNF
can be shared by the adjacent VNFs to improve resource
efficiency. Then the SFCs are mapped into the network
using Bi-direction search based greedy shortest path
algorithm.

2) JDBS_s: JDBS_s is the variant of JDBS. The differ-
ence is that JDBS_s implements VNFs in single-tenancy
principle.

3) GREP: GREP is the solution proposed in [8], which
improves the availability of an SFC by providing backup
for the most unreliable VNFs.

4) CERA: CERA is the solution proposed in [29], which
claims to be the modification of GREP. The authors
in [29] found that providing backups for different VNFs
in an SFC gets different availability improvements with
different costs. So the importance of each VNF in an
SFC is different. In order to improve resource efficiency,
it selects the VNF that has the largest cost-aware impor-
tance measure (CIM) to backup, in which CIM is the
ratio between availability improvement of the SFC and
the cost to pay when providing backup for a VNF.

All contrasting schemes implement the VNF instances in
single-tenancy principle.

C. Results

The simulation results are shown in this part. For each group
of results, 10 times of experiments are conducted to reduce the
accidental errors, and error bars represent the 95% confidence
intervals in each figure.

In the simulations, it is assumed that all SFCRs can be
settled down on the substrate network. So in each group of
results, the number of used servers, CPU and memory DRC
redundancy, bandwidth consumptions and final BRC are used
as the measures to evaluate the performance of different solu-
tions. It is worth noting that BRC is classified into primary
BRC, which is corresponding to primary VNFs, and backup
BRC, which is corresponding to backup VNFs.

1) Comparisons With Varying Availability Requirements of
SFCRs: Fig. 2, Fig. 3, and Fig. 4 show the number of used
servers, reserved DRC redundancy and BRC respectively by
different solutions along with varying availability requirements
of SFCRs. In this scenario, there are 1000 SFCRs in each
group of experiment.

As Fig. 2 shows, JDBS costs the least servers in each
group of experiment, which can save 29%, 29%, 42%, 40%

1660 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 16, NO. 4, DECEMBER 2019

Fig. 2. Number of used servers vs varying availability requirements of
SFCRs.

servers at most than RAR_RS_BiG, JDBS_s, GREP, CERA,
respectively.

As stated before, JDBS_s is the single-tenancy version
of JDBS, which also takes advantage of the same deploy-
ment scheme and redundancy sharing mechanism as JDBS.
Comparing JDBS_s with RAR_RS_BiG, we can see that they
have similar performance when the availability requirements
of SFCRs are lower than the inherent availabilities of VNFs
(scenarios that availability requirements are 0.90 and 0.99).
It is because the availability requirements of SFCRs can be
satisfied by current VNFs, and there is no need to reserve
redundancy to improve the availabilities of VNFs.

In Fig. 3(b) and Fig. 3(c), we can see that both CPU DRC
redundancy and memory DRC redundancy are 0 in results of
all 5 solutions, when the availability requirement is 0.90. Also
as is shown in Fig. 4(c), the backup BRC of all 5 solutions are
0 at the point of 0.90. The above phenomenons indicate that
there is no need to reserve redundancy to improve the avail-
abilities of VNF instances when the availability requirement
of SFCRs is 0.90.

When the availability requirements of SFCRs increase to
0.99, they cannot be satisfied by current VNFs, and redun-
dancy needs to be reserved to improve the availability of each
VNF. However, the requirement is not so high, and a small
quantity of redundancy can improve the availability to a quali-
fied level. From Fig. 3(b) and Fig. 3(c), it can be seen that CPU
DRC redundancy and memory DRC redundancy by both JDBS
and JDBS_s are lower than that of RAR_RS_BiG. It is because
DRC redundancy in the server is shared by all VNFs in another
server, rather than shared by the adjacent VNFs belonging
to the same SFC in RAR_RS_BiG. JDBS and JDBS_s can
acquire a better sharing efficiency than RAR_RS_BiG.

In Fig. 2, we can see that the number of used servers by
JDBS_s is a little higher than that of RAR_RS_BiG when
availability requirement is 0.99. It is because JDBS_s has
to reserve BRC for all VNFs to provide the active-standby
mode backup scheme. So the backup BRC by JDBS_s is

much higher than that of RAR_RS_BiG, which can be seen
in Fig. 4(c).

With the increasing of availability requirement, CPU
redundancy, memory redundancy, and BRC redundancy by
RAR_RS_BiG all increase. Meanwhile, the surplus of CPU
and memory redundancy between RAR_RS_BiG and JDBS_s
is more, as are shown in Fig. 3(b) and Fig. 3(c). The deficit
of total BRC between RAR_RS_BiG and JDBS_s is less,
as is shown in Fig. 4(a). So the number of used servers by
RAR_RS_BiG is getting more and more than that of JDBS_s.

As for GREP and CERA, they share similar deployment and
backup philosophy, except that CERA takes different impor-
tance of VNFs into consideration, to improve the redundancy
efficiency. Fig. 2 shows that CERA can acquire a lower num-
ber of used servers than that of GREP. However, both of them
do not utilize the redundancy sharing mechanism to improve
the redundancy efficiency. When the availability requirement is
higher than a threshold, which is 0.999 in the simulation, both
of them have to reserve redundancy for all VNFs. Therefore,
both resource consumptions and BRC reach maximum values,
which can be seen in Fig. 3 and Fig. 4.

Fig. 3(a) shows the bandwidth consumptions by 5 solutions.
From the figure, we can see that RAR_RS_BiG consumes the
most bandwidth, and bandwidth consumptions by CERA and
GREP are close to each other. Bandwidth consumptions by
JDBS increase with the increasing of availability requirement,
which results from the increasing number of used servers and
the separating of SFCRs. In JDBS, to improve the resource
utilization efficiency, every server is filled with SFCRs as full
as possible. If one server cannot host any SFCR wholly, the
SFCR that consumes the least resource is departed into two
parts to be mapped into the server and its neighbor. So extra
bandwidth consumptions occur between servers, and more
servers result in more bandwidth consumptions in JDBS.

In most scenarios, bandwidth consumptions by JDBS are
lower than that of contrasting schemes, owing to multi-tenancy
technology. Because multi-tenancy are utilized to reduce the
number of VNFs, then more SFCRs are restricted into one
server than that of contrasting schemes, leading to a much
lower number of used servers. For RAR_RS_BiG and JDBS_s,
both of them result in extra bandwidth between servers, there-
fore, their bandwidth consumptions are higher than JDBS
because of more used servers. For CERA and GREP, when an
SFCR cannot be mapped into one server, both of them will not
make further processes, so there are no extra bandwidth con-
sumptions between servers. Moreover, flows inner the SFCRs
are restricted into servers, and bandwidth consumptions occur
along the links between the ingress/egress of the datacenter
and the servers for SFCRs. Thus the bandwidth consumptions
are fixed for the same set of SFCRs.

From Fig. 4, we can see that primary BRC is fixed for
RAR_RS_BiG, JDBS_s, GREP and CERA. The reason is
that all of these algorithms implement VNFs in single-tenancy
principle for the same set of VNFRs, so primary BRC of them
is the same. As for JDBS, which utilizes multi-tenancy to
implement VNF instances, the primary BRC increases with
the increasing of availability requirements. The reason is that
VNFRs on each multi-tenant capable VNF tends to be less

LI et al.: AVAILABILITY AWARE VNF DEPLOYMENT IN DATACENTER THROUGH SHARED REDUNDANCY AND MULTI-TENANCY 1661

Fig. 3. Reserved redundancy vs varying availability requirements of SFCRs.

Fig. 4. BRC vs varying availability requirements of SFCRs.

Fig. 5. Time required to execute one solution.

and the number of VNFs becomes larger with the increas-
ing of availability requirements, in order to make a balance
between BRC and increasing shared redundancy. Generally,
backup BRC by JDBS is the same as primary BRC, because
we reserve redundancy for each primary VNF. However, when
the availability requirement is 0.90, there is no need to reserve
redundancy for primary VNFs, so the backup BRC is 0 in
this scenario. For GREP and CERA, it can be seen that their
backup BRC reaches the maximum value when the availability
requirement is higher than 0.999, which indicates that GREP

Fig. 6. Number of used servers vs varying SFCR number.

and CERA reserve redundancy for all primary VNFs in these
scenarios.

Fig. 5 shows the comparisons of time required to exe-
cute one instance of different solutions when the availability
requirement is 0.99999. From the figure, we can see that
JDBS consumes the most time. Based on detailed analysis,
it can be found that the most time-consuming part of JDBS is
Algorithm 5. Because it involves multiple times of availability
modification calculating, which is in exponential complex-
ity. However, the time complexity is constrained, where the

1662 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 16, NO. 4, DECEMBER 2019

Fig. 7. Reserved redundancy vs varying SFCR number.

Fig. 8. BRC vs varying SFCR number.

exponent is the ratio between the capacity of server and the
minimal resource demand of the VNFRs.

2) Comparisons With Varying SFCR Number: Fig. 6,
Fig. 7, and Fig. 8 show the number of used servers, reserved
DRC redundancy and BRC respectively by different solutions
with varying number of SFCRs. In this scenario, the avail-
ability requirements of SFCRs are chosen from [0.90, 0, 99,
0.999, 0.9999, 0.99999, 0.999999] randomly.

In general, consistent conclusions can be derived with the
results based on different availability requirements of SFCRs.
From the figures, we can see that JDBS costs the least number
of servers and the least total BRC for the same set of SFCRs,
which can save 18%, 18%, 26%, 25% servers at most than
RAR_RS_BiG, JDBS_s, GREP, CERA, respectively.

It is worth noting that JDBS consumes more CPU and
memory DRC redundancy than that of JDBS_s, which can
be seen in Fig. 7(b) and Fig. 7(c). However, BRC by JDBS
is much lower than that of JDBS_s, as is shown in Fig. 8.
It strengthens the forward conclusion that smaller volume of
VNFs can acquire better efficiency in the redundancy sharing
mechanism, which is that they need less shared redundancy.
Nevertheless, the number of VNFs is more, and so is BRC.

3) Comparisons With Optimal Results: We reveal the gap
between the performance of JDBS and the optimal results in
this part. A brute force solution is used to get the optimal
results in a small scale scenario, where there are 100 SFCRs
to be mapped and the availability requirements of all SFCRs
are 0.99999. Fig. 9 shows the performance comparisons of
different solutions with the optimal results. From the figure,
we can see that JDBS can acquire a near-optimal performance.

Fig. 9. Performance comparisons of different solutions with optimal results.

VI. CONCLUSION

In this paper, we study the availability aware VNF deploy-
ment problem given a set of SFCRs. To improve the resource
utilization efficiency, the redundancy sharing mechanism and
multi-tenancy technology are considered. Furthermore, we
get the conclusion that VNFs with smaller volume need
less shared DRC redundancy to get the same availability
improvement. But BRC is more as a result, owing to more
VNFs. So there is a tradeoff between BRC and shared DRC
redundancy.

LI et al.: AVAILABILITY AWARE VNF DEPLOYMENT IN DATACENTER THROUGH SHARED REDUNDANCY AND MULTI-TENANCY 1663

The availability aware VNF deployment problem is formu-
lated mathematically, and a joint VNF deployment and backup
solution, JDBS, is proposed. In JDBS, an availability modifica-
tion process is designed to figure out the modified availability
of each VNF based on a given block of shared redundancy.
Moreover, a merging process is proposed to figure out which
VNFRs should be hosted the same multi-tenant capable VNF.
Finally, the performance of JDBS is evaluated through numeri-
cal simulations in detail with 4 solutions in existing literatures,
and the simulation results show that JDBS outperforms the
contrasting schemes and can save about 40% resources than
them at most.

VII. DISCUSSION

NFV is a promising and evolving technology to enhance the
next generation network, such as 5G [43], next generation dat-
acenters [44], multi-access edge computing (MEC) [45]. Also
VNF deployment problem has attracted lots of attention from
researchers. VNFs are software-based network components,
and the nature and technology development of software should
be considered in the VNF deployment problem, to improve the
QoS of service and resource utilization efficiency. However,
there are not many related researches now.

In our paper, we consider the error prone nature of VNFs,
and aim to design an availability aware VNF deployment solu-
tion. Moreover, the virtualization overheads are considered
when instantiating VNFs, which is BRC in our model. We
deal with the virtualization overheads and resource needed
to accomplish the service separately, and design an active-
standby backup scheme based on the on-demand resource
allocation mode of NFV-MANO. Besides, we find that redun-
dancy sharing mechanism and multi-tenancy technology can
be utilized properly to improve the resource efficiency.

During these formulations, we found that it is hard to
express mathematically the availability aware problem based
on shared redundancy. Therefore further research is needed to
make suitable optimizations. In addition, our ideas about vir-
tualization overheads need more theories and experimentation
to validate them.

ACKNOWLEDGMENT

The authors sincerely thank the editor, Dr. David Hutchison,
and all the anonymous reviewers for their valuable suggestions
that have led to the present improved version of the original
manuscript.

REFERENCES

[1] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function virtual-
ization: Challenges and opportunities for innovations,” IEEE Commun.
Mag., vol. 53, no. 2, pp. 90–97, Feb. 2015.

[2] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck,
and R. Boutaba, “Network function virtualization: State-of-the-art and
research challenges,” IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 236–262, 1st Quart., 2016.

[3] G. Gibb, H. Zeng, and N. McKeown, “Outsourcing network function-
ality,” in Proc. ACM SIGCOMM Workshop Hot Topics Softw. Defined
Netw. (HotSDN), 2012, pp. 73–78.

[4] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network pro-
cessing as a cloud service,” SIGCOMM Comput. Commun. Rev., vol. 42,
no. 4, pp. 13–24, 2012.

[5] J. Kang, O. Simeone, and J. Kang, “On the trade-off between compu-
tational load and reliability for network function virtualization,” IEEE
Commun. Lett., vol. 21, no. 8, pp. 1767–1770, Aug. 2017.

[6] L. Qu, M. Khabbaz, and C. Assi, “Reliability-aware service chaining
in carrier-grade softwarized networks,” IEEE J. Sel. Areas Commun.,
vol. 36, no. 3, pp. 558–573, Mar. 2018.

[7] Industry Specification Group, Network Functions Virtualisation (NFV);
Reliability; Report on Models and Features for End-to-End Reliability,
V1, document GS NFV-REL 003, ETSI, Sophia Antipolis, France, 2016.

[8] J. Fan, Z. Ye, C. Guan, X. Gao, K. Ren, and C. Qiao, “GREP:
Guaranteeing reliability with enhanced protection in NFV,” in Proc.
ACM SIGCOMM Workshop Hot Topics Middleboxes Netw. Funct.
Virtualization, 2015, pp. 13–18.

[9] L. Chen, S. Patel, H. Shen, and Z. Zhou, “Profiling and understanding
virtualization overhead in cloud,” in Proc. IEEE ICPP, 2015, pp. 31–40.

[10] D. Li, P. Hong, K. Xue, and J. Pei, “Virtual network function placement
considering resource optimization and SFC requests in cloud datacen-
ter,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 7, pp. 1664–1677,
Jul. 2018.

[11] Containers vs VMs Technology Smackdown, Bright Comput.,
San Jose, CA, USA, May 2016. [Online]. Available: http://
www.brightcomputing.com/blog/containerization-vs.-virtualization-
heres-our-blog-smackdown

[12] P. C. Rangarajan, F. Khendek, and M. Toeroe, “Managing the availability
of VNFS with the availability management framework,” in Proc. IEEE
CNSM, 2017, pp. 1–4.

[13] Industry Specification Group, Network Function Virtualisation (NFV)-
Resiliency Requirements, document GS NFV-REL 001, ETSI,
Sophia Antipolis, France, 2014.

[14] F. Carpio and A. Jukan, “Improving reliability of service function
chains with combined VNF migrations and replications,” arXiv preprint
arXiv:1711.08965, 2017.

[15] M. Ersue, “ETSI NFV management and orchestration-An overview,” in
Proc. 88th IETF Meeting, 2013.

[16] Z. Xu, W. Liang, A. Galis, Y. Ma, Q. Xia, and W. Xu, “Throughput
optimization for admitting NFV-enabled requests in cloud networks,”
Comput. Netw., vol. 143, pp. 15–29, Oct. 2018.

[17] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and
L. P. Gaspary, “Piecing together the NFV provisioning puzzle: Efficient
placement and chaining of virtual network functions,” in Proc.
IFIP/IEEE IM, Ottawa, ON, Canada, 2015, pp. 98–106.

[18] L. Qu, C. Assi, and K. Shaban, “Delay-aware scheduling and
resource optimization with network function virtualization,” IEEE Trans.
Commun., vol. 64, no. 9, pp. 3746–3758, Sep. 2016.

[19] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in Proc. CloudNet, 2014, pp. 7–13.

[20] M. Xia, M. Shirazipour, Y. Zhang, H. Green, and A. Takacs, “Network
function placement for NFV chaining in packet/optical datacenters,”
IEEE J. Lightw. Technol., vol. 33, no. 8, pp. 1565–1570, Apr. 15, 2015.

[21] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal place-
ment of virtual network functions,” in Proc. INFOCOM, Hong Kong,
2015, pp. 1346–1354.

[22] W. Rankothge, F. Le, A. Russo, and J. Lobo, “Optimizing resource
allocation for virtualized network functions in a cloud center using
genetic algorithms,” IEEE Trans. Netw. Service Manag., vol. 14, no. 2,
pp. 343–356, Jun. 2017.

[23] C. Pham, N. H. Tran, S. Ren, W. Saad, and C. S. Hong, “Traffic-aware
and energy-efficient VNF placement for service chaining: Joint sampling
and matching approach,” IEEE Trans. Services Comput., to be published.

[24] Z. Ye, X. Cao, J. Wang, H. Yu, and C. Qiao, “Joint topology design and
mapping of service function chains for efficient, scalable, and reliable
network functions virtualization,” IEEE Netw., vol. 30, no. 3, pp. 81–87,
May/Jun. 2016.

[25] J. Liu, Z. Jiang, N. Kato, O. Akashi, and A. Takahara, “Reliability evalu-
ation for NFV deployment of future mobile broadband networks,” IEEE
Wireless Commun., vol. 23, no. 3, pp. 90–96, Jun. 2016.

[26] M. Di Mauro, M. Longo, F. Postiglione, G. Carullo, and M. Tambasco,
“Service function chaining deployed in an NFV environment: An
availability modeling,” in Proc. IEEE CSCN, 2017, pp. 42–47.

[27] T. Taleb, A. Ksentini, and B. Sericola, “On service resilience in cloud-
native 5G mobile systems,” IEEE J. Sel. Areas Commun., vol. 34, no. 3,
pp. 483–496, Mar. 2016.

1664 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 16, NO. 4, DECEMBER 2019

[28] J. Fan, M. Jiang, and C. Qiao, “Carrier-grade availability-aware mapping
of service function chains with on-site backups,” in Proc. IEEE IWQoS,
2017, pp. 1–10.

[29] W. Ding, H. Yu, and S. Luo, “Enhancing the reliability of services in
NFV with the cost-efficient redundancy scheme,” in Proc. IEEE ICC,
2017, pp. 1–6.

[30] Y. Kanizo, O. Rottenstreich, I. Segall, and J. Yallouz, “Optimizing virtual
backup allocation for middleboxes,” IEEE Trans. Netw., vol. 25, no. 5,
pp. 2759–2772, Oct. 2017.

[31] M. T. Beck, J. F. Botero, and K. Samelin, “Resilient allocation of service
function chains,” in Proc. IEEE NFV-SDN, Palo Alto, CA, USA, 2016,
pp. 128–133.

[32] L. Qu, C. Assi, K. Shaban, and M. Khabbaz, “A reliability-aware
network service chain provisioning with delay guarantees in NFV-
enabled enterprise datacenter networks,” IEEE Trans. Netw. Service
Manag., vol. 14, no. 3, pp. 554–568, Sep. 2017.

[33] C.-P. Bezemer and A. Zaidman, “Multi-tenant SaaS applications:
Maintenance dream or nightmare?” in Proc. EVOL IWPSE, 2010,
pp. 88–92.

[34] S. Pal, A. K. Mandal, and A. Sarkar, “Application multi-tenancy for soft-
ware as a service,” SIGSOFT Softw. Eng. Notes, vol. 40, no. 2, pp. 1–8,
2015.

[35] A. M. Medhat, G. Carella, J. Mwangama, and N. Ventura, “Multi-
tenancy for virtualized network functions,” in Proc. IEEE NetSoft, 2015,
pp. 1–6.

[36] Z. Á. Mann and A. Metzger, “Optimized cloud deployment of multi-
tenant software considering data protection concerns,” in Proc. CCGrid,
2017, pp. 609–618.

[37] Y. Zhang, Z. Wang, B. Gao, C. Guo, W. Sun, and X. Li, “An effective
heuristic for on-line tenant placement problem in SaaS,” in Proc. IEEE
ICWS, 2010, pp. 425–432.

[38] T. Wen, H. Yu, G. Sun, and L. Liu, “Network function consolidation
in service function chaining orchestration,” in Proc. IEEE ICC, 2016,
pp. 1–6.

[39] R. Yu, G. Xue, X. Zhang, and D. Li, “Survivable and bandwidth-
guaranteed embedding of virtual clusters in cloud data centers,” in Proc.
INFOCOM, Atlanta, GA, USA, 2017, pp. 1–9.

[40] J. Lee et al., “Application-driven bandwidth guarantees in datacenters,”
SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, pp. 467–478, 2014.

[41] Cartesian Product, Wikipedia, San Francisco, CA, USA, Jun. 2019.
[Online]. Available: https://en.wikipedia.org/wiki/Cartesian_product

[42] R. Niranjan Mysore et al., “Portland: A scalable fault-tolerant layer 2
data center network fabric,” SIGCOMM Comput. Commun. Rev., vol. 39,
no. 4, pp. 39–50, 2009.

[43] F. van Lingen et al., “The unavoidable convergence of NFV, 5G, and
fog: A model-driven approach to bridge cloud and edge,” IEEE Commun.
Mag., vol. 55, no. 8, pp. 28–35, Aug. 2017.

[44] A. Sheoran, P. Sharma, S. Fahmy, and V. Saxena, “Contained: An NFV
micro-service system for containing E2E latency,” SIGCOMM Comput.
Commun. Rev., vol. 47, no. 5, pp. 54–60, 2017.

[45] B. Blanco et al., “Technology pillars in the architecture of future 5G
mobile networks: NFV, MEC, and SDN,” Comput. Stand. Interfaces,
vol. 54, pp. 216–228, Nov. 2017.

Defang Li received the B.S. degree from the
Department of Electronic Engineering and
Information Science, University of Science and
Technology of China in 2014, where he is currently
pursuing the Ph.D. degree. His research interests
include SDN, NFV, and the network resource
orchestration and management.

Peilin Hong received the B.S. and M.S. degrees
from the Department of Electronic Engineering
and Information Science, University of Science and
Technology of China in 1983 and 1986, respectively,
where she is currently a Professor and the Advisor
for Ph.D. candidates. She has published 2 books
and over 100 academic papers in several journals
and conference proceedings. Her research interests
include next-generation Internet, policy control, IP
QoS, and information security.

Kaiping Xue (M’09–SM’15) received the B.S.
degree from the Department of Information Security,
University of Science and Technology of China
(USTC) in 2003, and the Ph.D. degree from
the Department of Electronic Engineering and
Information Science (EEIS), USTC in 2007, where
he is currently an Associate Professor. His research
interests include next-generation Internet, distributed
networks, and network security. He currently serves
as an Area Editor for Ad Hoc Networks and an
Associate Editor for the IEEE TRANSACTIONS ON

WIRELESS COMMUNICATIONS, the IEEE TRANSACTIONS ON NETWORK

AND SERVICE MANAGEMENT, IEEE ACCESS, and China Communications.
He also served as a Guest Editor for the IEEE JOURNAL ON SELECTED

AREAS IN COMMUNICATIONS and a Lead Guest Editor for the IEEE
Communications Magazine. He is an IET Fellow.

Jianing Pei received the B.S. degree from
the Department of Information and Electrical
Engineering, China University of Mining and
Technology in 2015. He is currently pursuing the
Ph.D. degree with the Department of Electronic
Engineering and Information Science, University of
Science and Technology of China. His research
interests include SDN, NFV, and the network
resource orchestration and management.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

