684 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 1, MARCH 2023

Flow Topology-Based Graph Convolutional
Network for Intrusion Detection in
Label-Limited IoT Networks

Xiaoheng Deng™', Member, IEEE, Jincai Zhu"', Xinjun Pei

, Lan Zhang™, Member, IEEE,

Zhen Ling™, Member, IEEE, and Kaiping Xue™', Senior Member, IEEE

Abstract—Given the distributed nature of the massively con-
nected “Things” in IoT, IoT networks have been a primary target
for cyberattacks. Although machine learning based network
intrusion detection systems (NIDS) can effectively detect abnor-
mal network traffic behaviors, most existing approaches are
based on a large amount of labeled traffic flow data, which hin-
ders their implementation in the highly dynamic IoT networks
with limited labeling. In this paper, we develop a novel
Flow Topology based Graph Convolutional Network (FT-GCN)
approach for label-limited IoT network intrusion detection. Our
main idea is to leverage the underlying traffic flow patterns, <.e.,
the flow topological structure, to unlock the full potential of the
traffic flow data with limited labeling, where the FT-GCN will be
deployed at the edge servers in IoT networks to detect intrusions
via software defined network technologies. Specifically, FT-GCN
first takes the time correlation of traffic flows into account to
construct an interval-constrained traffic graph (ICTG). Besides,
a Node-Level Spatial (NLS) attention mechanism is designed
to further enhance the key statistical features of traffic flows
in ICTG. Finally, the combined representation of statistical
flow features and flow topological structure are learned by the
cost-effective Topology Adaptive Graph Convolutional Networks
(TAGCN) for intrusion identification in IoT networks. Extensive
experiments are conducted on three real-world datasets, which
demonstrate the effectiveness of the proposed FT-GCN compared
to state-of-the-art approaches.

Index Terms—Network intrusion detection, graph convolu-
tional networks, attention mechanism, label limitation, IoT.

Manuscript received 27 May 2022; revised 22 August 2022; accepted
1 October 2022. Date of publication 14 October 2022; date of current version
7 March 2023. This work was supported by the National Natural Science
Foundation of China Project (62172441, 62172449, 61772553), the local
science and technology developing foundation guided by the central govern-
ment (Free exploration project 2021Szvup166), the Opening Project of State
Key Laboratory of Nickel and Cobalt Resources Comprehensive Utilization
(GZSYS-KY-2020-033), and the Fundamental Research Funds for the Central
Universities of Central South University (2021zzts0201). The associate editor
coordinating the review of this article and approving it for publication was
A. Mourad. (Corresponding author: Xiaoheng Deng.)

Xiaoheng Deng, Jincai Zhu, and Xinjun Pei are with the School
of Computer Science and Engineering, Central South University,
Changsha 410083, China (e-mail: dxh@csu.edu.cn; jincaizhu@csu.edu.cn;
pei_xinjun@163.com).

Lan Zhang is with the Department of Electrical and Computer
Engineering, Michigan Technological University, Houghton, MI 49931 USA
(e-mail: lanzhang @mtu.edu).

Zhen Ling is with the School of Computer Science and Engineering,
Southeast University, Nanjing 211189, China (e-mail: zhenling @seu.edu.cn).

Kaiping Xue is with the Department of Electronic Engineering and
Information Science, University of Science and Technology of China,
Hefei 230027, China (e-mail: kpxue @ustc.edu.cn).

Digital Object Identifier 10.1109/TNSM.2022.3213807

I. INTRODUCTION

HE PAST decade witnessed an astounding increase in
Tinterest in Internet of Things (IoT). IoT connects dis-
tributed “Things” over the Internet, creating an integration
that allows various applications to operate in physical and
cyber worlds [1]. Unfortunately, the distributed nature of
massively connected “Things” makes IoT network a pri-
mary cyberattack target [2], [3], [4], [5]. Network Intrusion
Detection Systems (NIDS) have been one essential technique
to detect and mitigate malicious network activities inside IoT
network [6], [7]. By monitoring the traffic flows in and out
of IoT devices, NIDS can alert IoT networks when an intru-
sion is observed [8]. Specifically, NIDS identifies the abnormal
behaviors of network traffic by comparing them with the pat-
terns of normal behaviors, where the traffic flow behavior
that deviates from the normal pattern will be classified as an
intrusion.

One major mechanism to extract the patterns of traffic
flow behaviors in NIDS is to leverage machine learning tech-
niques [9]. Although machine learning based mechanisms are
well-recognized to learn discriminative features, they usu-
ally require a large amount of labeled data for learning in a
supervised manner [10]. Given the highly dynamic IoT envi-
ronments, it is non-trivial to obtain sufficient labeled traffic
flow data in time. Labeling requires massive manual work and
human interaction, which is time-consuming. Unfortunately,
when a limited amount of labeled data is obtained, the detec-
tion performance can be seriously degraded [11]. This is
mainly due to the ignorance of key underlying features, such
as the topological structure of traffic flows. Hence, it is essen-
tial to fully exploit the underlying features, i.e., the topological
structure of traffic flows, for deploying the machine learning
based NIDS in label-limited IoT networks.

Due to the powerful capability of extracting graph seman-
tic and topological structure, Graph Convolutional Networks
(GCN) have been one potential approach [12]. In [13],
Zheng and Li convert the traditional traffic trace graph to
construct a new traffic graph and use the GCN model for
representation learning. For ease of understanding, the pro-
cess is shown in Fig. 1, where the nodes represent traffic
flows and edges denote that nodes have common IP hosts.
However, simply connecting the traffic flows with the common
IP hosts makes the constructed graph have a huge number of

1932-4537 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 29,2023 at 11:06:05 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2740-8025
https://orcid.org/0000-0002-5858-4307
https://orcid.org/0000-0003-4772-7525
https://orcid.org/0000-0002-7144-9089
https://orcid.org/0000-0001-9691-8702
https://orcid.org/0000-0003-2095-7523

DENG et al.: FI-GCN FOR INTRUSION DETECTION IN LABEL-LIMITED IoT NETWORKS 685

(a) (b)

Fig. 1. (a) Nodes present IP hosts, and edges represent traffic flows. (b) Nodes
represent traffic flows, and edges denote that nodes have common IP hosts.
Colors represent different applications.

redundant edges, seriously degrading the performance of GCN.
To address this issue, Sun et al. [14] build a traffic graph based
on the K-Nearest Neighbor algorithm to describe the topology
and learn the representation by leveraging GCN. In the process
of graph construction, the similarity between nodes is used
to find the K-most similar nodes as its neighbors. Although
with a reduced edge number, the constructed graphs ignore the
fact that the effectiveness of connections between two traffic
flows is affected by the time intervals between their genera-
tion. When the time intervals become larger, the correlation
(referring to the probability that they belong to the same appli-
cation) between the two flows becomes weaker. Therefore, we
take the time interval into account and construct an interval-
constrained traffic graph (ICTG) to describe the topological
structure of traffic flows.

On the other hand, since the feature dimensionality of
large graphs is usually high, GCN-based models can easily
suffer from performance degradation. Although feature engi-
neering can reduce the feature dimension, it usually involves
a lot of human interactions and expert knowledge. As a solu-
tion to avoid feature engineering, the attention technique can
autonomously learn the relationship between features and help
the model focus on the key features to improve classification
performance. Enlighted by SENet attention [15], we design
a Node-Level Spatial Attention mechanism, named NLS, to
enhance the key features of nodes in the traffic graph. NLS
can selectively enhance important features by utilizing global
feature information, making the whole model focus more on
the key features affecting the classification results. Moreover,
to further improve the efficiency of the above designs, instead
of leveraging the conventional spectral-domain GCN that usu-
ally suffers performance degradation due to the computational
expensive graph convolution operations [16], [17], [18], [19],
we adopt a novel vertex-domain GCN, Topology Adaptive
Graph Convolutional Network (TAGCN) [20]. Specifically,
TAGCN provides a systematic approach to designing a set of
fixed-size learnable filters to perform convolutions on graphs
without requiring convolution approximations. What’s more,
TAGCN inherits the local feature extraction property of clas-
sical CNNs with low computational complexity [21], which
is more suitable than spectral GCN for highly dynamic IoT
environments.

To put all these ideas together, this paper develops a novel
Flow Topology based Graph Convolutional Network (FT-
GCN) approach for intrusion detection in label-limited IoT
networks, where the proposed FI-GCN can be deployed at
edge servers to detect intrusions and mitigate them through
software defined network technologies. To enable effective

detection with limited labeling, we first construct an interval-
constrained traffic graph (ICTG) to describe the topological
structure of traffic flows and limit the time interval between
traffic flow generation. Then, to reduce the effect brought
by high-dimensional features and avoid manual operations
brought by feature engineering, we design an NLS attention
mechanism to enhance the representation ability of key fea-
tures in ICTG. Finally, we put it and processed features into
Topology Adaptive Graph Convolutional Network (TAGCN)
for feature learning and classification. We transform the
network intrusion detection in label-limited IoT networks into
a node classification task, and use traffic topology information
as complementary features to enhance the graph representa-
tion. First, we construct a unique traffic graph to represent the
topological structure of traffic flows, and design an attention
mechanism to enhance the key statistical features of traf-
fic flows. After that, we use a graph learning model with
low computational complexity to perform node classification.
The performance of FI-GCN is validated on three real-world
datasets which represent different network scales. Our major
contributions are as follows:

e We propose an innovative NIDS approach, FT-GCN, to
enable intrusion detection under limited labeling for IoT
networks. The proposed FT-GCN converts the topological
structure of the traffic flows to a graph representation and
utilizes TAGCN for feature learning and classification.

e We take the time correlation of traffic flows into
account and construct the interval-constrained traffic
graph (ICTG). Furthermore, we design a Node-Level
Spatial (NLS) attention mechanism to utilize key node
features in ICTG, while also reducing the model burden.

e We conduct extensive experiments on real-world datasets
to evaluate the effectiveness of FI-GCN in identifying
network intrusion. The results demonstrate that FT-GCN
achieves higher detection accuracy with limited labeling
compared to other state-of-the-art methods.

The rest of the paper is organized as follows. Section II
presents the related work of NIDS in IoT Section III intro-
duces the system model. In Section IV, we detail the design
rationale and key components of the proposed FT-GCN. And
then we evaluate FI-GCN and analyze the experimental results
in Section V. Finally, Section VI concludes the paper.

II. RELATED WORK
A. Machine Learning Based NIDS in IoT

Recently, Machine Learning has been widely used in
NIDS to identify normal and abnormal behaviors. Atay [22]
Aloul et al. [23] utilized adversarial autoencoders with the
K nearest neighbor algorithm to implement intrusion detec-
tion, which can be executed on small routers near the IoT
edge. Kim et al. [24] proposed a DNN-based NIDS to iden-
tify malicious traffic, which achieves an average accuracy rate
of 99% on the KDD dataset. Chen et al. [25] proposed a novel
NIDS system, which uses a deep-learning-based detection
model to extract statistical features from the original network
traffic. Das et al. [26] implemented a supervised ensemble
ML framework (SupEnML), which combines multiple ML

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 29,2023 at 11:06:05 UTC from IEEE Xplore. Restrictions apply.

686 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 1, MARCH 2023

classifiers from various classification families and the ensem-
ble feature selection (EnFS) technique for network intrusion
detection. The work by [27] proposed a lightweight intru-
sion detection method, which utilizes a supervised machine
learning model, i.e., support vector machine (SVM), to detect
abnormal data in the IoT network. Wu et al. [28] proposed
an intrusion detection method based on dynamic ensemble
incremental learning relevance vector machine(DEIL-RVM),
and implemented a dynamically adjusted ensemble intrusion
detection model. Another work by [29] used feature selec-
tion and Random Forest to classify traffic flows, achieving
high accuracy on the NSL-KDD dataset. Although Machine
Learning based NIDSs have achieved high detection accuracy
for network traffic classification in IoT networks, they usu-
ally require numerous correctly labeled data (ground truth)
for model training. Due to the highly dynamic nature of the
IoT network, obtaining the corrected labels is time-consuming,
which involves massive human interactions. However, the
performance of these existing deep learning-based NIDS
will degrade when only a limited number of tags can be
utilized during model training [30], [31]. The reason is
that they usually ignore the key information underlying the
topological structures of traffic flows [14]. Therefore, it is
worth exploring how to use the traffic topology to improve
the classification accuracy of NIDS in label-limited IoT
networks.

B. NIDS With Limited Labeled Data

In existing NIDSs, there are several approaches to improve
detection accuracy with limited labeled data. Liao et al. [11]
designed a NIDS based on a Generative Adversarial Network
(GAN) model, which enhances the original training set by
continuously generating samples. In [32], Gallagher et al.
introduced the concept of link homogeneity and designed a
statistical relational learning algorithm to improve classifi-
cation performance. By using only 5% labeled data, it can
achieve an average accuracy rate of 90%. The work in [33]
proposed a semi-supervised intrusion detection model opti-
mized by a cloud grey wolf optimization (CGWO) algorithm,
which solves the problem of low detection efficiency caused
by the lack of sufficient training sets. Zheng and Li [13]
converted the traffic trace graph to a new traffic graph with
nodes representing traffic flows, and utilized a GCN model
for feature learning to improve the detection accuracy under
a low labeling rate. Sun et al. [14] built a traffic graph
based on a KNN algorithm and combined the GCN and
autoencoder for feature representation learning. Another work
by [34] proposed a novel classifier called Energy-based Flow
Classifier (EFC) for network flow classification, which is
inspired by the inverse Potts model from quantum mechan-
ics. This anomaly-based classifier uses inverse statistics to
infer a statistical model with labeled benign examples. In this
paper, we propose a novel network intrusion detection method,
which can transform network traffic into a graph represen-
tation to exploit the network traffic topology. Moreover, we
use a TAGCN model for feature representation learning and
classification.

III. SYSTEM MODEL, THREAT MODEL AND
OVERVIEW OF OUR SCHEME

This paper considers a typical IoT network, consisting of
IoT nodes, edge servers, SDN controllers, and SDN switches.
Specifically, IoT nodes refer to IoT devices with communi-
cation capabilities, such as mobile phones, computers, smart
refrigerators, etc.

A. System Model

Each 10T node can transmit and forward traffic flows. The
IoT nodes have limited computing resources, making them
unable to perform heavy protection mechanisms [35]. Edge
servers with sufficient computing power can deploy secu-
rity mechanisms. SDN controllers are programmable software,
which are deployed on the edge servers to obtain the global
information of the IoT network by SDN switches. The SDN
controller is responsible for the processing and calculation of
the protocol, and sends the defined flow table to the SDN
switch to control the forwarding rules in the IoT network. An
SDN switch close to the IoT node can capture the traffic flows
of IoT node for the edge server, and control them based on
the installed flow tables.

Each node can communicate with other nodes through traffic
flows. Each traffic flow has a source IP and a destination IP
address. Most traffic flows cannot be sent directly from the
source IP node to the destination IP node, and in most cases,
they need to pass through one or more forwarding devices. In
the IoT network, the SDN switches are the main forwarding
devices that can forward or drop traffic flows based on flow
tables. The transmission process of all the traffic flows can be
formulated as

Hsrc - (Sth) — (STM Rn) — Hdesa (1)

where H represents IP host, src and des represent source and
destination, respectively, S; and R; denote the i-th network
node and its traffic flow processing rule (i.e., the flow table
of the switch), respectively. Each traffic flow captured by
SDN switches contains D-fields statistical features which are
extracted from the transport layer and network layer. Each
traffic flow has a label y € {0,1} indicating whether it is
malicious or not. However, labeling a large amount of traf-
fic flows is not trivial, resulting in most traffic flows being
unlabeled.

B. Threat Model

This paper considers a general threat model in IoT networks.
We consider the edge server and SDN switches are trustwor-
thy due to their powerful computing capabilities for advanced
defense. We assume that adversaries have no knowledge about
the IoT network topology, but they can attack the IoT nodes
from outside networks by launching malicious traffic flows,
such as Backdoors, Fuzzers, Dos, etc. The malicious traffic
flows can compromise and control vulnerable IoT nodes, ren-
dering IoT nodes untrustworthy. Then, the infected IoT nodes
will lose their original function and become malicious nodes,
launching a large amount of malicious traffic to attack other
normal nodes. The target of the adversaries is to compromise

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 29,2023 at 11:06:05 UTC from IEEE Xplore. Restrictions apply.

DENG et al.: FI-GCN FOR INTRUSION DETECTION IN LABEL-LIMITED IoT NETWORKS 687

X | Entry 1|Match Fields| Priority | ... |

5 Define | |
Flow Tablesi Entry 2| Match Fields| Priority |
i

| i

\)

Edge Server

Capture

6 Install Flow Tables
Features

[

SDN Switches
1 Capture

Packets

7 Block Malicious Host

Fig. 2. Edge-assisted NIDS for IoT Systems.

as many loT nodes as possible, eventually paralyzing the entire
network.

Suppose there are N IoT nodes, and each node has two
states: susceptible S, indicating that a node is vulnerable, and
infected I, indicating that a node has been infected. Assuming
[is the probability that a node in the IoT network is infected
by malicious traffic, we can have:

s @)
Then, we denote i(¢) and s(¢) as the ratio of infected nodes and
susceptible nodes at a certain time t, respectively. The increase
of i(t) at each time can be expressed as

di(t , . .
B it =pina - i) @
By solving the differential equation (3), we can have:
, i(0) et 1
it) = 1+ i((())zeﬁt — 1) B 1 1 1 Bt “)
CORDL
It is worth noting that when i(f) = 0.5, dé(f) will reach

the maximum value. This means that the number of infected
nodes grows the fastest. As time ¢ increases, i(f) tends to 1.
Eventually, almost all nodes in the network will be infected.

C. Edge-Assisted NIDS for IoT Networks

To against the above threat model, we propose an edge-
assisted NIDS as shown in Fig. 2, which is composed of
three main modules: data collection, intrusion detection, and
intrusion mitigation.

e Data Collection: SDN switches capture traffic flows and
extract statistical features of the network layer from them,
then transmit them to the edge server for detection.
However, in reality, labeling large-scale traffic flows in
the IoT network can be extremely costly. Therefore, a
few traffic flows are labeled by traffic generation tools
such as Argus and Bro-IDS.

o Intrusion Detection: Based on the received features of
traffic flows, the edge server constructs the traffic graph

and the feature matrix of traffic flows as the input of
FT-GCN. FT-GCN learns the combination representation
from the topology and statistical features of traffic flows
and gives the classification results to determine whether
a given traffic flow is malicious or not.

o Intrusion Mitigation: SDN controllers and SDN switches
are responsible for intrusion mitigation. SDN controller
deployed on the edge server generates flow tables accord-
ing to the detection result of FT-GCN. These flow tables
are sent and installed on SDN switches, which can control
the forwarding of traffic flows. Once a malicious traffic
flow is detected, its source node is regarded as malicious,
and all the traffic flows from this node are blocked by the
flow tables. In such a case, the SDN switch will discard
the traffic flows sent by malicious host IP.

Compared with NIDS based on cloud computing, deploying
the detection model on the edge server can effectively reduce
the delay of data transmission, which meets the low-latency
requirements in the IoT network. In the entire edge-assisted
NIDS, the role of SDN technology is mainly divided into two
aspects. The first function of SDN is to provide data for the
detection model. The SDN switches collect the statistical fea-
tures of traffic flows and transfer them to the edge server. The
second function of SDN is to allow NIDS to customize some
specific defense strategies to defend against intrusions. The
SDN controller generates a flow table based on the results
generated by the detection model and sends it to the SDN
switches to control the traffic forwarding of the IoT network.

IV. FLow TOPOLOGY-BASED GRAPH
CONVOLUTIONAL NETWORKS

In this section, we introduce the proposed FT-GCN as shown
in Figure 3. We start by presenting the overview of FI-GCN,
followed by the key components of FT-GCN.

A. Overview of FT-GCN

The FT-GCN consists of four consecutive main stages.
Specifically, Specifically, the traffic flows are first preprocessed
(Section IV-B), and then input into the NLS attention mecha-
nism to obtain the processed feature X (Section IV-D). Then,
the interval-constrained traffic graph is constructed to describe
the topological structure of traffic flows by leveraging their IP
address and timestamp features (Section IV-C). Finally, the
graph and the processed features are taken as the input of
TAGCN for representation learning (Section IV-E).

B. Data Preprocessing

Generally, traffic flows have various statistical properties at
the network or transport layer, such as IP address, port num-
ber, packet lengths and so on. These properties may imply
potentially malicious behaviors, which is useful to distinguish
malicious traffic from benign traffic. Table I presents some
representative features of traffic flows. Instead of traditional
solutions that require complex feature analysis, we filter the
features used in the graph construction, i.e., Srcip, Dstip,
and Stime, and drop some features containing illegal values

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 29,2023 at 11:06:05 UTC from IEEE Xplore. Restrictions apply.

688 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 1, MARCH 2023

Raw Traffic Flow Features (Input)

00000000
000000000
00000000
[JoYoJoYoXoX X Yo
@00000eQee0

1{Graph Construction

() — (1) —

Fully Connected Layer

(Output)

Attention
Mechanism

Node-Level Spatial

Attention

Fig. 3. Overview of FT-GCN.
TABLE I
SOME REPRESENTATIVE FEATURES OF TRAFFIC FLOWS

Name Type Description

Srcip Nominal Source IP address

Sport Integer Source port number

Dstip Nominal Destination IP address
Dsport Integer Destination port number

Proto Nominal Transaction protocol

Dur Float Traffic flow total duration
Stime | Timestamp Traffic flow start time
Sbytes Integer Source to destination transaction bytes
Dbytes Integer Destination to source transaction bytes
Sload Float Source bits per second
Dload Float Destination bits per second
Spkts Integer Source to destination packet count
Dpkts Integer Destination to source packet count
Label Binary 0 for normal and 1 for attack records

like INF and Nan. After that, we feed these features into an
attention mechanism for feature enhancement.

C. Graph Construction

In this section, we create an interval-constrained traffic
graph (ICTG) to describe the topological structure of traffic
flows, i.e., the relationship between traffic flows, and trans-
form the network intrusion detection into a node classification
task. According to link homophily [32], traffic flows with com-
mon IP hosts have the same application trend. The main idea
of ICTG construction is to extract the similarity relationships
between traffic flows based on the link homophily through the
generation time interval of traffic flows.

We design three rules to construct ICTG. The ICTG can be
represented as G = (V, E, A), where V = {v,va,..., o5}
denotes the set of nodes which are traffic flows, and £ =
{e1,e2,..., ey} represents edges set indicating that nodes
are more relevant than other nodes. Let A € RV*N be the
adjacency matrix of ICTG, when traffic flow i is relevant or

similar to traffic flow j, A;; = 1, otherwise A;; = 0. We
denote F; as i-th traffic flow of dataset. The rules are given
below:

Rule 1: If traffic flow F; and F; have a common source IP,
Al] = A]Z =1

When the source IP of F; and F} are the same, it indi-
cates that they are highly correlated and tend to have similar
activities or applications. For example, in P2P applications, the
host usually needs to connect with multiple collaborator hosts
to broadcast data and the traffic flows between them usually
belong to the same application. If any of F; and F; is normal,
the other sent by this IP host may also be normal. On the other
hand, when a traffic flow sent by a source IP host is detected to
be malicious, what can be inferred is that this source IP host is
compromised and all other traffic flows sent by it are equally
likely to be malicious. As shown in Fig. 4 (a), F, F5 and F3
have the common source IP host, therefore, in Figure 3 (b),
these flows are interconnected. Similarly, the value of the cor-
responding position in the adjacency matrix A of ICTG is set
to 1, ie., Ajg = A9y = A13 = A31 = Aoz = Aza = 1.

Rule 2: If the destination IP of traffic flow F; is the same
as the source of another traffic flow Fj, Ay = 1.

During the communication process, traffic flows are not
always directly transmitted from the source node to the des-
tination node, but will be forwarded many times through
multiple intermediate nodes before reaching the destination
node, as shown in formula (1). It means that the traffic flows
received by a node are related to the traffic sent or forward
by that node. When an adversary launches an attack on a des-
tination node, the intermediate forwarding nodes will also be
affected, such as a DoS attack. The other consideration is that
when F; is malicious, the destination IP address of F; will
become the target of the network attack. If the destination IP
host is compromised by F;, the other traffic flows sent or for-
warded by it will be affected and become malicious. As shown

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 29,2023 at 11:06:05 UTC from IEEE Xplore. Restrictions apply.

DENG et al.: FI-GCN FOR INTRUSION DETECTION IN LABEL-LIMITED IoT NETWORKS 689

Interval-Constrained
Traffic Graph (ICTG)

SN w1

(a) (b)

./ [9//

Traffic Trace Graph

(e (€))
mm % °
7 6 Y /
/ \ t;—t;>T ’o
(e) H
0 —
Host Traffic Flow Edge in ICTG

Fig. 4. Transformation of rule 1, 2, 3. t; represents the generation time of
i-th traffic flow and T represent the maximum generation time interval of two
traffic flows. In the traffic trace graph, nodes represent IP hosts and edges
represent traffic flows. In the ICTG, nodes represent traffic flows and edges
denote that the two nodes are more relevant than the other nodes.

in Fig. 4 (c), the destination IP of Fy and the source IP of Fy
are the same. In our case, the two flows are connected by a
directed edge, as shown in Fig. 3 (d). Then, the value of the
corresponding position in the adjacency matrix A of ICTG is
set to 1, i.e., Agq = 1. Similarly for the traffic flow F and
F5, Ays = 1.

Rule 3: Let t; and t; be the generation time of traffic flow
F; and F}, respectively. We define T as the maximum time
interval for any two connected traffic flows. If |t; — t;| < T,
Az-j =1, otherwise, Aij =0

In practice, the transmission speed of traffic flows is very
fast, and the traffic flows sent by the same host in a short period
of time are highly similar in their applications. Therefore, there
is a strong correlation between these traffic flows in short time
intervals. For example, in a video streaming service, the sub-
scribers need to continuously request the video resources from
the server until the connections are broken. However, this cor-
relation weakens when the generation time interval becomes
larger, which means that these traffic flows are less similar to
each other. More importantly, to compromise some targeted
IoT nodes, the attackers need to initiate a lot of malicious
traffic in a short period of time. Therefore, as the genera-
tion time interval decreases, the correlation between malicious
traffic flows become closer. In addition, when the generation
time interval 7 is not limited, the number of neighbors of a
given node will be extremely large, which may lead to the
densely constructed ICTG and affect the subsequent TAGCN
model learning. The reason may be that edge information is
too redundant, so that TAGCN cannot focus on learning the
key edge information, resulting in performance degradation.

Traffic Trace Graph

TN

Host Traffic Flow Edge in ICTG

Fig. 5. The overall transformation of ICTG construction.

Notably, most existing graph learning methods perform bet-
ter classification on sparse graphs than on dense graphs. As
shown in Fig. 4 (e), traffic flow Fg and F7; have the same
source IP address while #; — & < 7. Thus, by rule 1, we
can get Agy = A7g = 1. The destination IP of F3 is the
same as the source IP of Fg, F%;. However, considering that
ty —t3 > T, we set Azg and A3y to 1 and O, respectively. By
doing so, the interval-constrained traffic graph G can be con-
structed to describe the topology of traffic flows. Fig. 5 shows
the transformation process. By leveraging rules 1, 2 and 3, we
can extract the topological structure of traffic flows.

D. Node-Level Spatial Attention

Inspired by the squeeze and excitation network [15], we
design a node-level spatial attention mechanism (NLS) to
extract the key node features, which takes the raw feature
matrix X as input, and then outputs a new feature matrix X
for the following TAGCN model. The execution process of the
NLS attention mechanism is shown in Fig. 6.

The raw input feature is denoted as X € RVN*D where N
and D represent the total number and the feature dimensions
of the traffic flows, respectively. It can be denoted as

Xo
; (5)

where X; is the D-dimension feature vector. Then, the output
feature map X € RV*D is expressed as

Xo
= : | ©)
Xn-1
where X,— denotes the i-th processed node feature.

First, the global average pooling is performed to com-
press matrix X to a 1 x D vector, which can express the

information of the global receptive field i.e., squeeze map Z.
The calculation process is shown in the formula (7)

1 N-1
7= Z[:)XZ-.)
1=

Then, we use a fully connected layer to reduce dimen-
sion, i.e., W1 Z. Next, we upgrade the dimension through the

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 29,2023 at 11:06:05 UTC from IEEE Xplore. Restrictions apply.

690

Graph Squeeze map

Feature

Global Dense

Input feature map (Relu)
elu

AveragePool

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 1, MARCH 2023

Attention map

(I — | — || — [
1xd 1xd

Dense

. i NLS attention feature map
(Sigmoid)

Nxd

Fig. 6. The procedure of NLS attention mechanism.

full connection i.e., o(W20(W1Z)) and utilize the sigmoid
function to excite it.

S =o(Wad(W12)),)

We regard the weight of the attention map S as the degree of
attention to different feature locations after feature dimension
selection. Finally, we multiply the weights of the attention map
S with the original feature matrix X to get an output of NLS
attention.

X=5 X. 9)

E. Topology Adaptive Graph Convolution Network

In this section, we introduce Topology Adaptive Graph
Convolution Network (TAGCN) [20] for feature learning,
which can directly operate on the graph structure data. TAGCN
takes processed feature matrix X and adjacency matrix of
ICTG as initial input and then learns the node representations.
Each node has D-dimension features. The d-th feature of all
nodes is presented as vector T; € RNV , where N denotes the
total number of nodes. There are multiple graph filters used
in this layer. Let Gy f € RN*N be the f-th graph filter. The
graph convolution operation can be calculated by multiplying
matrix Gd’f and vector Z,4, i.e., Gd’fﬁsd. Then, the f-th output
feature map can be calculated by

D

yp = Gagia+byly,
d=1

(10)

where bf denotes a learnable bias, 1,y denotes an N-dimension
vector of all ones [20], [36]. Then we have

K
Gag = 9asrA"
k=0

Y

where g4 ¢ 1 denotes the learnable polynomial coefficients of
the graph filter; The quantity AF is a calculated matrix, where
A’f ., denotes the sum of weights of all paths from node j to
i with length k. For a node sequence (vj, vji1,...,%v;), We
define a path of length k from node j to i, and each step of it
corresponds to a weighted directed edge in ICTG. Then, the
weight of this path can be obtained by multiplying the weights

‘®_> E
Nxd

of the k directed edges, ie., ¢(p;j;) = an:j Ay v
Finally, we sum up the weights of all paths to get A]fy j

Aty = w(pf) = >

je{ﬂj is k paths to z}

¢(pji). (12)
Therefore, the final feature map can be expressed as

K D

yr(i) =>_ Y >
k=1d=1je{j|j is k paths to i}
+ ble.

94,7k (Pj,i)2a(j)
(13)

After the graph convolution operation, we feed the output
features into a dense layer and use a nonlinear operation 0(-)
to activate it.

Xp =0(Wyy), (14)
where W is a layer-specific trainable weight matrix and §(-)
can be a ReLU activation function.

The entire procedures of FI-GCN are briefly summarized
as Algorithm 1. The loss function of FT-GCN L is Log loss

and the parameters are updated by Adam optimizer. The loss
function is defined as follows.

N
1
L= - E (yilog(9;) + (1 —y;)log(1 — ;) (15)
=1

where y; and y; represent the true and predicted class of i-th
traffic flow, respectively.

V. EVALUATION

In this section, we introduce the experimental setting. In our
experiments, we use three real-world datasets. Then, we intro-
duce the comparison method and illustrate the implementation
of FT-GCN, as well as the performance evaluation metrics.
After that, we show the classification performance and train-
ing efficiency of FI-GCN with finite labeling rate. Finally,
we explore the effect of label rate and time interval on the
performance of FT-GCN.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 29,2023 at 11:06:05 UTC from IEEE Xplore. Restrictions apply.

DENG et al.: FI-GCN FOR INTRUSION DETECTION IN LABEL-LIMITED IoT NETWORKS 691

Algorithm 1 Flow Topology Based Graph Convolutional
Network
Input: Original traffic flow feature X.
Output: Predicted category Y of traffic flows.
1: Initialize all the parameters of TAGCN layers, NLS
attention layer and fully connected layers.
2: Set iteration number / and time interval 7.
3: Construct interval-constrained traffic graph G and obtain
adjacent matrix A utilizing rule 1,2,3.
4: for 1 =1,2,...,1 do
5 Input feature matrix X into NLS attention layer to get
processed feature matrix X.
6: Obtain predicted class e through two TAGCN layers
and two fully connected layers.
Calculate and minimize loss function L.
Update all the parameters.
9: end for
10: return Y.

TABLE 1T
MAIN DATASETS USED ON THE EXPERIMENTS

Datasets UNSW-NB15 CIC-Darknet2020 ISCXTor2016
Nodes of ICTG 440,044 141,530 66,615
Edges of ICTG 4,177,549 2,453,910 1,543,362

Features 39 75 24

A. Experimental Setting

1) Datasets: We use three datasets representing different
network scales. They are UNSW-NB15 [37], DIDarknet [38],
and Tor-nonTor [39] datasets which are widely used in network
intrusion detection as illustrated in Table II.

o UNSW-NBI5: This dataset was generated by IXIA tools,
which has a hybrid of the real modern normal and the
contemporary synthesized attack activities of the network
traffic. It contains normal traffic flows and nine prominent
attack families like Backdoors, Dos, Worms, etc.

o CIC-Darknet2020: This dataset is an open-source reposi-
tory provided by [38]. It includes darknet traffic and cor-
responding normal traffic from Audio-Stream, Browsing,
Chat, Email, efc., which are implemented over Tor and
VPN infrastructure.

o ISCXTor2016: The current pervasive use of encryp-
tion tools makes traffic classification an open challenge.
Tor [40] is one of the most popular privacy-enhancing
tools. The ISCXTor2016 dataset is a labeled Tor traf-
fic dataset published by UNB (University of New
Brunswick) [39], which contains eight types of traffic
flows from more than 18 representative applications.

2) Comparative Methods: We compare FT-GCN with 6

popular state-of-the-art methods:

e AdaBoosting [41] is a kind of Ensemble Learning, which
trains a series of weak learnable classifiers and combines
them into a strong classifier. The maximum number of
training iterations for each weak classifier is set to 100.

o K-Nearest Neighbor (KNN [42]) classifies the traffic flow
using the Neighbor information. In our experiment, the
value of K is set to 5.

¢ RF (Random Forest [43]) constructs multiple decision
trees for model training and prediction to classify traffic
flows.

¢ GCN-TC [13] combines traffic trace graphs and the sta-
tistical features of flows and utilizes the GCN model for
representation learning. The neighborhood order of traf-
fic flow is set to 2, and the maximum neighborhood edge
is 50.

e CNN (Convolutional Neural Network [44]) models
network traffic events as time-series data with a million
benign and malware connections and takes them as input
for classification.

o DNN (Deep Neural Network [45]) is a typical type of
Feed Forward Neural Network which has 2 hidden layers.

3) Implementation: We leverage Pytorch and DGL frame-

works for the implementation of FT-GCN and GCN-TC. To
optimize hyper-parameters of FI-GCN, the number of hid-
den units for all layers is set to 64, while k is set to 2.
Then, we train FT-GCN with 300 epochs. We set the learning
rate to 0.01, and take dropout with a 0.5 ratio for the first
TAGCN layer to avoid overfitting. Other comparative meth-
ods are implemented by the Tensorflow 2.0 and scikit-learn
library. The hidden units of CNN, DNN, and GCN-TC are set
the same as FT-GCN. And, we add the same dropout layer
as used in FT-GCN to these three models. The kernel size of
CNN is set to 3. All methods are run 10 times. All experi-
ments were performed on a PC with a 10-core CPU, NVIDIA
3080, and 32GB RAM.

4) Evaluation Metrics: We use 4 standard metrics to eval-

uate the performance of FI-GCN.

e Accuracy:
TP + TN
A = 16
cewacy = Fp TPy N+ 7N 0
e Recall:
TP

Recall = ———— 17
T TP L FN 17

e Precision:

TP
Precision = ———— 1

recision TP+ FP’ (18)

o F1-Score:
Fl-Score — 2 Precision - Recall (19)

Precision + Recall’

where TP, FP, TN, and FN denote true positive, false positive,
true negative, and false negative, respectively.

B. Performance Results

1) Classification Performance: In this experiment, we
compared FT-GCN with six state-of-art methods. All the com-
parison methods have achieved good performance in network
intrusion detection. To highlight the performance of each
method at low label rates, we set the labeling rate to 5% on
all three datasets. In other words, this means that only 5%
of traffic flows are labeled. The parameter time interval T of
FT-GCN is set to 3 seconds. Fig. 7 illustrates the accuracy
of all methods. Moreover, we give more evaluation met-
rics in Table III. FT-GCN achieves the classification accuracy

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 29,2023 at 11:06:05 UTC from IEEE Xplore. Restrictions apply.

692

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 1, MARCH 2023

TABLE III
PERFORMANCE COMPARED WITH THE STATE-OF-ART METHODS

UNSW-NB15 CIC-Darknet2020 ISCXTor2016

Methods Precision Recall ~ F1-Score Precision Recall ~ FI-Score Precision Recall FI1-Score

AdaBoosting 0.9389 0.9394 0.9371 0.905 0.908 0.8984 0.9293 0.9327 0.9305

KNN 0.9630 0.9633 0.9631 0.9281 0.9306 0.9286 0.9221 0.9249 0.9232

RF 0.9493 0.947 0.9441 0.9256 0.9274 0.9222 0.9584 0.9594 0.9587

CNN 0.9655 0.9651 0.9653 0.8951 0.9006 0.8954 0.9221 0.9249 0.9232

DNN 0.9713 0.97 0.9704 0.919 0.9213 0.9198 0.9399 0.9421 0.9407

GCN-TC 0.9695 0.9687 0.9689 0.9697 0.9696 0.9697 0.9394 0.9423 0.9400

FT-GCN 0.9866 0.9865 0.9865 0.9839 0.9838 0.9839 0.9681 0.9688 0.9682

I AdaBoosting [RF I DNN =3 FT-GCN .
100%| == xnn B CNN EEE GON-TC 3 seconds. From Fig. 9, we can gbserve thflt the loss and accu-
racy of the FT-GCN change quickly until about 170 epochs
9B% | on the three datasets. This means that after 170 epochs, FT-
> 96% GCN has converged, and its performance has reached the best.
o« o

g It is worth mentioning that the curves of the training set and
g 94% | the validation set are very similar, almost overlapping on the
UNSWV-NB15 and CIC-Darknet2020 datasets, while the dif-
92% | ferences on the ISCXTor2016 datasets are very small. The
90%| reason may be that the FT-GCN can quickly learn the com-
L bined representation of the topology and statistical features of
UNSW-NB15 CIC-Darknet2020 ISCXTor2016 traffic flows, thereby effectively classifying normal and abnor-
Fig. 7. Accuracy of all methods on three datasets. mal behaviors. We can also find that the accuracy of FT-GCN

of 98.7%, 98.5% and 96.8% on the UNSW-NBI15, CIC-
Darknet2020, and ISCXTor2016 datasets, respectively. The
accuracy of FT-GCN on the three datasets is at least 2%, 6%
and 4% higher than that of shallow machine learn-based meth-
ods, i.e., AdaBoosting, RF and KNN. This indicates that the
proposed FT-GCN successfully learns a combined represen-
tation of the topological and statistical features of the traffic
flow. In addition, FT-GCN outperforms other deep-learning
methods, such as CNN and DNN on all metrics, which is
particularly evident on the CIC-Darknet2020 dataset. The rea-
son may be that the feature dimension of CIC-Darknet2020
is too high, reaching 75. These methods lack the guidance of
attention mechanism and can not focus on the key features,
resulting in insufficient performance in classification.

In addition, FT-GCN has a better performance than the best
remaining baseline GCN-TC. The comparison result demon-
strates that the constructed ICTG contains more meaningful
information than the traffic graph in GCN-TC. Moreover, we
provide the ROC and AUC results of all methods on three
datasets in Fig. 8. Obviously, the AUC scores of FT-GCN
and GCN-TC are higher than the other methods, reaching
above 0.97 on all three datasets. This result indicates that these
two methods have better classification performance than other
methods under a limited labeling rate. FI-GCN and GCN-TC
convert the topological structure of traffic flows into learnable
graph data and utilize graph learning technology for classifica-
tion. The excellent performance of FT-GCN and GCN-TC also
verifies that in the case of a limited labeling rate, the topolog-
ical structure of traffic flows can be used as a supplementary
feature to compensate for the lack of learnable information.

2) Efficiency of FI-GCN: To validate the effectiveness of
FT-GCN at a limited labeling rate, we conduct experiments
using labeling 5% rate data. The parameter T is set to

on the ISCXTor2016 dataset is lower than that of the other
two datasets. This may be because the feature dimension of
this dataset is smaller than that of other datasets. It is difficult
for NLS to learn enough knowledge from insufficient feature
information. To further demonstrate the effectiveness of FT-
GCN, Fig. 10 presents the evolution of precision, recall, and
F1-score. The three metrics curves ascend to a plateau quickly,
exceeding 0.95 after 100 epochs, which indicates that FT-GCN
can converge quickly on different datasets. In summary, FT-
GCN can perform well when network scale changes, with fast
convergence and the ability to deal with limited labeled data.

3) Effect of Labeling Rate: In this experiment, we are curi-
ous about how FT-GCN performs when the label rate varies.
Therefore, we measure the accuracy of FI-GCN and other
baselines with various labeling rates in the range of 1%, 5%,
10%, 20%, 50% and 80%. As can be seen from Fig. 11,
with the increase of the labeling rate, the accuracy of most
methods is improved, which indicates that the proportion of
labeled data used for training is an essential factor affecting
the accuracy. From Fig. 11, we can observe that the accuracy
of FT-GCN is always higher than the other baselines, and the
change is significantly reduced when the labeling rate declines
from 80% to 1%. It is proved that the attention module in FT-
GCN is helpful for classification and makes the model focus
on key features. In addition, the experimental results also show
that combining the topology and statistical features of traffic
flow makes it easier for FI-GCN to learn the representation
hidden in the traffic flow relationships, which improves the
classification performance under different labeling rates.

From this figure, we can also find that when the labeling
rate decreases, the accuracy of GCN-TC changes not signif-
icantly, which is similar to that of FI-GCN. This may be
because GCN-TC constructs a traffic graph that combines the
topological structure and statistical features of traffic flows. In
addition, we can see that FT-GCN consistently outperforms

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 29,2023 at 11:06:05 UTC from IEEE Xplore. Restrictions apply.

DENG et al.: FI-GCN FOR INTRUSION DETECTION IN LABEL-LIMITED IoT NETWORKS
ROC curve ROC curve
1.0 rere 1.0
g g
© 0.8 c 0.8
o o
o 4]
>061}, e AdaBoosting (0.9802) >0.61 - AdaBoosting (0.8558)
= KNN (0.9811) = KNN (0.9222)
o044} RF (0.9941) S 0.41 - RF (0.8829)
) ---- CNN (0.9879) o ---- CNN (0.9022)
2 0.2 ---- DNN (0.9939) 2 0.2 ---- DNN (0.9425)
~ —— GCN-TC (0.9959) ~ —— GCN-TC (0.9855)
0.0 FT-GCN (0.9991) 0.04 FT-GCN (0.9963)
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
False Positive Rate False Positive Rate
(a) ROC curve on UNSW-NB15 dataset. (b) ROC curve on CIC-Darknet2020 dataset.
Fig. 8. ROC curve of FT-GCN on the three datasets.

100% UNSW-NB15 Dataset 0.6 100% CIC-Darknet2020 Dataset 0.6
98% /.,,4""““%.#"”’ 0.5 98% SR 0 5
96% 0.4 96% 0.4

§ ? /‘ —— Accuracy of train * § ? —— Accuracy of train *

594% Accuracy of validation 038 594% Accuracy of validation 038

E —— Loss of train - g —— Loss of train -
92% — Loss of validation 0.2 92% —— Loss of validation 0.2
90% 0.1 90% 0.1
88% I - 0.0 88% l 0.0

0 50 100 150 200 250 300 ° 0 50 100 150 200 250 300 °
Epoch Epoch

(a) Training process of UNSW-NB15 dataset.

(b) Training process of CIC-Darknet2020 dataset.

Fig. 9. Loss and accuracy curves of FT-GCN during training.

693

ROC curve
1.0
g
© 0.8
o«
[0}
=061 e AdaBoosting (0.9641)
'JF_; v KNN (0.9036)
go4{f RF (0.9717)
o i ---- CNN (0.9431)
2021 ---- DNN (0.9538)
=] —— GCN-TC (0.9740)
0.04! FT-GCN (0.9898)
0.00 0.25 0.50 0.75 1.00

False Positive Rate
(¢) ROC curve on ISCXTor2016 dataset.

ISCXTor2016 Dataset

100% 0.6
98% 0.5
5.96% . 0.4
9 —— Accuracy of train "
594% Accuracy of validation 0.3§

g —— Loss of train
92% —— Loss of validation 0.2
90% A gbd 0.1
o
88% 0 50 100 150 200 250 300 0.0
Epoch

(c) Training process of ISCXTor2016 dataset.

1.00
0.98
0.97
c 20.96
£0.95 = S
i 8 20.94
(%) to] wn Y.
o —— UNSW-NB15 Dataset o —— UNSW-NB15 Dataset — —— UNSW-NB15 Dataset
& 0.93 CIC-Darknet2020 Dataset 0.92 CIC-Darknet2020 Dataset “0.92 CIC-Darknet2020 Dataset
—— ISCXTor2016 Dataset —— ISCXTor2016 Dataset —— ISCXTor2016 Dataset
0.90 0.90 0.90
0.88 0.88
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Epoch Epoch Epoch
(a) Precision of FT-GCN. (b) Recall of FT-GCN. (c) Fl-score of FT-GCN.
Fig. 10. Precision, recall, F1-socre of FT-GCN during training.
-« AdaBoosting KNN e RF -=+- CNN -—+- DNN —— GCN-TC FT-GCN
UNSW-NB15 Dataset CIC-Darknet2020 Dataset ISCXTor2016 Dataset
98% o,
98% PSS - St 98%
S 9 96%
>~97% Bt > 96% > ;
@ 3 @
2 060 2 94% g 4%
g 96% g g
R . 92%
95% sl 92%
90%
[o VL7 T PO B s s . 90%
1 5 10 20 50 80 1 5 10 20 50 80 1 5 10 20 50 80
Label Rate(%) Label Rate(%) Label Rate(%)
Fig. 11. Accuracy of FT-GCN on three datasets with different labeling rate.

GCN-TC by an average of 2% on accuracy. The reason is
that GCN-TC sets the maximum of neighbors of each traffic
flow, resulting in the reduction of information in the con-
structed traffic graph. Instead of setting the maximum number

of neighbors per traffic flow, FI-GCN sets different values of
T to dynamically control the sparsity of the traffic graph. A
larger T makes a node have more neighbors and the ICTG
becomes denser. The comparison results also reveal that our

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 29,2023 at 11:06:05 UTC from IEEE Xplore. Restrictions apply.

694 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 1, MARCH 2023

98.8%
P re————_
98.5% —’_'___\‘
98.2% —e— UNSW-NB15 Dataset
CIC-Darknet2020 Dataset

.. 98.0% --#- |SCXTor2016 Dataset
%}
| e C T
597.7% ORI ° .
o .
<

97.5% .

K2
97.2%
97.0% P
."“
96.7% | *
0 5 10 15 20 25 30
T(s)
Fig. 12. The impact of time interval T on accuracy.

constructed ICTG contains more structural information than
the traffic graph used in GCN-TC, which verifies the validity
of the rules we designed.

4) Effects of Time Interval T: To describe the topological
structures of the traffic flows, we develop an Interval con-
strained Traffic Graph (ICTG), which limits the generation
time interval between traffic flows.The validity of the con-
nection between two traffic flows is affected by the time
interval 7. As the time interval T becomes larger, the cor-
relation becomes weaker. The time interval 7 also determines
whether the constructed graph G is sparse. A larger value
of T will result in more neighbors in the graph G, mak-
ing the graph denser. Therefore, the time interval T is an
important factor affecting the performance of FTGCN. To eval-
vate the effect of 7, we measure the accuracy of FT-GCN
and the training time per epoch, with time intervals 7 cho-
sen from the range of 1, 2, 3, 4, 5, 10, 15, 20, 25, 30.
Fig. 12 shows the change of the accuracy of FI-GCN when T
increases from 1 second to 30 seconds. It can be observed
that when the time interval T ranges from 1 second to
25 seconds, the accuracy of FT-GCN on CIC-Darknet2020
and ISCXTor2016 increases from 96 to 97.84% and from
97 to 98.79%, respectively. This is because a larger time
interval T will cause more traffic to be contained in the traffic
graph, which helps FT-GCN learn more useful information.
Also, we can find that the changes of accuracy of FT-GCN
on the UNSW-NBI15 dataset are not noticeable. Specifically,
when T is set to 30 seconds, the accuracy of FI-GCN on
the three datasets decreases slightly. The reason may be that
the training graph G contains too many edges, which brings
unnecessary redundant information and increases the burden
of training FT-GCN, leading to performance degradation. In
addition, too many edges will also increase the training time
of FT-GCN per epoch and occupy more computing resources.
Fig. 13 shows the average training time per epoch at different
time intervals 7. The results show that with the increase of
T, the training time of each epoch increases almost linearly.
However, the accuracy of the model is not improved signifi-
cantly. It also validates the importance of Rule 3 designed in
Section IV-C.

—e— UNSW-NB15 Dataset
0.35 CIC-Darknet2020 Dataset
-+#- |SCXTor2016 Dataset
0.30
2£0.25
e
%3
o
[oR
20.20
g
()
(%]
0.15
0.10
MR PO @eannannn L EREE R Labhhi *
0.05
0 5 10 15 20 25 30
T(s)
Fig. 13. The impact of time interval T on training time per epoch.

VI. CONCLUSION

In this paper, we proposed a network intrusion detection
approach (FT-GCN) for label-limited IoT networks, which
converts the intrusion detection into a special node classifica-
tion task. Specifically, FT-GCN constructs interval constrained
traffic graph (ICTG) to exploit the topology of traffic flow,
and uses a node-level space (NLS) attention mechanism to
enhance the representation of nodes in the traffic graph. In
topologically adaptive convolutional networks, the generated
ICTG and the processed feature matrix are used for rep-
resentation learning and classification. The performance of
FT-GCN is evaluated on three real datasets representing differ-
ent network sizes. Experimental results show that FT-GCN can
achieve high detection accuracy even under a limited labeling
rate, which outperformed other state-of-the-art methods. In our
future work, we will optimize the FT-GCN and construct an
improved traffic graph where its edges are weighted with dif-
ferent values to represent the strength of correlation between
traffic flows. More importantly, the multi-classification task of
malicious traffic flows is also the focus of our next research.

ACKNOWLEDGMENT

The authors would like to thank the Editor-in-Chief, the
Associate Editor, and the reviewers for their insightful com-
ments and suggestions.

REFERENCES

[1] A. Hameed and A. Alomary, “Security issues in [oT: A survey,” in Proc.
Int. Conf. Innov. Intell. Inform. Comput. Technol. (3ICT), 2019, pp. 1-5.

[2] K. Yang, J. Ren, Y. Zhu, and W. Zhang, “Active learning for wireless [oT
intrusion detection,” IEEE Wireless Commun., vol. 25, no. 6, pp. 19-25,
Dec. 2018.

[3] R. Lu, L. Zhang, J. Ni, and Y. Fang, “5G vehicle-to-everything services:
Gearing up for security and privacy,” Proc. IEEE, vol. 108, no. 2,
pp. 373-389, Feb. 2020.

[4] P. Schulz et al., “Latency critical IoT applications in 5G: Perspective on
the design of radio interface and network architecture,” IEEE Commun.
Mag., vol. 55, no. 2, pp. 70-78, Feb. 2017.

[5] A. Mourad, H. Tout, O. A. Wahab, H. Otrok, and T. Dbouk, “Ad
hoc vehicular fog enabling cooperative low-latency intrusion detection,”
IEEE Internet Things J., vol. 8, no. 2, pp. 829-843, Jan. 2021.

[6] S.S.S. Sugi and S. R. Ratna, “Investigation of machine learning tech-
niques in intrusion detection system for IoT network,” in Proc. 3rd Int.
Conf. Intell. Sustain. Syst. (ICISS), 2020, pp. 1164-1167.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 29,2023 at 11:06:05 UTC from IEEE Xplore. Restrictions apply.

DENG et al.: FI-GCN FOR INTRUSION DETECTION IN LABEL-LIMITED IoT NETWORKS

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

L. Zhang, G. Feng, and S. Qin, “Intrusion detection system for RPL from
routing choice intrusion,” in Proc. IEEE Int. Conf. Commun. Workshop
(ICCW), 2015, pp. 2652-2658.

A. Javaid, Q. Niyaz, W. Sun, and M. Alam, “A deep learning approach
for network intrusion detection system,” in Proc. 9th EAI Int. Conf.
Bio-Inspired Inf. Commun. Technol. (BICT), vol. 3, 2016, pp. 21-26.
N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning approach
to network intrusion detection,” IEEE Trans. Emerg. Topics Comput.
Intell., vol. 2, no. 1, pp. 41-50, Feb. 2018.

M. R. Oliveira, J. Neves, R. Valadas, and P. Salvador, “Do we need a per-
fect ground-truth for benchmarking Internet traffic classifiers,” in Proc.
IEEE Conf. Comput. Commun. (INFOCOM), 2015, pp. 2452-2460.

D. Liao, S. Huang, Y. Tan, and G. Bai, “Network intrusion detection
method based on GAN model,” in Proc. Int. Conf. Comput. Commun.
Netw. Security (CCNS), 2020, pp. 153-156.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. Int. Conf. Learn. Represent., 2016,
pp. 1-14.

J. Zheng and D. Li, “GCN-TC: Combining trace graph with statisti-
cal features for network traffic classification,” in Proc. IEEE Int. Conf.
Commun. (ICC), 2019, pp. 1-6.

B. Sun, W. Yang, M. Yan, D. Wu, Y. Zhu, and Z. Bai, “An encrypted
traffic classification method combining graph convolutional network and
autoencoder,” in Proc. 39th IEEE Int. Perform. Comput. Commun. Conf.
(IPCCC), 2020, pp. 1-8.

J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-excitation
networks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
vol. 42, 2018, pp. 2011-2023.

J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, “Spectral networks
and locally connected networks on graphs,” in Proc. Int. Conf. Learn.
Represent. (ICLR), 2014, pp. 1-14.

M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast Localized spectral filtering,” in Proc. Int.
Conf. Adv. Neural Inf. Process. Syst., 2016, pp. 3844-3852.

R. Levie, F. Monti, X. Bresson, and M. M. Bronstein, “CayleyNets:
Graph convolutional neural networks with complex rational spectral
filters,” 2017, arXiv:1705.07664.

H. Sami, J. Bentahar, A. Mourad, H. Otrok, and E. Damiani, “Graph
convolutional recurrent networks for reward shaping in reinforcement
learning,” Inf. Sci., vol. 608, pp. 63-80, Aug. 2022.

J. Du, S. Zhang, G. Wu, J. M. F. Moura, and S. Kar, “Topology adaptive
graph convolutional networks,” 2017, arXiv:1710.10370.

J. Du, J. Shi, S. Kar, and J. M. F. Moura, “On graph convolution for
graph CNNSs,” in Proc. IEEE Data Sci. Workshop (DSW), 2018, pp. 1-5.
B. Atay, “Intrusion detection with probabilistic neural network:
Comparative analysis,” in Proc. Int. Conf. Adv. Technol. Comput. Eng.
Sci. (ICATCES), 2018, pp. 1-4.

F. Aloul, I. Zualkernan, N. Abdalgawad, L. Hussain, and D. Sakhnini,
“Network intrusion detection on the IoT edge using adversarial autoen-
coders,” in Proc. Int. Conf. Inf. Technol. (ICIT), 2021, pp. 120-125.

J. Kim, N. Shin, S. Y. Jo, and S. H. Kim, “Method of intrusion detection
using deep neural network,” in Proc. IEEE Int. Conf. Big Data Smart
Comput. (BigComp), 2017, pp. 313-316.

L. Chen, X. Kuang, A. Xu, S. Suo, and Y. Yang, “A novel network
intrusion detection system based on CNN,” in Proc. 8th Int. Conf. Adv.
Cloud Big Data (CBD), 2020, pp. 243-247.

S. Das et al, “Network intrusion detection and comparative
analysis using ensemble machine learning and feature selection,”
IEEE Trans. Netw. Service Manag., early access, Dec. 27, 2021,
doi: 10.1109/TNSM.2021.3138457.

S. U. Jan, S. Ahmed, V. Shakhov, and I. Koo, “Toward a lightweight
intrusion detection system for the Internet of Things,” IEEE Access,
vol. 7, pp. 42450-42471, 2019.

Z. Wu, P. Gao, L. Cui, and J. Chen, “An incremental learning method
based on dynamic ensemble RVM for intrusion detection,” IEEE Trans.
Netw. Service Manag., vol. 19, no. 1, pp. 671-685, Mar. 2022.

N. Farnaaz and M. Jabbar, “Random forest modeling for network intru-
sion detection system,” Procedia Comput. Sci., vol. 89, pp. 213-217,
Jan. 2016.

L. Li-Zhong, L. Zhi-Guo, and D. Xian-Hui, “Network intrusion detection
by a hybrid method of rough set and RBF neural network,” in Proc. 2nd
Int. Conf. Educ. Technol. Comput., 2010, pp. 317-320.

X. H. Yao, “A network intrusion detection approach combined with
genetic algorithm and back propagation neural network,” in Proc. Int.
Conf. E-Health Netw., 2010, pp. 402-405.

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

695

B. Gallagher, M. Iliofotou, T. Eliassi-Rad, and M. Faloutsos, “Link
homophily in the application layer and its usage in traffic classification,”
in Proc. IEEE INFOCOM, 2010, pp. 221-225.

H. Yang and Z. Zhou, “A novel intrusion detection scheme using cloud
Grey wolf optimizer,” in Proc. 37th Chin. Control Conf. (CCC), 2018,
pp. 8297-8302.

C. F. T. Pontes, M. M. C. de Souza, J. J. C. Gondim, M. Bishop, and
M. A. Marotta, “A new method for flow-based network intrusion detec-
tion using the inverse Potts model,” IEEE Trans. Netw. Service Manag.,
vol. 18, no. 2, pp. 1125-1136, Jun. 2021.

M. Chehab and A. Mourad, “LP-SBA-XACML: Lightweight seman-
tics based scheme enabling intelligent Behavior-aware privacy for IoT,”
IEEE Trans. Dependable Secure Comput., vol. 19, no. 1, pp. 161-175,
Jan./Feb. 2022.

A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on
graphs: Graph Fourier transform,” in Proc. IEEE Int. Conf. Acoust.
Speech Signal Process., 2013, pp. 6167-6170.

N. Moustafa and J. Slay, “UNSW-NB15: A comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),”
in Proc. Mil. Commun. Inf. Syst. Conf. (MilCIS), 2015, pp. 1-6.

A. H. Lashkari, G. Kaur, and A. Rahali, “DIDarknet: A contempo-
rary approach to detect and characterize the darknet traffic using deep
image learning,” in Proc. 10th Int. Conf. Commun. Netw. Security, 2020,
pp. 1-13.

A. H. Lashkari, G. D. Gil, M. S. I. Mamun, and A. A. Ghorbani,
“Characterization of Tor traffic using time based features,” in Proc. 3rd
Int. Conf. Inf. Syst. Security Privacy, 2017, pp. 253-262.

R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” in Proc. 13th Conf. USENIX Security Symp.
Vol. 13 (SSYM), 2004, p. 21.

W. Hu, W. Hu, and S. Maybank, “AdaBoost-based algorithm for network
intrusion detection,” IEEE Trans. Syst, Man, Cybern. B, Cybern.,
vol. 38, no. 2, pp. 577-583, Apr. 2008.

R. Vinayakumar, K. P. Soman, and P. Poornachandran, “Evaluating
effectiveness of shallow and deep networks to intrusion detection
system,” in Proc. Int. Conf. Adv. Comput. Commun. Inform. (ICACCI),
2017, pp. 1282-1289.

A. Montieri, D. Ciuonzo, G. Bovenzi, V. Persico, and A. Pescapé, “A
dive into the dark Web: Hierarchical traffic classification of anonymity
tools,” IEEE Trans. Netw. Sci. Eng., vol. 7, no. 3, pp. 1043-1054,
Jul.-Sep. 2020.

R. Vinayakumar, K. P. Soman, and P. Poornachandran, “Applying con-
volutional neural network for network intrusion detection,” in Proc. Int.
Conf. Adv. Comput. Commun. Inform. (ICACCI), 2017, pp. 1222-1228.
R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran,
A. Al-Nemrat, and S. Venkatraman, “Deep learning approach for intelli-
gent intrusion detection system,” IEEE Access, vol. 7, pp. 41525-41550,
2019.

Xiaoheng Deng (Member, IEEE) received the Ph.D.
degree in computer science from Central South
University, Changsha, Hunan, China, in 2005. Since
2006, he has been an Associate Professor and then
a Full Professor with the Department of Electrical
and Communication Engineering, Central South
University. He is a Joint Researcher of the Shenzhen
Research Institute, Central South University. He is
a Senior Member of CCF, and a Member of CCF
Pervasive Computing Council, and ACM. He was
a Chair of CCF YOCSEF CHANGSHA from 2009

to 2010. His research interests include edge computing, Internet of Things,
online social network analysis, data mining, network security, and pattern
recognization.

Jincai Zhu was born in Wenzhou, Zhejiang, China,
in 1998. He received the B.Sc. degree in software
engineering from Xinjiang University, Xinjiang,
China, in 2020. He is currently pursuing the master’s
degree with the School of Software Engineering,
Central South University, Changsha, China. Since
2020, he has been engaged in the direction of
information security. His major research interests are
10T security and edge computing.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 29,2023 at 11:06:05 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TNSM.2021.3138457

696 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 1, MARCH 2023

Xinjun Pei is currently pursuing the Ph.D.
degree with the School of Computer Science and
Engineering, Central South University, Changsha,
China. Since 2017, he has been engaged in the direc-
tion of information security. His research interests
include wireless communications and networking,
mobile security, edge computing, and the Internet
of Things.

Lan Zhang (Member, IEEE) received the B.Eng.
and M.S. degrees in telecommunication engineer-
ing from the University of Electronic Science and
Technology of China, Chengdu, China, in 2013 and
2016, respectively, and the Ph.D. degree in electri-
cal and computer engineering from the University of
Florida, Gainesville, FL, USA, in 2020. She is cur-
rently an Assistant Professor with the Department
of Electrical and Computer Engineering, Michigan
Technological University. Her research interests
include wireless communications, vehicular systems,
big data analysis, and security and privacy issues for various cyber—physical
system application.

Zhen Ling (Member, IEEE) received the B.S.
degree in computer science from the Nanjing
Institute of Technology, China, in 2005, and the
Ph.D. degree in computer science from Southeast
University, China, 2014. He is a Full Professor with
the School of Computer Science and Engineering,
Southeast University, Nanjing, China. His research
interests include artificial intelligence of things,
mobile system security, network security and pri-
vacy, and trusted computing. He won the ACM
China Doctoral Dissertation Award and the China
Computer Federation Doctoral Dissertation Award in 2014 and 2015,
respectively.

Kaiping Xue (Senior Member, IEEE) received
the bachelor’s degree from the Department of
Information Security, University of Science and
Technology of China (USTC) in 2003, and the
Ph.D. degree from the Department of Electronic
Engineering and Information Science, USTC, in
2007. From May 2012 to May 2013, he was a
Postdoctoral Researcher with the Department of
Electrical and Computer Engineering, University
of Florida. He is currently a Professor with the
School of Cyber Security, USTC. His research
interests include next-generation Internet architecture design, transmission
optimization, and network security. He serves on the editorial board of
several journals, including the IEEE TRANSACTIONS ON DEPENDABLE
AND SECURE COMPUTING, the IEEE TRANSACTIONS ON WIRELESS
COMMUNICATIONS, and the IEEE TRANSACTIONS ON NETWORK AND
SERVICE MANAGEMENT. He has also served as a (Lead) Guest Editor
for many reputed journals/magazines, including the IEEE JOURNAL ON
SELECTED AREAS IN COMMUNICATIONS, the [EEE Communications
Magazine, and the IEEE NETWORK. He is an IET Fellow.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 29,2023 at 11:06:05 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

