
Efficiently Embedding Service Function Chains
with Dynamic Virtual Network Function

Placement in Geo-Distributed Cloud System
Jianing Pei , Peilin Hong , Kaiping Xue , Senior Member, IEEE, and Defang Li , Student Member, IEEE

Abstract—Network Function Virtualization (NFV) and Software-Defined Networks (SDN) enable Internet Service Providers (ISPs) to

place Virtual Network Functions (VNFs) to achieve the performance and security benefit without incurring high Operating Expenses

(OPEX) and Capital Expenses (CAPEX). In NFVenvironment, Service Function Chains (SFCs) always need to steer the traffic through

a series of VNF instances in predefined orders. Moreover, the required number and placement of VNF instances should be optimized to

adapt to dynamic network load. Therefore, it is considerable for ISPs to conduct an optimal SFC embedding strategy to improve the

network performance and revenue. In the paper, we study the SFC Embedding Problem (SFC-EP) with dynamic VNF placement in

geo-distributed cloud system. We formulate this problem as a Binary Integer Programming (BIP) model aiming to embed SFC requests

with the minimum embedding cost. Furthermore, the novel SFC eMbedding APproach (SFC-MAP) and VNF Dynamic Release

Algorithm (VNF-DRA) have been proposed to efficiently embed SFC requests and optimize the number of placed VNF instances.

Performance evaluation results show that the proposed algorithms can provide higher performance in terms of SFC request

acceptance rate, network throughput, and mean VNF utilization rate and efficiently reduce the total VNF running time compared with

the algorithms in existing literatures.

Index Terms—Service function chain, virtual network function, dynamic VNF placement

Ç

1 INTRODUCTION

IT is ubiquitous to place middleboxes in today’s network to
offer varieties of network services to customers. Traditional

middleboxes are implemented by dedicated hardware appli-
ances which lead to high infrastructure and management
costs [1]. Since the advent of Network Function Virtualization
(NFV) and Software-Defined Networks (SDN), the Virtual
Network Functions (VNFs) are implemented in software and
placed on commercial-off-the-shelf devices. Because of great
management, flexibility and cost-efficiency, VNF has great
potential to replace traditional middleboxes and provide per-
formance and security enhancements in the network [2], [3].
Moreover, combined with geo-distributed cloud system, ISPs
can provide network services with better reliability and lower
latency byplacingVNFs inMicro-DataCenters (MDCs)which
are closer to end users [4], [5].

When dealing with the requests from customers, it is often
needed to steer their traffic to traverse the VNFs concatenated
in a specified order to comply with security and performance
policies, which is defined as Service Function Chain (SFC) [4],
[6]. In NFV environment, each type of VNF is usually multi-

instance and these VNF instances can be dynamically placed
at various network locations. So, it is a challenge to embed
SFC requests with the optimal VNF selection and placement
[6]. Besides, due to finite physical resources (e.g., bandwidth,
memory, CPU, etc.) in the network, the optimal path selection
for traffic steering also should be focused on to achieve load
balancing and reduce resource bottlenecks [1], [7].

An example of this problem is shown in Fig. 1. In the geo-
distributed cloud system, there are five switch nodes and
three MDC nodes with four types of VNFs placed in them,
and each type of VNF is multi-instance. VNF1a and VNF2a rep-
resent the first and second instances ofVNFa, respectively. As
for SFC request two, the traffic needs to sequentially traverse
the ingress node C, the instances of VNFa and VNFb before
reaching the egress node E. However, it is noted that both of
MDC node F and G have been placed with the instances of
VNFa and VNFb, and MDC node B can place new instances
for these two types of VNFs as well. Therefore, the optimal
SFC embedding strategy should be made to select or place
the instances of VNFa and VNFb and steer the traffic for this
SFC request.

Furthermore, due to highly dynamic nature of resource
usage, start-up and lifetime, SFC requests are dynamic and
result in the variation of network load [1], [8]. In the net-
work, the placement of VNF instances needs to consume
system resources [9], [10]. The management, monitoring
and maintenance for VNF instances all incur the increase-
ment of energy consumption, Operating Expenses (OPEX)
and Capital Expenses (CAPEX) [11], [12]. So, it is beneficial
to enhance the revenue of ISPs by optimizing the required
number and placement of VNF instances and reducing the

� The authors are with the Key Laboratory of Wireless-Optical Communica-
tions, Chinese Academy of Sciences, School of Information Science and
Technology, University of Science and Technology of China, Hefei 230027,
China.
E-mail: {jianingp, ldf911}@mail.ustc.edu.cn, {plhong, kpxue}@ustc.edu.cn.

Manuscript received 17 Dec. 2017; revised 6 Oct. 2018; accepted 4 Nov. 2018.
Date of publication 12 Nov. 2018; date of current version 11 Sept. 2019.
(Corresponding author: Jianing Pei.)
Recommended for acceptance by M. Steinder.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2018.2880992

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 10, OCTOBER 2019 2179

1045-9219� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4180-1421
https://orcid.org/0000-0003-4180-1421
https://orcid.org/0000-0003-4180-1421
https://orcid.org/0000-0003-4180-1421
https://orcid.org/0000-0003-4180-1421
https://orcid.org/0000-0002-3027-1990
https://orcid.org/0000-0002-3027-1990
https://orcid.org/0000-0002-3027-1990
https://orcid.org/0000-0002-3027-1990
https://orcid.org/0000-0002-3027-1990
https://orcid.org/0000-0003-2095-7523
https://orcid.org/0000-0003-2095-7523
https://orcid.org/0000-0003-2095-7523
https://orcid.org/0000-0003-2095-7523
https://orcid.org/0000-0003-2095-7523
https://orcid.org/0000-0001-8254-552X
https://orcid.org/0000-0001-8254-552X
https://orcid.org/0000-0001-8254-552X
https://orcid.org/0000-0001-8254-552X
https://orcid.org/0000-0001-8254-552X
mailto:
mailto:

total running time of VNFs according to the variation of net-
work load. When network load is heavy, it is better to
increase the number of VNF instances to keep the network
with high performance. On the contrary, with light network
load, it is helpful to reduce the total VNF running time by
decreasing the number of VNF instances.

Given finite physical resources and multiple VNF instan-
ces environment in geo-distributed cloud system, the next
two problems should be focused on: (i) how to optimize the
number and placement of VNF instances; (ii) how to select
and concatenate VNF instances with the minimum embed-
ding cost for an SFC request. In the paper, the embedding cost
includes resource cost and VNF placement cost. The resource
cost is related to the remaining resources on links, nodes and
VNF instances, which is used to achieve load balancing. The
VNF placement cost results from the costs of computing
power, license fees and network utilization [10]. In our work,
these problems above are defined as SFCEmbedding Problem
(SFC-EP) with dynamic VNF placement.

In order to solve SFC-EP with dynamic VNF placement,
first, we formulate it as a Binary Integer Programming (BIP)
model and the objective is to minimize the embedding cost
for each SFC request. Then, we propose two novel algo-
rithms named SFC eMbedding APproach (SFC-MAP) and
VNF Dynamic Release Algorithm (VNF-DRA). SFC-MAP
ingeniously obtains the selection, placement and concatena-
tion solutions of VNF instances by running the shortest
path algorithm (e.g., Dijkstra) in multi-layer graph which is
a transformation of original network topology based on the
order constraints of SFC requests. VNF-DRA is in charge of
the optimization of placed VNF instances to reduce their
running time. In VNF-DRA, we periodically check the
placed VNF instances and release the ones with their utiliza-
tion rates being lower than the threshold which can be
dynamically adjusted according to the variation of network
load. The contributions are listed as follows:

� Taking the bandwidth, memory, CPU, end-to-end
delay and VNF placement cost into account, we for-
mulate the SFC-EP with dynamic VNF placement as
a BIP model aiming to minimize the embedding cost
for each SFC request.

� We propose the novel SFC-MAP algorithm to place,
select and concatenateVNF instances for SFC requests.
Andwe also propose the VNF-DRA algorithm so as to
reduce the running time of VNF instances by releasing
redundant VNF instances according to the variation of
network load.

� We conduct a detailed analysis to our proposed
algorithms. The performance evaluation results show
that our proposed algorithms can obtain higher net-
work performance in terms of SFC request acceptance
rate, network throughput and mean VNF utilization
rate and efficiently reduce the total VNF running
time compared with the algorithms in existing litera-
tures [10], [13].

The rest of the paper is organized as follows: the related
work is presented in Section 2. We explain the system model
in Section 3. In Section 4, the SFC-EP with dynamic VNF
placement is defined and formulated as a BIPmodel.We pro-
pose the SFC-MAP and VNF-DRA algorithms in Section 5
and Section 6, respectively. The solutions are evaluated in
Section 7. Finally, we conclude this paper in Section 8.

2 RELATED WORK

Recently, addressing the problem of VNF placement and
chaining has become a hot issue, and many solutions have
been proposed. Li et al. [14] andMoens et al. [15] respectively
studied the VNF placement problem in the NFV environ-
ment and formulated this problem as integer linear program-
ming models. Lin et al. [16] and Addis et al. [17] studied the
VNF placement and routing optimization problem respec-
tively and formulated it as mixed integer programming
models. However, the integer linear programming model
and mixed linear programming model can only be solved
offline, because of high complexity.

Pham et al. [18] studied the problem of VNF placement for
SFC with a sampling-based markov approximation
approach and they also proposed a matching algorithm
based on markov approximation to solve this problem with
short convergence time. Ma et al. [19] formulated the traffic-
aware middlebox placement problem as a graph optimiza-
tion problem and proposed a two-step algorithm to develop
results. Zeng et al. [20] considered to optimize the VNF
placement multicast routing and spectrum assignment with
tree-type VNF Forwarding Graphs (VNF-FG) and three heu-
ristic algorithms were proposed to solve this problem. In
most of the above solutions, the VNF placement and chain-
ing problem is solved in two steps where the first step is to
decide the number and location of VNF instances and the
second step is to concatenate the VNF instances for SFC
requests. In the paper, we can jointly embed SFC requests
and place VNF instances, where load balancing is also con-
sidered to reduce the resource bottlenecks.

In order to solve the VNF orchestration problem, Bari et al.
[10] formulated this problem as an integer linear program-
mingmodel and proposed a heuristic named ProvisionTraffic
to embed SFC requests by executing the Viterbi algorithm [21]
in multi-stage graph. The problem of VNF placement and
chaining for VNF-FG is studied in [13] and the authors
designed a heuristic based on eigendecomposition which
could match the extended adjacency matrix of a VNF-FG
with the adjacency matrix of physical network according to
Umeyama’s eigendecomposition approach [22]. The joint
optimization of service graph decomposing and its embed-
ding problem is studied in [23] and an ILP-based algorithm
and a mapping algorithm are proposed to minimize the
resource consumption referring to virtual machines, band-
width, I/O and hardware. In addition, some works [19], [24],
[25] study how to place VNF instances and embed SFC
requests with the optimal resource utilization. Nevertheless,

Fig. 1. Embedding SFC requests in geo-distributed cloud system.

2180 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 10, OCTOBER 2019

most of the related works do not consider to release VNF
instances when the network load goes down, which leads to
highOPEX/CAPEX because of highVNF running time.

Considering the energy cost, Eramo et al. [9] proposed to
route SFC request and place VNF instances with discrete
time markov decision process, and they reduced the energy
cost at low traffic period by migrating VNF instances and
shutting down empty servers. Eramo et al. [26] and Ghaz-
navi et al. [12] also proposed to optimize resource utilization
and reduce energy cost by the migration of VNF instances in
NFV architecture. Moreover, the works [11], [27] and [28]
present the VNF orchestration architectures to install, moni-
tor, migrate and release VNF instances.

Different from the literatures mentioned above, we focus
on the SFC-EP with dynamic VNF placement in geo-distrib-
uted cloud system. We jointly place VNF instances and
embed SFC requests considering load balancing based on
multi-layer graph. And we also pay attention to release
redundant VNF instances for the reduction of the total VNF
running time, when the network load becomes light.

3 SYSTEM MODEL

3.1 Physical Network

The physical network is represented as an undirected graph
G ¼ ðV;LÞ, where V and L denote the sets of nodes and
links, respectively. In the physical network, we use u; v 2 V
to indicate two nodes and uv 2 L to represent the link con-
necting node u and v. In this paper, we consider the SFC-EP
with dynamic VNF placement in geo-distributed cloud sys-
tem. Then we suppose that there exist two kinds of nodes in
the network. One kind is switch node that is responsible to
forward data to neighbor nodes, and the other kind is MDC
node that is not only in charge of data forwarding but also
holding VNF instances to process the traffic of SFC requests.
We denote Vsn � V as the set of switch nodes, and Vmdc � V
as the set of MDC nodes.

In the network, the bandwidth, memory and CPU are
considered on links, nodes, and VNF instances. For link
uv 2 L, the bandwidth capacity is denoted as Cbw

uv . The
bandwidth remaining rate, when embedding SFC request i,
is symbolized as rbwi;uv. The parameter Cmem

u , u 2 Vsn, stands
for the memory capacity of switch node u. We use rmem

i;u ,
u 2 Vsn to represent the memory remaining rate of switch
node u, when embedding SFC request i. It is noted that,
compared with general switch nodes, the memory capacity
of MDC nodes Cmem

u ; u 2 Vmdc is regarded as infinite. Due to
the fact that the computation resource of an MDC node is
finite, we define nu; u 2 Vmdc as the maximum number of
VNF instances permitted to be placed in MDC node u. We
denoteM as the set of all the VNF instances permitted to be
placed in MDC nodes, and jMj ¼P

u2Vmdc
nu. We use

m 2 M to represent the VNF instance m. The parameter
Ccpu

m represents the CPU capacity that VNF instance m 2 M
can apply from corresponding MDC node. The CPU
remaining rate of m 2 M, when embedding SFC request i,
is denoted as rcpui;m. And we define K as the set of VNF types,

and VNFk; k 2 K stands for the VNF type k.

3.2 Service Function Chain Requests
In this paper, a 7-tuple, fSi; Ti;Qi;C

bw
i ;Cmem

i ;Ccpu
i ;Ctd

i g
is used to represent SFC request i, where Si and Ti

represent the ingress node and egress node, respectively.
The set of VNFs requested by SFC request i is denoted by
Qi ¼ fQ1

i ;Q2
i ; . . . ;Ql

ig, l ¼ jQij, where Q1
i ;Q2

i ; . . . ;Ql
i repre-

sent the 1st; 2nd; . . . ; lth VNF requests in Qi, respectively. The
parameters Cbw

i ;Cmem
i and Ccpu

i represent the demands of
bandwidth, memory and CPU on links, nodes and VNF
instances, respectively. Ctd

i means the maximum tolerated
delay of SFC request i.

We use Gi ¼ ðVi;LiÞ to denote the service function graph
of SFC request i. Service function graph is a directed graph,
and the directions of links satisfy the order constraint of
VNF requests. In service function graph, the parameters
�u; �v 2 Vi represent two VNF request nodes, and �u�v 2 Li is
the link connecting node �u and �v in Gi. For example, as for
the service function graph of SFC request two in Fig. 1, it
starts at the ingress node C and ends at the egress node E
traversing the instances of VNFa and VNFb in sequence.

4 PROBLEM STATEMENT

4.1 Problem Description
In a geo-distributed cloud system with NFV environment,
ISPs should make optimal plan to embed SFC requests with
dynamic VNF placement. Since VNFs are multi-instance
and can be flexibly placed at various network locations, as
for new arrival SFC requests, it is important for ISPs to
decide whether to select the placed VNF instances or place
extra VNF instances to serve them. The traffic of SFC
requests should traverse a series of VNF instances in prede-
fined orders and the path selection can influence the
resource consumption on links, nodes and VNF instances.
Then, how to concatenate VNF instances for SFC requests
should be considered to achieve load balancing and reduce
resource bottlenecks. As stated before, the network load
varies over time. Therefore, how to optimize the number of
VNF instances should also be focused on by ISPs to reduce
the OPEX/CAPEX and improve their revenue.

4.2 Problem Formulation
In this section, we formulate the SFC-EP with dynamic VNF
placement as a BIP model. All the symbols and variables
used in this part are listed in Table 1.

For SFC request i, the consumptions of bandwidth, mem-
ory and CPU cannot exceed the available resources on links,
nodes andVNF instances, respectively, which are ensured asX

�u�v2Li
Cbw

i z�u�vi;uv � Cbw
uv r

bw
i;uv; 8uv 2 L; (1)

X
�u�v2Li

Cmem
i z�u�vi;u � Cmem

u rmem
i;u ; 8u 2 V; (2)

X
�u2Vi

Ccpu
i x�u

i;m � Ccpu
m rcpui;m; 8m 2 M: (3)

Here, we use the binary variables z�u�vi;u and z�u�vi;uv to indicate
whether �u�v 2 Li traverses the node u 2 V and link uv 2 L,
respectively. z�u�vi;u and z�u�vi;uv equal 1, if �u�v 2 Li traverses the
node u 2 V and link uv 2 L, and 0 otherwise. The binary
variable x�u

i;m is used to indicate whether �u 2 Vi is served
by VNF instance m 2 M. x�u

i;m equals 1, if �u 2 Vi is served by
VNF instancem 2 M, and 0 otherwise.

As all the placed VNF instances in an MDC node cannot
exceed the maximum number of VNF instances permitted
to be placed after embedding SFC request i, the next

PEI ETAL.: EFFICIENTLY EMBEDDING SERVICE FUNCTION CHAINSWITH DYNAMIC VIRTUAL NETWORK FUNCTION PLACEMENT IN... 2181

constraint must be satisfied

X
m2M

ymu wi;m � nu; 8u 2 Vmdc: (4)

In the model, the binary variable ymu indicates whether the
VNF instance m 2M can be placed in MDC node u 2 Vmdc.
ymu equals 1, if m 2 M can be placed in u 2 Vmdc, and 0 oth-
erwise. In addition, we use the binary variable wi;m to

indicate whether a VNF instance is placed after embedding
SFC request i. And wi;m equals 1, ifm is placed after embed-
ding SFC request i, and 0 otherwise.

For SFC request i, the end-to-end delay of the path to
embed it must meet the constraint of the maximum toler-
ated delay asX

uv2L

X
�u�v2Li

di;uvz
�u�v
i;uv þ

X
u2V

X
�u�v2Li

di;uz
�u�v
i;u

þ
X
m2M

X
�u2Vi

di;mx
�u
i;m � Ctd

i :
(5)

In Eq. (5), the end-to-end delay consists of three parts where
the first part represents the delay on links, and the second
and third parts represent the delay on nodes and VNF
instances, respectively.

If uv 2 L is traversed by �u�v 2 Li, u; v 2 V must be tra-
versed as well. Then the constraint must be ensured as

z�u�vi;uz
�u�v
i;v ¼ 1 if z�u�vi;uv ¼ 1: (6)

We must guarantee that the links on the path to embed
SFC request i are connected head-to-tail as

X
v2V

X
�u�v2Li
ðz�u�vi;uv � z�u�vi;vuÞ ¼

1; u ¼ Si;
�1; u ¼ Ti;
0; otherwise:

8<
: (7)

For SFC request i, the VNF instance m 2M may not be
placed. And if necessary, we can serve this SFC request by
placing VNF instancem in the corresponding MDC node asX

u2Vmdc

X
m2M

x�u
i;my

m
u wi;m ¼ 1; 8�u 2 Vi n fSi; Tig: (8)

If VNF instancem 2 M is selected to serve SFC request i,
the MDC node holdingmmust ensure to be traversed as

x�u
i;my

m
u � z�u�vi;u; 8u 2 Vmdc;

8�u 2 Vi; 8�u�v 2 Li:
(9)

Each VNF request of an SFC can be served by only one
VNF instance asX

m2M
x�u
i;m ¼ 1; 8�u 2 Vi n fSi; Tig: (10)

In order to ensure that each VNF instance can be only
placed in one MDC node, Eq. (11) must be satisfied asX

u2Vmdc

ymu ¼ 1; 8m 2 M: (11)

For the fact that a VNF instance can only belong to one
type of VNF, the next constraint must be satisfiedX

k2K
qmk ¼ 1; 8m 2 M: (12)

In Eq. (12), the binary variable qmk represents whether the
VNF instancem 2 M belongs to VNFk, k 2 K. qmk equals 1, if
m 2 M belongs to VNFk, k 2 K, and 0 otherwise.

In our work, the resource costs are considered to balance
network load and reduce resource bottlenecks. We use
cbwi;uv; c

mem
i;u and ccpui;m to represent the costs of bandwidth, mem-

ory and CPU on link uv, switch node u and VNF instancem,
when embedding SFC request i, respectively. And they are

TABLE 1
Symbols and Variables

Symbols and Variables Description

Physical Network

G ¼ ðV;LÞ
Physical network Gwith the sets of
nodes V and links L, u; v 2 V, uv 2 L.

Vmdc, Vsn Sets of MDC nodes and switch nodes,
V = Vmdc [Vsn.

Cbw
uv ,Cmem

u , Ccpu
m

Capacity of bandwidth, memory and
CPU.

rbwi;uv, r
mem
i;u , rcpui;m

Remaining rates of bandwidth,
memory and CPU, when
embedding SFC request i.

di;uv, di;u, di;m

Delay on link uv 2 L, node u 2 V and
VNF instancem 2M, when embed-
ding SFC request i.

cbwi;uv, c
mem
i;u , ccpui;m

Resource costs on link uv 2 L, node
u 2 V, and VNF instancem 2M, when
embedding SFC request i.

nu

The maximum number of VNF
instances permitted to be placed in
MDC node u 2 Vmdc.

VNFk VNF type k 2 K.
cvnfk Placement cost of VNFk, k 2 K.

M
Set of all the VNF instances
permitted to be placed in MDC nodes,
m 2M.

Vm Set of VNF instances with the same
VNF type ofm, Vm �M.

Service Function Graph

Gi ¼ ðVi;LiÞ
Service function graphGi with the sets
of nodes Vi and links Li, �u; �v 2 Vi,
�u�v 2 Li.

Si, Ti,Qi

The ingress node, egress node and set
of necessary VNF requests of SFC
request i; Qi ¼ fQ1

i ;Q2
i ; . . . ;Ql

ig, l ¼ jQij.

Cbw
i ,Cmem

i ,Ccpu
i ,Ctd

i

The demands of bandwidth,
memory, CPU and the maximum toler-
ated delay of SFC request i.

Binary Variables

qmk
Whether VNF instancem 2M belongs
to VNFk, k 2 K.

bwi;m, wi;m

Whether VNF instancem 2M is
placed before and after embedding
SFC request i, respectively.

x�u
i;m

Whether VNF instancem 2M is used
to serve VNF request �u 2 Vi, when
embedding SFC request i.

ymu
Whether VNF instancem 2M can be
placed in MDC node u 2 Vmdc.

z�u�vi;uv

Whether link �u�v 2 Li traverses link
uv 2 L, when embedding SFC request
i.

z�u�vi;u

Whether link �u�v 2 Li traverses node
u 2 V when embedding SFC request i.

2182 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 10, OCTOBER 2019

defined as

cbwi;uv ¼
max
uv2L

Cbw
uv

Cbw
uv r

bw
i;uv

; (13)

cmem
i;u ¼

max
u2Vsn

Cmem
u

Cmem
u rmem

i;u

; (14)

ccpui;m ¼
max
m2Vm

Ccpu
m

Ccpu
m rcpui;m

;Vm �M; (15)

where Vm �M in Eq. (15) represents a set that includes all
the VNF instances with the same VNF type ofm.

The resource costs defined in Eqs. (13)–(15) have recipro-
cal relationships to the remaining bandwidth, memory and
CPU. For example, in Eq. (13), the numerator denotes the
maximum bandwidth capacity in the network, and the
denominator represents the remaining bandwidth on link
uv. Eqs. (14) and (15) are calculated similarly as Eq. (13),
and their value ranges are uniform between ð1;þ1Þ. It is
obvious that the resource costs can be equally transformed
to increasing and convex functions by replacing resource
remaining rates with resource utilization rates. The benefit
of adopting increasing and convex functions to set resource
costs has been discussed in literature [29]. In Eqs. (13)–(15),
cbwi;uv; c

mem
i;u and ccpui;m increase slowly, if the network load is

low. And they increase quickly, if the resource consump-
tions are approximate to their resource capacities. There-
fore, cbwi;uv; c

mem
i;u and ccpui;m can be used to indicate the resource

bottlenecks in the network. It is noted that, since the mem-
ory capacities of MDC nodes are regarded as infinite, we
define cmem

i;u � 0; rmem
i;u � 1; 8u 2 Vmdc.

Since the resource cost functions defined in Eqs. (13)–(15)
can reflect the load status on links, nodes and VNF instan-
ces, we use the sum cost to indicate the load status of a
path. The cost of a path to embed SFC request i is defined as

R ¼
X
uv2L

X
�u�v2Li

cbwi;uvz
�u�v
i;uv þ

X
u2V

X
�u�v2Li

cmem
i;u z�u�vi;u

þ
X
m2M

X
�u2Vi

ccpui;mx
�u
i;m:

(16)

According to Eq. (16), if the cost of a path is small, we can infer
that there exist no bottleneck nodes, links or VNF instances on
this path. On the contrary, if the cost of the path is very big,
we can infer that there exist some bottleneck nodes, links or
VNF instances, andwe have to find another pathwith smaller
cost to steer the traffic of SFC requests.

Furthermore, the VNF placement cost to embed SFC
request i is computed as

D ¼
X
m2M

X
k2K

cvnfk qmk maxfwi;m � bwi;m; 0g: (17)

We use cvnfk to represent the placement cost of VNFk. The
binary variable bwi;m indicates whether the VNF instance
m 2 M is placed before embedding SFC request i. bwi;m

equals 1, if m 2 M is placed before embedding SFC request
i, and 0 otherwise. Additionally, in Eq. (17), maxfwi;m�bwi;m; 0g indicates whether VNF instance m needs to be
placed after embedding SFC request i. If m needs to be

placed after embedding SFC request i, maxfwi;m � bwi;m; 0g
equals 1, and 0 otherwise.

In the paper, the embedding cost is defined as the sum
of resource cost and VNF placement cost. If there are suffi-
cient resources in the network, the resource costs are much
smaller than the VNF placement cost. Then, SFC requests
are embedded by reusing the placed VNF instances. If the
network is short of resources, the resource cost will rise
rapidly. And once the sum of resource cost is much bigger
than the VNF placement cost, placing new VNF instances
can get more benefit than reusing the placed ones. Then
many new VNF instances can be placed to balance net-
work load and reduce resource bottlenecks, which can
keep the network with high performance. Therefore, our
objective is to embed an SFC request with the minimum
embedding cost as

Minimize ðDþRÞ: (18)

In the model, with the increasement of network load, there
are more and more VNF instances placed in the network to
provide sufficient resources and achieve load balancing.
When the network load decreases, placing overmany VNF
instanceswill incur highOPEX/CAPEXdue to longVNF run-
ning time and high VNF placement cost. Therefore, when
embedding SFC requests, how to efficiently place and release
VNF instances should be focused on. Instead of finding exact
numerical solutions by analytical method which suffers from
combinatorial complexity and is extremely time-consuming,
we propose a novel SFC-MAP algorithm which can optimize
the placement of VNF instances andminimize the embedding
cost for SFC requests.Moreover, in order to adapt to the varia-
tion of network load, we also propose the VNF-DRA algo-
rithm to release redundant VNF instances for the reduction of
the total VNF running time.

5 SFC-MAP ALGORITHM

SFC-MAP is designed to obtain the optimal chaining solu-
tion of Eq. (18). First, we construct a multi-layer graph
including the VNF placement cost and resource costs of
links, nodes and VNF instances. Then, based on these
costs defined in multi-layer graph, we iterate the shortest
path algorithm to obtain the optimal chaining solution for
an SFC request. Details on SFC-MAP are provided in next
subsections.

5.1 Constructing Multi-Layer Graph
A multi-layer graph consists of several copies of physical
graph and the adjacent layers are connected by inter-layer
links and inter-layer nodes. For SFC request i shown in
Fig. 2, the multi-layer graph includes lþ 1 ðl ¼ jQijÞ copies
of original physical graph. The subscript of each node indi-
cates the layer number. All the links in the same layer are
named as intra-layer links. The links and nodes, that are
used to connect theMDCnodes in adjacent layers, are named
as inter-layer links and inter-layer nodes. In the multi-layer
graph, the inter-layer nodes are chosen and arranged accord-
ing to the order constraint of VNF instances that an SFC
request needs to concatenate. For example, between the jth

and ðjþ 1Þth layers of the multi-layer graph for SFC request
i, all the inter-layer nodes indicate the VNF instances with
the same VNF type of Qj

i , j ¼ 1; 2; . . . ; l. The costs of the
intra-layer links, switch nodes and MDC nodes in the multi-

PEI ETAL.: EFFICIENTLY EMBEDDING SERVICE FUNCTION CHAINSWITH DYNAMIC VIRTUAL NETWORK FUNCTION PLACEMENT IN... 2183

layer graph equal their costs in physical graph which are
computed based on Eqs. (13) and (14). The costs of inter-layer
nodes include the VNF placement cost cvnfk ; k 2 K and the
CPU cost calculated in Eq. (15). In addition, the costs of inter-
layer links that connect the inter-layer nodes andMDCnodes
in themulti-layer graph are set as zero.

In the paper, we define VQj
i
;u
�M, j ¼ 1; 2; . . . ; l as a set

of VNF instances that are chosen from MDC node u 2 Vmdc

and belong to the same VNF type of Qj
i . In VQj

i
;u
, there exist

at most two elements. One element is a placed VNF instance
with the minimum CPU cost in MDC node u 2 Vmdc and the
other one is an unplaced VNF instance. Both of the elements
in VQj

i
;u
belong to the same VNF type of Qj

i . We use a dark-

colored image to denote the placed VNF instance and a
light-colored image to present the unplaced VNF instance.
All these VNF instances in VQj

i
;u
, u 2 Vmdc, j ¼ 1; 2; . . . ; l are

inter-layer nodes. It is noted that, if there is no placed VNF
instances in MDC node u 2 Vmdc, only an unplaced VNF
instance is included in VQj

i
;u
. And according to Eq. (4), if the

number of placed VNF instances in MDC node u is maxi-
mized, there is no available resource to place a new VNF
instance. Then, only a placed VNF instance, that belongs to
the same type of Qj

i and has the minimum CPU cost in
MDC node u, is included in VQj

i
;u
.

In the multi-layer graph, the MDC nodes between two
adjacent layers which represent the same MDC node in
physical graph are connected with inter-layer links and
inter-layer nodes. For SFC request i in Fig. 2, as Q1

i is the
first requested VNF (Q1

i = VNFa) and the VNF instances

with the same type of Q1
i can be placed in MDC nodes B, F

and G, we compute the VQ1
i
;B, VQ1

i
;F and VQ1

i
;G for these

three MDC nodes. Then, in the 1st and 2nd layers of the
multi-layer graph, B1 and B2 are connected with each node
in VQ1

i
;B. We also connect F1 and F2 and G1 and G2 with

each node in VQ1
i
;F and VQ1

i
;G, respectively. Similarly, for

the second requested VNF (Q2
i = VNFb), we do the same

operation for MDC nodes B;F and G between the 2nd and
3rd layers.

In the multi-layer graph, the ingress node is set in the 1st

layer and the egress node is set in the ðlþ 1Þth layer. Because
the adjacent layers in the multi-layer graph are connected
with the VNF instances arranged in predefined order, each
path from the ingress node to the egress node can concate-
nate VNF instances to satisfy the order constraint of this
SFC request. As stated before, each layer of the multi-layer
graph is consistent with the original physical graph, and the
costs in the multi-layer graph equal the costs in physical
network. Therefore, we can equivalently solve Eq. (18) by
solving the optimal chaining solution in multi-layer graph.

For example, in Fig. 2, SFC request i starts from the
ingress node A and ends at the egress node H traversing
VNFa and VNFb in sequence. In multi-layer graph, the
ingress and egress nodes of SFC request i are A1 and H3.
Supposing that the optimal chaining solution to embed SFC
request i in multi-layer graph is: A1 ! B1 ! V1

Q1
i
;B
! B2 !

D2 ! F2 ! V2
Q2
i
;F
! F3 ! H3, where V1

Q1
i
;B

represents the

first VNF instance of VQ1
i
;B and V2

Q2
i
;F

stands for the second

VNF instance of VQ2
i
;F . Observing that V1

Q1
i
;B

is placed, but

V2
Q2
i
;F

is not placed. Then, this SFC request is served by plac-

ing a new VNF instance with the same VNF type of Q2
i in

MDC node F . Therefore, the optimal chaining solution in
original physical graph is A! B! V1

Q1
i ;B
! B! D!

F ! V2
Q2
i ;F
! F ! H.

5.2 Embedding SFC Requests in Multi-Layer Graph
SFC-MAP is executed based on multi-layer graph. In multi-
layer graph, we define the ingress node in the 1st layer and

the egress node in the ðlþ 1Þth layer. Then, pruning the nodes,
links and VNF instances with insufficient resources, we use
the shortest path algorithm to solve the chaining solution
with the minimum embedding cost in multi-layer graph.
According to the relationship between the multi-layer graph
and the physical graph, we transform the optimal solution in
multi-layer graph to original physical graph to obtain the final
chaining solution of Eq. (18).

As the chaining solution obtained in themulti-layer graph
could violate the resource constraints in Eqs. (1)–(5), in our
work, a penalty factor � is introduced in to solve this prob-
lem. In multi-layer graph, though the sum cost of a chaining
solution is theminimum, the resource constraints in Eqs. (1)–
(5) can be violated. Given the fact that the chaining solution
is solved based on costs, we can avoid unfeasible solutions
by changing costs.We use a penalty factor �, which is greater
than 1, to perform this process. If a chaining solution derived
from the multi-layer graph is unfeasible, the resource costs
and VNF placement costs on the corresponding links, nodes
and VNF instances which violate constraints will be multi-
plied by �. Then, the costs on these links, nodes and VNF
instances increase, which decreases the possibilities of being
selected in the next computation. It is noted that, since the
introduction of the penalty factor � changes costs, SFC-MAP
can only ensure to find optimal solutions, if they can be
obtained before � taking effect, otherwise they could be
missed.

The pseudocode of SFC-MAP is shown inAlgorithm 1. The
iteration times g is initialized in line 1. Line 2 is to prune the
links, nodes and VNF instances that cannot be used to serve
the SFC request. In lines 3-7, we calculate the costs of band-
width, memory and CPU. Line 8 is to find all the placed VNF

Fig. 2. Embedding an SFC request in multi-layer graph.

2184 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 10, OCTOBER 2019

instances in inter-layer nodes. The multi-layer graph is con-
structed in line 9. Lines 10-27 solve the chaining solution iter-
atively with the minimum embedding cost for this SFC
request in multi-layer graph. The shortest path algorithm is
executed to find the chaining solution inmulti-layer graph in
line 11. In lines 12-14, if there exists candidate chaining solu-
tion in Smulti, we transform this solution to physical graph
and check it with the constraints in Eqs. (1)–(12). If Sphy satis-
fies all the constraints, the final chaining solution is obtained
and we place the VNF instances in the corresponding MDC
nodes according to Sphy in lines 15-17. Then, the network sta-
tus is updated after the SFC request being embedded in lines
18-20. Otherwise, all the links, nodes, and VNF instances that
violate constraints in D are punished with the penalty factor
� in lines 21-23. Then the iteration times g is updated and
checked whether it exceeds the maximum iteration times G
in lines 24 and 10, respectively. We go on iterating SFC-MAP
to search for the chaining solution with the minimum
embedding cost, until the feasible chaining solution is found
or g exceeds themaximum iteration times G.

5.3 Complexity Analysis
In SFC-MAP, the complexity of calculating the costs of links,
nodes, and VNF instances is no more than OðjVj þ jLjþ
jMjÞ. The construction of a multi-layer graph needs to copy
original physical graph and set inter-layer links and inter-
layer nodes, which results in at most OðlðjVj þ jLjÞ þ jMjÞ
computations. As for multi-layer graph, because it consists
of ðlþ 1Þ copies of physical graph, the numbers of nodes
and links in multi-layer graph are no more than ðlþ 1Þj Vj þ
2ljVmdcj and ðlþ 1ÞjLj þ 4ljVmdcj. Given the fact that Vmdc �
V and executing the shortest path algorithm (e.g., Dijkstra)
in physical graph G ¼ ðV;LÞ runs in OðjLj þ j VjlogjVjÞ, the
total complexity of SFC-MAP with the maximum iteration
times G is OðjMj þ GlðjLj þ jVjlogljVjÞÞ.

6 RELEASING VNF INSTANCES ACCORDING TO

THE VARIATION OF NETWORK LOAD

In the network, the number of placed VNF instances needs
to be optimized to adapt to the variation of network load.
The SFC-MAP solves the placement of VNF instances and
can concatenate them with the order constraints for SFC
requests, however, it does not consider how to release ove-
rmany placed VNF instances, and this defect will lead
to low VNF utilization rates and high OPEX/CAPEX when
network load goes down. In order to tackle this issue, we
propose the VNF-DRA algorithm to efficiently release
redundant VNF instances according to the variation of net-
work load.

6.1 VNF-DRA Algorithm
With the variation of network load, VNF-DRA is proposed to
reduce the total VNF running time by releasing redundant
VNF instances with low utilization rates. VNF-DRA runs
every period T . We define rcpum ðtÞ as the CPU remaining rate
ofm 2 M at time t, and fðtÞ represents the threshold of VNF
utilization rate at time t. When executing VNF-DRA, first,
rcpum ðtÞ should be calculated for each VNF instance m 2M.
Then, VNF-DRA redirects the SFC requests in the VNF instan-
ces with the utilization rate ð1� rcpum ðtÞÞ � fðtÞ;m 2M. Next,
the emptyVNF instances are released for the reduction of run-
ning time.

Algorithm 1. SFC-MAP

1: Initialize g ¼ 1;
2: fV;L;Mg Pruning the nodes, links and VNF instances

with less resources than the demand of SFC request i;
3: for each u 2 V; uv 2 L; m 2 M do
4: cbwi;uv Calculate the bandwidth cost of uv;

5: cmem
i;u Calculate the memory cost of u;

6: ccpui;m Calculate the CPU cost ofm;
7: end
8: L Find the placed VNF instances with the minimum

CPU costs for all the VNF types in each MDC node
u 2 Vmdc;

9: Gmulti Construct multi-layer graph according to cbwi;uv,
cmem
i;u , ccpui;m and cvnfk , 8uv 2 L; 8u 2 V; 8m 2 L; 8k 2 K;

10: while g � G do
11: Smulti Execute the shortest path algorithm in Gmulti;
12: if Smulti �¼ f then
13: Sphy Map Smulti from Gmulti to G;
14: Bool Check whether Sphy satisfies all the

constraints in Eqs. (1)–(12);
15: if Bool == true then
16: Q Get all the VNF instances waiting to be

placed according to Sphy;
17: Place all the VNF instances of Q in the

corresponding MDC nodes according to Sphy;
18: Embed the SFC request with Sphy;
19: NewNetworkStatus Update the network;
20: return NewNetworkStatus;
21: else
22: D Get all the links, nodes and VNF instances

that violate constraints from Sphy;
23: Update the costs for each element of Dwith a

penalty factor �;
24: g ¼ g þ 1;
25: end
26: end
27: end
28: return Failed;

Since the SFC requests with short lifetime will come and
go as they run, it is reasonable to redirect the SFC requests
with long lifetime during their serving windows or by
ample warning and prior planning [30]. And we can infer
that an SFC request is a long lifetime one, if it has run for a
long time. In the paper, we use ’iðtÞ to represent the remain-
ing lifetime of SFC request i at time t. The lifetime threshold
of SFC request is defined as r, which is used to differentiate
the long lifetime and short lifetime SFC requests. All the
notations used in this section are listed in Table 2.

In VNF-DRA, all the VNF instances with the utilization
rate ð1� rcpum ðtÞÞ � fðtÞ;m 2 M are selected and sorted in
ascending order. After that, for each of these selected VNF
instances, all the SFC requests served in it with the remain-
ing lifetime ’iðtÞ > r are recognized as long lifetime ones
and redirected to the VNF instances with the utilization rate
ð1� rcpum ðtÞÞ > fðtÞ;m 2 M using the SFC-MAP algorithm.
It is noted that, when redirecting SFC requests with SFC-
MAP algorithm, only the VNF instances with the utilization
rate ð1� rcpum ðtÞÞ > fðtÞ;m 2 M are considered as the inter-
layer nodes in multi-layer graph. For short lifetime SFC
requests served in these selected VNF instances, we do no
operations and only wait them to expire. Moreover, new

PEI ETAL.: EFFICIENTLY EMBEDDING SERVICE FUNCTION CHAINSWITH DYNAMIC VIRTUAL NETWORK FUNCTION PLACEMENT IN... 2185

arrival SFC requests are avoided to be steered through the
VNF instances waiting to be released (do not set the VNF
instances waiting to be released as inter-layer nodes, when
executing SFC-MAP). We will release a VNF instance, if
there are no SFC requests served in it.

As the network load changes over time and fðtÞ decides
the number of VNF instances that will be checked and
released, the value of fðtÞ should be set according to the
variation of network load. For example, when network load
increases, more VNF instances should be placed. Therefore,
it is applicable to set fðtÞ as a small value, which can keep
the network with sufficient resources to cope with the
increasing number of SFC requests. On the contrary, with
decreasing network load, there are many VNF instances
with low utilization rate, which leads to high OPEX/
CAPEX due to long VNF running time. Thus, it is beneficial
to set fðtÞ as a big value, which can timely release the redun-
dant VNF instances and reduce the total VNF running time.
Additionally, when the network load keeps stable, the
placed VNF instances can already provide enough resource
to cope with SFC requests. Then, decreasing the value of
fðtÞ can maintain the network stable and reduce the OPEX/
CAPEX resulting from the adjustment of VNF instances.

Before presenting the definition of fðtÞ, we define some
symbols to describe the variation of network load. In the
paper, fðtÞ denotes the network throughput at time t. The
parameter FðtÞ stands for the mean network throughput
during ðt� T; t	, and it is calculated below

FðtÞ ¼ 1

T

Z t

t�T
fðtÞdt: (19)

In addition, we define sðtÞ as the fluctuation of network
throughput during ðt� T; t	, and " as the fluctuation thresh-
old of network throughput. Both of the parameters are used
to indicate the variation of network load. Then, sðtÞ can be
computed as

sðtÞ ¼ 1

T

Z t

t�T
jfðtÞ �FðtÞjdt; (20)

where jfðtÞ �FðtÞj represents the fluctuation around the
mean network throughput FðtÞ at time t. In geo-distributed
cloud system, the network throughput could not change
sharply during a small time interval. Therefore, when net-
work load keeps stable, the network throughput during T
period will fluctuate around the mean value, which leads to
sðtÞ � ". And when network load rapidly increases or

decreases during T period, the network throughput will
deviate the mean value, which leads to sðtÞ > ".

Given the analysis above, fðtÞ is defined as a piecewise
function which is calculated according to the variation of
network load as

fðtÞ ¼ fb; Fðt� T Þ > FðtÞ; sðtÞ > ";
fs; otherwise.

�
(21)

In Eq. (21), the network load is indicated to be decreasing, if
Fðt� T Þ > FðtÞ and sðtÞ > ". Then, we increase the num-
ber of VNF instances that will be checked by setting fðtÞ
with a big value fb, which is helpful to timely release
redundant VNF instances for the reduction of the total
VNF running time. Otherwise, the network load is indi-
cated to be increasing or stable, and we decrease the
number of VNF instances that will be checked by setting
fðtÞ with a small value fs, which is beneficial to provide
sufficient resources for SFC requests or keep the network
status stable.

The pseudocode of VNF-DRA and the release of VNF
instances are described in Algorithms 2 and 3, respectively.
In Algorithm 2, line 1 is to calculate FðtÞ and sðtÞ according
to Eqs. (19) and (20). We update fðtÞ based on Eq. (21) in
line 2 of Algorithm 2. We calculate the VNF utilization rate
for each VNF instance in lines 3-5 of Algorithm 2. In line 6 of
Algorithm 2, all the VNF instances with the utilization rate
ð1� rcpum ðtÞÞ � fðtÞ;m 2 M are sorted and put into P. Lines
7-14 of Algorithm 2 aim to redirect the SFC requests with
’iðtÞ > r to the VNF instances with utilization rate
ð1� rcpum ðtÞÞ > fðtÞ;m 2 M. In Algorithm 3, a VNF instance
will be released, if it is empty in line 3.

Algorithm 2. VNF-DRA

1: Calculate FðtÞ and sðtÞ;
2: Update fðtÞ;
3: for each VNF instancem 2M do
4: ð1� rcpum ðtÞÞ Calculate the VNF utilization rate ofm;
5: end
6: P Find all the VNF instances with the utilization rate
ð1� rcpum ðtÞÞ � fðtÞ,m 2 M and sort them in ascending
order;

7: while Pð1Þ �¼ f do
8: Bool Check whether all the SFC requests with

’iðtÞ > r can be redirected;
9: if Bool ¼¼ true then
10: Redirect the SFC requests with ’iðtÞ > r to the VNF

instances with the utilization rate ð1� rcpum ðtÞÞ >
fðtÞ;m 2 M SFC-MAP;

11: NewNetworkStatus Update the network;
12: end
13: P P nPð1Þ;
14: end
15: return NewNetworkStatus;

Algorithm 3. Release VNF Instances

1: for each VNF instancem 2M waiting to be released do
2: if there are no SFC requests served in VNF instance m then
3: Release VNF instancem;
4: end
5: end

TABLE 2
Notations in VNF-DRA

Notations Description

T Execution period.
r Lifetime threshold of SFC request.
" Fluctuation threshold of network throughput.
fðtÞ Threshold of VNF utilization rate at time t.
fb; fs Values of fðtÞ.
rcpum ðtÞ CPU remaining rate ofm 2M at time t.
fðtÞ Network throughput at time t.
FðtÞ Mean network throughput during ðt� T; t	.
’iðtÞ Remaining lifetime of SFC request i at time t.
sðtÞ Fluctuation of network throughput during ðt� T; t	.

2186 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 10, OCTOBER 2019

6.2 Complexity Analysis
In VNF-DRA, searching for the VNF instances with the
utilization rate ð1� rcpum ðtÞÞ � fðtÞ;m 2 M runs in at most
OðjMjÞ computations. The parameter P �M represents
the set of all these selected VNF instances with the utiliza-
tion rate ð1� rcpum ðtÞÞ � fðtÞ;m 2 M. The number of long
lifetime SFC requests in a VNF instance is assumed at
most I. As VNF-DRA needs to redirect each long lifetime
SFC request with SFC-MAP algorithm, the computa-
tion complexity to run VNF-DRA is OðIjPj½jMj þ GlðjLj þ
jVjloglj VjÞ	Þ.

7 PERFORMANCE EVALUATION

In this section, we demonstrate the performance evaluation
of our proposed algorithms. First, we discuss the simulation
setup used to evaluate the algorithms in our work. Then,
based on the simulation, we compare our algorithms with
existing algorithms and evaluate their performance in dif-
ferent scenarios.

7.1 Simulation Setup
The simulation is implemented in Matlab, a wildly used
software in modeling and analysis, and conducted in a com-
puter with Intel(R) Core(TM) i7-4790 CPU 3.60 GHz and
32 GB RAM. The network graph we use is a US carrier net-
work topology named CORONET CONUS Topology [31]
which consists of 75 nodes and 99 links, and it is shown in
Fig. 3. In the topology, we select MDC nodes according to
node degree. We sort all the nodes based on their node
degrees in descending order, then select the first 12 nodes
as MDC nodes. There are 20 types of VNFs that can be
placed in MDC nodes. Considering the location constraints
for the placement of VNF instances and the number of
licenses that operators own for VNFs [32], we assume that
each MDC node can only place 10 different types of VNFs.
The maximum number of VNF instances permitted to be
placed per MDC node is set as 20, and the VNF placement
cost cvnfk ; 8k 2 K is set as 50. The bandwidth capacity per
link is 1,000 Mbps. The memory capacity per switch node
and CPU capacity per VNF instance are set as 1,000 MB and
100 MIPS, respectively. All the propagation delay, transmis-
sion delay, queuing delay and processing delay are consid-
ered in the simulation and computed based on Eqs. (22)–
(24), also defined in the literature [33], as

di;uv ¼ dpropuv þ dtxuv þ
1� rbwi;uv

rbwi;uv
dtxuv; 8uv 2 L; (22)

di;u ¼
1� rmem

i;u

rmem
i;u

tprocu ; 8u 2 V; (23)

di;m ¼
1� rcpui;m

rcpui;m

tprocm ; 8m 2M: (24)

In Eq. (22), the first part dpropuv represents the propagation
delay which is computed by the ratio of the length of link uv
to the propagation speed of signals in that medium. The sec-
ond part dtxuv denotes the transmission delay and it is com-
puted by dividing the bandwidth capacity of link uv with
the packet size. The third part means the queuing delay,
and it is related to the load and transmission delay. Eqs. (23)
and (24) computes the processing delay on node u and VNF

instance m. The parameters tprocu and tprocm indicate the per-
packet processing delay on node u and VNF instance m,
and they are set as 10 ms and 1 ms, respectively [34].

In the simulation, the ingress and egress nodes and the
requested VNFs of SFC requests are all set randomly. The
arrival rate of SFC requests abides by the rule shown in
Fig. 4. For each SFC request, the bandwidth, memory and
CPU demands are set as numbers distributed randomly
between (0, 10]. The number of VNF requests per SFC
request is set as 3 [7]. The maximum tolerated delay for
each SFC request is between 50 and 100 ms [35]. During the
embedding process, all the constraints in Eqs. (1)–(12) must
be satisfied, otherwise an SFC request will fail to be served.
Furthermore, in order to simulate dynamic load environ-
ment, we set a lifetime for each SFC request. The lifetime of
each SFC request obeys the exponential distribution with an
average of 1,000 time units. Within the lifetime, the system
needs to ensure that there are enough resources for the
served SFC requests. An SFC request will release the occu-
pied resources when its lifetime is expired.

In SFC-MAP, the penalty factor � is set as 1.5. For VNF-
DRA, the execution period T is 500 time units. The lifetime
threshold of SFC request r, which is used to differentiate
long and short lifetime SFC requests, is set as 100 time
units. We judge whether the network load is stable,
increasing or decreasing based on the fluctuation thresh-
old of network throughput ", and it is set as 50 Mbps. The
values of fb and fs in the piecewise function of fðtÞ, which
is used to check and release VNF instances, are set as 50
and 20 percent, respectively. Additionally, each group of
results is tested 20 times, and we evaluate the performance
within 15,000 time units. All the parameter settings in this
part are shown in Table 3.

7.2 Introduction of Compared Algorithms
The ProvisionTraffic algorithm [10] and Eigendecomposi-
tion [13] algorithm have been used as the compared algo-
rithms in the simulations. Before introducing the evaluation
results, we give a brief description to these compared
algorithms.

� ProvisionTraffic places VNF instances and steers the
traffic of SFC requests based on a multi-stage graph.
For an SFC request, all the necessary placed VNF
instances or necessary pseudo-VNF instances are
included in multi-stage graph, and they are arranged
and connected with the order constraint of this SFC
request. The link cost in the multi-stage graph is

Fig. 3. CORONETCONUS Topology (75 nodes and 99 links).

PEI ETAL.: EFFICIENTLY EMBEDDING SERVICE FUNCTION CHAINSWITH DYNAMIC VIRTUAL NETWORK FUNCTION PLACEMENT IN... 2187

computed based on VNF deployment cost, energy
cost of servers, cost of forwarding traffic, penalty for
SLO violation and resource fragmentation. Then,
ProvisionTraffic runs the Viterbi algorithm [21] to
solve the embedding solutions with the minimum
OPEX/CAPEX.

� Eigendecomposition extends and adapts Umeyama’s
eigendecomposition approach [22] to map VNF-FG
to physical graph with the optimal matching. First,
Eigendecomposition produces an adjacent matrix for
the network, and the weight for each element is com-
puted by running the widest-shortest path routing
algorithm in network topology. And an adjacent
matrix is also produced for each SFC request based
on its resource demand. Then, the adjacent matrix of
SFC request is extended to be with the same size of
the network’s. Next, Eigendecomposition computes
the eigenvector matrixes for both of the adjacent
matrixes. After that, the conjugate matrixes of the
two eigenvector matrixes are computed and multi-
plied together. Finally, the locations with the maxi-
mum value in each row of the product are used as
the solution to place VNF instances and steer the
traffic of the SFC request.

7.3 Simulation Results

7.3.1 Evaluation of SFC-MAP & VNF-DRA with

Compared Algorithms

In Figs. 5 and 6, we evaluate the performances of SFC-MAP
& VNF-DRA, ProvisionTraffic and Eigendecomposition
with the SFC request arrival rate shown in Fig. 4.

Fig. 5a shows the evaluations of SFC request accept-
ance rate of these three algorithms. When network load is
heavy between 1,500-3,500 and 12,000-15,000 time units,
our algorithms can approximately obtain 100 percent SFC
request acceptance rate comparing with other algorithms.
This is because, in SFC-MAP, the remaining resources are
considered to set the costs on nodes, links and VNF inst-
ances, which is used to achieve load balancing. Therefore,
SFC-MAP can reduce resource bottlenecks and enhance
SFC request acceptance rate. Compared with our algo-
rithms, ProvisionTraffic minimizes a joint costs including
VNF placement cost, traffic forwarding, energy consump-
tion, SLA penalty and resource fragmentation. However,

as ProvisionTraffic pays no attention to the remaining
resources in the network, the bottleneck cannot be avoided
when embedding SFC requests. In addition, though it is
beneficial to take full use of network resources by minimiz-
ing the resource fragmentation, the bottleneck and conges-
tion are further aggravated because of the resource
exhaustion. As for Eigendecomposition, it cannot ensure to
obtain the optimal mapping of an SFC request, and the wid-
est-shortest path routing algorithm results in the chaining
solutions with longer paths. Hence, Eigendecomposition
consumes more resources, which leads to the worst perfor-
mance in the simulation.

In Fig. 5b, we evaluate the network throughput of the
three algorithms. Since SFC acceptance rate of SFC-MAP &
VNF-DRA shown in Fig. 5a is the highest, they obtain the
best performance of network throughput as well. With
heavy network load between 1,500-3,500 and 12,000-15,000
time units, the network throughput of SFC-MAP & VNF-
DRA is 1,000 Mbps higher than the ProvisionTraffic’s and
3,500 Mbps higher than the Eigendecomposition’s. With
light network load between 6,000-9,000 time units, both the
SFC-MAP & VNF-DRA and ProvisionTraffic obtain the
highest network throughput, which is about 400 Mbps
higher than the Eigendecomposition’s.

Fig. 5c shows the distribution of end-to-end delay with
these three algorithms. ProvisionTraffic gets the best result
in this simulation. This is because the end-to-end delay is
considered in its optimization objective, when solving
chaining solutions for SFC requests. In SFC-MAP & VNF-
DRA, we pay no attention to minimize the end-to-end

Fig. 4. SFC request arrival rate over time.

TABLE 3
Simulation Parameter Settings

Description Value

Network topology CORONET

CONUS Topology

Number of MDC nodes 12

Number of VNF types 20

Number of permitted VNF types per MDC node 10

Number of permitted VNF instances per MDC node 20

Number of VNF requests per SFC request 3

Lifetime of each SFC request X � Eð 1
1000Þ

Parameters Description Value

Cbw
uv Bandwidth capacity of link uv 1000 Mbps

Cmem
u Memory capacity of switch node u 1000 MB

Ccpu
m CPU capacity of VNF instancem 100 MIPS

Cbw
i Bandwidth demand (0, 10] Mbps

Cmem
i Memory demand (0, 10] MB

Ccpu
i CPU demand (0, 10] MIPS

Ctd
i Maximum tolerated delay [50, 100] ms

dtxuv Transmission delay on link uv 1.5 ms

dpropuv Propagation delay on link uv defined by topology

tprocm Per-packet processing delay on

instancem

1 ms

tprocu Per-packet processing delay on

node u

10 ms

cvnfk Placement cost of VNFk 50

� Penalty factor 1.5

T Execution period of VNF-DRA 500 time units

fb; fs Values of fðtÞ 50%, 20%

" Fluctuation threshold of network

throughput

50 Mbps

r Lifetime threshold of SFC request 100 time units

2188 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 10, OCTOBER 2019

delay. Moreover, we also have to make a tradeoff between
the path selection and load balancing, which aims to avoid
bottlenecks and reduce network congestion. Therefore,
SFC-MAP & VNF-DRA leads to longer end-to-end delay
than the ProvisionTraffic’s. In Eigendecomposition, the
end-to-end delay is not considered as well, and the widest-
shortest path routing algorithm leads to longer paths than
other two algorithms’, so it performs the worst in this
simulation.

Fig. 6a describes the number of placed VNF instances
resulting from three algorithms. In this figure, it is obvious
that our proposed algorithms SFC-MAP & VNF-DRA can
optimize the placed VNF instances more efficiently than
ProvisionTraffic and Eigendecomposition. When network
load is declining between 3,500-6,000 time units, VNF-DRA
observes this phenomenon and adjusts the threshold of
VNF utilization rate fðtÞ to be a big value fb based on
Eq. (21). After that, more VNF instances with the utilization
rate lower than fb can be released, which results in the
reduction of the total VNF running time. However, Provi-
sionTraffic and Eigendecomposition do not optimize the
number of VNF instances with the variation of network
load. Therefore, when network load decreases, the VNF
instances cannot be released timely. Moreover, when net-
work load increases between 9,000-12,000 time units, more
SFC requests are embedded in the network. At the begin-
ning of that time, as there is only small number of placed
VNF instances in MDC nodes, the resources around the
MDC nodes are fast consumed, which aggravates network
congestion and load imbalance. Then, in SFC-MAP, the
resource costs defined in Eqs. (13)–(15) start to take effect.
With resource consumption, the resource costs of links,
nodes, and VNF instances increase quickly, and it becomes
more beneficial to place new VNF instances than reuse the
placed ones according to Eq. (18). Next, many new VNF

instances are placed in MDC nodes to provide more choices
of path selection for SFC requests. Hence, the load turns to
be balanced. Though ProvisionTraffic and Eigendecomposi-
tion enhance the network performance by placing more
VNF instances to cope with increasing network load, the
neglect of load balancing leads to lower SFC request accep-
tance rate. Furthermore, due to low SFC request acceptance
rate, the number of VNF instances with Eigendecomposi-
tion is smaller than the ProvisionTraffic’s. Additionally,
because VNF-DRA executes periodically, the number of
placed VNF instances decreases step by step during 3,500-
7,000 time units in this figure.

Fig. 6b presents the total running time of VNF instances of
these three algorithms. According to this figure, SFC-MAP &
VNF-DRA can get better performance in this simulation. Nev-
ertheless, ProvisionTraffic and Eigendecomposition almost
cannot reduce the total running time of VNF instances. Since
the network load becomes light during 3,500-10,000 time
units, the SFC-MAP & VNF-DRA can reduce the running
timeofVNF instances by releasing the redundantVNF instan-
ces with low utilization rates. And SFC-MAP & VNF-DRA
can get about 25 percent reduction of total running time of
VNF instances than ProvisionTraffic’s.

In Fig. 6c, we evaluate the mean VNF utilization rate of
these three algorithms. SFC-MAP & VNF-DRA obtains more
than 75 percent mean VNF utilization rate under heavy net-
work load during 1,500-3,500 and 12,000-15,000 time units.
VNF-DRA runs periodically to release the VNF instances
with low utilization rate, so our algorithms can keep the
mean VNF utilization rate around 60 percent, when network
load becomes light during 3,500-9,000 time units. In Provi-
sionTraffic, because of lower SFC request acceptance rate
and larger number of VNF instances, the mean VNF uti-
lization rate is about 10-30 percent lower than SFC-MAP &

Fig. 5. The comparison of SFC request acceptance rate, network throughput, and the CDF of end-to-end delay.

Fig. 6. The comparison of the number of placed VNF instances, the total running time of VNF instances, and mean VNF utilization rate over time.

PEI ETAL.: EFFICIENTLY EMBEDDING SERVICE FUNCTION CHAINSWITH DYNAMIC VIRTUAL NETWORK FUNCTION PLACEMENT IN... 2189

VNF-DRA’s during 1,500-3,500 and 10,000-15,000 time
units. Without considering to release overmany placed VNF
instances with decreasing network load, the mean VNF
utilization rate of ProvisionTraffic drops sharply to about
20 percent, during 6,000-9,000 time units. Due to poor SFC
request acceptance rate and overmany placed VNF instan-
ces, the mean VNF utilization rate with Eigendecomposition
is only about 40 percent during heavy network work load
and about 20 percent during light network load.

7.3.2 Evaluation of SFC-MAP & VNF-DRA with

Different Scenarios

In Fig. 7, we evaluate the performance of SFC-MAP & VNF-
DRA with different scenarios. In these figures, box plots are
used to show the distributions of SFC request acceptance
rate and the number of placed VNF instances with the SFC
request arrival rate shown in Fig. 4. In these box plots, the
maximum, median and minimum of the simulation results
are presented. As for the box plots which depict the distri-
butions of SFC request acceptance rate, the heavier (lighter)
the network load is, the lower (higher) SFC request accep-
tance rate will be. Nevertheless, as for the box plots which
depict the distributions of the number of placed VNF
instances, the rule is contrary. This is because the heavier
(lighter) the network load is, the larger (smaller) number of
VNF instances should be placed.

In Fig. 7a, the performance of SFC-MAP & VNF-DRA
is evaluated with different number of permitted VNF
types per MDC node. With the number of permitted VNF
types per MDC node increasing from 7 to 10, the SFC
request acceptance rate increases from the range about
80-100 percent to the range about 96-100 percent, and the
number of placed VNF instances increases from the range
about 60-225 to the range about 60-235. This is because, if
MDC nodes can place more types of VNFs, SFC requests are
more likely to be served by oneMDC node. So, it is beneficial
to shorten the paths in chaining solutions by placing more
types of VNF instances in MDC nodes, which can save
resources to serve more SFC requests. In addition, when the
number of permitted VNF types increases from 10 to 12, the
maximum, median and minimum, which depict the distri-
butions of the number of placed VNF instances, decrease in
the box plots. This phenomenon presents that it is helpful to
balance network load and improve resource utilization by
placing more types of VNF instances in MDC nodes.

Fig. 7b presents the influence of the CPU capacity per
VNF instance on the performance of SFC-MAP & VNF-
DRA. As shown in the figure, if the CPU capacity per VNF
instance is increased from 75 MIPS to 100 MIPS, the SFC
acceptance rate becomes higher and the number of placed
VNF instances decreases. This is because increasing the
CPU capacity per VNF instance allows a VNF instance to
serve more SFC requests. Furthermore, when the CPU

Fig. 7. The comparison of SFC request acceptance rate and the number of placed VNF instances with different scenarios.

2190 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 10, OCTOBER 2019

capacity per VNF instance changes from 90 MIPS to 100
MIPS, though there are still many VNF instances that can be
placed to serve SFC requests, the improvement of SFC
request acceptance rate is small. This phenomenon indicates
that, the bandwidth on links and memory on switch nodes
are the bottlenecks which lead to the failure of SFC embed-
ding under this circumstance.

The performance of SFC-MAP & VNF-DRA is evalu-
ated with different numbers of VNF requests per SFC
request in Fig. 7c. With the increasing number of VNF
requests per SFC request, the number of placed VNF
instances increases rapidly from the range about 40-160 to
the range about 140-240. And the minimum of the SFC
request acceptance rate also drops from about 99 percent
to about 63 percent. The reason is that, when serving the
SFC requests with more VNF requests, there are more
VNF instances needed to be concatenated with order con-
straints, which leads to longer end-to-end delay and more
resource consumption.

We evaluate the performance of SFC-MAP & VNF-DRA
with different number of permitted VNF instances per MDC
node in Fig. 7d. In the figure, the more number of permitted
VNF instances per MDC node, the more resource an MDC
node can provide. Hence, with the number of permitted VNF
instances per MDC node increasing from 10 to 18, the SFC
request acceptance rate continuously increases from the range
about 73-100 percent to about 97-100 percent. To keep high
SFC request acceptance rate, the number of placed VNF
instances also increases from the range about 60-120 to about
60-220. And when we go on increasing the number of permit-
ted VNF instances per MDC node from 18 to 20, the benefits
on the SFC request acceptance rate and the number of placed
VNF instances become smaller. This phenomenon reflects
that MDC nodes have provided enough resource to deal with
the SFC requests under this circumstance. In addition, com-
bined with Fig. 7b, we get that it is effective to improve the
network performance by increasing the resource capacities of
VNF instances andMDCnodes.

8 CONCLUSION

In the paper, we study the SFC-EP with dynamic VNF
placement in geo-distributed cloud system aiming to mini-
mize the embedding costs for SFC requests and optimize
the number of VNF instances for the reduction of the total
VNF running time. Then, SFC-MAP and VNF-DRA are pro-
posed to solve this problem. SFC-MAP places VNF instan-
ces and embeds SFC requests by executing the shortest path
algorithm in a multi-layer graph. The VNF-DRA with a
piecewise threshold related to the variation of network load
is proposed to efficiently release redundant VNF instances
and reduce the total VNF running time. Performance evalu-
ation results show that, SFC-MAP & VNF-DRA obtains
more than 20 percent improvements in the terms of SFC
request acceptance rate, network throughput and mean
VNF utilization rate, and about 25 percent reduction of the
total VNF running time compared with existing algorithms.

As a future work, we plan to extend our work in a num-
ber of ways. We plan to explore the influences of power con-
sumption, VNF placement delay and ping-pong effect
which leads to a VNF instance being frequently placed and
released during dynamic VNF placement. We plan to study
the proactive resource management for VNF instances in
date center networks. And we also plan to design efficient

VNF placement algorithm combined with load prediction
mechanism.

ACKNOWLEDGMENTS

This work is supported in part by the National Natural
Science Foundation of China (NSFC) under Grant No.
61671420, 61672484, Youth Innovation Promotion Associa-
tion CAS under Grant No. 2016394, and the Fundamental
Research Funds for the Central Universities.

REFERENCES

[1] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art
and research challenges,” IEEE Commun. Surv. Tut., vol. 18, no. 1,
pp. 236–262, Jan.–Mar. 2016.

[2] S. D’Oro, L. Galluccio, S. Palazzo, and G. Schembra, “Exploiting
congestion games to achieve distributed service chaining in NFV
networks,” IEEE J. Sel. Areas Commun., vol. 35, no. 2, pp. 407–420,
Feb. 2017.

[3] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network
processing as a cloud service,” ACM SIGCOMMComput. Commun.
Rev., vol. 42, no. 4, pp. 13–24, 2012.

[4] D. Bhamare, R. Jain, M. Samaka, and A. Erbad, “A survey on
service function chaining,” J. Netw. Comput. Appl., vol. 75,
pp. 138–155, 2016.

[5] W. Xiao, W. Bao, X. Zhu, and L. Liu, “Cost-aware big data proc-
essing across geo-distributed datacenters,” IEEE Trans. Parallel
Distrib. Syst., vol. 28, no. 11, pp. 3114–3127, Nov. 2017.

[6] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization: Challenges and opportunities for innovations,”
IEEE Commun. Mag., vol. 53, no. 2, pp. 90–97, Feb. 2015.

[7] J. Pei, P. Hong, K. Xue and D. Li, “Resource aware routing for service
function chains in SDN and NFV-enabled network,” IEEE Trans.
Serv. Comput., 2018. [Online]. Available: https://doi.org/10.1109/
TSC.2018.2849712, accessed Jul. 1, 2019.

[8] S. Zhang, Z. Qian, J. Wu, S. Lu, and L. Epstein, “Virtual network
embedding with opportunistic resource sharing,” IEEE Trans. Par-
allel Distrib. Syst., vol. 25, no. 3, pp. 816–827, Mar. 2014.

[9] V. Eramo, E. Miucci, M. Ammar, and F. G. Lavacca, “An appr-
oach for service function chain routing and virtual function
network instance migration in network function virtualization
architectures,” IEEE/ACM Trans. Netw., vol. 25, no. 4, pp. 2008–
2025, Aug. 2017.

[10] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C. M. B.
Duarte, “Orchestrating virtualized network functions,” IEEE
Trans. Netw. Serv. Manage., vol. 13, no. 4, pp. 725–739, Dec. 2016.

[11] S. Clayman, E. Maini, A. Galis, A. Manzalini, and N. Mazzocca,
“The dynamic placement of virtual network functions,” in Proc.
IEEE Netw. Operations Manage. Symp., 2014, pp. 1–9.

[12] M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi, R. Ahmed, and
R. Boutaba, “Elastic virtual network function placement,” in Proc.
IEEE Int. Conf. Cloud Netw., 2015, pp. 255–260.

[13] M. Mechtri, C. Ghribi, and D. Zeghlache, “A scalable algorithm
for the placement of service function chains,” IEEE Trans. Netw.
Serv. Manage., vol. 13, no. 3, pp. 533–546, Sep. 2016.

[14] X. Li and C. Qian, “The virtual network function placement prob-
lem,” in Proc. IEEE Conf. Comput. Commun. Workshops, 2015,
pp. 69–70.

[15] H. Moens and F. De Turck, “VNF-P: A model for efficient place-
ment of virtualized network functions,” in Proc. IEEE Int. Conf.
Netw. Serv. Manage., 2014, pp. 418–423.

[16] T. Lin, Z. Zhou, M. Tornatore, and B. Mukherjee, “Optimal net-
work function virtualization realizing end-to-end requests,” in
Proc. IEEE Global Commun. Conf., 2015, pp. 1–6.

[17] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network
functions placement and routing optimization,” in Proc. IEEE Int.
Conf. Cloud Netw., 2015, pp. 171–177.

[18] C. Pham, N. H. Tran, S. Ren, W. Saad, and C. S. Hong,
“Traffic-aware and energy-efficient vNF placement for service
chaining: Joint sampling and matching approach,” IEEE Trans.
Serv. Comput., 2017. [Online]. Available: https://doi.org/
10.1109/TSC.2017.2671867, accessed Jul. 1, 2019

PEI ETAL.: EFFICIENTLY EMBEDDING SERVICE FUNCTION CHAINSWITH DYNAMIC VIRTUAL NETWORK FUNCTION PLACEMENT IN... 2191

https://doi.org/10.1109/TSC.2018.2849712
https://doi.org/10.1109/TSC.2018.2849712
https://doi.org/10.1109/TSC.2017.2671867
https://doi.org/10.1109/TSC.2017.2671867

[19] W. Ma, C. Medina, and D. Pan, “Traffic-aware placement of NFV
middleboxes,” in Proc. IEEE Global Commun. Conf., 2015, pp. 1–6.

[20] M. Zeng, W. Fang, and Z. Zhu, “Orchestrating tree-type VNF for-
warding graphs in inter-DC elastic optical networks,” J. Lightwave
Technol., vol. 34, no. 14, pp. 3330–3341, 2016.

[21] A. Viterbi, “Error bounds for convolutional codes and an asymp-
totically optimum decoding algorithm,” IEEE Trans. Inf. Theory,
vol. IT-13, no. 2, pp. 260–269, Apr. 1967.

[22] S. Umeyama, “An eigendecomposition approach to weighted
graph matching problems,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. PAMI-10, no. 5, pp. 695–703, Sep. 1988.

[23] S. Sahhaf, W. Tavernier, M. Rost, S. Schmid, D. Colle, M. Pickavet,
and P. Demeester, “Network service chaining with optimized net-
work function embedding supporting service decompositions,”
Comput. Netw., vol. 93, pp. 492–505, 2015.

[24] Z. Cao, M. Kodialam, and T. Lakshman, “Traffic steering in soft-
ware defined networks: Planning and online routing,” ACM SIG-
COMM Comput. Commun. Rev., vol. 44, pp. 65–70, 2014.

[25] T.-W. Kuo, B.-H. Liou, K. C.-J. Lin, and M.-J. Tsai, “Deploying
chains of virtual network functions: On the relation between link
and server usage,” in Proc. IEEE Int. Conf. Comput. Commun., 2016,
pp. 1–9.

[26] V. Eramo, M. Ammar, and F. G. Lavacca, “Migration energy
aware reconfigurations of virtual network function instances in
NFV architectures,” IEEE Access, vol. 5, pp. 4927–4938, 2017.

[27] A. Csoma, B. Sonkoly, L. Csikor, F. N�emeth, A. Gulyas,
W. Tavernier, and S. Sahhaf, “ESCAPE: Extensible service chain
prototyping environment using mininet, click, NETCONF and
POX,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, pp. 125–
126, 2014.

[28] R. Riggio, J. Schulz-Zander, and A. Bradai, “Virtual network
function orchestration with scylla,” ACM SIGCOMM Comput.
Commun. Rev., vol. 45, pp. 375–376, 2015.

[29] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with tra-
ditional IP routing protocols,” IEEE Commun. Mag., vol. 40, no. 10,
pp. 118–124, Oct. 2002.

[30] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual net-
work embedding: Substrate support for path splitting and
migration,” ACM SIGCOMMComput. Commun. Rev., vol. 38, no. 2,
pp. 17–29, 2008.

[31] “Optical Network Design and Planning,” [Online]. Available:
http://www.monarchna.com/topology.html, accessed Jul. 1,
2019.

[32] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing
chains of virtual network functions,” in Proc. IEEE Int. Conf. Cloud
Netw., 2014, pp. 7–13.

[33] A. Dwaraki and T. Wolf, “Adaptive service-chain routing for vir-
tual network functions in software-defined networks,” in Proc.
ACM Workshop Hot Topics Middleboxes Netw. Function Virtualiza-
tion, 2016, pp. 32–37.

[34] R. Ramaswamy, N. Weng, and T. Wolf, “Characterizing network
processing delay,” in Proc. IEEE Global Telecommun. Conf., 2004,
pp. 1629–1634.

[35] L. Pantel and L. C. Wolf, “On the impact of delay on real-time
multiplayer games,” in Proc. ACM Int. Workshop Netw. Operating
Syst. Support Digital Audio Video, 2002, pp. 23–29.

Jianing Pei received the BS degree from
the Department of Information and Electrical
Engineering (IEE), China University of Mining and
Technology (CUMT), in 2015 and he is working
toward the PhD degree at USTC with his advisor
Peilin Hong now. His research interests include
machine learning, SDN, NFV, and the network
resource orchestration andmanagement.

Peilin Hong received the BSandMSdegrees from
the Department of Electronic Engineering and Info-
rmation Science (EEIS), University of Science and
Technology of China (USTC), in 1983 and 1986,
respectively. Currently, she is a professor and advi-
sor for PhD candidates with the Department of
EEIS, USTC. Her research interests include next-
generation Internet, policy control, IP QoS, and
information security. She has published two books
and more than 100 academic papers in several
journals and conference proceedings.

Kaiping Xue (M’09-SM’15) received the BS
degree from the Department of Information Secu-
rity, University of Science and Technology of China
(USTC), in 2003 and the PhD degree from the
Department of Electronic Engineering and Infor-
mation Science (EEIS), USTC, in 2007. Currently,
he is an associate professor with the Department
of Information Security and Department of EEIS,
USTC. His research interests include next-genera-
tion Internet, distributed networks, and network
security. He is a senior member of the IEEE.

Defang Li received the BS degree from the
Department of Electronic Engineering and Infor-
mation Science (EEIS), University of Science and
Technology of China (USTC), in 2014 and he is
working toward the PhD degree at USTC with his
advisor Peilin Hong now. His research interests
include SDN, NFV, and the network resource
orchestration and management. He is a student
member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2192 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 10, OCTOBER 2019

http://www.monarchna.com/topology.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

