
1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2880992, IEEE
Transactions on Parallel and Distributed Systems

1

Efficiently Embedding Service Function Chains with
Dynamic Virtual Network Function Placement

in Geo-distributed Cloud System
Jianing Pei, Peilin Hong, Kaiping Xue, Senior Member, IEEE and Defang Li, Student Member, IEEE

Abstract—Network Function Virtualization (NFV) and
Software-Defined Networks (SDN) enable Internet Service
Providers (ISPs) to place Virtual Network Functions (VNFs) to
achieve the performance and security benefit without incurring
high Operating Expenses (OPEX) and Capital Expenses
(CAPEX). In NFV environment, Service Function Chains
(SFCs) always need to steer the traffic through a series of VNF
instances in predefined orders. Moreover, the required number
and placement of VNF instances should be optimized to adapt
to dynamic network load. Therefore, it is considerable for ISPs
to conduct an optimal SFC embedding strategy to improve
the network performance and revenue. In the paper, we study
the SFC embedding problem (SFC-EP) with dynamic VNF
placement in geo-distributed cloud system. We formulate this
problem as a Binary Integer Programming (BIP) model aiming
to embed SFC requests with the minimum embedding cost.
Furthermore, the novel SFC eMbedding APproach (SFC-MAP)
and VNF Dynamic Release Algorithm (VNF-DRA) have been
proposed to efficiently embed SFC requests and optimize the
number of placed VNF instances. Performance evaluation
results show that the proposed algorithms can provide higher
performance in terms of SFC request acceptance rate, network
throughput and mean VNF utilization rate and efficiently reduce
the total VNF running time compared with the algorithms in
existing literatures.

Index Terms—Service Function Chain, Virtual Network Func-
tion, Dynamic VNF Placement

I. INTRODUCTION

IT is ubiquitous to place middleboxes in today’s network to

offer varieties of network services to customers. Traditional

middleboxes are implemented by dedicated hardware appliances

which lead to high infrastructure and management costs [1].

Since the advent of Network Function Virtualization (NFV)

and Software-Defined Networks (SDN), the Virtual Network

Functions (VNFs) are implemented in software and placed on

commercial-off-the-shelf devices. Because of great manage-

ment, flexibility and cost-efficiency, VNF has great potential

to replace traditional middleboxes and provide performance

and security enhancements in the network [2], [3]. Moreover,

combined with geo-distributed cloud system, ISPs can provide

network services with better reliability and lower latency by

placing VNFs in Micro-DataCenters (MDCs) which are closer

to end users [4], [5].

J. Pei, P. Hong, K. Xue and D. Li are all with the Key Laboratory of Wireless-
Optical Communications, Chinese Academy of Sciences, School of Information
Science and Technology, University of Science and Technology of China,
Hefei, 230027, China (e-mail: jianingp@mail.ustc.edu.cn; plhong@ustc.edu.cn;
kpxue@ustc.edu.cn; ldf911@mail.ustc.edu.cn).

A
B (/)

F (/ /)

C

D
E H

SFC Request One: D C
SFC Request Two: C E

 A H ASFC Request Three

Fig. 1. Embedding SFC requests in geo-distributed cloud system.

When dealing with the requests from customers, it is often

needed to steer their traffic to traverse the VNFs concatenated

in a specified order to comply with security and performance

policies, which is defined as Service Function Chain (SFC)

[4], [6]. In NFV environment, each type of VNF is usually

multi-instance and these VNF instances can be dynamically

placed at various network locations. Therefore, it is a challenge

to embed SFC requests with the optimal VNF selection and

placement [6], [7]. Besides, due to finite physical resources

(e.g. bandwidth, memory, CPU and so on) in the network, the

optimal path selection for traffic steering also should be focused

on to achieve load balancing and reduce resource bottlenecks

[1], [4], [8].

An example of this problem is shown in Fig. 1. In the geo-

distributed cloud system, there are five switch nodes and three

MDC nodes with four types of VNFs placed on them, and each

type of VNF is multi-instance. VNF1
a and VNF2

a represent the

first and second instances of VNFa, respectively. As for SFC

request two, the traffic needs to sequentially traverse the ingress

node C, the instances of VNFa and VNFb before reaching the

egress node E. However, it is noted that both of MDC node

F and G have been placed with the instances of VNFa and

VNFb, and MDC node B can place new instances for these two

types of VNFs as well. Therefore, the optimal SFC embedding

strategy should be made to select or place the instances of

VNFa and VNFb and steer the traffic for this SFC request.

Furthermore, due to highly dynamic nature of resource usage,

start-up and lifetime, SFC requests are dynamic and result

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2880992, IEEE
Transactions on Parallel and Distributed Systems

2

in the variation of network load [9], [10]. In the network,

the placement of VNF instances needs the consumption of

system resources [11], [12]. The management, monitoring and

maintenance for VNF instances all incur the increasement of

energy consumption, Operating Expenses (OPEX) and Capital

Expenses (CAPEX) [13], [14]. Therefore, it is beneficial to

enhance the revenue of ISPs by optimizing the required number

and placement of VNF instances and reducing the total running

time of VNFs according to the variation of network load. When

network load is heavy, it is better to increase the number of

VNF instances to keep the network with high performance. On

the contrary, with light network load, it is helpful to reduce

the total VNF running time by decreasing the number of VNF

instances.
Given finite physical resources and multiple VNF instances

environment in geo-distributed cloud system, the next two

problems should be focused on: (i) how to optimize the

number and placement of VNF instances; (ii) how to select

and concatenate VNF instances with the minimum embedding

cost for an SFC request. In the paper, the embedding cost

includes resource cost and VNF placement cost. The resource

cost is related to the remaining resources on links, nodes and

VNF instances, which is used to achieve load balancing. The

VNF placement cost results from the costs of computing power,

license fees and network utilization [12], [15]. In our work,

these problems above are defined as SFC Embedding Problem

(SFC-EP) with dynamic VNF placement.
In order to solve the SFC-EP with dynamic VNF placement,

first, we formulate it as a Binary Integer Programming (BIP)

model and the objective is to minimize the embedding cost

for each SFC request. Then, we propose two novel algorithms

named SFC eMbedding APproach (SFC-MAP) and VNF Dy-

namic Release Algorithm (VNF-DRA). SFC-MAP ingeniously

obtains the selection, placement and concatenation solutions

of VNF instances by running the shortest path algorithm (e.g.,
Dijkstra) in multi-layer graph which is a transformation of

original network topology based on the order constraints of

SFC requests. VNF-DRA is in charge of the optimization of

placed VNF instances to reduce their running time. In VNF-

DRA, we periodically check the placed VNF instances and

release the ones with their utilization rates being lower than

the threshold which can be dynamically adjusted according to

the variation of network load. The contributions are listed as

follows:

• Taking the bandwidth, memory, CPU, end-to-end delay

and VNF placement cost into account, we formulate the

SFC-EP with dynamic VNF placement as a BIP model

aiming to minimize the embedding cost for each SFC

request.

• We propose the novel SFC-MAP algorithm to place, select

and concatenate VNF instances for SFC requests. And we

also propose the VNF-DRA algorithm so as to reduce the

running time of VNF instances by releasing redundant

VNF instances according to the variation of network load.

• We conduct a detailed analysis to our proposed algorithms.

The performance evaluation results show that our proposed

algorithms can obtain higher network performance in

terms of SFC request acceptance rate, network throughput

and mean VNF utilization rate and efficiently reduce the

total VNF running time compared with the algorithms in

existing literatures [12], [16].

The rest of the paper is organized as follows: the related

work is presented in Section II. We explain the system model

in Section III. In Section IV, the SFC-EP with dynamic VNF

placement is defined and formulated as a BIP model. We

propose the SFC-MAP and VNF-DRA algorithms in Section

V and Section VI, respectively. The solutions are evaluated in

Section VII. Finally, we conclude this paper in Section VIII.

II. RELATED WORK

Recently, addressing the problem of VNF placement and

chaining has become a hot issue, and many solutions have

been proposed. Li et al. [17] and Moens et al. [18] respectively

studied the VNF placement problem in the NFV environment

and formulated this problem as integer linear programming

models. Lin et al. [19] and Addis et al. [20] studied the

VNF placement and routing optimization problem respectively

and formulated it as mixed integer programming models.

However, the integer linear programming model and mixed

linear programming model can only be solved offline, because

of high complexity.

Pham et al. [21] studied the problem of VNF placement for

SFC with a sampling-based markov approximation approach

and they also proposed a matching algorithm based on markov

approximation to solve this problem with short convergence

time. Ma et al. [22] formulated the traffic-aware middlebox

placement problem as a graph optimization problem and pro-

posed a two-step algorithm to develop results. Zeng et al. [23]

considered to optimize the VNF placement multicast routing

and spectrum assignment with tree-type VNF Forwarding

Graphs (VNF-FG) and three heuristic algorithms were proposed

to solve this problem. In most of the above solutions, the

VNF placement and chaining problem is solved in two steps

where the first step is to decide the number and location of

VNF instances and the second step is to concatenate the VNF

instances for SFC requests. In the paper, we can jointly embed

SFC requests and place VNF instances, where load balancing

is also considered to reduce the resource bottlenecks.

In order to solve the VNF orchestration problem, Bari et al.
[12] formulated this problem as an integer linear programming

model and proposed a heuristic named ProvisionTraffic to

embed SFC requests by executing the Viterbi algorithm [24]

in multi-stage graph. The problem of VNF placement and

chaining for VNF-FG is studied in [16] and the authors

designed a heuristic based on eigendecomposition which could

match the extended adjacency matrix of a VNF-FG with the

adjacency matrix of physical network according to Umeyama’s

eigendecomposition approach [25]. The joint optimization of

service graph decomposing and its embedding problem is

studied in [26] and an ILP-based algorithm and a mapping

algorithm are proposed to minimize the resource consumption

referring to virtual machines, bandwidth, I/O and hardware. In

addition, some works [22], [27], [28], [29], [30] study how to

place VNF instances and embed SFC requests with the optimal

resource utilization. Nevertheless, most of the related works

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2880992, IEEE
Transactions on Parallel and Distributed Systems

3

do not consider to release VNF instances when the network

load goes down, which leads to high OPEX/CAPEX because

of high VNF running time.

Considering the energy cost, Eramo et al. [11] proposed

to route SFC request and place VNF instances with discrete

time markov decision process, and they reduced the energy

cost at low traffic period by migrating VNF instances and

shutting down empty servers. Eramo et al. [31] and Ghaznavi

et al. [14] also proposed to optimize resource utilization and

reduce energy cost by the migration of VNF instances in NFV

architecture. Moreover, the works [13], [32] and [33] present

the VNF orchestration architectures to install, monitor, migrate

and release VNF instances.

Different from the literatures mentioned above, we focus on

the SFC-EP with dynamic VNF placement in geo-distributed

cloud system. We jointly place VNF instances and embed SFC

requests considering load balancing based on multi-layer graph.

And we also pay attention to release redundant VNF instances

for the reduction of the total VNF running time, when the

network load becomes light.

III. SYSTEM MODEL

A. Physical Network

The physical network is represented as an undirected graph

G = (V,L), where V and L denote the sets of nodes and

links, respectively. In the physical network, we use u, v ∈ V to

indicate two nodes and uv ∈ L to represent the link connecting

node u and v. In this paper, we consider the SFC-EP with

dynamic VNF placement in geo-distributed cloud system. Then

we suppose that there exist two kinds of nodes in the network.

One kind is switch node that is responsible to forward data

to neighbor nodes, and the other kind is MDC node that is

not only in charge of data forwarding but also holding VNF

instances to process the traffic of SFC requests. We denote

Vsn ⊆ V as the set of switch nodes, and Vmdc ⊆ V as the set

of MDC nodes.

In the network, the bandwidth, memory and CPU are

considered on links, nodes, and VNF instances. For link uv ∈ L,

the bandwidth capacity is denoted as Cbw
uv . The bandwidth

remaining rate, when embedding SFC request i, is symbolized

as rbwi,uv . The parameter Cmem
u , u ∈ Vsn, stands for the memory

capacity of switch node u. We use rmem
i,u , u ∈ Vsn to represent

the memory remaining rate of switch node u, when embedding

SFC request i. It is noted that, compared with general switch

nodes, the memory capacity of MDC nodes Cmem
u , u ∈ Vmdc

is regarded as infinite. Due to the fact that the computation

resource of an MDC node is finite, we define nu, u ∈ Vmdc

as the maximum number of VNF instances permitted to be

placed in MDC node u. We denote M as the set of all the

VNF instances permitted to be placed in MDC nodes, and

|M| = ∑
u∈Vmdc

nu. We use m ∈ M to represent the VNF

instance m. The parameter Ccpu
m represents the CPU capacity

that VNF instance m ∈ M can apply from corresponding MDC

node. The CPU remaining rate of m ∈ M, when embedding

SFC request i, is denoted as rcpui,m . And we define K as the set

of VNF types, and VNFk, k ∈ K stands for the VNF type k.

B. Service Function Chain Requests

In this paper, a 7-tuple, {Si, Ti,Qi,Ψ
bw
i ,Ψmem

i ,Ψcpu
i ,Ψtd

i }
is used to represent SFC request i, where Si and Ti represent the

ingress node and egress node, respectively. The set of VNFs re-

quested by SFC request i is denoted by Qi = {Q1
i ,Q2

i , ...,Ql
i},

l = |Qi|, where Q1
i ,Q2

i , ...,Ql
i represent the 1st, 2nd, ..., lth

VNF requests in Qi, respectively. The parameters Ψbw
i ,Ψmem

i

and Ψcpu
i represent the demands of bandwidth, memory and

CPU on links, nodes and VNF instances, respectively. Ψtd
i

means the maximum tolerated delay of SFC request i.
We use Gi = (Vi,Li) to denote the service function graph

of SFC request i. Service function graph is a directed graph,

and the directions of links satisfy the order constraint of VNF

requests. In service function graph, the parameters ū, v̄ ∈ Vi

represent two VNF request nodes, and ūv̄ ∈ Li is the link

connecting node ū and v̄ in Gi. For example, as for the service

function graph of SFC request two in Fig. 1, it starts at the

ingress node C and ends at the egress node E traversing the

instances of VNFa and VNFb in sequence.

IV. PROBLEM STATEMENT

A. Problem Description

In a geo-distributed cloud system with NFV environment,

ISPs should make optimal plan to embed SFC requests with

dynamic VNF placement. Since VNFs are multi-instance and

can be flexibly placed at various network locations, as for

new arrival SFC requests, it is important for ISPs to decide

whether to select the placed VNF instances or place extra VNF

instances to serve them. The traffic of SFC requests should

traverse a series of VNF instances in predefined orders and

the path selection can influence the resource consumption on

links, nodes and VNF instances. Then, how to concatenate VNF

instances for SFC requests should be considered to achieve load

balancing and reduce resource bottlenecks. As stated before,

the network load varies over time. Therefore, how to optimize

the number of VNF instances should also be focused on by

ISPs to reduce the OPEX/CAPEX and improve their revenue.

B. Problem Formulation

In this section, we formulate the SFC-EP with dynamic VNF

placement as a BIP model. All the symbols and variables used

in this part are listed in TABLE 1.

For SFC request i, the consumptions of bandwidth, memory

and CPU cannot exceed the available resources on links, nodes

and VNF instances, respectively, which are ensured as:∑
ūv̄∈Li

Ψbw
i zūv̄i,uv ≤ Cbw

uv r
bw
i,uv, ∀uv ∈ L, (1)

∑
ūv̄∈Li

Ψmem
i zūv̄i,u ≤ Cmem

u rmem
i,u , ∀u ∈ V, (2)

∑
ū∈Vi

Ψcpu
i xū

i,m ≤ Ccpu
m rcpui,m , ∀m ∈ M. (3)

Here, we use the binary variables zūv̄i,u and zūv̄i,uv to indicate

whether ūv̄ ∈ Li traverses the node u ∈ V and link uv ∈ L,

respectively. zūv̄i,u and zūv̄i,uv equal 1, if ūv̄ ∈ Li traverses the

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2880992, IEEE
Transactions on Parallel and Distributed Systems

4

TABLE 1
SYMBOLS AND VARIABLES

Symbols and Variables Description
Physical Network

G = (V,L) Physical network G with the sets of nodes
V and links L, u, v ∈ V , uv ∈ L.

Vmdc, Vsn
Sets of MDC nodes and switch nodes, V =
Vmdc ∪ Vsn.

Cbw
uv ,Cmem

u , Ccpu
m Capacity of bandwidth, memory and CPU.

rbwi,uv , rmem
i,u , rcpui,m

Remaining rates of bandwidth, memory and
CPU, when embedding SFC request i.

di,uv , di,u, di,m

Delay on link uv ∈ L, node u ∈ V and
VNF instance m ∈ M, when embedding
SFC request i.

cbwi,uv , cmem
i,u , ccpui,m

Resource costs on link uv ∈ L, node u ∈ V ,
and VNF instance m ∈ M, when embedding
SFC request i.

nu
The maximum number of VNF instances per-
mitted to be placed in MDC node u ∈ Vmdc.

VNFk VNF type k ∈ K.

cvnf
k

Placement cost of VNFk , k ∈ K.

M Set of all the VNF instances permitted to be
placed in MDC nodes, m ∈ M.

Ωm
Set of VNF instances with the same VNF
type of m, Ωm ⊂ M.

Service Function Graph

Gi = (Vi,Li)
Service function graph Gi with the sets of
nodes Vi and links Li, ū, v̄ ∈ Vi, ūv̄ ∈ Li.

Si, Ti, Qi

The ingress node, egress node and set of
necessary VNF requests of SFC request i;
Qi = {Q1

i ,Q2
i , ...,Ql

i}, l = |Qi|.

Ψbw
i , Ψmem

i , Ψcpu
i , Ψtd

i

The demands of bandwidth, memory, CPU
and the maximum tolerated delay of SFC
request i.

Binary Variables

qmk
Whether VNF instance m ∈ M belongs to
VNFk , k ∈ K.

ŵi,m, wi,m

Whether VNF instance m ∈ M is placed
before and after embedding SFC request i,
respectively.

xū
i,m

Whether VNF instance m ∈ M is used to
serve VNF request ū ∈ Vi, when embedding
SFC request i.

ymu
Whether VNF instance m ∈ M can be
placed in MDC node u ∈ Vmdc.

zūv̄i,uv
Whether link ūv̄ ∈ Li traverses link uv ∈ L,
when embedding SFC request i.

zūv̄i,u
Whether link ūv̄ ∈ Li traverses node u ∈ V
when embedding SFC request i.

node u ∈ V and link uv ∈ L, and 0 otherwise. The binary

variable xū
i,m is used to indicate whether ū ∈ Vi is served by

VNF instance m ∈ M. xū
i,m equals 1, if ū ∈ Vi is served by

VNF instance m ∈ M, and 0 otherwise.

As all the placed VNF instances in an MDC node cannot

exceed the maximum number of VNF instances permitted to

be placed after embedding SFC request i, the next constraint

must be satisfied:∑
m∈M

ymu wi,m ≤ nu, ∀u ∈ Vmdc. (4)

In the model, the binary variable ymu indicates whether the

VNF instance m ∈ M can be placed in MDC node u ∈ Vmdc.

ymu equals 1, if m ∈ M can be placed in u ∈ Vmdc, and

0 otherwise. In addition, we use the binary variable wi,m to

indicate whether a VNF instance is placed after embedding SFC

request i. And wi,m equals 1, if m is placed after embedding

SFC request i, and 0 otherwise.

For SFC request i, the end-to-end delay of the path to embed

it must meet the constraint of the maximum tolerated delay as:∑
uv∈L

∑
ūv̄∈Li

di,uvz
ūv̄
i,uv +

∑
u∈V

∑
ūv̄∈Li

di,uz
ūv̄
i,u+

∑
m∈M

∑
ū∈Vi

di,mxū
i,m ≤ Ψtd

i .
(5)

In Eq. (5), the end-to-end delay consists of three parts where

the first part represents the delay on links, and the second and

third parts represent the delay on nodes and VNF instances,

respectively.

If uv ∈ L is traversed by ūv̄ ∈ Li, u, v ∈ V must be

traversed as well. Then the constraint must be ensured as:

zūv̄i,uz
ūv̄
i,v = 1 if zūv̄i,uv = 1. (6)

We must guarantee that the links on the path to embed SFC

request i are connected head-to-tail as:

∑
v∈V

∑
ūv̄∈Li

(zūv̄i,uv − zūv̄i,vu) =

⎧⎪⎪⎨
⎪⎪⎩
1, u = Si,

−1, u = Ti,

0, otherwise.

(7)

For SFC request i, the VNF instance m ∈ M may not be

placed. And if necessary, we can serve this SFC request by

placing VNF instance m in the corresponding MDC node as:∑
u∈Vmdc

∑
m∈M

xū
i,mymu wi,m = 1, ∀ū ∈ Vi \ {Si, Ti}. (8)

If VNF instance m ∈ M is selected to serve SFC request i,
the MDC node holding m must ensure to be traversed as:

xū
i,mymu ≤ zūv̄i,u, ∀u ∈ Vmdc,

∀ū ∈ Vi, ∀ūv̄ ∈ Li.
(9)

Each VNF request of an SFC can be served by only one

VNF instance as:∑
m∈M

xū
i,m = 1, ∀ū ∈ Vi \ {Si, Ti}. (10)

In order to ensure that each VNF instance can be only placed

in one MDC node, Eq. (11) must be satisfied as:∑
u∈Vmdc

ymu = 1, ∀m ∈ M. (11)

For the fact that a VNF instance can only belong to one

type of VNF, the next constraint must be satisfied:∑
k∈K

qmk = 1, ∀m ∈ M. (12)

In Eq. (12), the binary variable qmk represents whether the VNF

instance m ∈ M belongs to VNFk, k ∈ K. qmk equals 1, if

m ∈ M belongs to VNFk, k ∈ K, and 0 otherwise.

In our work, the resource costs are considered to balance net-

work load and reduce resource bottlenecks. We use cbwi,uv, c
mem
i,u

and ccpui,m to represent the costs of bandwidth, memory and

CPU on link uv, switch node u and VNF instance m, when

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2880992, IEEE
Transactions on Parallel and Distributed Systems

5

embedding SFC request i, respectively. And they are defined

as:

cbwi,uv =
max
uv∈L

Cbw
uv

Cbw
uv r

bw
i,uv

, (13)

cmem
i,u =

max
u∈Vsn

Cmem
u

Cmem
u rmem

i,u

, (14)

ccpui,m =
max

m∈Ωm

Ccpu
m

Ccpu
m rcpui,m

,Ωm ⊂ M, (15)

where Ωm ⊂ M in Eq. (15) represents a set that includes all

the VNF instances with the same VNF type of m.

The resource costs defined in Eqs. (13)-(15) have reciprocal

relationships to the remaining bandwidth, memory and CPU.

For example, in Eq. (13), the numerator denotes the maximum

bandwidth capacity in the network, and the denominator

represents the remaining bandwidth on link uv. Eqs. (14)-

(15) are calculated similarly as Eq. (13), and their value ranges

are uniform between (1,+∞). It is obvious that the resource

costs can be equally transformed to increasing and convex

functions by replacing resource remaining rates with resource

utilization rates. The benefit of adopting increasing and convex

functions to set resource costs has been discussed in literatures

[34], [35]. In Eqs. (13)-(15), cbwi,uv, c
mem
i,u and ccpui,m increase

slowly, if the network load is low. And they increase quickly,

if the resource consumptions are approximate to their resource

capacities. Therefore, cbwi,uv, c
mem
i,u and ccpui,m can be used to

indicate the resource bottlenecks in the network. It is noted

that, since the memory capacities of MDC nodes are regarded

as infinite, we define cmem
i,u ≡ 0, rmem

i,u ≡ 1, ∀u ∈ Vmdc.

Since the resource cost functions defined in Eqs. (13)-(15)

can reflect the load status on links, nodes and VNF instances,

we use the sum cost to indicate the load status of a path. The

cost of a path to embed SFC request i is defined as:

R =
∑
uv∈L

∑
ūv̄∈Li

cbwi,uvz
ūv̄
i,uv +

∑
u∈V

∑
ūv̄∈Li

cmem
i,u zūv̄i,u

+
∑

m∈M

∑
ū∈Vi

ccpui,mxū
i,m.

(16)

According to Eq. (16), if the cost of a path is small, we can infer

that there exist no bottleneck nodes, links or VNF instances on

this path. On the contrary, if the cost of the path is very big,

we can infer that there exist some bottleneck nodes, links or

VNF instances, and we have to find another path with smaller

cost to steer the traffic of SFC requests.

Furthermore, the VNF placement cost to embed SFC request

i is computed as:

D =
∑

m∈M

∑
k∈K

cvnfk qmk max{wi,m − ŵi,m, 0}. (17)

We use cvnfk to represent the placement cost of VNFk. The

binary variable ŵi,m indicates whether the VNF instance

m ∈ M is placed before embedding SFC request i. ŵi,m equals

1, if m ∈ M is placed before embedding SFC request i, and

0 otherwise. Additionally, in Eq. (17), max{wi,m − ŵi,m, 0}
indicates whether VNF instance m needs to be placed after

embedding SFC request i. If m needs to be placed after

embedding SFC request i, max{wi,m − ŵi,m, 0} equals 1,

and 0 otherwise.

In the paper, the embedding cost is defined as the sum

of resource cost and VNF placement cost. If there are

sufficient resources in the network, the resource costs are much

smaller than the VNF placement cost. Then, SFC requests are

embedded by reusing the placed VNF instances. If the network

is short of resources, the resource cost will rise rapidly. And

once the sum of resource cost is much bigger than the VNF

placement cost, placing new VNF instances can get more

benefit than reusing the placed ones. Then many new VNF

instances can be placed to balance network load and reduce

resource bottlenecks, which can keep the network with high

performance. Therefore, our objective is to embed an SFC

request with the minimum embedding cost as:

Minimize (D+ R). (18)

In the model, with the increasement of network load, there

are more and more VNF instances placed in the network

to provide sufficient resources and achieve load balancing.

When the network load decreases, placing overmany VNF

instances will incur high OPEX/CAPEX due to long VNF

running time and high VNF placement cost. Therefore, when

embedding SFC requests, how to efficiently place and release

VNF instances should be focused on. Instead of finding exact

numerical solutions by analytical method which suffers from

combinatorial complexity and is extremely time-consuming, we

propose a novel SFC-MAP algorithm which can optimize the

placement of VNF instances and minimize the embedding cost

for SFC requests. Moreover, in order to adapt to the variation

of network load, we also propose the VNF-DRA algorithm to

release redundant VNF instances for the reduction of the total

VNF running time.

V. SFC-MAP ALGORITHM

SFC-MAP is designed to obtain the optimal chaining solution

of Eq. (18). First, we construct a multi-layer graph including

the VNF placement cost and resource costs of links, nodes and

VNF instances. Then, based on these costs defined in multi-

layer graph, we iterate the shortest path algorithm to obtain

the optimal chaining solution for an SFC request. Details on

SFC-MAP are provided in the next subsections.

A. Constructing Multi-layer Graph

A multi-layer graph consists of several copies of physical

graph and the adjacent layers are connected by inter-layer links

and inter-layer nodes. For SFC request i shown in Fig. 2, the

multi-layer graph includes l + 1 (l = |Qi|) copies of original

physical graph. The subscript of each node indicates the layer

number. All the links in the same layer are named as intra-layer

links. The links and nodes, that are used to connect the MDC

nodes in adjacent layers, are named as inter-layer links and

inter-layer nodes. In the multi-layer graph, the inter-layer nodes

are chosen and arranged according to the order constraint of

VNF instances that an SFC request needs to concatenate. For

example, between the jth and (j+1)th layers of the multi-layer

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2880992, IEEE
Transactions on Parallel and Distributed Systems

6

graph for SFC request i, all the inter-layer nodes indicate the

VNF instances with the same VNF type of Qj
i , j = 1, 2, ..., l.

The costs of the intra-layer links, switch nodes and MDC nodes

in the multi-layer graph equal their costs in physical graph

which are computed based on Eqs. (13)-(14). The costs of

inter-layer nodes include the VNF placement cost cvnfk , k ∈ K
and the CPU cost calculated in Eq. (15). In addition, the costs

of inter-layer links that connect the inter-layer nodes and MDC

nodes in the multi-layer graph are set as zero.

Layer 3

Layer 2

Layer 1

Intra-layer link Inter-layer link

()

()

,
,

,

,

Selected VNF Instance

Inter-layer node

Unplaced VNF Instance Placed VNF Instance

,

,

Fig. 2. Embedding an SFC request in multi-layer graph.

In the paper, we define ΩQj
i ,u

⊂ M, j = 1, 2, ..., l as a set

of VNF instances that are chosen from MDC node u ∈ Vmdc

and belong to the same VNF type of Qj
i . In ΩQj

i ,u
, there

exist at most two elements. One element is a placed VNF

instance with the minimum CPU cost in MDC node u ∈ Vmdc

and the other one is an unplaced VNF instance. Both of the

elements in ΩQj
i ,u

belong to the same VNF type of Qj
i . We use

a dark-colored image to denote the placed VNF instance and

a light-colored image to present the unplaced VNF instance.

All these VNF instances in ΩQj
i ,u

, u ∈ Vmdc, j = 1, 2, ..., l
are inter-layer nodes. It is noted that, if there is no placed

VNF instances in MDC node u ∈ Vmdc, only an unplaced

VNF instance is included in ΩQj
i ,u

. And according to Eq. (4),

if the number of placed VNF instances in MDC node u is

maximized, there is no available resource to place a new VNF

instance. Then, only a placed VNF instance, that belongs to

the same type of Qj
i and has the minimum CPU cost in MDC

node u, is included in ΩQj
i ,u

.

In the multi-layer graph, the MDC nodes between two

adjacent layers which represent the same MDC node in physical

graph are connected with inter-layer links and inter-layer nodes.

For SFC request i in Fig. 2, as Q1
i is the first requested VNF

(Q1
i = VNFa) and the VNF instances with the same type of

Q1
i can be placed in MDC nodes B, F and G, we compute the

ΩQ1
i ,B

, ΩQ1
i ,F

and ΩQ1
i ,G

for these three MDC nodes. Then,

in the 1st and 2nd layers of the multi-layer graph, B1 and B2

are connected with each node in ΩQ1
i ,B

. We also connect F1

and F2 and G1 and G2 with each node in ΩQ1
i ,F

and ΩQ1
i ,G

,

respectively. Similarly, for the second requested VNF (Q2
i =

VNFb), we do the same operation for MDC nodes B,F and

G between the 2nd and 3rd layers.

In the multi-layer graph, the ingress node is set in the 1st

layer and the egress node is set in the (l+1)th layer. Because

the adjacent layers in the multi-layer graph are connected with

the VNF instances arranged in predefined order, each path

from the ingress node to the egress node can concatenate VNF

instances to satisfy the order constraint of this SFC request. As

stated before, each layer of the multi-layer graph is consistent

with the original physical graph, and the costs in the multi-layer

graph equal the costs in physical network. Therefore, we can

equivalently solve Eq. (18) by solving the optimal chaining

solution in multi-layer graph.

For example, in Fig. 2, SFC request i starts from the ingress

node A and ends at the egress node H traversing VNFa and

VNFb in sequence. In multi-layer graph, the ingress and egress

nodes of SFC request i are A1 and H3. Supposing that the

optimal chaining solution to embed SFC request i in multi-

layer graph is: A1 → B1 → Ω1
Q1

i ,B
→ B2 → D2 → F2 →

Ω2
Q2

i ,F
→ F3 → H3, where Ω1

Q1
i ,B

represents the first VNF

instance of ΩQ1
i ,B

and Ω2
Q2

i ,F
stands for the second VNF

instance of ΩQ2
i ,F

. Observing that Ω1
Q1

i ,B
is placed, but Ω2

Q2
i ,F

is not placed. Then, this SFC request is served by placing a

new VNF instance with the same VNF type of Q2
i in MDC

node F . Therefore, the optimal chaining solution in original

physical graph is A → B → Ω1
Q1

i ,B
→ B → D → F →

Ω2
Q2

i ,F
→ F → H .

B. Embedding SFC Requests in Multi-layer Graph

SFC-MAP is executed based on multi-layer graph. In multi-

layer graph, we define the ingress node in the 1st layer and

the egress node in the (l+1)th layer. Then, pruning the nodes,

links and VNF instances with insufficient resources, we use the

shortest path algorithm to solve the chaining solution with the

minimum embedding cost in multi-layer graph. According to

the relationship between the multi-layer graph and the physical

graph, we transform the optimal solution in multi-layer graph

to original physical graph to obtain the final chaining solution

of Eq. (18).

As the chaining solution obtained in the multi-layer graph

could violate the resource constraints in Eqs. (1)-(5), in our

work, a penalty factor λ is introduced in to solve this problem.

In multi-layer graph, though the sum cost of a chaining solution

is the minimum, the resource constraints in Eqs. (1)-(5) can

be violated. Given the fact that the chaining solution is solved

based on costs, we can avoid unfeasible solutions by changing

costs. We use a penalty factor λ, which is greater than 1,

to perform this process. If a chaining solution derived from

the multi-layer graph is unfeasible, the resource costs and

VNF placement costs on the corresponding links, nodes and

VNF instances which violate constraints will be multiplied by

λ. Then, the costs on these links, nodes and VNF instances

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2880992, IEEE
Transactions on Parallel and Distributed Systems

7

increase, which decreases the possibilities of being selected in

the next computation. It is noted that, since the introduction of

the penalty factor λ changes costs, SFC-MAP can only ensure

to find optimal solutions, if they can be obtained before λ
taking effect, otherwise they could be missed.

The pseudocode of SFC-MAP is shown in Algorithm 1. The

iteration times γ is initialized in line 1. Line 2 is to prune the

links, nodes and VNF instances that cannot be used to serve the

SFC request. In lines 3-7, we calculate the costs of bandwidth,

memory and CPU. Line 8 is to find all the placed VNF instances

in inter-layer nodes. The multi-layer graph is constructed in

line 9. Lines 10-27 solve the chaining solution iteratively with

the minimum embedding cost for this SFC request in multi-

layer graph. The shortest path algorithm is executed to find

the chaining solution in multi-layer graph in line 11. In lines

12-14, if there exists candidate chaining solution in Smulti, we

transform this solution to physical graph and check it with the

constraints in Eqs. (1)-(12). If Sphy satisfies all the constraints,

the final chaining solution is obtained and we place the VNF

instances in the corresponding MDC nodes according to Sphy

in lines 15-17. Then, the network status is updated after the

SFC request being embedded in lines 18-20. Otherwise, all

the links, nodes, and VNF instances that violate constraints

in Δ are punished with the penalty factor λ in lines 21-23.

Then the iteration times γ is updated and checked whether it

exceeds the maximum iteration times Γ in lines 24 and 10,

respectively. We go on iterating SFC-MAP to search for the

chaining solution with the minimum embedding cost, until the

feasible chaining solution is found or γ exceeds the maximum

iteration times Γ.

C. Complexity Analysis
In SFC-MAP, the complexity of calculating the costs of

links, nodes, and VNF instances is no more than O(|V| +
|L|+ |M|). The construction of a multi-layer graph needs to

copy original physical graph and set inter-layer links and inter-

layer nodes, which results in at most O(l(|V| + |L|) + |M|)
computations. As for multi-layer graph, because it consists of

(l+1) copies of physical graph, the numbers of nodes and links

in multi-layer graph are no more than (l + 1)|V| + 2l|Vmdc|
and (l + 1)|L| + 4l|Vmdc|. Given the fact that Vmdc ⊂ V
and executing the shortest path algorithm (e.g., Dijkstra) in

physical graph G = (V,L) runs in O(|L| + |V|log|V|), the

total complexity of SFC-MAP with the maximum iteration

times Γ is O(|M|+ Γl(|L|+ |V|logl|V|)).
VI. RELEASING VNF INSTANCES ACCORDING TO THE

VARIATION OF NETWORK LOAD

In the network, the number of placed VNF instances needs

to be optimized to adapt to the variation of network load. The

SFC-MAP solves the placement of VNF instances and can

concatenate them with the order constraints for SFC requests,

however, it does not consider how to release overmany placed

VNF instances, and this defect will lead to low VNF utilization

rates and high OPEX/CAPEX when network load goes down. In

order to tackle this issue, we propose the VNF-DRA algorithm

to efficiently release redundant VNF instances according to

the variation of network load.

Algorithm 1: SFC-MAP

1:Initialize γ = 1;

2:{V,L,M} ← Pruning the nodes, links and VNF instances

with less resources than the demand of SFC request i;
3:for each u ∈ V, uv ∈ L,m ∈ M do
4: cbwi,uv ← Calculate the bandwidth cost of uv;

5: cmem
i,u ← Calculate the memory cost of u;

6: ccpui,m ← Calculate the CPU cost of m;

7:end
8:Λ ← Find the placed VNF instances with the minimum

CPU costs for all the VNF types in each MDC node

u ∈ Vmdc;

9:Gmulti ← Construct multi-layer graph according to cbwi,uv ,

cmem
i,u , ccpui,m and cvnfk , ∀uv ∈ L, ∀u ∈ V, ∀m ∈ Λ, ∀k ∈ K;

10:while γ ≤ Γ do
11: Smulti ← Execute the shortest path algorithm in Gmulti;

12: if Smulti ∼= φ then
13: Sphy ← Map Smulti from Gmulti to G;

14: Bool ← Check whether Sphy satisfies all the

constraints in Eqs.(1)-(12);

15: if Bool == true then
16: Θ ← Get all the VNF instances waiting to be

placed according to Sphy;

17: Place all the VNF instances of Θ in the

corresponding MDC nodes according to Sphy;

18: Embed the SFC request with Sphy;

19: NewNetworkStatus ← Update the network;

20: return NewNetworkStatus;

21: else
22: Δ ← Get all the links, nodes and VNF

instances that violate constraints from Sphy;

23: Update the costs for each element of Δ with a

penalty factor λ;

24: γ = γ + 1;

25: end
26: end
27:end
28:return Failed;

A. VNF-DRA Algorithm

With the variation of network load, VNF-DRA is proposed

to reduce the total VNF running time by releasing redundant

VNF instances with low utilization rates. VNF-DRA runs every

period T . We define rcpum (t) as the CPU remaining rate of

m ∈ M at time t, and f(t) represents the threshold of VNF

utilization rate at time t. When executing VNF-DRA, first,

rcpum (t) should be calculated for each VNF instance m ∈
M. Then, VNF-DRA redirects the SFC requests in the VNF

instances with the utilization rate (1−rcpum (t)) ≤ f(t),m ∈ M.

Next, the empty VNF instances are released for the reduction

of running time.

Since the SFC requests with short lifetime will come and

go as they run, it is reasonable to redirect the SFC requests

with long lifetime during their serving windows or by ample

warning and prior planning [36]. And we can infer that an SFC

request is a long lifetime one, if it has run for a long time. In

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2880992, IEEE
Transactions on Parallel and Distributed Systems

8

the paper, we use ϕi(t) to represent the remaining lifetime of

SFC request i at time t. The lifetime threshold of SFC request

is defined as ρ, which is used to differentiate the long lifetime

and short lifetime SFC requests. All the notations used in this

section are listed in TABLE 2.

TABLE 2
NOTATIONS IN VNF-DRA

Notations Description
T Execution period.
ρ Lifetime threshold of SFC request.
ε Fluctuation threshold of network throughput.
f(t) Threshold of VNF utilization rate at time t.
fb, fs Values of f(t).
rcpum (t) CPU remaining rate of m ∈ M at time t.
φ(t) Network throughput at time t.
Φ(t) Mean network throughput during (t− T, t].
ϕi(t) Remaining lifetime of SFC request i at time t.
σ(t) Fluctuation of network throughput during (t− T, t].

In VNF-DRA, all the VNF instances with the utilization

rate (1− rcpum (t)) ≤ f(t),m ∈ M are selected and sorted in

ascending order. After that, for each of these selected VNF

instances, all the SFC requests served in it with the remaining

lifetime ϕi(t) > ρ are recognized as long lifetime ones and

redirected to the VNF instances with the utilization rate (1−
rcpum (t)) > f(t),m ∈ M using the SFC-MAP algorithm. It

is noted that, when redirecting SFC requests with SFC-MAP

algorithm, only the VNF instances with the utilization rate

(1− rcpum (t)) > f(t),m ∈ M are considered as the inter-layer

nodes in multi-layer graph. For short lifetime SFC requests

served in these selected VNF instances, we do no operations

and only wait them to expire. Moreover, new arrival SFC

requests are avoided to be steered through the VNF instances

waiting to be released (do not set the VNF instances waiting to

be released as inter-layer nodes, when executing SFC-MAP).

We will release a VNF instance, if there are no SFC requests

served in it.

As the network load changes over time and f(t) decides the

number of VNF instances that will be checked and released,

the value of f(t) should be set according to the variation of

network load. For example, when network load increases, more

VNF instances should be placed. Therefore, it is applicable to

set f(t) as a small value, which can keep the network with

sufficient resources to cope with the increasing number of SFC

requests. On the contrary, with decreasing network load, there

are many VNF instances with low utilization rate, which leads

to high OPEX/CAPEX due to long VNF running time. Thus,

it is beneficial to set f(t) as a big value, which can timely

release the redundant VNF instances and reduce the total VNF

running time. Additionally, when the network load keeps stable,

the placed VNF instances can already provide enough resource

to cope with SFC requests. Then, decreasing the value of f(t)
can maintain the network stable and reduce the OPEX/CAPEX

resulting from the adjustment of VNF instances.

Before presenting the definition of f(t), we define some

symbols to describe the variation of network load. In the paper,

φ(t) denotes the network throughput at time t. The parameter

Φ(t) stands for the mean network throughput during (t− T, t],

and it is calculated below:

Φ(t) =
1

T

∫ t

t−T

φ(t)dt. (19)

In addition, we define σ(t) as the fluctuation of network

throughput during (t−T, t], and ε as the fluctuation threshold of

network throughput. Both of the parameters are used to indicate

the variation of network load. Then, σ(t) can be computed as:

σ(t) =
1

T

∫ t

t−T

|φ(t)− Φ(t)|dt, (20)

where |φ(t)−Φ(t)| represents the fluctuation around the mean

network throughput Φ(t) at time t. In geo-distributed cloud

system, the network throughput could not change sharply during

a small time interval. Therefore, when network load keeps

stable, the network throughput during T period will fluctuate

around the mean value, which leads to σ(t) ≤ ε. And when

network load rapidly increases or decreases during T period,

the network throughput will deviate the mean value, which

leads to σ(t) > ε.

Given the analysis above, f(t) is defined as a piecewise

function which is calculated according to the variation of

network load as:

f(t) =

⎧⎨
⎩
fb, Φ(t− T) > Φ(t), σ(t) > ε,

fs, otherwise.
(21)

In Eq. (21), the network load is indicated to be decreasing, if

Φ(t− T) > Φ(t) and σ(t) > ε. Then, we increase the number

of VNF instances that will be checked by setting f(t) with

a big value fb, which is helpful to timely release redundant

VNF instances for the reduction of the total VNF running time.

Otherwise, the network load is indicated to be increasing or

stable, and we decrease the number of VNF instances that will

be checked by setting f(t) with a small value fs, which is

beneficial to provide sufficient resources for SFC requests or

keep the network status stable.

The pseudocode of VNF-DRA and the release of VNF

instances are described in Algorithm 2 and Algorithm 3,

respectively. In Algorithm 2, line 1 is to calculate Φ(t) and

σ(t) according to Eqs. (19)-(20). We update f(t) based on

Eq. (21) in line 2 of Algorithm 2. We calculate the VNF

utilization rate for each VNF instance in lines 3-5 of Algorithm
2. In line 6 of Algorithm 2, all the VNF instances with the

utilization rate (1 − rcpum (t)) ≤ f(t),m ∈ M are sorted and

put into Π. Lines 7-14 of Algorithm 2 aim to redirect the SFC

requests with ϕi(t) > ρ to the VNF instances with utilization

rate (1 − rcpum (t)) > f(t),m ∈ M. In Algorithm 3, a VNF

instance will be released, if it is empty in line 3.

B. Complexity Analysis

In VNF-DRA, searching for the VNF instances with the

utilization rate (1− rcpum (t)) ≤ f(t),m ∈ M runs in at most

O(|M|) computations. The parameter Π ⊂ M represents the

set of all these selected VNF instances with the utilization rate

(1 − rcpum (t)) ≤ f(t),m ∈ M. The number of long lifetime

SFC requests in a VNF instance is assumed at most I . As

VNF-DRA needs to redirect each long lifetime SFC request

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2880992, IEEE
Transactions on Parallel and Distributed Systems

9

Algorithm 2: VNF-DRA

1:Calculate Φ(t) and σ(t);
2:Update f(t);
3:for each VNF instance m ∈ M do
4: (1− rcpum (t)) ← Calculate the VNF utilization rate of m;

5:end
6:Π ← Find all the VNF instances with the utilization rate

(1− rcpum (t)) ≤ f(t), m ∈ M and sort them in ascending

order;

7:while Π(1) ∼= φ do
8: Bool ← Check whether all the SFC requests with

ϕi(t) > ρ can be redirected;

9: if Bool == true then
10: Redirect the SFC requests with ϕi(t) > ρ to the

VNF instances with the utilization rate

(1− rcpum (t)) > f(t),m ∈ M ← SFC-MAP;

11: NewNetworkStatus ← Update the network;

12: end
13: Π ← Π \Π(1);
14:end
15:return NewNetworkStatus;

Algorithm 3: Release VNF Instances

1:for each VNF instance m ∈ M waiting to be released do
2: if there are no SFC requests served in VNF instance

m then
3: Release VNF instance m;

4: end
5:end

with SFC-MAP algorithm, the computation complexity to run

VNF-DRA is O(I|Π|[|M|+ Γl(|L|+ |V|logl|V|)]).

VII. PERFORMANCE EVALUATION

In this section, we demonstrate the performance evaluation of

our proposed algorithms. First, we discuss the simulation setup

used to evaluate the algorithms in our work. Then, based on

this simulation, we compare our algorithms with other ones in

existing literatures and evaluate their performance in different

scenarios.

A. Simulation Setup

The simulation is implemented on Matlab, a wildly used

software in modeling and analysis, and conducted on a

computer with Intel(R) Core(TM) i7-4790 CPU 3.60 GHz

and 32 GB RAM. The reason why we make this choice is

because SDN technology can achieve centralized management

in cloud computing. In SDN, the controller is mainly in charge

of monitoring the resource of network and VNF instances,

analyzing collected information and making flexible solutions

and holistic management in large scale complex networks

[1], [6]. Therefore, it is reasonable to run algorithms on

SDN controllers to optimize network performance based on

collected information without considering the operations and

signaling interactions in real network. Further, with reasonable

Fig. 3. CORONET CONUS Topology (75 nodes and 99 links).

parameter settings, the numerical simulation can approximate

the emulation in real SDN/NFV-enabled networks.

The network graph we use is a US carrier network topology

named CORONET CONUS Topology [37] which consists of

75 nodes and 99 links, and it is shown in Fig. 3. In the topology,

we select MDC nodes according to node degree. We sort all the

nodes based on their node degrees in descending order, then

select the first 12 nodes as MDC nodes. There are 20 types

of VNFs that can be placed in MDC nodes. Considering the

location constraints for the placement of VNF instances and

the number of licenses that operators own for VNFs [38], we

assume that each MDC node can only place 10 different types

of VNFs. The maximum number of VNF instances permitted to

be placed per MDC node is set as 20, and the VNF placement

cost cvnfk , ∀k ∈ K is set as 50. The bandwidth capacity per

link is 1000 Mbps. The memory capacity per switch node and

CPU capacity per VNF instance are set as 1000 MB and 100

MIPS, respectively. All the propagation delay, transmission

delay, queuing delay and processing delay are considered in

the simulation and computed based on Eqs. (22)-(24) [39] as:

di,uv = dpropuv + dtxuv +
1− rbwi,uv
rbwi,uv

dtxuv, ∀uv ∈ L, (22)

di,u =
1− rmem

i,u

rmem
i,u

tprocu , ∀u ∈ V, (23)

di,m =
1− rcpui,m

rcpui,m

tprocm , ∀m ∈ M. (24)

In Eq. (22), the first part dpropuv represents the propagation delay

which is computed by the ratio of the length of link uv to

the propagation speed of signals in that medium. The second

part dtxuv denotes the transmission delay and it is computed by

dividing the bandwidth capacity of link uv with the packet

size. The third part means the queuing delay, and it is related

to the load and transmission delay. Eqs. (23)-(24) computes

the processing delay on node u and VNF instance m. The

parameters tprocu and tprocm indicate the per-packet processing

delay on node u and VNF instance m, and they are set as 10

μs and 1 ms, respectively [40].

In the simulation, the ingress and egress nodes and the

requested VNFs of SFC requests are all set randomly. The

arrival rate of SFC requests abides by the rule shown in Fig.

4. For each SFC request, the bandwidth, memory and CPU

demands are set as numbers distributed randomly between (0,

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2880992, IEEE
Transactions on Parallel and Distributed Systems

10

TABLE 3
SIMULATION PARAMETER SETTINGS

Description Value

Network topology
CORONET

CONUS Topology
Number of MDC nodes 12
Number of VNF types 20
Number of permitted VNF types per MDC node 10
Number of permitted VNF instances per MDC node 20
Number of VNF requests per SFC request 3

Lifetime of each SFC request X ∼ E(1
1000

)
Parameters Description Value
Cbw

uv Bandwidth capacity of link uv 1000 Mbps
Cmem

u Memory capacity of switch node u 1000 MB
Ccpu

m CPU capacity of VNF instance m 100 MIPS

Ψbw
i Bandwidth demand (0, 10] Mbps

Ψmem
i Memory demand (0, 10] MB

Ψcpu
i CPU demand (0, 10] MIPS

Ψtd
i Maximum tolerated delay [50, 100] ms

dtxuv Transmission delay on link uv 1.5 μs

dpropuv Propagation delay on link uv
defined by
topology

tprocm Per-packet processing delay on instance m 1 ms
tprocu Per-packet processing delay on node u 10 μs

cvnf
k

Placement cost of VNFk 50

λ Penalty factor 1.5
T Execution period of VNF-DRA 500 time units
fb, fs Values of f(t) 50%, 20%

ε
Fluctuation threshold of network

throughput
50 Mbps

ρ Lifetime threshold of SFC request 100 time units

10]. The number of VNF requests per SFC request is set as 3
[41]. The maximum tolerated delay for each SFC request is

between 50 and 100 ms [42]. During the embedding process,

all the constraints in Eqs. (1)-(12) must be satisfied, otherwise

an SFC request will fail to be served. Furthermore, in order

to simulate dynamic load environment, we set a lifetime for

each SFC request. The lifetime of each SFC request obeys the

exponential distribution with an average of 1000 time units.

Within the lifetime, the system needs to ensure that there are

enough resources for the served SFC requests. And an SFC

request will release the occupied resources when its lifetime

is expired.

As for SFC-MAP, the penalty factor λ is set as 1.5. In

VNF-DRA, the execution period T is set as 500 time units.

The lifetime threshold of SFC request ρ, which is used to

differentiate long and short lifetime SFC requests, is set as

100 time units. We judge whether the network load is stable,

increasing or decreasing based on the fluctuation threshold of

network throughput ε, and it is set as 50 Mbps. The values

of fb and fs in the piecewise function of f(t), which is used

to check and release VNF instances, are set as 50% and 20%,

respectively. Additionally, each group of results is tested 20
times, and we evaluate the performance within 15000 time

units. All the parameter settings in this part are shown in

TABLE 3.

B. Introduction of Compared Algorithms

The ProvisionTraffic algorithm [12] and Eigendecomposition

[16] algorithm have been used as the compared algorithms in

the simulations. Before introducing the evaluation results, we

give a brief description to these compared algorithms.

0 3000 6000 9000 12000 15000
0

30

60

90

120

SF
C
R
eq
ue
st
Ar
riv
al
R
at
e
(p
er
10
0
tim

e
un
its
)

Time (unit)

Fig. 4. SFC request arrival rate over time.

• ProvisionTraffic: ProvisionTraffic places VNF instances

and steer the traffic of SFC requests based on a multi-

stage graph. For an SFC request, all the necessary placed

VNF instances or necessary pseudo-VNF instances are

included in multi-stage graph, and they are arranged and

connected with the order constraint of this SFC request.

The link cost in the multi-stage graph is computed based

on VNF deployment cost, energy cost of servers, cost of

forwarding traffic, penalty for SLO violation and resource

fragmentation. Then, ProvisionTraffic runs the Viterbi

algorithm [24] to solve the embedding solutions with the

minimum OPEX/CAPEX.

• Eigendecomposition: Eigendecomposition extends and

adapts Umeyama’s eigendecomposition approach [25] to

map VNF-FG to physical graph with the optimal matching.

First, Eigendecomposition produces an adjacent matrix for

the network, and the weight for each element is computed

by running the widest-shortest path routing algorithm in

network topology. And an adjacent matrix is also produced

for each SFC request based on its resource demand. Then,

the adjacent matrix of SFC request is extended to be with

the same size of the network’s. Next, Eigendecomposition

computes the eigenvector matrixes for both of the adjacent

matrixes. After that, the conjugate matrixes of the two

eigenvector matrixes are computed and multiplied together.

Finally, the locations with the maximum value in each

row of the product are used as the solution to place VNF

instances and steer the traffic of the SFC request.

C. Simulation Results

1) Evaluation of SFC-MAP & VNF-DRA with Compared
Algorithms: In Fig. 5-6, we evaluate the performances of SFC-

MAP & VNF-DRA, ProvisionTraffic and Eigendecomposition

with the SFC request arrival rate shown in Fig. 4.

Fig. 5(a) shows the evaluations of SFC request acceptance

rate of these three algorithms. When network load is heavy

between 1500-3500 and 12000-15000 time units, our algorithms

can approximately obtain 100% SFC request acceptance rate

comparing with other algorithms. This is because, in SFC-

MAP, the remaining resources are considered to set the

costs on nodes, links and VNF instances, which is used

to achieve load balancing. Therefore, SFC-MAP can reduce

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2880992, IEEE
Transactions on Parallel and Distributed Systems

11

3000 6000 9000 12000 15000
20

30

40

50

60

70

80

90

100

SF
C
R
eq
ue
st
Ac

ce
pt
an
ce

R
at
e
(%

)

Time (unit)

SFC-MAP & VNF-DRA
ProvisionTraffic
Eigendecomposition

(a) SFC request acceptance rate over time.

3000 6000 9000 12000 15000
0.0

1.0

2.0

3.0

4.0

5.0

Th
ro
ug
hp
ut
(M
bp
s)

Time (unit)

SFC-MAP & VNF-DRA
ProvisionTraffic
Eigendecomposition

×103

(b) Network throughput over time.

20 40 60 80 100
0

20

40

60

80

100

C
D
F
(%

)

Path Delay (ms)

SFC-MAP & VNF-DRA
ProvisionTraffic
Eigendecomposition

(c) CDF of end-to-end delay.

Fig. 5. The comparison of SFC request acceptance rate, network throughput and the CDF of end-to-end delay.

3000 6000 9000 12000 15000

60

120

180

240

N
um

be
ro
fP

la
ce
d
VN

F
In
st
an
ce
s

Time (unit)

SFC-MAP & VNF-DRA
ProvisionTraffic
Eigendecomposition

(a) The number of VNF instances over time.

3000 6000 9000 12000 15000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

To
ta
lR

un
ni
ng

Ti
m
e
of
VN

F
In
st
an
ce
s
(u
ni
t)

Time (unit)

SFC-MAP & VNF-DRA
ProvisionTraffic
Eigendecomposition

×106

(b) Total running time of VNF instances over time.

3000 6000 9000 12000 15000
0

10

20

30

40

50

60

70

80

90

VN
F
U
til
iz
at
io
n
R
at
e
(%

)

Time (unit)

SFC-MAP & VNF-DRA
ProvisionTraffic
Eigendecomposition

(c) Mean VNF utilization rate over time.

Fig. 6. The comparison of the number of placed VNF instances, the total running time of VNF instances and mean VNF utilization rate over time.

resource bottlenecks and enhance SFC request acceptance rate.

Compared with our algorithms, ProvisionTraffic minimizes a

joint costs including VNF placement cost, traffic forwarding,

energy consumption, SLA penalty and resource fragmentation.

However, as ProvisionTraffic pays no attention to the remaining

resources in the network, the bottleneck cannot be avoided when

embedding SFC requests. In addition, though it is beneficial

to take full use of network resources by minimizing the

resource fragmentation, the bottleneck and congestion are

further aggravated because of the resource exhaustion. As

for Eigendecomposition, it cannot ensure to obtain the optimal

mapping of an SFC request, and the widest-shortest path routing

algorithm results in the chaining solutions with longer paths.

Hence, Eigendecomposition consumes more resources, which

leads to the worst performance in the simulation.

In Fig. 5(b), we evaluate the network throughput of the

three algorithms. Since SFC acceptance rate of SFC-MAP

& VNF-DRA shown in Fig. 5(a) is the highest, they obtains

the best performance of network throughput as well. With

heavy network load between 1500-3500 and 12000-15000

time units, the network throughput of SFC-MAP & VNF-

DRA is 1000 Mbps higher than the ProvisionTraffic’s and

3500 Mbps higher than the Eigendecomposition’s. With light

network load between 6000-9000 time units, both the SFC-

MAP & VNF-DRA and ProvisionTraffic obtain the highest

network throughput, which is about 400 Mbps higher than the

Eigendecomposition’s.

Fig. 5(c) shows the distribution of end-to-end delay with

these three algorithms. ProvisionTraffic gets the best result

in this simulation. This is because the end-to-end delay is

considered in its optimization objective, when solving chaining

solutions for SFC requests. In SFC-MAP & VNF-DRA, we

pay no attention to minimize the end-to-end delay. Moreover,

we also have to make a tradeoff between the path selection

and load balancing, which aims to avoid bottlenecks and

reduce network congestion. Therefore, SFC-MAP & VNF-DRA

leads to longer end-to-end delay than the ProvisionTraffic’s.

In Eigendecomposition, the end-to-end delay is not considered

as well, and the widest-shortest path routing algorithm leads

to longer paths than other two algorithms’, so it performs the

worst in this simulation.

Fig. 6(a) describes the number of placed VNF instances

resulting from three algorithms. In this figure, it is obvious

that our proposed algorithms SFC-MAP & VNF-DRA can

optimize the placed VNF instances more efficiently than

ProvisionTraffic and Eigendecomposition. When network load

is declining between 3500-6000 time units, VNF-DRA observes

this phenomenon and adjusts the threshold of VNF utilization

rate f(t) to be a big value fb based on Eq. (21). After that, more

VNF instances with the utilization rate lower than fb can be

released, which results in the reduction of the total VNF running

time. However, ProvisionTraffic and Eigendecomposition do

not optimize the number of VNF instances with the variation

of network load. Therefore, when network load decreases, the

VNF instances cannot be released timely. Moreover, when

network load increases between 9000-12000 time units, more

SFC requests are embedded in the network. At the beginning

of that time, as there is only small number of placed VNF

instances in MDC nodes, the resources around the MDC

nodes are fast consumed, which aggravates network congestion

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2880992, IEEE
Transactions on Parallel and Distributed Systems

12

60

120

180

240

N
um

be
ro

fP
la
ce
d
VN

F
In
st
an
ce
s

Number of Permitted VNF Types per MDC Node = 7
Number of Permitted VNF Types per MDC Node = 8
Number of Permitted VNF Types per MDC Node = 9
Number of Permitted VNF Types per MDC Node = 10
Number of Permitted VNF Types per MDC Node = 11
Number of Permitted VNF Types per MDC Node = 12
Min~Max
Median Line

7 8 9 10 11 12

80

90

100

Ac
ce
pt
an
ce

R
at
e
(%

)

Number of Permitted VNF Types per MDC Node

(a) The distributions of SFC request acceptance rate and the number of
placed VNF instances with different number of permitted VNF types
per MDC node.

60

120

180

240

N
um

be
ro
fP

la
ce
d
VN

F
In
st
an
ce
s

75 80 85 90 95 100
88

92

96

100

Ac
ce
pt
an
ce

R
at
e
(%

)

CPU Capacity per VNF Instance (MIPS)

CPU Capacity per VNF Instance = 75
CPU Capacity per VNF Instance = 80
CPU Capacity per VNF Instance = 85
CPU Capacity per VNF Instance = 90
CPU Capacity per VNF Instance = 95
CPU Capacity per VNF Instance = 100
Min~Max
Median Line

(b) The distributions of SFC request acceptance rate and the number of
placed VNF instances with different CPU capacity per VNF instance.

2 3 4 5 6 7

60

70

80

90

100

110

Ac
ce
pt
an
ce

R
at
e
(%

)

Number of VNF Requests per SFC Request

Number of VNF Requests per SFC Request = 2
Number of VNF Requests per SFC Request = 3
Number of VNF Requests per SFC Request = 4
Number of VNF Requests per SFC Request = 5
Number of VNF Requests per SFC Request = 6
Number of VNF Requests per SFC Request = 7
Min~Max
Median Line

0

60

120

180

240

N
um

be
ro
fP

la
ce
d
VN

F
In
st
an
ce
s

(c) The distributions of SFC request acceptance rate and the number of
placed VNF instances with different number of VNF requests per SFC
request.

60

120

180

240

N
um

be
ro
fP

la
ce
d
VN

F
In
st
an
ce
s

10 12 14 16 18 20

70

80

90

100

Ac
ce
pt
an
ce

R
at
e
(%

)

Number of Permitted VNF Instances per MDC Node

Permitted VNF Instances per MDC Node = 10
Permitted VNF Instances per MDC Node = 12
Permitted VNF Instances per MDC Node = 14
Permitted VNF Instances per MDC Node = 16
Permitted VNF Instances per MDC Node = 18
Permitted VNF Instances per MDC Node = 20
Min~Max
Median Line

(d) The distributions of SFC request acceptance rate and the number of
placed VNF instances with different number of permitted VNF instances
per MDC node.

Fig. 7. The comparison of SFC request acceptance rate and the number of placed VNF instances with different scenarios.

and load imbalance. Then, in SFC-MAP, the resource costs

defined in Eqs. (13)-(15) start to take effect. With resource

consumption, the resource costs of links, nodes, and VNF

instances increase quickly, and it becomes more beneficial to

place new VNF instances than reuse the placed ones according

to Eq. (18). Next, many new VNF instances are placed in

MDC nodes to provide more choices of path selection for

SFC requests. Hence, the load turns to be balanced. Though

ProvisionTraffic and Eigendecomposition enhance the network

performance by placing more VNF instances to cope with

increasing network load, the neglect of load balancing leads to

lower SFC request acceptance rate. Furthermore, due to low

SFC request acceptance rate, the number of VNF instances

with Eigendecomposition is smaller than the ProvisionTraffic’s.

Additionally, because VNF-DRA executes periodically, the

number of placed VNF instances decreases step by step during

3500-7000 time units in this figure.

Fig. 6(b) presents the total running time of VNF instances

of these three algorithms. According to this figure, SFC-MAP

& VNF-DRA can get better performance in this simulation.

Nevertheless, ProvisionTraffic and Eigendecomposition almost

cannot reduce the total running time of VNF instances. Since

the network load becomes light during 3500-10000 time units,

the SFC-MAP & VNF-DRA can reduce the running time of

VNF instances by releasing the redundant VNF instances with

low utilization rates. And SFC-MAP & VNF-DRA can get

about 25% reduction of total running time of VNF instances

than ProvisionTraffic’s.

In Fig. 6(c), we evaluate the mean VNF utilization rate of

these three algorithms. SFC-MAP & VNF-DRA obtains more

than 75% mean VNF utilization rate under heavy network

load during 1500-3500 and 12000-15000 time units. VNF-

DRA runs periodically to release the VNF instances with

low utilization rate, so our algorithms can keep the mean

VNF utilization rate around 60%, when network load becomes

light during 3500-9000 time units. In ProvisionTraffic, because

of lower SFC request acceptance rate and larger number of

VNF instances, the mean VNF utilization rate is about 10%-

30% lower than SFC-MAP & VNF-DRA’s during 1500-3500

and 10000-15000 time units. Without considering to release

overmany placed VNF instances with decreasing network load,

the mean VNF utilization rate of ProvisionTraffic drops sharply

to about 20%, during 6000-9000 time units. Due to poor SFC

request acceptance rate and overmany placed VNF instances,

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2880992, IEEE
Transactions on Parallel and Distributed Systems

13

the mean VNF utilization rate with Eigendecomposition is only

about 40% during heavy network work load and about 20%

during light network load.

2) Evaluation of SFC-MAP & VNF-DRA with Different
Scenarios: In Fig. 7, we evaluate the performance of SFC-

MAP & VNF-DRA with different scenarios. In these figures,

box plots are used to show the distributions of SFC request

acceptance rate and the number of placed VNF instances with

the SFC request arrival rate shown in Fig. 4. In these box plots,

the maximum, median and minimum of the simulation results

are presented. As for the box plots which depict the distributions

of SFC request acceptance rate, the heavier (lighter) the network

load is, the lower (higher) SFC request acceptance rate will be.

Nevertheless, as for the box plots which depict the distributions

of the number of placed VNF instances, the rule is contrary.

This is because the heavier (lighter) the network load is, the

larger (smaller) number of VNF instances should be placed.

In Fig. 7(a), the performance of SFC-MAP & VNF-DRA

is evaluated with different number of permitted VNF types

per MDC node. With the number of permitted VNF types per

MDC node increasing from 7 to 10, the SFC request acceptance

rate increases from the range about 80%-100% to the range

about 96%-100%, and the number of placed VNF instances

increases from the range about 60-225 to the range about 60-

235. This is because, if MDC nodes can place more types of

VNF instances, SFC requests are more likely to be served by

one MDC node. Therefore, it is beneficial to shorten the paths

in chaining solutions by placing more types of VNF instances

in MDC nodes, which can save resources to serve more SFC

requests. In addition, when the number of permitted VNF types

increases from 10 to 12, the maximum, median and minimum,

which depict the distributions of the number of placed VNF

instances, decrease in the box plots. This phenomenon presents

that it is helpful to balance network load and improve resource

utilization by placing more types of VNF instances in MDC

nodes.

Fig. 7(b) presents the influence of the CPU capacity per

VNF instance on the performance of SFC-MAP & VNF-DRA.

As shown in the figure, if the CPU capacity per VNF instance

is increased from 75 MIPS to 100 MIPS, the SFC acceptance

rate becomes higher and the number of placed VNF instances

decreases. This is because increasing the CPU capacity per VNF

instance allows a VNF instance to serve more SFC requests.

Furthermore, when the CPU capacity per VNF instance changes

from 90 MIPS to 100 MIPS, though there are still many

VNF instances that can be placed to serve SFC requests, the

improvement of SFC request acceptance rate is small. This

phenomenon indicates that, the bandwidth on links and memory

on switch nodes are the bottlenecks which lead to the failure

of SFC embedding under this circumstance.

The performance of SFC-MAP & VNF-DRA is evaluated

with different numbers of VNF requests per SFC request in

Fig. 7(c). With the increasing number of VNF requests per

SFC request, the number of placed VNF instances increases

rapidly from the range about 40-160 to the range about 140-

240. And the minimum of the SFC request acceptance rate

also drops from about 99% to about 63%. The reason is that,

when serving the SFC requests with more VNF requests, there

are more VNF instances needed to be concatenated with order

constraints, which leads to longer end-to-end delay and more

resource consumption.

We evaluate the performance of SFC-MAP & VNF-DRA

with different number of permitted VNF instances per MDC

node in Fig. 7(d). In the figure, the more number of permitted

VNF instances per MDC node, the more resource an MDC

node can provide. Hence, with the number of permitted VNF

instances per MDC node increasing from 10 to 18, the SFC

request acceptance rate continuously increases from the range

about 73%-100% to about 97%-100%. To keep high SFC

request acceptance rate, the number of placed VNF instances

also increases from the range about 60-120 to about 60-220.

And when we go on increasing the number of permitted VNF

instances per MDC node from 18 to 20, the benefits on the

SFC request acceptance rate and the number of placed VNF

instances become smaller. This phenomenon reflects that MDC

nodes have provided enough resource to deal with the SFC

requests under this circumstance. In addition, combined with

Fig. 7(b), we get that it is effective to improve the network

performance by increasing the resource capacities of VNF

instances and MDC nodes.

VIII. CONCLUSION

In the paper, we study the SFC-EP with dynamic VNF

placement in geo-distributed cloud system aiming to minimize

the embedding costs for SFC requests and optimize the number

of VNF instances for the reduction of the total VNF running

time. Then, SFC-MAP and VNF-DRA are proposed to solve

this problem. SFC-MAP places VNF instances and embeds

SFC requests by executing the shortest path algorithm in a

multi-layer graph. The VNF-DRA with a piecewise threshold

related to the variation of network load is proposed to efficiently

release redundant VNF instances and reduce the total VNF

running time. Performance evaluation results show that, SFC-

MAP & VNF-DRA obtains more than 20% improvements in

the terms of SFC request acceptance rate, network throughput

and mean VNF utilization rate, and about 25% reduction of the

total VNF running time compared with algorithms in existing

literatures.

As a future work, we plan to extend our work in a

number of ways. We plan to explore the influences of power

consumption, VNF placement delay and ping-pong effect

which leads to a VNF instance being frequently placed and

released during dynamic VNF placement. We plan to study

the proactive resource management for VNF instances in date

center networks. And we also plan to design efficient VNF

placement algorithm combined with load prediction mechanism.

ACKNOWLEDGMENTS

This work is supported in part by the National Natural Sci-

ence Foundation of China (NSFC) under Grant No. 61671420,

61672484, Youth Innovation Promotion Association CAS under

Grant No. 2016394, and the Fundamental Research Funds for

the Central Universities.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2880992, IEEE
Transactions on Parallel and Distributed Systems

14

REFERENCES

[1] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network Function Virtualization: State-of-the-art and
Research Challenges,” IEEE Communications Surveys & Tutorials,
vol. 18, no. 1, pp. 236–262, 2016.

[2] S. D’Oro, L. Galluccio, S. Palazzo, and G. Schembra, “Exploiting
Congestion Games to Achieve Distributed Service Chaining in NFV
Networks,” IEEE Journal on Selected Areas in Communications, vol. 35,
no. 2, pp. 407–420, 2017.

[3] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making Middleboxes Someone Else’s Problem: Network Pro-
cessing as a Cloud Service,” ACM SIGCOMM Computer Communication
Review, vol. 42, no. 4, pp. 13–24, 2012.

[4] D. Bhamare, R. Jain, M. Samaka, and A. Erbad, “A survey on service
function chaining,” Journal of Network and Computer Applications,
vol. 75, pp. 138–155, 2016.

[5] W. Xiao, W. Bao, X. Zhu, and L. Liu, “Cost-Aware Big Data Processing
across Geo-distributed Datacenters,” IEEE Transactions on Parallel and
Distributed Systems, vol. 28, no. 11, pp. 3114–3127, 2017.

[6] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network Function
Virtualization: Challenges and Opportunities for Innovations,” IEEE
Communications Magazine, vol. 53, no. 2, pp. 90–97, 2015.

[7] W. John, K. Pentikousis, G. Agapiou, E. Jacob, M. Kind, A. Manzalini,
F. Risso, D. Staessens, R. Steinert, and C. Meirosu, “Research Directions
in Network Service Chaining,” in Proc. IEEE SDN for Future Networks
and Services (SDN4FNS), pp. 1–7, 2013.

[8] K. Xu, M. Shen, H. Liu, J. Liu, F. Li, and T. Li, “Achieving Optimal
Traffic Engineering Using a Generalized Routing Framework,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, no. 1, pp. 51–
65, 2016.

[9] R. Mijumbi, J. Serrat, J.-L. Gorricho, and R. Boutaba, “A Path Generation
Approach to Embedding of Virtual Networks,” IEEE Transactions on
Network and Service Management, vol. 12, no. 3, pp. 334–348, 2015.

[10] S. Zhang, Z. Qian, J. Wu, S. Lu, and L. Epstein, “Virtual Network
Embedding with Opportunistic Resource Sharing,” IEEE Transactions
on Parallel and Distributed Systems, vol. 25, no. 3, pp. 816–827, 2014.

[11] V. Eramo, E. Miucci, M. Ammar, and F. G. Lavacca, “An Approach for
Service Function Chain Routing and Virtual Function Network Instance
Migration in Network Function Virtualization Architectures,” IEEE/ACM
Transactions on Networking, vol. 25, no. 4, pp. 2008–2025, 2017.

[12] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C. M. B. Duarte,
“Orchestrating Virtualized Network Functions,” IEEE Transactions on
Network and Service Management, vol. 13, no. 4, pp. 725–739, 2016.

[13] S. Clayman, E. Maini, A. Galis, A. Manzalini, and N. Mazzocca, “The
Dynamic Placement of Virtual Network Functions,” in Proc. IEEE
Network Operations and Management Symposium (NOMS), pp. 1–9,
2014.

[14] M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi, R. Ahmed, and
R. Boutaba, “Elastic Virtual Network Function Placement,” in Proc. IEEE
International Conference on Cloud Networking (CloudNet), pp. 255–260,
2015.

[15] M. Bouet, J. Leguay, T. Combe, and V. Conan, “Cost-based placement of
vDPI functions in NFV infrastructures,” International Journal of Network
Management, vol. 25, no. 6, pp. 490–506, 2015.

[16] M. Mechtri, C. Ghribi, and D. Zeghlache, “A Scalable Algorithm for the
Placement of Service Function Chains,” IEEE Transactions on Network
and Service Management, vol. 13, no. 3, pp. 533–546, 2016.

[17] X. Li and C. Qian, “The Virtual Network Function Placement Problem,”
in Proc. IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), pp. 69–70, IEEE, 2015.

[18] H. Moens and F. De Turck, “VNF-P: A Model for Efficient Placement of
Virtualized Network Functions,” in Proc. IEEE International Conference
on Network and Service Management (CNSM), pp. 418–423, 2014.

[19] T. Lin, Z. Zhou, M. Tornatore, and B. Mukherjee, “Optimal Network
Function Virtualization Realizing End-to-End Requests,” in Proc. IEEE
Global Communications Conference (GLOBECOM), pp. 1–6, 2015.

[20] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual Network Functions
Placement and Routing Optimization,” in Proc. IEEE International
Conference on Cloud Networking (CloudNet), pp. 171–177, 2015.

[21] C. Pham, N. H. Tran, S. Ren, W. Saad, and C. S. Hong, “Traffic-aware
and Energy-efficient vNF Placement for Service Chaining: Joint Sampling

and Matching Approach,” IEEE Transactions on Services Computing,
vol. PP, no. 99, pp. 1–1, 2017.

[22] W. Ma, C. Medina, and D. Pan, “Traffic-Aware Placement of NFV
Middleboxes,” in Proc. IEEE Global Communications Conference
(GLOBECOM), pp. 1–6, 2015.

[23] M. Zeng, W. Fang, and Z. Zhu, “Orchestrating Tree-Type VNF Forward-
ing Graphs in Inter-DC Elastic Optical Networks,” Journal of Lightwave
Technology, vol. 34, no. 14, pp. 3330–3341, 2016.

[24] A. Viterbi, “Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm,” IEEE Transactions on Information Theory,
vol. 13, no. 2, pp. 260–269, 1967.

[25] S. Umeyama, “An Eigendecomposition Approach to Weighted Graph
Matching Problems,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 10, no. 5, pp. 695–703, 1988.

[26] S. Sahhaf, W. Tavernier, M. Rost, S. Schmid, D. Colle, M. Pickavet, and
P. Demeester, “Network service chaining with optimized network function
embedding supporting service decompositions,” Computer Networks,
vol. 93, pp. 492–505, 2015.

[27] D. Dietrich, A. Abujoda, and P. Papadimitriou, “Network Service
Embedding Across Multiple Providers with Nestor,” in Proc. IEEE
IFIP Networking Conference (IFIP Networking), pp. 1–9, 2015.

[28] A. Mohammadkhan, S. Ghapani, G. Liu, et al., “Virtual Function
Placement and Traffic Steering in Flexible and Dynamic Software
Defined Networks,” in Proc. IEEE International Workshop on Local
and Metropolitan Area Networks (LANMAN), pp. 1–6, 2015.

[29] Z. Cao, M. Kodialam, and T. Lakshman, “Traffic Steering in Software
Defined Networks: Planning and Online Routing,” in ACM SIGCOMM
Computer Communication Review, vol. 44, pp. 65–70, 2014.

[30] T.-W. Kuo, B.-H. Liou, K. C.-J. Lin, and M.-J. Tsai, “Deploying Chains
of Virtual Network Functions: On the Relation Between Link and
Server Usage,” in Proc. IEEE International Conference on Computer
Communications, pp. 1–9, 2016.

[31] V. Eramo, M. Ammar, and F. G. Lavacca, “Migration Energy Aware
Reconfigurations of Virtual Network Function Instances in NFV Archi-
tectures,” IEEE Access, vol. 5, pp. 4927–4938, 2017.

[32] A. Csoma, B. Sonkoly, L. Csikor, F. Németh, A. Gulyas, W. Tavernier, and
S. Sahhaf, “ESCAPE: Extensible Service Chain Prototyping Environment
Using Mininet, Click, Netconf and Pox,” in ACM SIGCOMM Computer
Communication Review, vol. 44, pp. 125–126, ACM, 2014.

[33] R. Riggio, J. Schulz-Zander, and A. Bradai, “Virtual Network Function
Orchestration with Scylla,” in ACM SIGCOMM Computer Communica-
tion Review, vol. 45, pp. 375–376, ACM, 2015.

[34] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing ospf
weights,” in INFOCOM 2000. Nineteenth annual joint conference of
the IEEE computer and communications societies. Proceedings. IEEE,
vol. 2, pp. 519–528, IEEE, 2000.

[35] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with traditional
ip routing protocols,” IEEE communications Magazine, vol. 40, no. 10,
pp. 118–124, 2002.

[36] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking Virtual Network
Embedding: Substrate Support for Path Splitting and Migration,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 17–29,
2008.

[37] “Optical Network Design and Planning.” [Online]. Available:
http://www.monarchna.com/topology.html.

[38] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and Placing Chains
of Virtual Network Functions,” in Proc. IEEE International Conference
on Cloud Networking (CloudNet), pp. 7–13, 2014.

[39] A. Dwaraki and T. Wolf, “Adaptive Service-Chain Routing for Virtual
Network Functions in Software-Defined Networks,” in Proc. ACM work-
shop on Hot topics in Middleboxes and Network Function Virtualization,
pp. 32–37, 2016.

[40] R. Ramaswamy, N. Weng, and T. Wolf, “Characterizing Network
Processing Delay,” in Proc. IEEE Global Telecommunications Conference,
vol. 3, pp. 1629–1634, 2004.

[41] X. Zhang, Z. Huang, C. Wu, Z. Li, and F. C. Lau, “Online Stochastic
Buy-Sell Mechanism for VNF Chains in the NFV Market,” IEEE Journal
on Selected Areas in Communications, vol. 35, no. 2, pp. 392–406, 2017.

[42] L. Pantel and L. C. Wolf, “On the Impact of Delay on Real-Time
Multiplayer Games,” in Proc. ACM international workshop on Network
and operating systems support for digital audio and video, pp. 23–29,
2002.

