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Abstract—Network function virtualization (NFV) brings great conveniences and benefits for the enterprises to outsource their network

functions to the cloud datacenter. In this paper, we address the virtual network function (VNF) placement problem in cloud datacenter

considering users’ service function chain requests (SFCRs). To optimize the resource utilization, we take two less-considered factors

into consideration, which are the time-varying workloads, and the basic resource consumptions (BRCs) when instantiating VNFs in

physical machines (PMs). Then the VNF placement problem is formulated as an integer linear programming (ILP) model with the aim of

minimizing the number of used PMs. Afterwards, a Two-StAge heurisTic solution (T-SAT) is designed to solve the ILP. T-SAT consists

of a correlation-based greedy algorithm for SFCR mapping (first stage) and a further adjustment algorithm for virtual network function

requests (VNFRs) in each SFCR (second stage). Finally, we evaluate T-SAT with the artificial data we compose with Gaussian function

and trace data derived from Google’s datacenters. The simulation results demonstrate that the number of used PMs derived by T-SAT

is near to the optimal results and much smaller than the benchmarks. Besides, it improves the network resource utilization significantly.

Index Terms—Virtual network function placement, resource optimization, service function chain, time-varying workloads, multi-tenancy,

basic resource consumptions, correlation-based algorithm
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1 INTRODUCTION

NETWORK function virtualization (NFV) [1] allows net-
work functions (NFs) or middleboxes traditionally

attached on specific hardwares to be realized in software and
dynamically outsourced to be run on any common off-the-
shelf servers,which brings great conveniences and flexibilities
in programmability, management and policy interactions
between NFs. Nowadays, more and more network operators
and enterprises leverageNFV technology to reduce the cost of
infrastructure construction andmanagement [2], [3].

When hundreds of users outsource their NFs to the cloud
[4], [5], virtual network functions (VNFs) placement (also
mentioned as VNF instantiation) becomes an important but
difficult problem for the cloud service providers (CSPs),
which has received more and more attention from academia
and industry. In the problem, one or more positions where
to instantiate a series of VNFs should be decided with an
optimization objective, such as minimizing the resource
consumptions [6], [7] and maximizing the number of users’
requests that can be served [8]. A good placement solution
can improve the utilization efficiency of network resources

and reduce the CAPital EXpenditures and OPerating
EXpenses (CAPEX/OPEX) greatly, which will produce
more profits for the CSPs. Basically, VNF placement prob-
lem is usually formulated as an integer programming or
linear programming model, and lots of heuristic schemes
have been proposed [6], [9], [10], [11].

Generally, a user’s service request is accomplished by
a service function chain (SFC), which is constructed by a list
of VNFs within a specified order [12], [13]. Thus, we treat a
user’s NF outsourcing request as an SFC request, simplified
as SFCR. Meanwhile, to make a distinction, we call the
elements in a specific SFCR as VNF requests (VNFRs), corre-
sponding to the VNFs in an SFC. Given SFCRs proposed
by different users, the VNF placement problem is specific to
how to deploy a series of SFCs, separately containing multi-
ple VNFs, onto physical machines (PMs) in the cloud.

Different from most works in existing, the VNFs are
multi-tenant capable in our considerations, which means
that one VNF can provide services for multiple tenants at
the same time [14]. Specifically, the VNFRs in SFCRs can be
seen as the tenants in our paper. To optimize the resource
utilization while placing the VNFs, we take the following
two factors into consideration:

1) Consolidations of Time-Varying Workloads. Generally
speaking, the workloads of the NFs are time-varying,
and the peaks and valleys in one NF’s workload do
not necessarily coincide with the others statistically
[15], [16]. For a multi-tenant capable VNF, the capac-
ity of the VNF is commensurate with the workloads
of all VNFRs on it, which implies that resources
are allocated to the VNFs based on workloads of all
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VNFRs on them. So based on the predicted work-
loads of VNFRs, we can gather together the VNFRs,
demanding the same type of VNF and with comple-
mentary workload patterns, on the same multi-
tenant capable VNF to improve the utilization effi-
ciency of network resources. Referring to the real
cases in [15], [16], [17], we use a simple schematic
diagram to demonstrate the advantages. As is shown
in Fig. 1, the left part shows the time-varying CPU
demand of 4 VNFRs for VNF A, the right part shows
two combinations of the 4 VNFRs: in combination 1,
VNFR1 and VNFR3 are hosted on VNF A1, VNFR2

and VNFR4 are hosted on VNF A2; in combination 2,
VNFR1 and VNFR2 are hosted on VNF A1, VNFR3

and VNFR4 are hosted on VNF A2. Compared with
combination 1, the workload of combination 2 is
more smooth, and the peak value of combination 2 is
6 compared with 10 in combination 1, so we just
need to allocate at most 6 units CPU resources to
VNF A1 and A2 respectively in combination 2, com-
pared with 10 units in combination 1. Thus, we can
say that combination 2 leads to a more efficient utili-
zation of PM’s resources than combination 1.

2) Basic Resource Consumptions and the Sharing. We con-
sider the basic resource consumptions (BRCs) when
instantiatingVNFs in a PM. BRCs are the resource con-
sumptions for the basic function maintaining of one
software, like the resource consumptions to maintain
the OS and related libraries of one VNF [18], [19]
before it starts to provide service. Specifically, for the
multi-tenant capableVNFs, BRCs are the resource con-
sumptions to maintain the shared application plat-
form and database by the VNFRs on them. We
concretize them as the CPU and memory consump-
tions in this paper, which are the CPU BRCs (c-BRCs)
and memory BRCs (m-BRCs) respectively. Also, we
assume that BRCs of one VNF are fixed, and they have
no relationship with VNF’s processing capacity. For a
series of VNFRs that are hosted on the samemulti-ten-
ant capable VNF, they share the same block of BRCs.
By gathering the VNFRs that demand the same type of
VNF together, we can save more VNF instances, then
BRCs decrease subsequently, leading to fewer node
resource consumptions.

As stated before, users’ NF requests are accomplished by
SFCs, so the flow of one user’s request must go through a
series of VNFs in a specified order to get served. If all the
VNFs that an SFCR needs are in the same PM (Scenario 1), the
traffic loads between the VNFs will be restricted in the PM,
and the corresponding bandwidth consumptions on the links
will not occur. However, if the VNFs needed are distributed
among multiple PMs (Scenario 2), the corresponding band-
width consumptions on the links cannot be avoided. Com-
pared with Scenario 2, Scenario 1 needs more VNF instances,
so BRCs aremore in Scenario 1. Thus, we can find that there is
a confliction between bandwidth consumptions and BRCs,
andwe need tomake a balance between them.

In summary, we consider the VNF placement problem in
cloud datacenter with a series of known SFCRs. To optimize
the utilization of network resources, we take the time-
varying workloads and BRCs into consideration. After-
wards, the VNF placement problem is formulated as an
integer linear programming (ILP) model, aiming to mini-
mize the number of used PMs. The VNF placement problem
has turned out to be NP-hard [6], [9], [10], [20], [21], so is the
VNF placement problem in our paper. Thus we solve the
ILP with a small number of SFCRs using Gurobi [22] and
propose a Two-StAge heurisTic solution (T-SAT) to solve
the ILP when the number of SFCRs is large. T-SAT can be
divided into two parts: one is the correlation-based greedy
algorithm, which aims to map the SFCRs to the PMs accord-
ing to the correlation between their predicted workloads,
and the other is a further adjustment process based on
VNFRs, which aims to gather the VNFRs that demand the
same type of VNF together to save more node resources,
owing to BRCs sharing among VNFRs on the same multi-
tenant capable VNF.

Our major contributions can be summarized as:

1) To improve the utilization efficiency of network
resources, we consider the time-varying feature of
NF requests’ workloads. Specifically, we design a
correlation-based algorithm to handle them.

2) We consider BRCs and multi-tenancy of VNFs and
reveal the confliction between bandwidth consump-
tions and BRCs. Then we exploit the fact that VNFRs
on the multi-tenant capable VNFs can share BRCs to
save more node resources while keeping a balance
between bandwidth consumptions and BRCs.

3) We formulate the VNF placement problem as an ILP
model and propose a novel two-stage solution, T-
SAT. Then T-SAT is evaluated in detail with the arti-
ficial data we compose with Gaussian function and
the trace data derived from Google’s datacenters
[23]. The simulation results demonstrate that T-SAT
can improve the utilization of network resources sig-
nificantly and acquire a smaller number of used PMs
than the benchmarks.

The remainder of this paper is organized as follows.
Section 2 reviews the related works. In Section 3, we describe
the system model and the related concepts. Section 4 formu-
lates the VNF placement problem and our solution T-SAT is
introduced in Section 5. Afterwards, Section 6 is the perfor-
mance evaluation of T-SAT. Finally, we conclude the paper in
Section 7.

Fig. 1. A schematic diagram of VNFR composition with time-varying
workload.
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2 RELATED WORK

NFV and the related VNF placement problem have attracted
plenty of attention of researchers. In [6], the structures of SFCs
are not known forward, and the authors proposed a model
for formalizing the SFCs, then they formulated the VNFmap-
ping problem as a Mixed Integer Quadratically Constraints
Program (MIQCP). A closed-loop with critical mapping feed-
back algorithm to jointly optimize the topology design and
mapping of multiple SFCs is presented in [7]. In [8], they
thought that the relationship between link and server usage
plays a crucial role in the joint VNF placement and path selec-
tion problem. Then the authors gave a mathematical program
analysis about it, and proposed a heuristic solution based on
that. In [9], the authors studied the VNFs placement in the
datacenter where optical technologies are employed, with the
goal of minimizing the expensive optical/electronic/optical
(O/E/O) conversion times for NFV chaining. Cohen et al. [11]
considered the actual placement of VNFs within the physical
network, and provided a near optimal solution with theoreti-
cally proven performance. In [24], Rankothge et al. optimized
the resource allocation for VNFs in cloud datacenter using
genetic algorithms. However, few of the existing works about
VNF placement problem pay attention to the multi-tenant
capable VNFs, despite the fact that the multi-tenant capable
VNFs can lead to a more efficient utilization of network
resources.

It is worth noting that the authors in [10] mentioned that
more VNFs mean more consumption of the computing
resources, but fewer VNFs result in more traffic loads. They
pointed out the confliction between the node resource con-
sumptions and bandwidth consumptions, but they did not
consider the overhead when instantiating VNFs. In [25],
when calculating the resource consumptions of one VM, the
authors considered the overhead of virtualization besides the
loads of tenants, which has some similarity with the BRCs we
consider. However, they did not pay attention to the conflic-
tion between the node resource consumptions and bandwidth
consumptions.

Although few works consider the time-varying workload
in VNF placement problem, we find that plenty of works
have been done on the VM consolidation problem consider-
ing time-varying workload.

In [16], the authors thought that the peaks and valleys in
one workload pattern do not necessarily coincide with the
others. Thus, the unused resources of a low utilized VM can
be borrowed by the other co-located VMs with high utiliza-
tion. They proposed a VM selection algorithm that seeks to
find those VM combinations with complementary workload
patterns based on Pearson’s correlation coefficient. Zhang
et al. [26] proposed to reserve some extra resources on each
PM to accommodate bursty workload. And they used the
two-state Markov chain to capture the burstiness of work-
load and developed a novel server consolidation algorithm.
Zheng et al. [27] proposed PowerNets to save the energy
consumption in datacenter based on the time-varying work-
loads. We have the similar view with the authors in [17]
that multiplexing VNFs with dynamic workload properly
will increase the utilization efficiency of network resources.
Besides, we have to consider the interactions between the
VNFs at the same time owing to the property of SFCs, which

results in the confliction between node resource consump-
tions and bandwidth consumptions.

Referring to previous works, we formulate the VNF
placement problem as an ILP model with the aim of mini-
mizing the number of used PMs while considering the time-
varying workloads and BRCs. Then we propose a two-stage
heuristic solution to solve it.

3 SYSTEM MODEL AND RELATED CONCEPTS

In this section, we introduce the system model and make a
further explanation for the concepts referred to before.

3.1 System Model

We represent the substrate network as an undirected graph
G ¼ ðNs;EsÞ, where Ns indicates the set of total nodes in
substrate network and Es indicates the link set of the sub-
strate network. Specifically, we use P to indicate the set of
total PMs and R to indicate the set of total access switches,
which handle the service accessing of SFCRs.

We assume that there are jGj SFCRs in total, and use a 4-
tuple ðingg ; egg ;Cg ; E

n
gÞ to indicate SFCR g, where ingg indi-

cates the ingress node of SFCR g, egg indicates the egress
node of SFCR g,Cg indicates the set of total VNFRs in SFCR
g and En

g indicates the set of logical links between the nodes
of SFCR g. Generally, the ingress node and egress node of
the same SFCR should be hosted on the same access switch.

3.2 Multi-Tenancy and BRCs

Multi-tenancy is a software architecture principle in the
realm of the Software as a Service (SaaS) business model
[14], which allows multiple tenants to share the same soft-
ware instance [28]. Compared with the single-tenant archi-
tecture, in which each tenant gets its own instance of
application, multi-tenancy can lead to higher resource utili-
zation, lower service price, and more efficient management
for the CSPs. So we assume that the VNFs are multi-tenant
capable in this paper. As a result of multi-tenancy, we just
need to place one instance of some specified VNF in a PM
[14]. But from the view of the whole network, there are mul-
tiple instances of one specified VNF.

BRCs are the resource consumptions for the basic function
maintaining of one software. Traditionally, a VNF is hosted
on one VM, and it needs independent guest OS and libraries
[29], so BRCs are the resource consumptions to maintain the
functioning of VM platform, guest OS and libraries that one
VNF needs. For amulti-tenant capable VNF, the resource con-
sumptions maintaining the shared application platform and
database can be seen as BRCs. And the VNFRs on the same
multi-tenant capable VNF can share the BRCs, even if they
belong to different SFCRs. Besides, we assume that BRCs of
one VNF are fixed and they have no relationship with the
processing capacity of that VNF.

3.3 Correlation Coefficients

We need to evaluate the correlation between the workloads
of different SFCRs or VNFRs, avoiding that SFCRs or
VNFRs whose workloads have high correlation are placed
together. By saying the two workloads have high correla-
tion, we mean that their peaks and valleys are coincide with
each other frequently. To evaluate the correlation, we
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should compare the workloads within a period. So every
workload variable within time interval T is corresponding
to a sequence of values. Mathematically speaking, workload
variables are vectors instead of constants.

Several coefficients are often used to evaluate the correla-
tion between two vectors, such as Pearson’s correlation
coefficient [16], [30], Minkowski Distance [31], and Cosine
correlation coefficient [17]. We apply the above three men-
tioned correlation coefficients to T-SAT respectively, and
find that the Cosine correlation coefficient can acquire the
best effect from plenty of experiments. So we choose it as
the final candidate to T-SAT.

The Cosine correlation coefficient is as follows:

cosXY ¼
Pn

i¼1 XiYiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 X

2
i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Y

2
i

p : (1)

The bigger the cosXY is, the more related vectors X and Y
are. In our paper, we need to gather the SFCRs or VNFRs
with complementary workload patterns together. Hence the
smaller the cosXY is, the more likely the two SFCRs or
VNFRs are mapped in the same PM.

4 PROBLEM STATEMENT

In this section, we give a description about the VNF place-
ment problem we consider through a simple case, and com-
plete the formulations about the problem.

4.1 Problem Description

Fig. 2 shows a non-trivial example about how to place VNFs
for two SFCRs in a 3-layer fat-tree topology. For the fat-tree
topology, the switches in the core layer (core switches) are
responsible for the service accessing. In the figure, VNFir
indicates different VNFR, corresponding to VNFi that indi-
cates different types of VNFs respectively, i 2 fa; b; c; d; eg;
SFCR 1 enters the datacenter from switch 1, and SFCR 2
from switch 4. We assume that VNFar1 is mapped on PM
21; VNFbr1 on PM 23; VNFcr1 on PM 25; VNFdr1 on PM 29;
VNFar2 on PM 36; VNFer2 on PM 33; VNFcr2 on PM 25;
VNFdr2 on PM 29; Then we need to place two instances of
VNFa on PM 21 and 36, respectively; an instance of VNFb

on PM 23; an instance of VNFc on PM 25; an instance of

VNFd on PM 29; an instance of VNFe on PM 33. And the
total BRCs are 6 shares. The flow path of SFCR 1 is
1! 5! 13! 21! 13! 6! 14! 23! 14! 5! 1! 7!
15! 25! 15 ! 7! 2! 9! 17! 29! 17! 9!1, which
is demonstrated in blue arrows. The flow path of SFCR 2 is
4! 12! 20! 36! 20! 11! 19! 33! 19! 11! 2!
7! 15! 25! 15! 7! 2! 9! 17! 29! 17! 10!4,
which is demonstrated in red arrows. If we change the map-
ping position of VNFar2 from PM 36 to PM 21, we do not
need to place the instance of VNFa on PM 36, so PM 36 is
free out and the total BRCs become 5 shares. However, the
flow path of SFCR 2 becomes 4! 6! 13! 21! 13! 5!
1! 11! 19! 33! 19! 11! 2! 7! 15 ! 25! 15!
7! 2! 9! 17! 29! 17! 10! 4. The number of links
that SFCR 2 passes through increases from 22 to 24, so the
bandwidth consumptions increase. If we change the map-
ping position of VNFcr2 from PM 25 to PM 29, we need to
instantiate another instance of VNFc on PM 29 and the
BRCs become 7 shares. However, the flow path of SFCR 2
becomes 4! 12! 20! 36! 20! 11! 19! 33! 19!
12! 3! 10! 17! 29 ! 17! 10!4. The number of
links that SFCR 2 passes through decreases from 22 to 16, so
the bandwidth consumptions decrease.

The above simple case shows a VNF placement process
and reveals the confliction between BRCs and bandwidth
consumptions. Generally speaking, we accomplish the map-
ping of the SFCRs or VNFRs first, and then based on the
mapping results, we determine the placement of the related
VNFs and allocate resources to them commensurate with
the workloads of VNFRs on them. It is worth noting that the
serving capacity of one VNF is determined by the VNFRs it
serves, which is a constant value once the placement of
VNFs is accomplished. Moreover, as stated before, the time-
varying workloads also have to be considered to improve
the utilization efficiency of the network resources.

The activating of one PM is usually associated with much
energy and capital cost, and fewer PMs mean fewer costs
and motivate the increasing of the network resource utiliza-
tion. So in this paper, our target is to minimize the number
of used PMs. Considering the constraints of the limited
resources, namely CPU, memory and bandwidth, we for-
mulate the VNF placement problem as an integer linear pro-
gramming model.

4.2 Problem Formulation

The notations used in the following equations are described
in Table 1.

First, we must ensure that one node in an SFCR is
mapped on one and only one node in the substrate network,
so for SFCR g

XjP j�1
u¼0

xg;nn
i
;nsu
¼ 1; ns

u 2 P; nn
i 2 Cg n fingg ; eggg; (2a)

XjRj�1
u¼0

xg;nn
i
;nsu ¼ 1; ns

u 2 R; nn
i 2 fingg ; eggg; (2b)

xg;ingg ;nsu ¼ xg;egg ;n
s
u
; ns

u 2 R; (2c)

where g 2 G. Eq. (2a) restricts that one VNFR can only be
mapped on one PM. Eqs. (2b) and (2c) restrict that ingg and

Fig. 2. A VNF placement instance with a 3-layer fat-tree topology.
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egg of SFCR g can only be mapped on the same access
switch.

Then we should ensure that the total resource consump-
tions by the VNFRs in one PM should not exceed the

resource capacity of that PM at each sampling time �tD,
where tD is the sample interval of the workload. So the con-
straint for CPU consumptions is

XjGj�1
g¼0

XjCg j�1

i¼0
cpug;nv

i
ð�tDÞ � xg;nn

i
;nsu

þ
XF�1
f¼0

brccpuf � zf;nsu � Ccpu
nsu

; ns
u 2 P;

(3)

where zf;nsu indicates whether an instance of VNF f is placed

on PM ns
u. In Eq. (3),

PF�1
f¼0 brccpuf � zf;nsu indicates the total

CPU BRCs in PM ns
u.

zf;nsu relies on xg;nn
i
;nsu and lg;nn

i
;f

zf;nsu ¼
1;

PjGj�1
g¼0

PjCg j�1
i¼0 xg;nn

i
;nsu � lg;nni ;f � 1;

0 otherwise;

(
(4)

where ns
u 2 P , and lg;nn

i
;f indicates whether VNFR nn

i in

SFCR g demands VNF f, if so, lg;nn
i
;f ¼ 1. So Eq. (4) indicates

that we need to place an instance of VNF f on PM ns
u for the

VNFRs that demand it.
Like Eq. (3) for CPU, we can formulate the memory con-

straints as

XjGj�1
g¼0

XjCg j�1

i¼0
memg;nn

i
ð�tDÞ � xg;nn

i
;nsu

þ
XF�1
f¼0

brcmem
f � zf;nsu � Cmem

nsu
;

(5)

where ns
u 2 P .

In fact, for a time period, the times of resource over-
utilization can be tolerated within certain range. Then we
define the following binaries:

Icpuð�tDÞ ¼
1; Eq: 3 is violated;

0 otherwise;

�
(6)

Imemð�tDÞ ¼ 1; Eq: 5 is violated;
0 otherwise;

�
(7)

where Icpuð�tDÞ and Imemð�tDÞ indicate whether the CPU
and memory constraints are violated at sampling time �tD,
respectively. Therefore, the CPU and memory constraints
within time interval T can be

XL�1
�¼0

Icpuð�tDÞ=L � ucpu; (8)

XL�1
�¼0

Imemð�tDÞ=L � umem; (9)

where ucpu and umem indicate the resource violation thresh-
old for CPU and memory, respectively. Eqs. (8) and (9) indi-
cate that the total resource violation times within time
interval T must not exceed a threshold. The relationship
between T , tD, and L is

tD ¼ T=L: (10)

Following the node constraints, we introduce the link con-
straints subsequently.

TABLE 1
Notations

Pramaters Descriptions

SFCR related

G set of total SFCRs, g 2 G is an SFCR.
ingg ingress node of SFCR g.
egg egress node of SFCR g.
Cg set of total VNFRs in SFCR g.
En

g set of logical links between the nodes
of SFCR g.

nn
i , n

n
j two nodes in one SFCR.

ðnn
i ; n

n
jÞ logical link between nn

i and nn
j , ðnn

i ; n
n
jÞ 2 En

g .

F types number of VNFs, f 2 f0; 1; . . . ;F� 1g
is an element.

Topology related

Ns set of total nodes in substrate network.
P set of total PMs.
R set of total access switches.
Es link set of the substrate network.
ns
u, n

s
v two nodes in the substrate network.

ðns
u; n

s
vÞ substrate link between ns

u and ns
v.

Sampling related

T time window length of the workload
we consider.

tD sample interval of the workload.
L sample times to the workload in time

window T . � indicates the sequence
number of the sampling,
� 2 f0; 1; . . . ;L� 1g.

Resource related

cpug;nn
i
ð�tDÞ CPU consumption by VNFR nn

i in SFCR
g at time �tD.

memg;nn
i
ð�tDÞ memory consumption by VNFR nn

i in
SFCR g at time �tD.

bg;nn
i
;nn

j
ð�tDÞ bandwidth consumption by logical link

(nn
i n

n
j ) in SFCR g at time �tD.

brccpuf BRCs of CPU when placing an instance
of VNF f, f 2 F.

brcmem
f BRCs of memory when placing an

instance of VNF f, f 2 F.
Ccpu

nsu
CPU capacity of PM ns

u.

Cmem
nsu

memory capacity of PM ns
u.

Clink
ðnsu;nsvÞ link capacity of substrate link ðns

u; n
s
vÞ.

ucpu; umem; ulink resource violation threshold for CPU,
memory, and link within time interval T ,
respectively.

Binary variables

xg;nn
i
;nsu

whether nn
i in SFCR g is hosted on

substrate node ns
u, n

s
u 2 P [R.

lg;nn
i
;f whether VNFR nn

i in SFCR g demands
VNF f.

yg;nn
i
;nn

j
;nsu;n

s
v

whether the logical link ðnn
i ; n

n
jÞ in SFCR

g is mapped on substrate link ðns
u; n

s
vÞ.

zf;nsu whether an instance of VNF f is placed
on PM ns

u, n
s
u 2 P .

hnsu
whether PM ns

u is activated, n
s
u 2 P .
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First, the link variable is

yg;nn
i
;nn

j
;nsu;n

s
v
¼ 1; condition is satisfied;

0 otherwise;

�
(11)

where the condition in Eq. (11) is that logical link ðnn
i ; n

n
jÞ in

SFCR g is mapped on substrate link ðns
u; n

s
vÞ, ðns

u; n
s
vÞ 2 Es.

In general, each logical link is corresponding to a path in
the substrate network. However, in the VNF placement
problem, two different nodes in one SFCR can be mapped
on the same substrate node, and then the corresponding
logical link is limited in one PM.

Similar to the constraints about node resources, we have
the following link resource constraint at sampling time �tD

XjGj�1
g¼0

X
ðnn

i
;nn

j
Þ2En

g

bg;nn
i
;nn

j
ð�tDÞ � yg;nn

i
;nn

j
;nsu;n

s
v
� Clink

ðnsu;nsvÞ; (12)

where ðns
u; n

s
vÞ 2 Es and g 2 G.

The link resource constraint within time interval T is

Ilinkð�tDÞ ¼
1; Eq: 12 is violated;

0 otherwise;

�
(13)

XL�1
�¼0

Ilinkð�tDÞ=L � ulink; (14)

where ulink indicates the resource violation threshold for link
resources within time interval T .

For the flow of SFCR g, the following constraints must be
satisfied

XNs

nsv

yg;nn
i
;nn
j
;nsu;n

s
v
� 1; (15a)

XNs

nsv

yg;nn
i
;nn
j
;nsv;n

s
u
� 1; (15b)

XNs

nsv

yg;nn
i
;nn

j
;nsu;n

s
v
�
XNs

nsv

yg;nn
i
;nn

j
;nsv;n

s
u

¼ xg;nn
i
;nsu � xg;nn

j
;nsu ;

(15c)

where ðns
v; n

s
uÞ 2 Es; ðnn

i ; n
n
jÞ 2 En

g ; g 2 G.
Eq. (15a) indicates whether logical link ðnn

i ; n
n
jÞ in SFCR g

is mapped on one of the substrate links that leave out node

ns
u, if so,

PNs

nsv
yg;nn

i
;nn

j
;nsu;n

s
v

equals 1. Eq. (15b) indicates

whether the same logical link is mapped on one of the

substrate links that go in node ns
u, if so,

PNs

nsv
yg;nn

i
;nn

j
;nsv;n

s
u

equals 1. The two equations also ensure that one logical link

cannot be split. Eq. (15c) ensures that the path in the sub-
strate network is consecutive for a flow.

Finally, we use hnsu
to indicate whether PM ns

u is acti-
vated, ns

u 2 P . hnsu
relies on xg;nv

i
;nsu

hnsu
¼ 1;

PjGj�1
g¼0

PjCg j�1
i¼0 xg;nv

i
;nsu
� 1; ns

u 2 P;

0 otherwise;

(
(16)

Eq. (16) indicates that even if only one VNFR is mapped on
the PM, the PM has also to be activated. The total number of

activated PMs is

Ht ¼
XjP j�1
u¼0

hnsu
: (17)

Our target is to minimize the number of activated PMs

min Ht;

s:t: Eq: 2 to Eq: 17:
(18)

The VNF placement problem is formulated as an integer lin-
ear programming model, which is NP-hard. For the ILP, we
can derive the optimal results by existing optimization solv-
ers, like Gurobi [22], when the problem scale is small. How-
ever, it is infeasible to get the optimal results in foreseeable
time when the problem scale is large. So we design a Two-
StAge heurisTic solution to solve the ILP in polynomial time.

5 PROPOSED ALGORITHM

In this section, we present the two-stage heuristic solution,
T-SAT. A general idea about T-SAT is presented first in
Section 5.1, then the details about the algorithms are demon-
strated in Sections 5.2 and 5.3.

5.1 Framework of T-SAT

T-SAT consists of a correlation-based greedy algorithm for
mapping SFCRs to PMs and a further adjustment process to
reduce BRCs by gathering the VNFRs that demand the
same type of VNF together.

We map all the SFCRs one by one to the PMs using the
correlation-based greedy algorithm at the first stage. During
the process, one SFCR is mapped on one PM as a whole
unless the total resources demanded by the SFCR cannot be
satisfied by the PM. For those SFCRs that cannot be mapped
onto one PM as a whole, we split each of them into several
VNFRs and map these VNFRs one by one to the PMs.

If we place VNFs based on the above results, BRCs will
occupy a big share of the resources in the PMs. Because each
PMhas to instantiate almost all kinds of VNFs in it and differ-
ent VNF instances cannot share BRCs. On the contrary, the
interacting traffic between PMs is the least in above situation.

We can reduce BRCs by reducing the number of redupli-
cated VNF instances. So we gather the VNFRs demanding
the same type of VNF together into a smaller group of PMs
in the second stage, based on above SFCRs mapping results.
Then we can instantiate fewer VNFs, and BRCs are reduced.
Subsequently, the total resource consumptions in PMs are
fewer, and the number of used PMs decreases. However,
the above processes may increase the interacting traffic
between the PMs. So we must ensure that the link capacity
constraints are not violated during the adjustment process.

5.2 Correlation-Based Greedy Algorithm

Algorithm 1 is the framework of the correlation-based
greedy algorithm. First, we establish the correlation coeffi-
cient matrix � about all SFCRs. � is a jGj � jGj square sym-
metric matrix. mi;j is one of its elements, which indicates the
correlation coefficient between the workloads of SFCR i and
SFCR j. Theworkload of one SFCR is the linear accumulation
of all VNFRs’ workloads in it. We set mi;j as an infinity value
when i ¼ j. Otherwise,mi;j is calculated by Eq. (20).
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Algorithm 1. Correlation-Based Greedy Algorithm

1: Input: The set of all the SFCRs: G;
The initial status of datacenter: S0;

2: Output:Number of used PMs: P0;
Status of datacenter: S1;

3: Establish the correlation coefficient matrix � about all
SFCRs.

4: while G is not empty do
5: Start a new PM, P0 ¼ P0 þ 1.
6: Pick out the pair of SFCRs in �whose workloads have

the minimal correlation coefficient.
7: Select the SFCR that consumes more resources as the

chosen SFCR.
8: Make a copy of current G as Gc.
9: while Gc is not empty do
10: if PM can hold the chosen SFCR then
11: Put the chosen SFCR into the PM.
12: Remove the chosen SFCR from G and Gc.
13: if Gc is not empty then
14: Take the SFCRs in the PM as a whole,

indicated as �.
15: Calculate the workload correlation

coefficients between � and each of the
rest SFCRs.

16: Pick out the SFCR whose workload has the
minimal correlation with the workload of � to
be mapped nextly.

17: else
18: break.
19: end
20: else
21: Decompose the chosen SFCR into VNFRs

and try to map them into PMs that
have VNFRs in themselves based on first-fit.

22: if the above process is successful then
23: Remove the chosen SFCR from Gc and G.
24: else
25: Remove the chosen SFCR from Gc.
26: end
27: if Gc is not empty then
28: Pick out the SFCR that has the minimal

workload correlation coefficient with �
to be mapped nextly.

29: else
30: break.
31: end
32: end
33: end
34: end
35: return P0, S1.

As stated before, we consider the constraints of three
types of resources, namely CPU, memory and bandwidth.
So there are three vectors for each SFCR mathematically,
and the mathematic description for the workload of SFCR i
can be formulated as

Mi ¼
cpu0i cpu1i . . . cpuL�1i

mem0
i mem1

i . . . memL�1
i

band0i band1i . . . bandL�1i

0
@

1
A; (19)

where L is the sample times we apply to the workload.

For Eq. (19), the three rows ofMi indicate the vector vari-
ables of CPU, memory and bandwidth respectively. The
correlation coefficient mi;j between SFCR i and SFCR j can
be calculated as

mi;j ¼ fðM0
i ;M0

j Þ þ fðM1
i ;M1

j Þ þ fðM2
i ;M2

j Þ; (20)

where f is the function referred to in Section 3.3 to calculate
the correlation coefficient of two vectors.

After establishing the correlation coefficient matrix, we
pick out the pair of SFCRs, the workloads of which have the
minimal correlation coefficient. Then the SFCR in the pair
that consumes more resources is selected and mapped in
the PM. At line 8 in Algorithm 1, we make a copy of current
SFCR set G, indicated as Gc, aiming to traverse all the rest
SFCRs and check out whether the chosen SFCR can be
mapped in the current PM (lines 9-33 in Algorithm 1).

If the chosen SFCR can be hosted in current PM as a
whole, we put it in the PM and remove it from both G and
Gc (lines 11-12 in Algorithm 1). After that, we choose the
next SFCR to be mapped (lines 14-16 in Algorithm 1). First,
the SFCRs already in the PM are taken as a whole, indicated
as �. Then we calculate the correlation coefficient between
the workload of � and the workload of each SFCR in Gc. At
last, the SFCR in Gc whose workload has the minimal corre-
lation with the workload of � is chosen to be mapped nextly.

If the chosen SFC cannot be hosted in current PM as a
whole, we decompose the SFCR into several individual
VNFRs and try to map these VNFRs in PMs that already
have VNFRs in based on first-fit algorithm (lines 21-26 in
Algorithm 1). If these VNFRs cannot be mapped totally, it
indicates that the chosen SFCR needs an empty PM to be
mapped. So we keep it in G to be mapped in future and only
remove it from Gc. Then if Gc is not empty, the SFCR in Gc

whose workload has the minimal correlation with the work-
load of � is chosen to be mapped nextly.

The above processes are repeated until Gc is empty. After
the breaking of the inner while loop (lines 9-33 in Algo-
rithm 1), we need to check if G is empty. If G is empty, it
means that all the SFCRs are mapped on the PMs.

Based on the above SFCR mapping results, each used PM
contains almost all kinds of VNFRs. If we place the related
VNF instances based on that, each of PMs has to instantiate
almost all types of VNFs, which will results in a great vol-
ume of BRCs. However, there is little interacting traffic
between the PMs in this situation, so the utilization of band-
width resource is low relatively. Then the next step is to
reduce BRCs with the increasing of the bandwidth utiliza-
tion, trying to reduce the number of used PMs further.

5.3 Two-Stage Adjustment Algorithm

In the second stage, we design an adjustment algorithm to
reduce BRCs. The adjustment algorithm is divided into two
parts. The first step tries to gather the VNFRs demanding
the same type of VNF together into a smaller number of
PMs intra the same cluster, where a cluster is a collection of
PMs that are close to each other. By gathering the VNFRs
demanding the same type of VNF together, we can reduce
the number of reduplicated VNF instances, and then reduce
the volume of BRCs. After the adjustment in each cluster,
we sort all the PMs in ascending order based on the average
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resource utilization of each PM, and design an algorithm
moving out the VNFRs from the PMs of low resource utili-
zation to the PMs of high resource utilization. If all the
VNFRs are moved out from one PM, the PM is released.

5.3.1 Intra Cluster Adjustment

The first step is to gather together the VNFRs demanding the
same type VNF intra each cluster. To state our algorithm
more briefly, we treat all those VNFRs in the same PM that
demand the same type of VNF as a whole, indicated as
VNFRw. Whenwemigrate a VNFRw from one PM to another,
we mean that all the corresponding VNFRs demanding the
same type VNF aremigrated.

Algorithm 2 gives the adjustment process intra each of the
clusters. First, we calculate the traffic going through each
VNFRw (line 3 in Algorithm 2), which is indicated as VNFRt

w.
VNFRt

w is the accumulation of the traffic flowing in and out
of all VNFRs belonging to the corresponding VNFRw. After
the calculation of all the VNFRt

ws, we pick out the VNFRw

that has the minimal VNFRt
w in each of the PMs (line 10 in

Algorithm 2) and store them in a list, which is indicated as D.
Nextly, the target PMs are chosen for each of these VNFRws
(line 11 in Algorithm 2), and these VNFRws are moved to the
target PMs, respectively.

Algorithm 2. Intra Cluster Adjustment Algorithm

1: Input:Number of used PMs: P0,
Status of datacenter: S1;

2: Output:Number of used PMs: P1,
Status of datacenter: S2;

3: Calculate the traffic going through each VNFRw in each PM,
indicated as VNFRt

w.
4: Calculate the number of used clusters Nc.
5: i ¼ 0.
6: while i < Nc do
7: Store the PMs in cluster zi to a list LPM.
8: Backup the status of datacenter.
9: while LPM is not empty do
10: Find the VNFRw that has the minimal VNFRt

w in each
of the PMs belonging to cluster zi, indicated as
D ¼ fD0;D1 . . .Dh�1g, h is the size of the cluster.

11: Choose the target PM for each VNFRw in D. 
Function 1

12: Migrate each VNFRw in D to the target PM.
13: if eliminate_exceed() is true then
14: Check all the PMs in the cluster zi, remove the

unqualified PM from LPM.
15: else
16: Restore the status of datacenter.
17: Break.
18: end
19: end
20: i ¼ iþ 1.
21: end
22: return P1, S2.

The details about how to find the target PM for each
VNFRw in D are shown in Function 1. For a VNFRw in D,
which is indicated as Dj, the target PMmust have the VNFRw

that demands the same type of VNF with Dj. Then we take
two factors into consideration, which are the VNFRt

w of the

VNFRw in the target PM (line 9 in Function 1) and the correla-
tion between the workload of Dj and the workload of the
total VNFRs already in the target PM (line 7 and 13-14 in
Function 1). We quantify the above two considerations as a
series of weighted factors, v (line 18 in Function 1), and v is
the weighted difference between normalized VNFRt

w and
normalized correlation coefficient. Finally, the PM with the
biggestv is chosen as the target PM forDj. In this way, on the
one hand, we avoid the moving of the VNFRw with larger
VNFRt

w, incurring as less interacting traffic between PMs as
possible. On the other hand, it leads to higher utilization of
the resources in PMs, owing to the less correlation between
the workload of Dj and the workload of the total VNFRs
already in the target PM. a and b are the adjustment factors
in the calculation of v.

Function 1. Choose the Target PM

1: Input: Status of datacenter: S2, D;
2: Output: The target PMs list: Lt;
3: j ¼ 0.
4: while j < h do
5: for each PM in cluster zi do
6: if Dj in the PM then
7: Calculate the resource demand matrixMj for Dj.
8: else if the PM has the same kind VNFRw with Dj then
9: Record VNFRt

w of VNFRw in the PM as t�, and
store it in T�.

10:
11: end
12: for each PM in cluster zi that has the same kind VNFRw with

Dj do
13: Establish the resource demand matrix for the VNFRs

already in the PM, indicated asMu.
14: Calculate the correlation coefficient betweenMj and

Mu as m�, then store it in ��.
15: end
16: Normalize all the values in T� and ��.
17: for each pair of values for one PM in T� and �� do
18: Calculate the weighted factor v,

v ¼ a� t� � b� m�:

19: end
20: Pick out the PM that has the biggest v into Lt.
21: j ¼ jþ 1.
22: end
23: return Lt.

By gathering the VNFRws demanding the same type of
VNF together, some PMs do not need to place the corre-
sponding VNF instances. Therefore BRCs in these PMs
are saved. However, the above processes may cause
resource over-utilization on some PMs. So function elimi-
nate_exceed() (line 13 in Algorithm 2) is designed to elim-
inate the resource over-utilization. The main idea of
eliminate_exceed() is to migrate part of the VNFRs from
the PM with resource over-utilization to other PMs that
have free resources. Only if there is no resource over-
utilization in all PMs belonging to the current cluster,
eliminate_exceed() returns True. If not, we abandon all
the above processes, and restore the status of the datacen-
ter (line 16 in Algorithm 2), then start to deal with next
cluster (lines 17 and 20 in Algorithm 2).
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For line 14 in Algorithm 2, the PM is unqualified if one of
the following conditions is satisfied:

(1) Condition 1: The average residual bandwidth of the
link that connects the PM directly is less than half of
the original value, where the original value is the
residual bandwidth after the first stage.

(2) Condition 2: All the VNFRs in the PM are moved out.
Condition 1 is to ensure that there is still bandwidth left to

execute the second adjustment process. Condition 2 is to free
out the empty PM from the adjustment process.

After implementing Algorithm 2, almost each PM has
some free CPU and memory resources. The next step is to
gather these free resources together to empty more PMs.

5.3.2 Inter Clusters Adjustment

Algorithm 3 along with Procedures 1 and 2 describes the
second adjustment process in detail. First the used PMs are
sorted based on their average resource utilization in ascend-
ing order, then we try to move all VNFRs one by one from
the PMs of low resource utilization to the PMs of high
resource utilization.

Algorithm 3. Inter Clusters Adjustment Algorithm

1: Input:Number of used PMs: P1,
Status of datacenter: S2;

2: Output:Number of used PMs: P2,
Status of datacenter: S3;

3: Calculate the average resource utilization of all used PMs.
4: Put all used PMs into a list Pl, and sort them in ascending

order based on the average resource utilization.
5: Set two pointers, rb and re. rb points to the source PM, indi-

cated as PMs, at the beginning of Pl. re points to the desti-
nation PM, indicated as PMd, at the end of Pl, and a shift
value d, d ¼ 0 initially.

6: while 1 do
7: Backup the current status of datacenter.
8: while rb < re do
9: for each VNFR in PMs do
10: if PMd can hold the VNFR then
11: Migrate the VNFR to PMd.
12: Modify the status of datacenter.
13: end
14: end
15: if PMs is empty then
16: P1 ¼ P1 � 1.
17: break.
18: else
19: re ¼ re � 1.
20: end
21: end
22: if rb ¼ re then
23: Procedure 1.
24: else if rb < re then
25: Procedure 2.
26:
27: end
28: P2 ¼ P1.
29: return P2, S3.

In order to realize themigration efficiently, we put all used
PMs in a list Pl, then we set two pointers rb and re in the

beginning and end position respectively, and the correspond-
ing PMs are called source PM, PMs and destination PM, PMd

(line 5 in Algorithm 3). After that, we move the VNFRs from
PMs to PMt (line 6-27 in Algorithm 3). If all VNFRs in PMs are
moved out, PMs is empty and the number of used PMs
decreases (line 16 in Algorithm 3). If not, we decrease re (line
19 in Algorithm 3), choosing a new PM as PMd for the VNFRs
in PMs. Lines 22-25 are used to check the causes that break the
innerwhile loop (lines 8-21 inAlgorithm 3).

Procedure 1.Modify rb and re when rb ¼ re

1: Restore the precious status of datacenter.
2: d ¼ dþ 1.
3: Set re to the end of Pl.
4: if rb þ d � re then
5: break.
6: else
7: Exchange the PM corresponding to rb þ d and rb.
8: end

Procedure 2.Modify rb and re when rb < re

1: rb ¼ rb þ 1.
2: Set re to the end of Pl.
3: if rb ¼ re then
4: break.
5: else
6: continue.
7: end

If rb ¼ re, it implies that all PMswhose resource utilization
are higher than that of PMs have been traversed, and the
VNFRs in PMs cannot be emptied. So we need to restore the
previous status of the datacenter to the beginning of this
round adjustment (line 1 in Procedure 1). Then we increase
the shift value d in order to choose the next PMs (line 2 in Pro-
cedure 1), and roll back re to the end of Pl (line 3 in Proce-
dure 1). If rb þ d � re (line 4 in Procedure 1), it means that
each of the used PMs has been treated as PMs once, and we
should stop the adjustment process (line 5 in Procedure 1).
Otherwise, we exchange the PMs corresponding to rb þ d and
rb, making the PM corresponding to rb þ d as the newPMs.

If rb < re, it implies that PMs is emptied. In this occa-
sion, we need to choose the next PM in list Pl as the new
PMs (lines 1 in Procedure 2). If rb ¼ re (line 3 in Procedure 2)
after the increasing of rb, it means that each of the used PMs
has been treated as PMs once, and we need to stop the
adjustment process.

When T-SAT is completed, the mapping of all VNFRs is
determined. Then we can place corresponding VNFs and
allocate the resources to each VNF according to the
demands of VNFRs on it.

5.4 Complexity Analysis

We give a detailed time complexity analysis about T-SAT in
this part.

For Algorithm 1, the complexity mainly focuses on the
two while loops in lines 4-34 and lines 9-33 respectively. For
the inner while loop (lines 9-33 in Algorithm 1), the time
complexity is
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jGcj þ ðjGcj � 1Þ þ � � � þ 1 ¼ jGcjðjGcj þ 1Þ=2: (21)

We assume that each PM can hold ’ SFCRs in average and
jGj=’ is an integer for the sake of deriving the formulations
clearly. Then for the outer while loop (lines 4-34 in Algo-
rithm 1), it runs jGj=’ times, and the total time complexity
of Algorithm 1 is

jGjðjGj þ 1Þ=2þ ðjGj � ’ÞððjGj � ’Þ þ 1Þ=2þ � � � þ
’ð’þ 1Þ=2 ¼ ðjGj þ ’Þð2jGj2 þ ’jGj þ 3jGjÞ=ð12’Þ: (22)

It can be seen that the time complexity of Algorithm 1 is at
the level ofOðjGj3=’Þ.

For Algorithms 2 and 3, we first introduce two variables,
Nc and h, which are the number of the clusters containing
used PMs and the number of PMs in one cluster respec-
tively. So there are Nc � h used PMs in total at most. The
time complexity of the while loop (lines 9-19 in Algorithm 2)
mainly results from the process of line 10 and line 11 in it.
Each PM contains F kinds of VNFRs at most, so the time
complexity of line 10 in Algorithm 2 is h �F at most. The
time complexity of line 11 in Algorithm 2 (Function 1) is 5h.
So the time complexity of the while loop (lines 9-19 in Algo-
rithm 2) is hðhFþ 5hÞ, and the time complexity of Algo-
rithm 2 isNchðhFþ 5hÞ, which is at the level ofOðNch

2Þ.
Knowing the total number of VNFRs, which isPjGj�1
g¼0 jCg j, and the total used PMs after the first stage,

which is Nc � h. Then in each PM, there are aboutPjGj�1
g¼0 jCg j=ðNchÞ VNFRs in average. So for Algorithm 3,

the iteration times of the inner while (lines 8-21 in Algo-

rithm 3) is
PjGj�1

g¼0 jCg j=ðNchÞ � ðNchÞ ¼
PjGj�1

g¼0 jCg j. We need
to traverse all the used PMs to see if it can be emptied. So
the above inner while loop runs Nch times, then the time

complexity upper bound of Algorithm 3 is Nch
PjGj�1

g¼0 jCg j.
Considering jGj=’ ¼ Nch, the time complexity of Algo-

rithm 3 is at the level ofOðPjGj�1g¼0 jCg jjGj=’Þ.
In general, the total complexity of correlation-based T-

SAT solution is OðjGj3=’þNch
2 þPjGj�1g¼0 jCg jjGj=’Þ. We

should notice that h is constant when the datacenter topol-
ogy is determined, Nc is also limited by the size of datacen-

ter and
PjGj�1

g¼0 jCg j < jGj2. So we can see that the time
complexity of T-SAT is at the level ofOðjGj3=’Þ.

6 PERFORMANCE EVALUATION

In this section, we evaluate T-SAT in detail and compare it
with the modified FFD (FFD_w), PowerNets [27] and Algo-
rithm H (AH) [9]. In FFD_w, we sort all the VNFRs in
descending order based on their average resource demand
first, and then the VNFRs are mapped on the PMs one by
one based on first-fit (FF) algorithm. For each group of
results, we use the average of the results from 10 groups of
experiments to reduce the accidental errors.

6.1 Simulation Results with Gaussian Data

6.1.1 Simulation Settings

In evaluation, we use a 3-layer fat-tree of Clos topology [32],
where the size of the topology is determined by the number
of ports in the switches. For a k-ary Clos topology, there are

ðk=2Þ2 k-port core switches; k pods, each of which contain-
ing two layers of k=2 switches; and k3=4 hosts. We set
k ¼ 16 in the simulation. Each PM has 100 units CPU
resources, 100 units memory resources, and the link capac-
ity is a variable. Both a and b are set to be 0.5 in Function 1.
ucpu; umem and ulink are all set to be 0.

6.1.2 Workload of SFCRs

The workload of one SFCR is the linear accumulation of all
VNFRs’ workloads in it. For one VNFR, its CPU, memory
and bandwidth workload are all generated according

Gxðt; sÞ ¼
Xk�1
i¼0

Aiffiffiffiffiffiffi
2p
p

si

exp �ðx� tiÞ2
2s2

i

 !
: (23)

Eq. (23) is the accumulation of k Gaussian functions. Aiffiffiffiffi
2p
p

si

indicates the amplitude of ith Gaussian function. Because

every Gaussian function has only one peak, the value of

which equals the amplitude, and k tis are different from

each other, so k also indicates the number of peak values of

one workload. In the simulation, we have 50 percent Ele-

phant VNFRs whose CPU Ai, memory Ai and bandwidth
Ai are all randomized values obeying uniform distribution

from 2 to 3 units and 50 percent Mice VNFRs whose CPU

Ai, memory Ai and bandwidth Ai are all randomized values

obeying uniform distribution from 0.2 to 0.3 units. For both

the Elephant and Mice VNFRs, the sis are randomized val-

ues obeying uniform distribution from 0.35 to 0.4. For one

SFCR, the VNFRs in it belong to only one type, either Ele-

phant VNFR or Mice VNFR.
We assume that the time interval T is a day. As we know,

ti determines the position of the peak value of one Gaussian
function, so we separate the SFCRs into three types accord-
ing to different tis:

� Day SFCR (d-SFCR): The peak loads of this kind of
SFCR mainly show up at daytime. We apply the 24-
hour clock, so tis are chosen from time points
[8,9,10,11,14,15,16,17,20].

� Night SFCR (n-SFCR): The peak loads mainly show
up at night. And tis are chosen from time points
[0,1,2,3,4,5,22,23].

� Randomized Time SFCR (r-SFCR): The peak loads
show up randomly at the whole day. It occupies a
share of the total SFCRs, and the rest are separated
evenly between the d-SFCR and the n-SFCR.

Fig. 3 shows the Gaussian workloads of three types of
SFCRs, in which the numbers with the underline are the
indexes of different kinds of VNFRs, which vary from 0 to
19, so F ¼ 20 in the simulation. SFCRs need not to have the
same number or same kinds of VNFRs in our simulations.
In fact, the number of VNFRs in each SFCR is a random var-
iable varying from 1 to 20. In addition, in Fig. 3, in band is
the traffic that flows in one VNFR, while out band is the traf-
fic that flows out of one VNFR. Generally, out band is differ-
ent from in band after the processing of one VNF. Because
Gxðt; sÞ is a continuous function, we apply the uniform
sampling to the workload to get the workload vectors. In
the simulation, we sample the workload every other 0.1
from 0 to 24.
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6.1.3 Results with Gaussian Data

a) Performance Comparisons with Different BRCs. We expose
the influence of BRCs on the performance of T-SAT in this
part. To demonstrate the relationship more briefly and
clearly, we set values of c-BRCs and m-BRCs as the same.
Fig. 4a shows the results. Error bars represent the 95 percent
confidence intervals, so are they in the following results.

From the figure, we can see that with the increasing of
BRCs, T-SAT always performs better than the benchmarks.
It is because we combine the VNFRs that demand the
same type of VNF together, and then fewer VNF instances
are placed, so BRCs are fewer. Moreover, the bigger the vol-
ume of BRCs is, the better T-SAT performs. The fewer PMs,
the less power consumption and operation cost consequently.

b) Performance Comparisons with Different Link Capacity.
Another factor that may influence the performance of our
solution is the link capacity. So in this part, we take the link
capacity as the variable and compare the performance of
different solutions.

From Fig. 4b, we can see that with the increasing of link
capacity, the number of used PMs decreases. Because more
bandwidth resources lead to more adequate adjustment of
T-SAT, then the used PMs are fewer. Moreover, T-SAT per-
forms much better than the benchmarks when the band-
width resource is scarce. Because T-SAT is inclined to put
the whole SFCR in one PM, and then there is less interacting
traffic between the PMs. Subsequently, there are fewer link
bottlenecks in the network, and the resources of PM can be
utilized more adequately. Besides, T-SAT considers the cor-
relation between the workloads of different SFCRs, which
leads to a higher utilization of PMs’ resources.

c) Performance Comparisons with Different Number of
SFCRs. In this part, we evaluate the performance of different
solutions via the varying number of SFCRs. As Fig. 4c
shows, the number of used PMs increases with more SFCRs.

Meanwhile, T-SAT results in the least PMs. This phenome-
non indicates that T-SAT has a consistent advantage over
the benchmarks with the increasing of SFCRs.

d) Performance Comparisons with Different Ratio of r-SFCR.
In this part, we treat the ratio of r-SFCR as the variable and
compare the performance of different solutions. From
Fig. 4d, we can see that the more r-SFCRs, the more used
PMs resulting from the solutions except for FFD_w. Mean-
while, T-SAT still performs the best.

For the performance declining of T-SAT, it is because the
more r-SFCR, the fewer SFCRs whose workloads are com-
plementary, and then the resource consumptions are more.
As for the performance of FFD_w, it is because FFD_w does
not consider the workload correlation between different
VNFRs, so it is more likely to put VNFRs whose workloads
are less related together when the share of r-SFCR increases,
which increases the utilization of the PMs resources. As a
result, the number of used PMs decreases with the increas-
ing of r-SFCR ratio for FFD_w.

e) T-SAT versus Optimal Results. We reveal the gap
between the performance of T-SAT and the optimal results
in this part. With the help of Gurobi [22], the optimal results
are derived when the number of SFCRs is small. In the sim-
ulation of this part, each SFCR contains 10 VNFRs in aver-
age. From Fig. 5, we can see that T-SAT can acquire near
effect compared with the optimal results derived by Gurobi
when the number of SFCRs is small.

f) The Utilization of Network Resources. Fig. 6 shows the
CDF curves of resource utilization resulting from different
solutions. The CDF of resource utilization is calculated
using

CDF ð%0Þ ¼ Nð% � %0Þ
Rt

; (24)

Fig. 3. Gaussian workload of different kinds of SFCRs.

Fig. 4. Performance comparison of different algorithms with Gaussian data.
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where Rt is the number of total used PMs or links, and
Nð% � %0Þ indicates the number of PMs or links whose
resource utilization % are below the threshold %0.

Figs. 6a and 6b show the CDF curves of CPU and mem-
ory utilization with BRCs. We can see that the CPU and
memory utilization of 80 percent PMs exceeds 70 percent by
applying T-SAT, Powernets, and AH, which is very high.
The high utilization owes to the consideration of time-
varying feature of the workloads. Fig. 6c is the CDF of band-
width utilization. We can see that the bandwidth utilization
is also very high, and the utilization of about 80 percent
PMs exceeds 50 percent.

Figs. 6d and 6e are the CDF curves of CPU and memory
utilization without accounting for the occupation of BRCs.
Excluding BRCs, the resource consumptions are only caused
by users’ demands. Thus for the same set of SFCRs, the
higher resource utilization in the PMs, the fewer PMs will be
used. From the figures, we can see that T-SAT has the highest
resource utilization excluding BRCs, which strengthens its
performance advantages over the benchmarks.

6.2 Simulation Results with Google Data

6.2.1 Simulation Settings

In this section, we evaluate T-SAT with the data derived
from Google Cluster Trace [23]. Google cluster trace records
the resource utilization of the machines in Google’s datacen-
ters in the form of jobs. A job is comprised of one or more
tasks, each of which is accompanied by a set of resource
requirements used for scheduling (packing) the tasks onto

machines. The relationship between job and tasks is very
similar to the relationship between SFCR and VNFRs. So we
use jobs in the Google cluster trace to simulate the SFCRs
and use tasks in the jobs to simulate the VNFRs in the
SFCRs. Table 2 shows the distribution of jobs derived from
part of the data set based on the task number in them. We
choose the jobs whose task numbers are between 2 and 20
as our simulation data, so the number of total jobs is 1171.

However, the trace only provides the normalized
resource consumptions of CPU and memory, so we use
Eq. (25) to ca lculate the normalized resource consumptions
of bandwidth

Ulink ¼ 0:5 � Ucpu þ 0:5 � Umem: (25)

We use the same topology as that in the Gaussian data part.
Because the CPU and memory consumptions are normal-
ized in Google cluster trace, we set both the capacity of CPU
and memory resource to 1 unit. As for the link capacity, we
treat it as a variable.

6.2.2 Results with Google Data

Fig. 7 shows the results with Google cluster trace data. From
the figures, we can draw the consistent conclusions with the
Gaussian data. However, we find that the advantages of T-
SAT are not so noticeable. This phenomenon exposes one of
the shortcomings of correlation-based algorithms, which is
sensitive to the data set. When the workloads of different
SFCRs or VNFRs have less correlation with each other, the
correlation-based algorithms usually can achieve a better
performance. However, if the workloads always coincide
with each other, the correlation based algorithms do not
exhibit their advantages significantly.

Fig. 8 shows the utilization of CPU, memory and band-
width with Google data. From the figure, we can see that
both average utilization of CPU and bandwidth are about
50 percent. But for the memory utilization, it is so high that

Fig. 5. Performance of different algorithms versus optimal results.

Fig. 6. CDF of network resource utilization with Gaussian data.

TABLE 2
Jobs Distribution Based on Task Number

Task Number
in a Job

The Corresponding
Number of Jobs

1 2,322
2 369
3 230
4 72
5 138
5 to 10 236
10 to 20 126
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about 80 percent PMs exceed 90 percent, from which we can
infer that the Google trace data we apply in the simulations
has a preference for memory resource.

7 CONCLUSION

We address the VNF placement problem in cloud datacen-
ter with a set of known SFCRs. In order to optimize the uti-
lization of network resources, the time-varying workloads
and BRCs are taken into consideration. Besides, we reveal
the confliction between BRCs and the interacting traffic
between the PMs. Then we formulate the problem as an
ILP model, aiming to minimize the number of used PMs,
and propose a two-stage heuristic algorithm, T-SAT. To
evaluate the performance of our solution, we make an
analysis in detail through simulations with artificial data
we compose with Gaussian functions and Google trace
data. In the simulations, we compare T-SAT with the
benchmarks in existing. The simulation results show that
T-SAT can improve the utilization of network resources
significantly and acquire a smaller number of used PMs
than the benchmarks. Moreover, the performance of T-
SAT is very near to the optimal results. Meanwhile, we
reveal one shortcoming of the correlation based solutions,
which is sensitive to the data set.

In fact, the considerations of time-varying workloads and
BRCs not only apply to VNF placement problem in the data-
center networks, and it will be our future work to study the
VNF placement problem with the two factors in a wider
scenario.

ACKNOWLEDGMENTS

The authors sincerely thank the anonymous referees for
their valuable suggestions that have led to the present

improved version of the original manuscript. This work is
partly supported by the National Natural Science Founda-
tion of China under Grant No. 61671420 and No. 61672106,
Youth Innovation Promotion Association CAS under Grant
No. 2016394 and the Fundamental Research Funds for the
Central Universities.

REFERENCES

[1] Network functions virtualisation (NFV), ETSI, NFVGS, (2015).
[Online]. Available: https://portal.etsi.org/Portals/0/TBpages/
NFV/Docs/NFV_White_Paper3.pdf

[2] H. Jeon and B. Lee, “Network service chaining challenges for VNF
outsourcing in network function virtualization,” in Proc. Int. Conf.
Inf. Commun. Technol. Convergence, 2015, pp. 819–821.

[3] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization: Challenges and opportunities for innovations,”
IEEE Commun. Mag., vol. 53, no. 2, pp. 90–97, Feb. 2015.

[4] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network
processing as a cloud service,” SIGCOMM Comput. Commun. Rev.,
vol. 42, no. 4, pp. 13–24, 2012.

[5] G. Gibb, H. Zeng, and N. McKeown, “Outsourcing network
functionality,” in Proc. ACM SIGCOMM Workshop Hot Topics
Softw. Defined Netw., 2012, pp. 73–78.

[6] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing
chains of virtual network functions,” in Proc. 3rd Int. Conf. Cloud
Netw., 2014, pp. 7–13.

[7] Z. Ye, X. Cao, J. Wang, H. Yu, and C. Qiao, “Joint topology design
and mapping of service function chains for efficient, scalable, and
reliable network functions virtualization,” IEEE Netw., vol. 30,
no. 3, pp. 81–87, May/Jun. 2016.

[8] T.-W. Kuo, B.-H. Liou, K. C.-J. Lin, and M.-J. Tsai, “Deploying
chains of virtual network functions: On the relation between link
and server usage,” in Proc. IEEE INFOCOM, 2016, pp. 1–9.

[9] M. Xia,M. Shirazipour, Y. Zhang,H.Green, andA. Takacs, “Network
function placement for NFV chaining in packet/optical datacenters,”
IEEE J. Lightw. Technol., vol. 33, no. 8, pp. 1565–1570, Apr. 2015.

[10] P.-W. Chi, Y.-C. Huang, and C.-L. Lei, “Efficient NFV deployment
in data center networks,” in Proc. IEEE Int. Conf. Commun., 2015,
pp. 5290–5295.

Fig. 8. CDF of network resource utilization with Google data.

Fig. 7. Performance comparison of different algorithms with Google data.

1676 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 7, JULY 2018

https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White_Paper3.pdf
https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White_Paper3.pdf


[11] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” in Proc. IEEE INFOCOM,
2015, pp. 1346–1354.

[12] J. Halpern and C. Pignataro, “Service function chaining (SFC)
architecture,” (2015). [Online]. Available: https://rfc-editor.org/
rfc/rfc7665.txt

[13] Network Functions Virtualisation (NFV); Management and
Orchestration, NFV-MAN, ETSI, NFVGS, vol. 1, p. v0, 2014,
[Online]. Available: http://www.etsi.org/deliver/etsi_gs/NFV-
MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf

[14] C.-P. Bezemer and A. Zaidman, “Multi-tenant SaaS applications:
Maintenance dream or nightmare?” in Proc. Joint ERCIMWorkshop
Softw. Evolution Int. Workshop Principles Softw. Evolution, 2010,
pp. 88–92.

[15] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design
and implementation of a consolidated middlebox architecture,” in
Proc. 9th USENIX Conf. Netw. Syst. Des. Implementation, 2012,
pp. 24–24.

[16] X.Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, andD. Pendarakis,
“Efficient resource provisioning in compute clouds via VM multi-
plexing,” in Proc. 7th Int. Conf. Autonomic Comput., 2010, pp. 11–20.

[17] W. Lin, S. Xu, J. Li, L. Xu, and Z. Peng, “Design and theoretical
analysis of virtual machine placement algorithm based on peak
workload characteristics,” Soft Comput., vol. 21, no. 5, pp. 1301–
1314, 2017.

[18] BEA Weblogic Application Consolidation Strategies, WLDJ. [Online].
Available: http://weblogic.sys-con.com/node/42938

[19] C.-J. Guo, W. Sun, Z.-B. Jiang, Y. Huang, B. Gao, and Z.-H. Wang,
“Study of software as a service support platform for small and
medium businesses,” in New Frontiers in Information and Software
as Services. Berlin Germany: Springer, 2011, pp. 1–30.

[20] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On
orchestrating virtual network functions,” in Proc. 11th Int. Conf.
Netw. Service Manage., 2015, pp. 50–56.

[21] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and
research challenges,” IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 236–262, Jan.–Mar. 2016.

[22] Gurobi optimizer reference manual, version 7.0, Gurobi. [Online].
Available: http://www.gurobi.com/documentation/7.0/refman.
pdf

[23] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage
traces: Format+ schema,” Google Inc., White Paper, pp. 1–14, 2011.

[24] W. Rankothge, F. Le, A. Russo, and J. Lobo, “Optimizing resource
allocation for virtualized network functions in a cloud center
using genetic algorithms,” IEEE Trans. Netw. Service Manage.,
vol. 14, no. 2, pp. 343–356, Jun. 2017.

[25] Z. �A. Mann and A. Metzger, “Optimized cloud deployment of
multi-tenant software considering data protection concerns,” in
Proc. 17th IEEE/ACM Int. Symp. Cluster Cloud Grid Comput., 2017,
pp. 609–618.

[26] S. Zhang, Z. Qian, Z. Luo, J. Wu, and S. Lu, “Burstiness-aware
resource reservation for server consolidation in computing
clouds,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 4, pp. 964–
977, Apr. 2016.

[27] K. Zheng, X. Wang, L. Li, and X. Wang, “Joint power optimization
of data center network and servers with correlation analysis,” in
Proc. IEEE INFOCOM, 2014, pp. 2598–2606.

[28] D. Banks, J. Erickson, M. Rhodes, and J. S. Erickson, “Multi-ten-
ancy in cloud-based collaboration services,” 2009, [Online]. Avail-
able: http://www.hpl.hp.com/techreports/2009/HPL-2009-17.
pdf?origin=publica tion_detail

[29] S. Natarajan, et al., An Analysis of Lightweight Virtualization Tech-
nologies for NFV, 2017. [Online]. Available: https://tools.ietf.org/
html/draft-natarajan-nfvrg-containers-for-nfv-03

[30] X. Li, A. Ventresque, J. O. Iglesias, and J. Murphy, “Scalable corre-
lation-aware virtual machine consolidation using two-phase
clustering,” in Proc. Int. Conf. High Perform. Comput. Simul., 2015,
pp. 237–245.

[31] V. Perlibakas, “Distance measures for PCA-based face recog-
nition,” Pattern Recognit. Lett., vol. 25, no. 6, pp. 711–724, 2004.

[32] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commod-
ity data center network architecture,” SIGCOMM Comput. Com-
mun. Rev., vol. 38, no. 4, pp. 63–74, 2008.

Defang Li received the BS degree from the
Department of Electronic Engineering and Infor-
mation Science (EEIS), University of Science
and Technology of China (USTC), in 2014. He is
working toward the PhD degree at the University
of Science and Technology of China with his
advisor Peilin Hong now. His research interests
include SDN, NFV, and the network resource
orchestration and management. He is a student
member of the IEEE.

Peilin Hong received the BSandMSdegrees from
the Department of Electronic Engineering and
Information Science (EEIS), University of Science
and Technology of China (USTC), in 1983 and
1986, respectively. Currently, she is a professor
and advisor for PhD candidates in the Department
of EEIS, USTC. Her research interests include
next-generation Internet, policy control, IP QoS,
and information security. She has published 2
books and more than 100 academic papers in sev-
eral journals and conference proceedings.

Kaiping Xue (M09-SM15) received the BS
degree from the Department of Information Secu-
rity, University of Science and Technology of
China (USTC), in 2003 and the PhD degree from
the Department of Electronic Engineering and
Information Science (EEIS), USTC, in 2007. Cur-
rently, he is an associate professor in the Depart-
ment of Information Security and Department of
EEIS, USTC. His research interests include next-
generation Internet, distributed networks, and net-
work security. He is a senior member of the IEEE.

Jianing Pei received the BS degree from the
Department of Information and Electrical Engi-
neering (IEE), China University of Mining and
Technology (CUMT), in 2015. He is working
toward the MS degree at the University of Sci-
ence and Technology of China (USTC) with his
advisor Peilin Hong now. His research interests
include SDN, NFV, and the network resource
orchestration and management.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LI ET AL.: VIRTUAL NETWORK FUNCTION PLACEMENT CONSIDERING RESOURCE OPTIMIZATION AND SFC REQUESTS IN CLOUD... 1677

https://rfc-editor.org/rfc/rfc7665.txt
https://rfc-editor.org/rfc/rfc7665.txt
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
http://weblogic.sys-con.com/node/42938
http://www.gurobi.com/documentation/7.0/refman.pdf
http://www.gurobi.com/documentation/7.0/refman.pdf
http://www.hpl.hp.com/techreports/2009/HPL-2009-17.pdf?origin=publica tion_detail
http://www.hpl.hp.com/techreports/2009/HPL-2009-17.pdf?origin=publica tion_detail
https://tools.ietf.org/html/draft-natarajan-nfvrg-containers-for-nfv-03
https://tools.ietf.org/html/draft-natarajan-nfvrg-containers-for-nfv-03


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


