
Resource Aware Routing for Service Function
Chains in SDN and NFV-Enabled Network

Jianing Pei , Peilin Hong , Kaiping Xue , Senior Member, IEEE,

and Defang Li , Student Member, IEEE

Abstract—Owing to the Network Function Virtualization (NFV) and Software-Defined Networks (SDN), Service Function Chain

(SFC) has become a popular service in SDN and NFV-enabled network. However, as the Virtual Network Function (VNF) of each type

is generally multi-instance and flows with SFC requests must traverse a series of specified VNFs in predefined orders, it is a challenge

for dynamic SFC formation to optimally select VNF instances and construct paths. Moreover, the load balancing and end-to-end delay

need to be paid attention to, when routing flows with SFC requests. Additionally, fine-grained scheduling for traffic at flow level needs

differentiated routing which should take flow features into consideration. Unfortunately, traditional algorithms cannot fulfill all these

requirements. In this paper, we study the Differentiated Routing Problem considering SFC (DRP-SFC) in SDN and NFV-enabled

network. We formulate the DRP-SFC as a Binary Integer Programming (BIP) model aiming to minimize the resource consumption

costs of flows with SFC requests. Then a novel routing algorithm, Resource Aware Routing Algorithm (RA-RA), is proposed to solve

the DRP-SFC. Performance evaluation shows that RA-RA can efficiently solve the DRP-SFC and surpass the performance of other

existing algorithms in acceptance rate, throughput, hop count and load balancing.

Index Terms—Service function chain, software-defined networks, network function virtualization, differentiated routing, flow feature

Ç

1 INTRODUCTION

N ETWORK Function Virtualization (NFV) has been an
arising technology decoupling the software from

hardware devices recently. It has the potential to signifi-
cantly reduce the Operating Expenses (OPEX) and Capital
Expenses (CAPEX) and facilitate the flexibility of new serv-
ices deployment with increased agility and faster time-
to-value [1], [2]. Software-Defined Networks (SDN) is a new
network paradigm which decouples the control plane and
data plane. According to centralized control and flexible
management, SDN controller can efficiently control the net-
work forwarding among Network Functions (NFs) based
on the acquired information about the network [3]. Owing
to the technologies of NFV and SDN, many NFs such as
Firewall (FW), Deep Package Inspection (DPI), Intrusion
Detection System (IDS), Intrusion Prevention System (IPS)
and Wide Area Network (WAN) optimizers can be soft-
ware-oriented, programmed and deployed flexibly on
Commercial-Of-The-Shelf (COTS) devices [4], [5], [6], which
are known as the Virtual Network Functions (VNFs).

Benefitting from NFV and SDN, Service Function
Chain (SFC) has been proposed as a popular service para-
digm. An SFC defines an ordered or partially ordered set
of VNFs and ordering constraints that must be applied to
packets, frames and/or flows selected as a result of classi-
fication [7], [8]. SFC provides the means so that the traffic

can naturally pass through a set of specified VNF instan-
ces sequentially without the intervention imposed by dif-
ferent services residing at different physical devices [9],
[10]. With the application of SFC, high acceleration of
traffic performance will be provided by more intelligent
traffic routing strategies in today’s Internet Service Pro-
vider (ISP) networks.

Even though SFC is hopeful to enhance the flexibility and
cost efficiency in ISP networks [9], [11], however, a set of
new challenges come correspondingly, which should be
well addressed. First, the VNF of each type is generally
multi-instance and flows with SFC requests must pass
through a series of VNF instances in predefined orders to
satisfy the requirements of users. For example, in Fig. 1,
there are four types of VNFs deployed in the network and
each of them contains multiple instances. VNF11, VNF12
and VNF13 indicate the first, second and third instances of
VNF1, respectively. The rest of VNF instances satisfy the
same rule. Supposing that a flow with SFC request starts
from node A and needs to traverse the instances of VNF1,
VNF2, VNF3 and VNF4 before arriving at node J . Neverthe-
less, in the network, there exist many paths (such as the dot-
ted lines marked with different colors) that traverse
different VNF instances and can satisfy the requirement.
Therefore, it is a challenge for dynamic SFC formation to
make an optimal strategy selecting VNF instances from
multi-instance NFV environment and routing flows with
SFC requests to traverse these selected VNF instances in
predefined orders.

Second, as the bandwidth on links should not be the only
resource to be considered in SDN and NFV-enabled network,
flow table entries on SDN switch nodes which are resolved
in Ternary Content Addressable Memory (TCAM) [12], [13],

� The authors are with the Key Laboratory ofWireless-Optical Communications,
Chinese Academy of Sciences, School of Information Science and Technology,
University of Science and Technology of China, Hefei 230027, China.
E-mail: {jianingp, ldf911}@mail.ustc.edu.cn, {plhong, kpxue}@ustc.edu.cn.

Manuscript received 20 Aug. 2017; revised 9 Apr. 2018; accepted 18 June
2018. Date of publication 22 June 2018; date of current version 5 Aug. 2021.
(Corresponding author: Peilin Hong.)
Digital Object Identifier no. 10.1109/TSC.2018.2849712

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 4, JULY/AUGUST 2021 985

1939-1374 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 11,2021 at 08:37:11 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4180-1421
https://orcid.org/0000-0003-4180-1421
https://orcid.org/0000-0003-4180-1421
https://orcid.org/0000-0003-4180-1421
https://orcid.org/0000-0003-4180-1421
https://orcid.org/0000-0002-3027-1990
https://orcid.org/0000-0002-3027-1990
https://orcid.org/0000-0002-3027-1990
https://orcid.org/0000-0002-3027-1990
https://orcid.org/0000-0002-3027-1990
https://orcid.org/0000-0003-2095-7523
https://orcid.org/0000-0003-2095-7523
https://orcid.org/0000-0003-2095-7523
https://orcid.org/0000-0003-2095-7523
https://orcid.org/0000-0003-2095-7523
https://orcid.org/0000-0001-8254-552X
https://orcid.org/0000-0001-8254-552X
https://orcid.org/0000-0001-8254-552X
https://orcid.org/0000-0001-8254-552X
https://orcid.org/0000-0001-8254-552X
mailto:
mailto:

the CPU on function nodes which hold VNF instances and
end-to-end delay cannot be neglected as well [14]. Hence, a
mechanism should be designed to make a trade off among
multiple kinds of resources and pay attention to end-to-end
delay, which can reduce the network congestion and keep
the network with high performance. Third, to deal with
increasingly heterogeneous traffic in the network, a differen-
tiated routing strategy with the consideration of flow features
is hoped by network operators to achieve fine-grained sched-
uling for traffic at flow level [9], [15].

Given the challenges introduced by flows with SFC
requests in SDN and NFV-enabled network, there are two
problems in the following to be solved: (i) how tomake differ-
entiated routing strategy for different kinds of flowswith SFC
requests to optimally select VNF instances and construct the
paths without violating predefined orders. (ii) how to achieve
load balancing among multiple kinds of resources, when
routing flows with SFC requests. These problems are denoted
as the Differentiated Routing Problem considering SFC (DRP-
SFC). The contributions of this paper are listed as follows.

� Wemake a detailed analysis of the DRP-SFC and for-
mulate it as a Binary Linear Programming (BIP)
model aiming to minimize the resource consumption
costs of flows with SFC requests.

� We separate the flows into different kinds based on
resource preferences, and define relative cost to bal-
ance the resource consumption and route heteroge-
neous traffic at flow level differentiatedly in SDN
and NFV-enabled network.

� Considering multi-resource constraints (bandwidth,
flow table entries on switch nodes, CPU on function
nodes and end-to-end delay) and flow features com-
prehensively, we propose a novel routing algorithm,
Resource Aware Routing Algorithm (RA-RA), to
solve the DRP-SFC in SDN and NFV-enabled net-
work. Detailed simulation results show that, com-
paring with other algorithms in existing literatures,
RA-RA can efficiently solve the DRP-SFC and obtain
higher performance in acceptance rate, throughput,
hop count and load balancing.

The rest of the paper is organized as follows: we review the
related works in Section 2. The system model is presented in
Section 3. In Section 4, we give the definition of the relative
cost and formulate the DRP-SFC as a BIP model. Section 5

describes the RA-RA algorithm. In Section 6, we validate the
effectiveness of RA-RA and compare it with some existing
algorithms. Finally, Section 7 concludes the paper.

2 RELATED WORKS

Recently, advancements in the field of NFV and SDN make
SFC drawn significant attention in both the standardization
organizations and research communities.

The Service Chaining Working Group in Internet Engi-
neering Task Force (IETF) completed a set of related SFC
use-cases drafts referred to the SFC architecture [7], mobile
networks [16] and datacenters [17]. The VNF Forwarding
Graph (VNFFG) was proposed by European Telecommuni-
cations Standards Institute (ETSI) to describe the connectiv-
ity between VNFs [18].

Based on NFV and SDN, new SFC architectures are pro-
posed to interconnect different VNF instances in specified
orders [19], [20]. Moreover, with an increasing number of
tenants launching their applications in clouds, it is also
advocated by Cloud Service Providers (CSPs) to construct
SFC architectures in clouds to meet the demands of tenants,
promote the cloud performance and reduce the OPEX/
CAPEX [1], [21].

Medhat et al. [22] came up with a service function selection
algorithm for the service function instance selection and ser-
vice function path creation problem. In order to realize load
balancing amongVNF instances, the authors selected the spec-
ified VNF instances by trading off the delay feature of flows,
load conditions of VNF instances and distance in the network.
And the Shortest Path (SP) algorithm is used toproduce a com-
plete path. Based on the euclidean distance and SP algorithm,
Oh et al. proposed a VirtualMachine (VM) selection algorithm
to create optimal service-chain paths for flows with SFC
requests [23]. When creating the optimal path, this algorithm
first constructs a 3D vector space based on the requirement of
a flow and the statements of VMs in the network. Then the
right VMs are selected by calculating the euclidean distance
from the requirement point, and the SP algorithm is used to
concatenate these selected VMs. Mechtri et al. [24] proposed a
novel eigendecomposition based approach to cope with the
VNF placement and chaining problem in distributed cloud
environments. This algorithm first needs to extend the adja-
cent matrix of a VNFFG to the same dimension of physical
network’s, then execute Umeyama’s eigendecomposition
approach to select the VNF instances and construct paths.

All the papers in [22], [23], [24] route the flows with SFC
requests by two-stage algorithms which need to complete the
selection of VNF instances at the first stage, then construct the
paths concatenating the selected VNF instances as the prede-
fined order in the second stage. When routing the flows with
SFC requests in the network, both the selection of VNF instan-
ces and the construction of paths have influence on the net-
work performance. As splitting the relationship between the
selection of VNF instances and path construction, these two-
stage algorithmswill lead to sub-optimal solution for the rout-
ing of flows with SFC requests. Distinct from the two-stage
algorithms, RA-RA is a one-stage algorithm which finishes
these two processes meanwhile. And RA-RA can efficiently
make strategies for flows with SFC requests by eliminating
sub-optimal paths.

Fig. 1. VNF instance selection and path construction for flows with SFC
requests in SDN and NFV-enabled network.

986 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 4, JULY/AUGUST 2021

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 11,2021 at 08:37:11 UTC from IEEE Xplore. Restrictions apply.

Considering flows with SFC requests online routing prob-
lem in SDN framework, Cao et al. [25] proposed a novel algo-
rithm named Competitive Online Algorithm for Traffic
Steering (COATS). In COATS, the authors iteratively updated
the costs on links and routed flows with SFC requests based
on a layered graph. Bari et al. [26] defined the VNF deploy-
ment and online routing problem as VNFOrchestration Prob-
lem (VNF-OP). In the paper, all the nodes in the network can
support VNF instances, and the costs of VNF deployment,
energy, data forwarding, resource fragments and Service
Level Objective (SLO) violation are considered. Then based
on Viterbi algorithm [27], the ProvisionTraffic is proposed to
select the path with the lowest cost to route the flowwith SFC
request in the network. Facing the node-constrained service
chain routing problem in SDN framework, Dwaraki et al. [28]
proposed an adaptive service routing algorithm to solve this
problem. In the algorithm, the network graph is transformed
to a layered graph considering process steps. Then the path
with the minimum end-to-end delay is obtained to route the
flow with SFC request by executing the conventional SP
algorithm on layered graph. Pei et al. [14] studied the VNF
Selection and Chaining Problem (VNF-SCP), and proposed to
solve it based on deep learning technology. The papers in [29]
explicitly states that the largest open source SDN controller,
OpenDaylight, has supported the algorithms including
Random, Round Robin, Load Balance and Shortest Path for
the selection of VNF instances in SDN framework.

To solve the DRP-SFC, the tradeoff among multiple kinds
of resources and end-to-end delay needs to be considered
comprehensively. In SDN and NFV-enabled network, all
kinds of resources including the bandwidth, flow table
entries and CPU and end-to-end delay have influence on
the network performance. Unbalanced utilization of resour-
ces will lead to low network performance due to network
congestion. And long end-to-end delay also results in low
Quality of Service (QoS). In [25], the authors only paid atten-
tion to the bandwidth on links, when routing flows with
SFC requests. In [26], the authors routed the flows with SFC
requests by minimizing the OPEX cost and resource frag-
ments. And only the end-to-end delay and CPU resource
are taken into account, respectively, in [14], [28] and [29]. In
RA-RA, all the resources including bandwidth, flow table
entries and CPU and end-to-end delay are considered in the
meantime, when solving DRP-SFC.

The off-line optimal algorithms to route flows with SFC
requests are studied in [26] and [30]. With the help of
CPLEX, the off-line optimal solution to route flows with
SFC requests is realized in [26]. Guo et al. [30] studied a joint
optimization of MiddleBox Selection and Routing (MBSR)
problem. In order to solve MBSR, the authors formulated
this problem as an integer programming model to maximize
the throughput for a specified set of sessions with SFC
requests in SDN network. Then a polynomial algorithm
using the Markov approximation technique is proposed,
which adjusts the selected middleboxes for sessions with
SFC requests randomly and iterates to find the best result.

Nevertheless, most of the mentioned works neglect to
achieve the differentiated routing for flows with SFC
requests. In the paper, we take the flow features into consid-
eration and formulate the DRP-SFC as a BIP model with the
objective to minimize the resource consumption costs for

flows with SFC requests. Then, the routing algorithm
named RA-RA is proposed to solve the DRP-SFC in SDN
and NFV-enabled network. To the best of our knowledge,
this work is the first effort that not only manages to make
efficient differentiated routing strategies for flows with SFC
requests, but also achieves load balancing among multiple
kinds of resources in SDN and NFV-enabled network.

3 SYSTEM MODEL

3.1 Physical Network with VNF Instances

We consider the physical network as an undirected graph
G ¼ ðV;LÞ, where V and L indicate the node set and link
set, respectively. u; v 2 V are physical nodes. uv 2 L stands
for the physical link connecting the physical nodes u and v.
There exist two kinds of nodes in the network. One is switch
node that is responsible to forward data to neighbor nodes
based on the control signals from SDN controller. And the
other kind is function node which not only takes charge of
information forwarding but also holds VNF instances to
process flows with SFC requests. We define Vfn � V as the
set of function nodes and Vsn � V as the set of switch nodes.
M represents the set of all the VNF instances and m 2 M
represents themth VNF instance deployed in the network.

In the paper, SFCRi is used to represent the SFC request
of flow i. We use Cft

u to symbolize the flow table capacity on
node u. The ratio of remaining flow table entries on node u,
when routing SFCRi, is represented by rfti;u. The CPU capac-
ity on node u is Ccpu

u , and the bandwidth capacity on link uv
is Cbw

uv . When routing SFCRi, the rcpui;u represents the ratio of
remaining CPU on node u, and rbwi;uv stands for the ratio of
remaining bandwidth on link uv.

It is worth noting that, VNF instances are only allowed to
be deployed on function nodes, and switch nodes do not
need to process the flows with SFC requests, so we neglect
the CPU consumption on switch nodes. Moreover, as micro
datacenters and cloud datacenters can serve as function
nodes [18], [31], comparing with switch nodes, we do not
consider the flow table consumption on function nodes as
well.

3.2 Flows with SFC Requests

In an SDN and NFV-enabled network, the flows originating
from users should always traverse a set of VNF instances
concatenated in predefined orders to satisfy their demands.
In the paper, we assume that all the flows are with SFC
requests and each SFC request consists of an ingress node,
an egress node and a series of VNF requests. We use a six-
tuple to represent the SFC request of a flow. For SFCRi in
Eq. (1), Si represents the ingress node and Ti represents the
egress node. The sequence of VNF requests of SFCRi is
defined asVi. l ¼ jVij represents the length of SFCRi, which
indicates the total number of VNF requests of an SFC
request. ViðjÞ stands for the jth VNF request, j ¼ 1; 2; . . . ; l.
For SFCRi, the bandwidth and CPU consumptions and the
maximum tolerated delay are represented by Fbw

i , Fcpu
i and

Fdelay
i , respectively. However, for an SFC request, the

assumption that the bandwidth and CPU consumptions on
links and VNF instances are set as fixed and the same val-
ues, respectively, is just for concise, and it is easy to extend
the following formulation to support distinctive ones

PEI ET AL.: RESOURCE AWARE ROUTING FOR SERVICE FUNCTION CHAINS IN SDN AND NFV-ENABLED NETWORK 987

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 11,2021 at 08:37:11 UTC from IEEE Xplore. Restrictions apply.

SFCRi ¼ fSi; Ti;Vi; F
bw
i ; F cpu

i ; F delay
i g;

Vi ¼ fVið1Þ;Við2Þ; . . . ;ViðlÞg; l ¼ jVij:
(1)

In the system model, the service function graph �Gi ¼
ð �Vi; �LiÞ is used to depict Vi. The service function graph is a

digraph, where �Vi and �Li represent the set of nodes and
links, respectively. �u; �v � �Vi represent two nodes and
�u�v � �Li indicates the link connecting nodes �u and �v on �Gi.

Fig. 2 shows a service function graph for SFCRi, where Si,

Ti, Við1Þ and Við2Þ are nodes and SFCRi must traverse Si,

Við1Þ and Við2Þ in order before arriving at Ti.

3.3 Classification of Flows Based on Flow Features

For the purpose of cost-efficient Traffic Engineering (TE) in the
network, it is important for ISPs to improve network perfor-
mance and achieve load balancing with differentiated routing
strategy based on flow features [15], [32], [33]. In the network,
elephant flows carry themost of the traffic volume, while their
number is small. Though mice flows are short-lived and carry
a small number of packets, there exist large numbers of them,
which also have important impact on the network perfor-
mance and cannot be neglected [32]. Moreover, considering
the computation consumption, the computationally intensive
workload is defined in [33] which consumes lots of computa-
tion resources on servers but requires small bandwidthduring
data transmission. According to these flow features, several
values of thresholds have been proposed to differentiate flows
in the network [34].

However, as the data plan and control plan are coupled
and integrated in today’s network architecture, existing TE
technologies are prevented to achieve truly differentiated
services to adapt to uneven and high variable traffic pat-
terns [35]. On the contrary, in SDN, the controller can
achieve centralized network monitoring and management.
Based on the techniques of packet-based sampling, flow sta-
tistics, hardware/software modification and data stream
mining [36], [37], it is hopeful to efficiently obtain flow fea-
tures in SDN and NFV-enabled network to deal with
increasingly heterogeneous traffic with fine-grained sched-
uling at flow level.

In the paper, we take the resource preferences of flows as
flow features and classify the flowswith SFC requests into dif-
ferent kinds. On the perspective of bandwidth preference, all
the flows with SFC requests can be divided into three kinds
which are mice flow, dog flow, and elephant flow.Mice flows
are such flows that are short-lived and consume little band-
width. Elephant flows are on the contrary, which are long-
lived and consume large amounts of bandwidth. And dog
flows are defined betweenmice flows and elephant flows. On
the perspective of CPU preference, all the flows are divided
into two kinds which are computationally sparse flow and
computationally dense flow. Therefore, based on the con-
sumptions of bandwidth and CPU, there are six kinds of
flows in the network, which are computationally sparse mice
flow, computationally sparse dog flow, computationally
sparse elephant flow, computationally dense mice flow,

computationally dense dog flow and computationally dense
elephant flow.

4 PROBLEM FORMULATION

In this section, we first give the definition of relative cost,
then formulate the DRP-SFC as a BIP model.

4.1 Definition of Relative Cost

In our work, the relative costs are defined to indicate

the resource conditions in the network. vbwi;uv, v
ft
i;u and vcpui;u

represent the relative costs of bandwidth, flow table and
CPU, when routing SFCRi, respectively. The relative costs
have reciprocal relationships to the remaining resources.
For example, in Eq. (2a), the numerator represents the
maximum bandwidth capacity in the network, and the
denominator represents the difference between the remaining
bandwidth on link uv and the bandwidth consumption of
SFCRi. The value range of the relative cost on each link is uni-
form between ð1;þ1Þ. According to the form of Eq. (2a),
the less bandwidth remains on a link, the bigger relative
cost of the linkwill be. And the relative cost grows very fast, if
the remaining bandwidth on a link approaches zero. Eqs. (3a)
and (4a) abide by the similar rule of Eq. (2a). Therefore, a link
or node can be determined as a bottleneck, if its relative cost
is big.

vbwi;uv ¼
max
uv2L

Cbw
uv

rbwi;uvC
bw
uv � Fbw

i

F bw
i > m; ð2aÞ

0 Fbw
i � m: ð2bÞ

8>><
>>:

vfti;u ¼
max
u2Vsn

Cft
u

rfti;uC
ft
u � 1

Fbw
i < n; ð3aÞ

0 Fbw
i � n: ð3bÞ

8>><
>>:

vcpui;u ¼
max
u2Vfn

Ccpu
u

rcpui;u C
cpu
u � Fcpu

i

F cpu
i > v; ð4aÞ

0 Fcpu
i � v: ð4bÞ

8>><
>>:

Additionally, flow features are considered in the definition
of relative cost and the thresholdsm, n andv are used to differ-
entiate the flows with SFC requests. The flows with band-
width consumption larger than n are set as elephant flows,
and the flows with bandwidth consumption smaller than m

are set as mice flows (m < n). A flow is set as dog flow, if the
bandwidth consumption is between m and n. The flows are
set as computationally dense flows, if the CPU consumption
is larger than v. And the flows with CPU consumption
smaller thanv are set as computationally sparse flows.

Since the bandwidth consumption of elephant flows is
huge and the number of them is small, it is better to pay
more attention on the remaining bandwidth rather than
the remaining flow table entries on switch nodes. On the
contrary, due to the fact that the bandwidth consumption of
mice flows is negligible but the number of them is large, we
should pay more attention on the remaining flow table
entries on switch nodes, rather than the remaining band-
width on links. Therefore, for elephant flows, the relative
costs of bandwidth are calculated according to Eq. (2a) and

Fig. 2. An example of service function graph.

988 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 4, JULY/AUGUST 2021

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 11,2021 at 08:37:11 UTC from IEEE Xplore. Restrictions apply.

the relative costs of flow table entries are set as 0 due to Eq.
(3b). And, for mice flows, the relative costs of bandwidth
are set as 0 due to Eq. (2b) and the relative costs of flow table
entries are calculated according to Eq. (3a). For dog flows,
because the bandwidth consumption and the number of
them are medium-sized, both the bandwidth and flow table
entries should be taken into account, and the relative costs
are computed according to Eqs. (2a) and (3a), respectively.

As the CPU consumption of computationally dense flows
is much larger than computationally sparse flows’, we
should pay more attention to the CPU consumption of com-
putationally dense flows. Therefore, we compute the rela-
tive costs of CPU consumption for computationally dense
flows according to Eq. (4a), and set it as 0 due to Eq. (4b) for
computationally sparse flows.

4.2 BIP Formulation

Next, we formulate the DRP-SFC in detail and the notations
used in this part are described in Table 1.

The binary variable x�u
i;m represents whether VNF request

�u 2 �Vi is served by VNF instancem 2 M.

x�u
i;m ¼ 1; �u is served by VNF instance m;

0; otherwise:

�
(5)

We use binary variable ymu to represent whether VNF

instancem 2 M is hosted on function node u 2 Vfn.

ymu ¼ 1; VNF instance m is hosted on u;
0; otherwise:

�
(6)

The next two binary variables represent whether �u�v 2 �Li

traverses link uv 2 L or node u 2 V, respectively:

z�u�vi;uv ¼
1; �u�v traverses link uv;
0; otherwise:

�
(7)

z�u�vi;u ¼ 1; �u�v traverses node u;
0; otherwise:

�
(8)

For link uv, the bandwidth consumption of SFCRi cannot
exceed the remaining bandwidth on physical links.X

�u�v2�Li

F bw
i z�u�vi;uv � rbwi;uvC

bw
uv ; 8uv 2 L: (9)

The flow table consumption of SFCRi cannot exceed the
remaining flow table entries on physical nodes, so the fol-
lowing constraint must be satisfied:X

�u�v2�Li

z�u�vi;u � rfti;uC
ft
u ; 8u 2 Vsn: (10)

Besides, all the CPU consumption of SFCRi cannot
exceed the remaining CPU on the selected function nodes.X

�u2�Vi

X
m2M

Fcpu
i x�u

i;my
m
u � rcpui;u C

cpu
u ; 8u 2 Vfn: (11)

For SFCRi, the end-to-end delay must be smaller than
the maximum tolerated delay.X

uv2L

X
�u�v2�Li

di;uvz
�u�v
i;uv � Fdelay

i : (12)

Once a link is selected, both the end points of this link
must be selected as well.

z�u�vi;uz
�u�v
i;v ¼ 1; z�u�vi;uv ¼ 1; 8u; v 2 V; 8uv 2 L; 8�u�v 2 �Li;

0; otherwise:

�
(13)

Eq. (14) ensures that the routing path of SFCRi is conse-
cutive and cannot be split.

X
v2V

X
�u�v2�Li

ðz�u�vi;uv � z�u�vi;vuÞ ¼
1; u ¼ Si;
�1; u ¼ Ti;
0; otherwise:

8<
: (14)

In order to ensure that the routing path traverses all the
function nodes which contain the selected VNF instances
for SFCRi, the next equation must be satisfied:

x�u
i;my

m
u � z�u�vi;u; 8u 2 Vfn;

8�u 2 �Vi; 8�u�v 2 �Li; 8m 2 M:
(15)

Eq. (16) is used to ensure that each VNF request �u 2 �Vin
fSi; Tig on �Gi can only be served by one VNF instance.

X
m2M

x�u
i;m ¼ 1; �u is served by VNF instance m;

0; otherwise:

�
(16)

Due to the fact that each VNF instance can only be hosted
on one function node, then the next uniqueness constraint is
satisfied:

TABLE 1
Notations

Physical Network

G ¼ ðV;LÞ Network graph Gwith the sets of nodes
V and links L, u; v 2 V, uv 2 L.

Vsn, Vfn Sets of switch nodes and function nodes
V = Vsn [Vfn.

Cbw
uv ,Cft

u , C
cpu
u Capacities of bandwidth, flow table and

CPU.
rbwi;uv, r

ft
i;u, r

cpu
i;u Ratios of remaining bandwidth, flow table

entries and CPU, when routing SFCRi.
vbwi;uv, v

ft
i;u, v

cpu
i;u Relative costs of bandwidth, flow table and

CPU, when routing SFCRi.
di;uv Delay on uv 2 L, when routing SFCRi.
M Set of VNF instances in the network,

m 2 M.

Service Function Chains

�Gi ¼ ð�Vi; �LiÞ Service function graph �Gi with the sets of

nodes �Vi and links �Li of SFCRi, �u; �v 2 �Vi,

�u�v 2 �Li.
Si, T i The ingress node and egress node of

SFCRi.
Vi The sequence of VNF requests of SFCRi;

Vi ¼ fVið1Þ;Við2Þ; . . . ;ViðlÞg, l ¼ jVij.
Fbw

i , Fcpu
i , Fdelay

i The bandwidth and CPU consumptions
and maximum tolerated delay of SFCRi.

Binary Variables

x�u
i;m Whether �u is served bym 2 M for SFCRi.

ymu Whetherm 2 M is hosted on u 2 Vfn.
z�u�vi;uv Whether �u�v 2 �Li traverses uv 2 L for

SFCRi.
z�u�vi;u Whether �u�v 2 �Li traverses u 2 V for SFCRi.

PEI ET AL.: RESOURCE AWARE ROUTING FOR SERVICE FUNCTION CHAINS IN SDN AND NFV-ENABLED NETWORK 989

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 11,2021 at 08:37:11 UTC from IEEE Xplore. Restrictions apply.

X
u2Vfn

ymu ¼ 1; 8m 2 M: (17)

In the paper, we use the relative costs vbwi;uv, v
ft
i;u and vcpui;u

to evaluate whether the links and nodes are congested and
to route flows with SFC requests based on flow features dif-
ferentiatedly. The resource consumption cost of the routing
path for SFCRi is calculated as below:

R ¼
X
uv2L

X
�u�v2�Li

vbwi;uvz
�u�v
i;uv þ

X
u2Vsn

X
�u�v2�Li

vfti;uz
�u�v
i;u

þ
X

u02Vfn

X
�u2�Vi

X
m2M

vcpu
i;u0x

�u
i;my

m
u0 :

(18)

As the relative costs are used to indicate the resource con-
ditions on links and nodes, we also use the sum of relative
costs to indicate the resource condition of a path. If the
resource consumption cost of a path is small, we can deter-
mine that there are abundant remaining resources and small
number of bottleneck links or nodes on this path, and routing
flows with SFC requests on this path will not incur network
congestion. On the contrary, if the resource consumption cost
of a path is very big, we can determine that there exist bottle-
neck links or nodes on this path, and another path with
smaller resource consumption cost should be found to avoid
network congestion and achieve load balancing. Therefore,
our objective in Eq. (19) is to minimize the resource consump-
tion costs for flowswith SFC requests under the constraints of
Eqs. (9)–(17).

Minimize R

s:t: Eq:ð9Þ � ð17Þ: (19)

5 PROPOSED ALGORITHM

In this section, we propose a novel routing algorithm named
RA-RA. RA-RA can efficiently solve the DRP-SFC by trans-
forming the original network graph to Logical Function
Graph (LFG). When executing RA-RA, we first need to cal-
culate the relative costs on the links, switch nodes and func-
tion nodes. Based on the relative costs and the sequence of
VNF requests, we search for the candidate VNF instances in
the network and arrange them in order to construct the
LFG. LFG is a digraph, where each path from the ingress
node to egress node along with the link direction satisfies
the predefined order. Finally, the routing paths for flows
with SFC requests are obtained based on a modified k-short-
est path algorithm.

5.1 Constructing LFG

In the paper, we solve the DRP-SFC by constructing LFG. LFG
is a digraph which is comprised of the ingress node, egress
node and candidate VNF instances for a flow with SFC
request. Then, we construct the LFG for SFCRi according to

the original network graph. The LFG is denoted as bGi ¼ ðbVi;bLiÞ. bu, bv 2 bVi represent two nodes and bubv 2 bLi stands for a

link on LFG. When constructing LFG, the first process is to
find the ingress node, egress node and all the candidate VNF
instances and arrange them as the predefined order of SFCRi.
Above all, the ingress node Si is selected and placed in
the 1st column. Then, due to the sequence of VNF request

Vi ¼ fVið1Þ;Við2Þ; . . . ;ViðlÞg; l ¼ jVij, the VNF instances

belonging to the same type ofVið1Þ are selected and placed in
the 2nd column. Next, we execute the same operation sequen-
tially to the VNF instances which belong to the same type of
Við2Þ to ViðlÞ. Finally, the egress node Ti is found and placed

in the ðlþ 2Þth column. When finishing the first process, the

second process is to produce the links on LFG. For each two
adjacent columns, we connect each node in the last column to
all the nodes in the next column. And the link direction is from
the node in the last column to the node in the next column.

On the LFG, each link is corresponding to a path which is
obtained by executing SP algorithm such as Dijkstra on net-
work graph. Here, the relative costs defined in Eqs. (2a)-(4b)
are set as the costs on physical links and nodes. For two
VNF instances hosted on different function nodes, a flow
with SFC request needs to traverse a complete path to pass
through these two VNF instances. Therefore, the link con-
necting the VNF instances on different function nodes is
corresponding to a path on network graph. Nevertheless,
because an function node is allowed to deploy multiple
VNF instances, for the SFC request served by the VNF
instances on one function node, the link will be correspond-
ing to a function node on the network graph.

According to the relationship between network graph
and LFG, the relative costs of bandwidth, flow table and
CPU on network graph are all transformed to the links on
LFG. For SFCRi, the link cost of bubv is set as v

i;bubv . The binary
variables, zbubvi;uv and zbubvi;u , indicate whether bubv 2 bLi traverses

uv 2 L and u 2 V, respectively. zbubvi;uv ¼ 1, if bubv 2 bLi traverses

uv 2 L and zbubvi;u ¼ 1, if bubv 2 bLi traverses u 2 V. In addition,

an mapping function Pð�Þ is used to obtain the function
node that a VNF instance is deployed on and vcpu

i;PðbuÞ indi-

cates the relative cost of CPU on the function node PðbuÞ.
Eq. (20) shows the calculation of v

i;bubv, where the three parts

in Eq. (20) represent the relative costs of bandwidth, flow
table and CPU, respectively:

v
i;bubv ¼ X

uv2L
vbwi;uvz

bubv
i;uv þ

X
u2Vsn

vfti;uz
bubv
i;u

þ
vcpu
i;PðbuÞ þ vcpu

i;PðbvÞ
2

; 8bubv 2 bLi; 8bu; bv 2 bVi

(20)

On LFG, the path with the minimum resource consump-
tion cost is calculated based on Eq. (21). z�u�v

i;bubv is a binary vari-

able and represents whether �u�v 2 �Li on �Gi traverses bubv 2 bLi

on bGi. And z�u�v
i;bubv = 1, only when �u�v 2 �Li traverses bubv 2 bLi.

Minimize
X
�u�v2�Li

X
bubv2bLi

v
i;bubv z�u�v

i;bubv : (21)

As for LFG, all the candidate VNF instances are arranged
in predefined order. Then, each path from the ingress node
to egress node satisfies the demand of SFC request. If the
path derived from Eq. (21) satisfies all the constraints of
Eqs. (9)–(17), we will get the final solution to route SFCRi

by transforming this path to network graph.
For example, Fig. 3 shows the LFG for SFCRi. In the figure,

the flow starts from the ingress node A and needs to traverse

990 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 4, JULY/AUGUST 2021

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 11,2021 at 08:37:11 UTC from IEEE Xplore. Restrictions apply.

the instances of Við1Þ, Við2Þ, Við3Þ, and Við4Þ in order before
arriving at node J . Assuming that the pathwith theminimum
resource consumption cost calculated in Eq. (21) is A !
VNF11 ! VNF21 ! VNF31 ! VNF41 ! J , then due to
Fig. 1, we know that SFCRi will be processed by VNF11 and
VNF21 onB and VNF31 and VNF41 onE. On network graph,
if the path derived from LFG is A ! B !VNF11!
VNF21! E !VNF31!VNF41! G ! J and all the con-
straints of Eqs. (9)–(17) are satisfied, then this path is selected
to route SFCRi.

Algorithm 1. RA-RA

1: Input:Network graph: G ¼ ðV;LÞ,
Resource capacities: Cbw

uv , C
ft
u , C

cpu
u ,

Remaining ratios: rbwi;uv, r
ft
i;u, r

cpu
i;u ,

Flow with SFC request: SFCRi,
Thresholds: m, n, v,
Iteration times:K;

2: Output: F;
3: Initialize k ¼ 1;
4: Set F and bF as ø;
5: Remove all the links and nodes with less resources to serve

SFCRi;
6: Findmax

uv2L
Cbw

uv , max
u2Vsn

Cft
u and max

u2Vfn

Ccpu
u on G;

7: Calculate vbwi;uv, v
ft
i;u, v

cpu
i;u based on Eqs. (2a)-(4b);

8: Construct LFG;) Function 1
9: while k � K do

10: bF ¼ Calculate the kth shortest path on LFG based on
Eq. (21);

11: if�Isempty(bF) then

12: F ¼ Transform bF from bGi to G;
13: if F satisfies all the constraints of Eqs. (9)–(17) then
14: Receive SFCRi;
15: Update rbwi;uv, r

ft
i;u and rcpui;u ;

16: return F;
17: end
18: else
19: return Routing Failed;
20: end
21: k ¼ kþ 1;
22: end
23: return Routing Failed;

On LFG, since the resource consumption cost is used to
indicate the resource condition of a path, we can achieve

load balancing and avoid bottleneck and congestion by
finding the path with the minimum resource consump-
tion cost in Eq. (21) for each flow with SFC request. Addi-
tionally, noting that, on LFG, there is only one path for
each combination of VNF instances which can satisfy the
demand of the SFC request, the path set of LFG is only
a subset of original network graph. Therefore, LFG pro-
vides a simplified view of the network topology, which
makes the path computation efficient by eliminating sub-
optimal solutions.

Function 1. Construct LFG

1: Input:Network graph: G ¼ ðV;LÞ,
Relative costs: vbwi;uv, v

ft
i;u, v

cpu
i;u ,

Flow with SFC request: SFCRi;

2: Output: bGi ¼ ðbVi; bLiÞ;
3: for j ¼ 1 : l do
4: hðjþ 1Þ ¼ Find the VNF instances belonging to the same

type of ViðjÞ on G;
5: end
6: hð1Þ ¼ Si;
7: hðlþ 2Þ ¼ Ti;
8: for j ¼ 1 : ðlþ 1Þ do
9: for bu 2 hðjÞ do
10: for bv 2 hðjþ 1Þ do
11: Calculate v

i;bubv based on Eq. (20);)Dijkstra
12: end
13: end
14: end
15: Construct bGi ¼ ð bVi; bLiÞ based on v

i;bubv; bubv 2 bLi;
16: return bGi ¼ ðbVi; bLiÞ;

5.2 RA-RA Routing Algorithm

RA-RA provides an efficient way to achieve load balancing
and differentiated routing for flows with SFC requests.
There are two steps included in RA-RA. The first step is to
construct the LFG according to the relative costs, and the
second step is to run a modified k-shortest path algorithm
on LFG to find the path that has the minimum resource
consumption cost and satisfies all the constraints in
Eqs. (9)–(17) for each flow with SFC request.

The pseudocode of RA-RA is described below. First, we
initialize the current iteration times k and empty F and bF
which are used to record the paths on network graph and
LFG, respectively (lines 3-4 in Algorithm 1). Then, all the
nodes and links with less resources to serve SFCRi are
removed from the network graph (line 5 in Algorithm 1).
Next, we compute the maximum capacities of bandwidth,
flow table and CPU in the network (line 6 in Algorithm 1).
After that, we calculate the values of vbwi;uv, v

ft
i;u and vcpui;u which

represent the relative costs of bandwidth, flow table and
CPU (line 7 in Algorithm 1).

Function 1 presents the construction of LFG based on the
relative costs vbwi;uv, v

ft
i;u and vcpui;u . The VNF instances belong-

ing to the same type of Vi are recorded in h sequentially
(lines 3-5 in Function 1). According to LFG, we add the
ingress node Si and egress node Ti to hð1Þ and hðlþ 2Þ (lines
6-7 in Function 1). Then, the SP algorithm, Dijkstra, is used
to produce the links for LFG (lines 8-14 in Function 1). The

Fig. 3. Solving DRP-SFC on LFG.

PEI ET AL.: RESOURCE AWARE ROUTING FOR SERVICE FUNCTION CHAINS IN SDN AND NFV-ENABLED NETWORK 991

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 11,2021 at 08:37:11 UTC from IEEE Xplore. Restrictions apply.

LFG is constructed based on the values of v
i;bubv (line 15 in

Function 1). And we return the LFG in line 16 of Function 1.
We modify the k-shortest path algorithm to get the

solution on LFG (lines 9-22 in Algorithm 1). K represents
the maximum iteration times. We first compare whether
the current iteration times k is bigger than K (line 9 in
Algorithm 1). If k � K, the path with the first minimum
resource consumption cost is calculated on LFG and if

found, this candidate path will be recorded in bF (line 10

in Algorithm 1). Then we check whether bF is empty (line

11 in Algorithm 1). If there is candidate path in bF, this
path will be transformed from LFG to network graph and
recorded in F (line 12 in Algorithm 1). Next, the path
recorded in F will be checked whether it satisfies all the
constraints of Eqs. (9)–(17) (line 13 in Algorithm 1). If all
the constraints are satisfied, this flow will be received and
routed by the path recorded in F (line 14 in Algorithm 1).
After that, we update the ratios of remaining bandwidth,
flow table entries and CPU on links, switch nodes
and function nodes, respectively (line 15 in Algorithm 1).
If there is no available path derived from LFG, this flow
is denied to be served (line 19 in Algorithm 1). If the
path with the first minimum resource consumption cost
returned from LFG cannot satisfy all the constraints of
Eqs. (9)–(17), then we set k ¼ kþ 1 to find the path with
the next minimum resource consumption cost on LFG
(line 21 in Algorithm 1). The RA-RA will stop and deny
this flow until k exceeds the maximum iteration times K
(line 23 in Algorithm 1).

5.3 Complexity Analysis

In this section, we give a detailed complexity analysis of
RA-RA in the worst situation.

When executing RA-RA, first, we need to calculate the
relative costs on links and nodes and the complexity is
OðjVj þ jLjÞ. In the DRP-SFC, the worst situation is that each
function node deploys all types of VNF instances. Under this

circumstance, we need to execute the SP algorithm at most
1
2 jVfnj2þ 2jVfnj times to produce all the links on LFG. The

complexity of the SP algorithm on G ¼ ðV;LÞ is OðjLj þ
jVjlogjVjÞ, then the complexity of constructing LFG results in

OðjVfnj2ðjLjþ jVjlogjVjÞÞ. On LFG, there are at most ljVfnj þ 2

nodes and ðl� 1ÞjVfnj2 þ 2jVfnj links, then theworst situation

is to iterate K times to get the solution, which runs in

OðKl2jVfnj2ðjVfnjþ loglÞÞ. The complexity of path transforma-

tion and resource update isOð1Þ. Because l, which represents

the length of SFC request, is a finite and small value, then the

complexity to solve the DRP-SFC by RA-RA at the worst situ-

ation isOðKl2jVfnj3 þ jVfnj2ðjLj þ jVjlogjVjÞÞ.

6 PERFORMANCE EVALUATION

This section depicts the simulation settings and the per-
formance comparison between the RA-RA and existing
algorithms including the COATS [25], SP [29] and Eigen-
decomposition [24] algorithms. All the algorithms are
implemented with MATLAB 2016a and performed on a
computer with Intel(R) Core(TM) i7-4790 CPU 3.60 GHz
and 32 GB RAM.

6.1 Simulation Settings

6.1.1 Topology Settings

The network graph we use is a US carrier networks topology
namedCORONETCONUSTopology (shown in Fig. 4),which
composes of 60 nodes and 79 links [30], [38]. In the network,
we select function nodes based on the node degree. All the
nodes are sorted in descending order according to the node
degree and the top 30 percent of nodes are set as function
nodes. There are 20 types of VNF instances deployed in the
network. And we deploy 8 types of VNF instances on each
function node. Therefore, there are 18 function nodes and 144
VNF instances belonging to 20 different VNF types [39] in the
network.

The bandwidth capacity of each link is set as 1,200 Mbps
[30]. The capacities of flow table and CPU on the switch
nodes and function nodes are set as 800 units [40] and 8;000
MIPS [39], respectively. In the simulation, di;uv is calculated

according to Eq. (22), where the first part represents the

queuing delay and the second part dpropuv represents the prop-

agation delay on link uv [28]. dtxuv stands for the transmission

delay on link uv and we set it as 10 ms [41]. The propagation
delay dpropuv is calculated according to the length between the

nodes u and v. All the network parameters used in this
paper are described in Table 2.

di;uv ¼
1� rbwi;uv

rbwi;uv
dtxuv þ dpropuv ; 8uv 2 L: (22)

6.1.2 SFC Request and Flow Distribution Settings

For each flow, we set Fbw
i as a constant which randomly falls

in (0, 10] Mbps [14]. Fcpu
i is proportional with Fbw

i . The unit of

Fcpu
i is MIPS and Fcpu

i equals the product between the value

of Fbw
i and a constant distributed in 0 and 10 randomly [33].

Fdelay
i is set between 50-100ms [42].
We classify all the flows into six kinds based on the band-

width and CPU consumptions [32], [33]. The distribution of
flows satisfies the law of two to eight, where elephant flows
account for 20 percent, mice flows account for 50 percent and
dog flows account for 30 percent. The thresholds to differenti-
ate flows with SFC requests are set as m ¼ 0:1 Mbps, n ¼ 1
Mbps, v ¼ 5 MIPS. The bandwidth and CPU consumptions
of these flows are set as below:

� computationally sparse mice flow: The CPU con-
sumption is no more than 5 MIPS and the bandwidth
consumption is between 0 and 0.1 Mbps.

Fig. 4. CORONET CONUS topology.

992 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 4, JULY/AUGUST 2021

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 11,2021 at 08:37:11 UTC from IEEE Xplore. Restrictions apply.

� computationally sparse dog flow: The CPU con-
sumption is no more than 5 MIPS and the bandwidth
consumption is between 0.1 and 1 Mbps.

� computationally sparse elephant flow: The CPU
consumption is no more than 5 MIPS and the band-
width consumption is between 1 and 10 Mbps.

� computationally dense mice flow: The CPU con-
sumption is more than 5 MIPS and the bandwidth
consumption is between 0 and 0.1 Mbps.

� computationally dense dog flow: The CPU consump-
tion is more than 5 MIPS and the bandwidth con-
sumption is between 0.1 and 1 Mbps.

� computationally dense elephant flow: The CPU con-
sumption is more than 5 MIPS and the bandwidth
consumption is between 1 and 10 Mbps.

Moreover, the length of SFC request in this simulation
is 4, and the maximum iteration times of RA-RA is 5. In
the simulation, each experiment is repeated 20 times.

6.1.3 Introduction of Comparing Algorithms

In the simulation, the performance of RA-RA is compared
with the COATS, SP and Eigendecomposition algorithms. SP
is realized and integrated in theOpenDaylight platformwhich
is the largest open source SDN controller to schedule flows
with SFC requests in service function selection framework.

It is worth noting that we use Eigen to represent the Eigende-
composition algorithm in the paper.

Before introducing the simulation results, we would like
to give a brief description to these comparing algorithms.

� COATS: Each link keeps a cost which is calculated
based on the remaining bandwidth on the link. Then
COATS constructs a layered graph and selects the path
with the lowest cost to route a flowwith SFC request.

� SP: The Dijkstra algorithm is used to select appropri-
ate VNF instances and route a flow with SFC request
from the ingress node to egress node passing
through the selected VNF instances with the shortest
path sequentially.

� Eigen: First, Eigen constructs the adjacent matrixes of
SFC request and network topology, respectively. Then,
the adjacent matrix of SFC request is extended with
the same dimension of network topology’s. Finally,
Umeyama’s eigendecomposition approach and wid-
est-shortest path routing algorithm are used to com-
pute the optimal matching between the SFC request
and network topology.

6.2 Simulation Results

6.2.1 Comparison of Average Acceptance Rate,

Throughput and Hop Count

In Fig. 5, we present the comparison between the RA-RA
and COATS, SP and Eigen in terms of average acceptance
rate, throughput and hop count.

Fig. 5a shows the average acceptance rate of these algo-
rithms. Average acceptance rate reflects the flows served by
the network accounting for the total arrival ones. In the simu-
lation, RA-RA performs the best, which gets about 10 percent
higher in average acceptance rate than that of COATS. And
the performance of COATS is about 5 percent higher than that
of SP and 20 percent higher than that of Eigen. In RA-RA, we
achieve load balancing among multiple kinds of resources
andmanage to route flowswith SFC requests differentiatedly.
Therefore, RA-RA does better than other comparing algo-
rithms. As for COATS, on the one hand, it is a variation of the
SP algorithm which is beneficial to reduce the consumptions
of bandwidth and flow table in the network. On the other
hand, COATS balances the consumption of bandwidth by
defining the cost due to the remaining bandwidth on links.
Comparing with the SP and Eigen, COATS can serve more
flows in the network. However, for the reason that COATS

TABLE 2
Simulation Parameter Settings

Description Value

Network topology CORONET CONUS Topology

Proportion of function node 30%

Proportion of mice, dog, and elephant flows 50%, 30% and 20%

Total VNF types 20

Number of VNF types per function node 8

Maximum iteration times of RA-RA 5

Parameters Description Value

Cbw
uv Bandwidth capacity on link uv 1,200 Mbps

Cft
u Flow table capacity on switch node u 800 units

Ccpu
u CPU capacity on function node u 8,000 MIPS

Fbw
i Bandwidth consumption (0, 10] Mbps

Fcpu
i CPU consumption (0, 100] MIPS

Fdelay
i Maximum toleration delay [50, 100] ms

dtxuv Transmission delay on link uv 10 ms

dpropuv Propagation delay on link uv defined on network topology

m; n;v Thresholds of flow classification 0.1 Mbps, 1 Mbps and 5 MIPS

jMj Total VNF instances 144

jVij Length of SFC request 4

Fig. 5. The comparison of average acceptance rate, throughput and hop count.

PEI ET AL.: RESOURCE AWARE ROUTING FOR SERVICE FUNCTION CHAINS IN SDN AND NFV-ENABLED NETWORK 993

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 11,2021 at 08:37:11 UTC from IEEE Xplore. Restrictions apply.

neglects the capacities of flow table and CPU, it will result in
the resource exhaustion on the nodes with fewer resources,
which leads to worse performance comparing with RA-RA.
As for Eigen, Umeyama’s eigendecomposition approach can-
not ensure to get the optimal path and the widest-shortest
path routing algorithm results in longer paths in the chaining
solution, so there are more resource consumptions, which
leads to theworst performance in the simulation.

Fig. 5b presents the average throughput of these four algo-
rithms. The average throughput reflects the total bandwidth
of flows received successfully in the network. In this part, the
throughput of RA-RA is about 700 Mbps higher than that of
COATS, 1,500 Mbps higher than that of SP and 3,000 Mbps
higher than that of Eigen. Eigen results in the lowest through-
put, because the longer paths consume more bandwidth and
flow table entries. The performances of COATS and the SP are
lower than that of RA-RA because of unbalanced utilization
of the resources in the network. On the contrary, RA-RA real-
izes the load balancing and differentiated routing by fine-
grained flow scheduling. Therefore, RA-RA can avoid bottle-
necks on the links and nodes, which results in higher through-
put comparingwith other algorithms.

Fig. 5c presents the average hop count of these four algo-
rithms. The average hop count represents the number of
nodes a flowwith SFC request needs to traverse before reach-
ing the egress node. According to the result, SP performs the
best, the COATS surpasses RA-RA and Eigen is the worst.
Due to the fact that Eigen tends to route flows with SFC
requests with long paths, the paths with hop counts distribut-
ing from 15 to 35 account for about 55 percent, which is only
about 15 percent for RA-RA, 8 percent for COATS and 3 per-
cent for SP. When routing flows with SFC requests, RA-RA
takes bandwidth, flow table, CPU and flow features into con-
sideration at the same time, so it incurs a little longer paths
than COATS’s. As SP always finds the paths with the shortest
hop counts for flows, the performance of SP in this simulation
is the best among other algorithms. In addition, from Fig. 5c,
we get that the RA-RA, COATS and SP are prone to produce
short paths, which are beneficial to reduce end-to-end delay
and satisfy low-delay demands.

6.2.2 Comparison of Average Remaining Bandwidth,

Flow Table Entries and CPU

The CDF curves in Fig. 6 present the comparison of these
algorithms in terms of average remaining bandwidth, flow
table entries and CPU.

Fig. 6a presents the CDF of the average remaining band-
width on links when 2,000 and 3,500 flows with SFC requests
are successfully received. The performance of COATS is
higher than that of all the other algorithms. The performance
of RA-RA outperforms that of SP, and Eigen falls to balance
the bandwidth consumption on links. Because of longer paths
and unbalanced resource utilization for Eigen, when receiv-
ing 2,000 flows, the proportion of the paths with remaining
bandwidth less than 600 Mbps is about 37 percent, which is
only 12 percent for SP, 10 percent for RA-RA and 3 percent
for COATS. When receiving 3,500 flows, the proportion of
bottleneck links of SP increases to 10 percent, while there are
no bottleneck links for RA-RA and COATS. This is because
SP fails to achieve load balancing on the bandwidth, which
leads to network congestion. Nevertheless, when receiving
3,500 flows, for RA-RA, there are about 40 percent of links
with the remaining bandwidth between 400 and 800 Mbps,
while, for COATS, it is about 60 percent. Therefore, the distri-
bution of remaining bandwidth for COATS on links is more
balanced comparing with that of RA-RA. The reason is that,
for COATS, only the bandwidth on links is considered when
routing flows with SFC requests. And RA-RA needs to bal-
ance the consumptions of bandwidth, flow table and CPU on
links and nodes, so COATS can get better performance in this
simulation.

Fig. 6b illustrates the CDF of average remaining flow table
entries on switch nodes. Here, the performance of RA-RA
outperforms that of other algorithms and the performances
of COATS and SP are both better than that of Eigen. Because
of more resource consumption, when receiving 2,000 flows,
there are about 5 percent of switch nodes becoming bottle-
necks for Eigen. When receiving 3,500 flows, there are about
9 and 12 percent of switch nodes becoming bottlenecks for
COATS and SP, while there is no switch node running out of
flow table entries for RA-RA. Moreover, for COATS and SP,
there are about 40 percent of switch nodes with remaining
flow table entries fewer than 300 and 400 units, respectively,
while the proportions for RA-RA are only about 22 and 35
percent. This is because the relative costs defined in Eqs.
(2a)-(4b) can indicate the resource conditions on links and
nodes. If the resources on links or nodes are going to be used
up, the relative costs will increase quickly, which can protect
them from being exhausted. So RA-RA can efficiently avoid
congestion and achieve load balancing by minimizing the
resource consumption costs for flows with SFC requests in
the network.

Fig. 6. CDF of average remaining bandwidth, flow table entries and CPU.

994 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 4, JULY/AUGUST 2021

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 11,2021 at 08:37:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 6c describes the CDF of average remaining CPU
on function nodes. In this part, the performance of RA-RA
surpasses that of other algorithms, while Eigen dose better
than COATS and the SP performs the worst. When receiving
2,000 flows, there are no bottleneck nodes that are short of
CPU resource for these four algorithms. However, when
receiving 3,500 flows, the bottleneck nodes of COATS and SP
increase obviously. This is because both the COATS and SP
neglect to optimize the CPU on function nodes. Furthermore,
for COATS and SP, the utilization of CPU on function nodes
is unbalanced comparing with RA-RA. As shown in Fig. 6c,
when receiving 3,500 flows, the proportion of function nodes
of which remaining CPU are from 2,000 to 4,000 MIPS is
about 70 percent for RA-RA, which is only about 35 percent
for COATS and SP. Though, Eigen gets balanced distribution
of CPU resource, the huge amounts of bandwidth and flow
table consumptions lead to low network performance.

6.2.3 Comparison of Average Acceptance Rate in

Different Scenarios

In Fig. 7, we change the number of VNF types per function
node, the length of SFC requests and the proportion of func-
tion node to compare the average acceptance rate of RA-RA
with comparing algorithms’. The average acceptance rate is
evaluated under 8,000 flows with SFC requests.

Fig. 7c shows the average acceptance rate under different
number of VNF types per function node. In the simulation,
the average acceptance rates of these tested algorithms grow
quickly when increasing the number of VNF types per func-
tion node. This is because, when the number of VNF types on
function nodes increases, it is more possible for SFC requests
to be served by one function node instead of being split on
the VNF instances distributed on several function nodes.
Therefore, it is beneficial for the reduction of bandwidth and
flow table consumptions by increasing the number of VNF
types per function node. In addition, for RA-RA, COATS and
SP, the average acceptance rates grow slowly, when increas-
ing the number of VNF types per function node from 10 to
12. The reason is that, comparing with the bandwidth and
flow table entries, CPU on function nodes becomes scarce
which prevents the network from receiving flows with SFC
requests. This can be proven by the curve of Eigen. Generally,
comparing with CPU on function nodes, the bandwidth and
flow table entries are more scarce for Eigen. When increasing
the number of VNF types, the consumptions of bandwidth

and flow table reduce and there are more flows with SFC
requests can be served in the network. Therefore, the curve
of Eigen grows quickly with the increasement of VNF types
per function node.

Fig. 7b shows the average acceptance rate under different
length of SFC request. The longer the length of SFC request is,
themore resource consumptionwill be in the network. There-
fore, these curves drop quickly when increasing the length
of SFC request. Due to the fact that COATS and SP neglect to
balance the consumptions on bandwidth, flow table and CPU
at the same time and cannot differentiatedly route flows with
SFC requests based on flow features, the performance gaps
between these two algorithms and RA-RA become obvious,
when the length of SFC request increases.

Fig. 7c shows the average acceptance rate under different
proportion of function nodes. More proportion of function
nodesmeansmore flow table entries andmore CPU resources
in the network.When the proportion of function node is small,
there are few VNF instances deployed in the network. Then,
there are few choices for an SFC request to select VNF instan-
ces to satisfy its predefined order. Therefore,when the propor-
tion of function node stays low between 10 and 20 percent, the
performance gaps among these tested algorithms are small.
And the performance gaps become obvious, when increasing
the proportion of function nodes between 20 to 40 percent.

7 CONCLUSION

In the paper, tomake a differentiated routing strategywith the
optimal dynamic SFC formation and load balancing among
multiple resources for flows with SFC requests, we study the
DRP-SFC in SDN and NFV-enabled network. This problem
is formulated as a BIP model with the aim to minimize
the resource consumption costs for flows with SFC requests.
In order to solve theDRP-SFC,we haveproposed a novel rout-
ing algorithmnamedRA-RA.RA-RAmakes efficient selection
of VNF instances and find the associated paths for flows with
SFC requests by transforming the network graph to LFG. In
RA-RA, relative costs are used to balance the resource con-
sumptions and avoid congestion in the network. Moreover,
we take the resource preference as flow features and classify
all the flows into different kinds to achieve differentiated rout-
ing for flows with SFC requests. The performance evaluation
shows that RA-RA can efficiently solve the DRP-SFC and
obtain higher network performance in terms of average

Fig. 7. Comparison of average acceptance rate in different scenarios.

PEI ET AL.: RESOURCE AWARE ROUTING FOR SERVICE FUNCTION CHAINS IN SDN AND NFV-ENABLED NETWORK 995

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 11,2021 at 08:37:11 UTC from IEEE Xplore. Restrictions apply.

acceptance rate, throughput, hop count and load balancing,
comparingwith other algorithms in existing literatures.

In the future work, we intend to extend our approach in a
number of ways. We want to extend our approach to deal
with VNF deployment problem in both ISP network and
datacenter. We intend to design high-performance differen-
tiated routing algorithm for flows with SFC requests to
reduce the computation complexity and enhance the time
efficiency of routing computation. And we also want to
achieve fast failure resilience for flows with SFC requests in
SDN and NFV-enabled network in the future.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China (NSFC) under Grant No. 61671420,
61672484.

REFERENCES

[1] R. Mijumbi, J. Serrat, et al., “Network function virtualization:
State-of-the-art and research challenges,” IEEE Commun. Surveys
Tuts., vol. 18, no. 1, pp. 236–262, Jan.–Mar. 2016.

[2] C. Pham, N. H. Tran, and S. Ren, “Traffic-aware and Energy-
efficient vNF placement for service chaining: Joint sampling and
matching approach,” IEEE Trans. Services Comput., 2017.

[3] OpenFlow Switch Specification: Version 1.5.1. [Online]. Available:
https://www.opennetworking.org/images/stories/download-
s/sdn-resources/onf-specifications/openflow/openflow-
switch-v1.5.1.pdf

[4] J. Martins, M. Ahmed, C. Raiciu, et al., “ClickOS and the art of net-
work function virtualization,” in Proc. 11th USENIX Conf. Netw.
Syst. Des. Implementation., 2014, pp. 459–473.

[5] J. Sherry, S. Hasan, C. Scott, et al., “Making middleboxes someone
else’s problem: Network processing as a cloud service,”
SIGCOMM Comput. Commun. Rev., vol. 42, no. 4, pp. 13–24, 2012.

[6] J. Liu, Y. Li, and Y. Zhang, “Improve service chaining perfor-
mance with optimized middlebox placement,” IEEE Trans. Serv-
ices Comput., vol. 10, no. 4, pp. 560–573, Jul./Aug. 2017.

[7] J. Halpern and C. Pignataro, “Service function chaining (SFC)
architecture,” Informational RFC, RFC 7665. 2015. [Online].
Available: https://tools.ietf.org/rfc/rfc7665.txt

[8] P. Quinn and T. Nadeau, “Problem statement for service function
chaining,” Informational RFC, RFC 7498, 2015. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc7498.txt

[9] W. John, K. Pentikousis, G. Agapiou, et al., “Research directions
in network service chaining,” in Proc. IEEE SDN Future Netw.
Services, 2013, pp. 1–7.

[10] D. Li, P. Hong, K. Xue, and J. Pei, “Virtual network function place-
ment considering resource optimization and SFC requests in
cloud datacenter,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 7,
pp. 1664–1677, Jul. 2018.

[11] J. G. Herrera and J. F. Botero, “Resource allocation in NFV: A com-
prehensive survey,” IEEE Trans. Netw. Service Manage., vol. 13,
no. 3, pp. 518–532, Sep. 2016.

[12] H. Huang, S. Guo, P. Li, et al., “Cost minimization for rule caching
in software defined networking,” IEEE Trans. Parallel Distrib. Syst.,
vol. 27, no. 4, pp. 1007–1016, Apr. 2016.

[13] A. Dixit, F. Hao, S. Mukherjee, et al., “ElastiCon: An elastic distrib-
uted SDN controller,” in Proc. ACM/IEEE Symp. Archit. Netw. Com-
mun. Syst., 2014, pp. 17–28.

[14] J. Pei, P. Hong, and D. Li, “Virtual network function selection and
chaining based on deep learning in SDN and NFV-enabled
networks,” 2018 IEEE Int. Conf. Commu.Workshops (ICCWorkshops),
Kansas City,MO, USA, 2018, pp. 1–6.

[15] T. Wood, K. K. Ramakrishnan, J. Hwang, et al., “Toward a soft-
ware-based network: Integrating software defined networking
and network function virtualization,” IEEE Netw. Mag., vol. 29,
no. 3, pp. 36–41, May/Jun. 2015.

[16] W. Haeffner, J. Napper, et al., “Service function chaining use cases
in mobile networks,” IETF Draft, draft-ietf-sfc-use-case-mobility-08,
2018. [Online]. Available: https://www.ietf.org/id/draft-ietf-sfc-
use-case-mobility-08.txt

[17] W. Liu, H. Li, O. Huang, et al., “Service function chaining (SFC)
general use cases,” IETF Draft, draft-liu-sfc-use-cases-08. 2014.
[Online]. Available: https://www.ietf.org/archive/id/draft-liu-
sfc-use-cases-08.txt

[18] D. Bhamare, R. Jain, M. Samaka, et al., “A survey on service func-
tion chaining,” J. Netw. Comput. Appl., vol. 75, pp. 138–155, 2016.

[19] G. Cheng, H. Chen, H. Hu, et al., “Enabling network function
combination via service chain instantiation,” Comput. Netw., vol.
92, no. 2, pp. 396–407, 2015.

[20] I. Trajkovska, M.-A. Kourtis, C. Sakkas, et al., “SDN-based service
function chaining mechanism and service prototype implementa-
tion in NFV scenario,” Comput. Standards Interfaces, vol. 54, no. 4,
pp. 247–265, 2017.

[21] R. Yu, G. Xue, V. T. Kilari, et al., “Network function virtualization
in the multi-tenant cloud,” IEEE Netw., vol. 29, no. 3, pp. 42–47,
May/Jun. 2015.

[22] A. M. Medhat, G. Carella, C. L€uck, et al., “Near optimal service
function path instantiation in a multi-datacenter environment,” in
Proc. IEEE Int. Conf. Netw. Service Manage., 2015, pp. 336–341.

[23] H. Oh, D. Yu, Y.-H. Choi, et al., “Design of an efficient method for
identifying virtual machines compatible with service Chain in a
virtual network environment,” Int. J. Multimedia Ubiquitous Eng.,
vol. 9, no. 11, pp. 197–208, 2014.

[24] M. Mechtri, C. Ghribi, and D. Zeghlache, “A scalable algorithm
for the placement of service function chains,” IEEE Trans. Netw.
Service Manage., vol. 13, no. 3, pp. 533–546, Sep. 2016.

[25] Z. Cao, M. Kodialam, T. V. Lakshman, et al., “Traffic steering
in software defined networks: Planning and online routing,”
ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, pp. 65–
70, 2014.

[26] M. F. Bari, S. R. Chowdhury, R. Ahmed, et al., “Orchestrating vir-
tualized network functions,” IEEE Trans. Netw. Service Manage.,
vol. 13, no. 4, pp. 725–739, Dec. 2016.

[27] A. Viterbi, “Error bounds for convolutional codes and an asymp-
totically optimum decoding algorithm,” IEEE Trans. Inf. Theory,
vol. 13, no. 2, pp. 260–269, Apr. 1967.

[28] A. Dwaraki and T. Wolf, “Adaptive service-chain routing for vir-
tual network functions in software-defined networks,” in Proc.
ACM Workshop Hot Topics Middleboxes Netw. Function Virtualiza-
tion, 2016, pp. 32–37.

[29] OpenDaylight. [Online]. Available: https://media.readthedocs.
org/pdf/opendaylight/latest/opendaylight.pdf

[30] H. Huang, S. Guo, J. Wu, et al., “Joint middlebox selection and
routing for software-defined networking,” in Proc. IEEE Int. Conf.
Commun., 2016, pp. 1–6.

[31] F. Jalali, K. Hinton, and R. Ayre, “Fog computing may help to save
energy in cloud computing,” IEEE J. Sel. Areas Commun., vol. 34,
no. 5, pp. 1728–1739, May 2016.

[32] T. Benson, A. Akella, and D. A. Maltz, “Network traffic character-
istics of data centers in the wild,” in Proc. ACM SIGCOMM Conf.
Internet Meas., 2010, pp. 267–280.

[33] D. Kliazovich, P. Bouvry, and S. U. Khan, “GreenCloud: A packet-
level simulator of energy-aware cloud computing data centers,”
J. Supercomput., vol. 62, no. 3, pp. 1263–1283, 2012.

[34] R. Trestian, K. Katrinis, and G.-M. Muntean, “OFLoad: An Open-
Flow-based dynamic load balancing strategy for datacenter
networks,” IEEE Trans. Netw. Service Manage., vol. 14, no. 4,
pp. 792–803, Dec. 2017.

[35] I. F. Akyildiz, A. Lee, P. Wang, et al., “Research challenges for traf-
fic engineering in software defined networks,” IEEE Netw., vol. 30,
no. 3, pp. 52–58, May/Jun. 2016.

[36] S.-C. Chao, K. C.-J. Lin, and M.-S. Chen, “Flow classification for
software-defined data centers using stream mining,” IEEE Trans.
Services Comput. 2016. [Online]. Available: https://doi.org/
10.1109/TSC.2016.2597846

[37] D. Adami, G. Antichi, R. G. Garroppo, et al., “Towards an SDN
network control application for differentiated traffic routing,” in
Proc. IEEE Int. Conf. Commun., 2015, pp. 5827–5832.

[38] Monarch Network Architects, “Sample Optical Network Topology
Files”. [Online]. Available: http://www.monarchna.com/topology.
html

[39] T.-W. Kuo, B.-H. Liou, K. C.-J. Lin, et al., “Deploying chains of
virtual network functions: On the relation between link and server
usage,” in Proc. IEEE INFOCOM, 2016, pp. 1–9.

[40] K. He, J. Khalidy, A. Gember-Jacobson, et al., “Measuring control
plane latency in SDN-enabled switches,” in Proc. ACM SIGCOMM
Symp. Softw. Defined Netw. Res., 2015, pp. 1–6.

996 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 4, JULY/AUGUST 2021

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 11,2021 at 08:37:11 UTC from IEEE Xplore. Restrictions apply.

https://www.opennetworking.org/images/stories/download-s/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/images/stories/download-s/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/images/stories/download-s/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf
https://tools.ietf.org/rfc/rfc7665.txt
http://www.rfc-editor.org/rfc/rfc7498.txt
https://www.ietf.org/id/draft-ietf-sfc-use-case-mobility-08.txt
https://www.ietf.org/id/draft-ietf-sfc-use-case-mobility-08.txt
https://www.ietf.org/archive/id/draft-liu-sfc-use-cases-08.txt
https://www.ietf.org/archive/id/draft-liu-sfc-use-cases-08.txt
https://media.readthedocs.org/pdf/opendaylight/latest/opendaylight.pdf
https://media.readthedocs.org/pdf/opendaylight/latest/opendaylight.pdf
https://doi.org/10.1109/TSC.2016.2597846
https://doi.org/10.1109/TSC.2016.2597846
http://www.monarchna.com/topology.html
http://www.monarchna.com/topology.html

[41] R. Ramaswamy, N. Weng, and T. Wolf, “Characterizing network
processing delay,” in Proc. IEEE Global Telecommun. Conf., 2004,
pp. 1629–1634.

[42] L. Pantel and L. C. Wolf, “On the impact of delay on real-time
multiplayer games,” in Proc. ACM Int. Workshop Netw. Operating
Syst. Support Digit. Audio Video, 2002, pp. 23–29.

Jianing Pei received the BS degree from the
Department of Information and Electrical Engineer-
ing (IEE), China University of Mining and Technol-
ogy (CUMT), in 2015 and he is working toward
the PhD degree at the University of Science and
Technology of China (USTC) with his advisor Peilin
Hong now. His research interests include machine
learning, SDN, NFV, and the network resource
orchestration andmanagement.

Peilin Hong received the BSandMSdegrees from
the Department of Electronic Engineering and
Information Science (EEIS), University of Science
and Technology of China (USTC), in 1983 and
1986, respectively. Currently, she is a professor
and advisor for PhD candidates with the Depart-
ment of EEIS, USTC. Her research interests
include next-generation Internet, policy control, IP
QoS, and information security. She has published
two books and more than 100 academic papers in
several journals and conference proceedings.

Kaiping Xue (M09-SM15) received the BS degree
from the Department of Information Security,
University of Science and Technology of China
(USTC), in 2003 and the PhD degree from the
Department of Electronic Engineering and Informa-
tion Science (EEIS), USTC, in 2007. Currently, he
is an associate professor with the Department of
Information Security and Department of EEIS,
USTC. His research interests include next-
generation Internet, distributed networks, and net-
work security. He is a senior member of the IEEE.

Defang Li received the BS degree from the
Department of Electronic Engineering and Infor-
mation Science (EEIS), University of Science
and Technology of China (USTC), in 2014 and he
is working toward the PhD degree at the Univer-
sity of Science and Technology of China with his
advisor Peilin Hong now. His research interests
include SDN, NFV, and the network resource
orchestration and management. He is a student
member of the IEEE.

PEI ET AL.: RESOURCE AWARE ROUTING FOR SERVICE FUNCTION CHAINS IN SDN AND NFV-ENABLED NETWORK 997

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 11,2021 at 08:37:11 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

