
TAFC: Time and Attribute Factors Combined
Access Control for Time-Sensitive

Data in Public Cloud
Jianan Hong, Kaiping Xue , Senior Member, IEEE, Yingjie Xue, Weikeng Chen ,

David S. L. Wei, Senior Member, IEEE, Nenghai Yu , and Peilin Hong

Abstract—The new paradigm of outsourcing data to the cloud is a double-edged sword. On the one hand, it frees data owners from the

technical management, and is easier for data owners to share their data with intended users. On the other hand, it poses new challenges

on privacy and security protection. To protect data confidentiality against the honest-but-curious cloud service provider, numerousworks

have been proposed to support fine-grained data access control. However, till now, no schemes can support both fine-grained access

control and time-sensitive data publishing. In this paper, by embedding timed-release encryption into Ciphertext-Policy Attribute-based

Encryption (CP-ABE), we propose a new time and attribute factors combined access control on time-sensitive data for public cloud

storage (named TAFC). Based on the proposed scheme, we further propose an efficient approach to design access policies facedwith

diverse access requirements for time-sensitive data. Extensive security and performance analysis shows that our proposed scheme is

highly efficient and satisfies the security requirements for time-sensitive data storage in public cloud.

Index Terms—Cloud storage, access control, time-sensitive data, fine granularity

Ç

1 INTRODUCTION

CLOUD storage service has significant advantages on
both convenient data sharing and cost reduction [1],

[2]. Thus, more and more enterprises and individuals out-
source their data to the cloud to be benefited from this ser-
vice. However, this new paradigm of data storage poses
new challenges on data confidentiality preservation [3], [4].
As cloud service separates the data from the cloud service
client (individuals or entities), depriving their direct control
over these data [5], the data owner cannot trust the cloud
server to conduct secure data access control. Therefore, the
secure access control problem has become a challenging
issue in public cloud storage.

Ciphertext-policy attribute-based encryption (CP-ABE) [6]
is a useful cryptographic method for data access control in
cloud storage [7], [8], [9], [10], [11], [12]. All these CP-ABE
based schemes enable data owners to realize fine-grained and
flexible access control on their own data. However, CP-ABE
determines users’ access privilege based only on their

inherent attributes without any other critical factors, such as
the time factor. In reality, the time factor usually plays an
important role in dealing with time-sensitive data [13], [14],
[15] (e.g., to publish a latest electronic magazine, or to expose
a company’s future business plan). In these scenarios, both
the mechanism of access privilege timed releasing and fine-
grained access control should be together taken into account.
Let us take the enterprise data exposure for instance: A com-
pany usually prepares some important files for different
intended users, and these users can gain their access privilege
at different time points. For example, the future plan of this
companymay contain some business secrets. Thus at an early
time, the access privilege can be released to the CEO only.
Then the managers of some relevant departments could get
access privilege at a later time point, when they take responsi-
bility for the plan execution. At last, other employees in some
specific departments of the company can access the data to
evaluate the completeness of this enterprise plan. When
uploading time-sensitive data to the cloud, the data owner
wants different users to access the content after different time
points. To the outsourceddata storage, CP-ABE can character-
ize different users and provide fine-grained access control.
However, to our best knowledge, these schemes cannot sup-
port gradual access privilege releasing.

To realize the function of timed releasing, it is necessary
to introduce an effective scheme, which will not release the
data access privilege to intended users until reaching pre-
defined time points. A trivial solution is to let data owners
manually release the time-sensitive data: The owner
uploads the encrypted data under different policies at each
releasing time such that the intended users cannot access

� J. Hong, Y. Xue, W. Chen, N. Yu, and P. Hong are with the Department of
Electronic Engineering and Information Science, University of Science and
Technology of China, Hefei 230027, China. E-mail: {hongjn, xyj1108,
cwk32}@mail.ustc.edu.cn, {ynh, plhong}@ustc.edu.cn.

� K. Xue is with the Department of Electronic Engineering and Information
Science, University of Science and Technology of China, Hefei 230027,
China, and the State Key Laboratory of Information Security, (Institute of
Information Engineering), Chinese Academy of Sciences, Beijing 100093,
China. E-mail: kpxue@ustc.edu.cn.

� D.S.L. Wei is with the Computer and Information Science Department,
FordhamUniversity, NewYork, NY 10458. E-mail: wei@dsm.fordham.edu.

Manuscript received 22 Aug. 2016; revised 11 Jan. 2017; accepted 6 Mar.
2017. Date of publication 14 Mar. 2017; date of current version 12 Feb. 2020.
Digital Object Identifier no. 10.1109/TSC.2017.2682090

158 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 1, JANUARY/FEBRUARY 2020

1939-1374� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2095-7523
https://orcid.org/0000-0003-2095-7523
https://orcid.org/0000-0003-2095-7523
https://orcid.org/0000-0003-2095-7523
https://orcid.org/0000-0003-2095-7523
https://orcid.org/0000-0003-0068-1793
https://orcid.org/0000-0003-0068-1793
https://orcid.org/0000-0003-0068-1793
https://orcid.org/0000-0003-0068-1793
https://orcid.org/0000-0003-0068-1793
https://orcid.org/0000-0003-4417-9316
https://orcid.org/0000-0003-4417-9316
https://orcid.org/0000-0003-4417-9316
https://orcid.org/0000-0003-4417-9316
https://orcid.org/0000-0003-4417-9316
https://orcid.org/0000-0002-3027-1990
https://orcid.org/0000-0002-3027-1990
https://orcid.org/0000-0002-3027-1990
https://orcid.org/0000-0002-3027-1990
https://orcid.org/0000-0002-3027-1990
mailto:
mailto:
mailto:
mailto:
mailto:

the data until the corresponding time arrives. However, this
solution forces the owner to repeatedly upload the different
encryption versions of the same data, which puts unneces-
sary and heavy burden on the data owner.

From the perspective of cryptography, the function of
timed access privilege releasing can be achieved by Timed-
Release Encryption (TRE). Rivest et al. [16] proposed the
first practical TRE algorithm, which has been subsequently
introduced into different scenarios [17], [18], [19]. In a
TRE-based system, a trust time agent, rather than data
owner, can uniformly release the access privilege at a spe-
cific time. Some schemes, such as [20], [21], have been pro-
posed to integrate TRE into remote data access control.
However, these schemes either lack fine-grained access con-
trol or leave an unbearable burden.

How to achieve the capacity of both timed-release and fine-
grained access control in cloud storage? A direct but naive
method is to handle the time factor as an attribute [20].
However, unbearable number of time-related keys need to
be issued to each user at each pre-defined time point, which
introduces heavy overhead on both computation and com-
munication. Qin et al. [18] made a preliminary attempt to
integrate time with attributes, but it only addresses the issue
that the attributes’ life period of each user is limited by time.
A more practical requirement is that: each user with differ-
ent attribute set can have different releasing time points for
the same file. Unfortunately, Qin’s scheme cannot meet this
requirement.

In this paper, we propose an efficient time and attribute
factors combined access control scheme, named TAFC, for
time-sensitive data in public cloud. Our scheme possesses
two important capabilities: 1) It inherits the property of fine
granularity from CP-ABE; 2) By introducing the trapdoor
mechanism, it further retains the feature of timed release
from TRE. Note that in TAFC, the introduced trapdoor
mechanism is only related to the time factor, and only one
corresponding secret needs to be published when exposing
the related trapdoors. This makes our scheme highly effi-
cient, which only brings about little overhead to the original
CP-ABE based scheme. We should address how to design
an efficient access structure for arbitrary access privilege
construction with both time and attribute factors, especially
when an access policy embeds multiple access privilege
releasing time points. As an extension of the previous con-
ference version [22], we give the potential sub-policies for
time-sensitive data, and then present an efficient and practi-
cal method to construct relevant access structures.

The main contributions of this paper can be summarized
as follows:

1) By integrating TRE and CP-ABE in public cloud stor-
age, we propose an efficient scheme to realize secure
fine-grained access control for time-sensitive data. In
the proposed scheme, the data owner can autono-
mously designate intended users and their relevant
access privilege releasing time points. Besides realiz-
ing the function, it is proved that the negligible bur-
den is upon owners, users and the trusted CA.

2) We present how to design access structure for any
potential timed release access policy, especially
embedding multiple releasing time points for differ-
ent intended users. To the best of our knowledge, we

are the first to study the approach to design struc-
tures for general time-sensitive access requirements.

3) Furthermore, a rigorous security proof is given to
validate that the proposed scheme is secure and
effective.

The rest of this paper is organized as follows. We first
review some existing work that are related to data access
control for time-sensitive data in Section 2. In Section 3, we
present the system architecture and state the security model.
Section 4 describes main techniques. In Section 5, we give
detailed algorithm of our proposed TAFC, and analyze the
scheme in terms of its security and performance in Section 6.
Section 7 provides an effective method to design access
polices for any potential access requirement of time-sensitive
data. Finally, we conclude this paper in Section 8.

2 RELATED WORK

Based on various cryptographic primitives, there have been
numerous works on secure data sharing in cloud storage.
Among these schemes, some aimed at protecting the integ-
rity of the shared data, e.g., [23], [24], [25], and some aimed
at protecting the confidentiality and access control of the
data, e.g., [8], [9], [10], [26], [27], [28], [29], [30]. In the area of
data access control, attribute-based encryption (ABE) [31] is
utilized as a basic cryptographic technique. These ABE-
based access control schemes, in general, can be divided
into two main categories: key-policy ABE (KP-ABE) based
schemes [32], such as [33], [34]; and ciphertext-policy ABE
based schemes [6], such as [8], [9], [10], [11]. The latter one
is more suitable for achieving flexible and fine-grained
access control for the public cloud, in which each file is
labelled with an access structure, and each user owes a secu-
rity key embedded with a set of attributes.

However, the existing ABE based schemes do not support
the scenario where the access privilege of one file is required
to be respectively released to different sets of users after dif-
ferent time points, but needs only one time of the ciphertext
upload. A trivial solution is to let the data owner him/herself
retrieve the file, re-encrypt it under the new policy, and
upload it again when the releasing time arrives. However,
such solution brings about heavy burden of both communi-
cation and computation overhead on the data owner. Goyal
et al. [32] and Yang et al. [35], [36] have proposed policy
update methods for KP-ABE based and CP-ABE based
schemes respectively. In [32], [35], [36], if the data owner
wants to release the access privilege to new sets of users, he/
she does not need to re-encrypt and upload the whole file.
Taking Yang’s scheme [35] as an example, the data owner
generates and sends a policy update key to the cloud, and
the cloud can re-encrypt the stored file. With the modifica-
tion of access policy, new sets of users are able to access the
file. However, Yang’s scheme have just discussed how to
update the access structure, but not embedded the time fac-
tor into the access structure, which requires that the data
owner must be online when implementing policy updating.
Therefore, it is desperately needed to devise an efficient
scheme, inwhich the data owner can designate all of the file’s
future access policies when it is first encrypted.

Towards this challenge, Timed-Release Encryption
becomes a promising primitive, in which, a trusted time
agent, instead of data owners, uniformly executes the

HONG ETAL.: TAFC: TIME AND ATTRIBUTE FACTORS COMBINED ACCESS CONTROL FOR TIME-SENSITIVE DATA IN PUBLIC... 159

timed-release function. Such notion has been widely inter-
grated to many scenarios. Yuan et al. [17] makes TRE be
integrated to the searchable encryption scheme, in which
the intended user is constrained to wait for a particular time
to search the outsourced data. The combination of TRE and
proxy-encryption were proposed in cloud environment [28],
[37]. TRE also helps achieve a conditional oblivious transfer
scheme such that the access pattern is exposed after a spe-
cific time [19], [38].

In the scenario of data access control for public cloud
storage, some schemes that adopt the basic idea of TRE
have been proposed [18], [20], [21]. Qin et al. [18] proposed
a proxy-encryption scheme for data sharing, where the
data access privilege can be accurately distributed to
intended users who own a certain attribute set during a
specific time period. The proposed scheme can well pre-
serve data confidentiality. However, it cannot satisfy the
requirement that users are constrained to access data after
particular designated time. Androulaki et al. [20] designed
an approach to realize time-sensitive data access control in
cloud. However, this approach lacks fine granularity,
which leaves the data owners an unbearable burden in a
large-scale system. Fan et al. [21] proposed timed-release
predicate encryption for cloud computing. However, each
file can be labeled with only one time point, which cannot
release the access privilege of one file to different intended
users at different time.

Some researches have also tried to combine the mecha-
nisms of TRE and CP-ABE, such as [39], [40], to provide a
flexible and fine-grained access control for time-sensitive
data. Zhu et al. [39] proposed a temporal access control sys-
tem for cloud storage, in which the cloud server manages
the time as a universal clock service. Such construction can-
not resist the collusion between cloud server and users. In
[40], the authors proposed a time-domain access control sys-
tem, in which access control takes both user’s attribute set
and the access time into consideration. Different from [35],
[36], this work achieves data access privilege automatically
releasing for users without data owner’s online participa-
tion. However, it introduces heavy extra overhead: The
authority needs to generate update keys for all potential
attributes each time to implement the time-related function,
and the computational complexity increases with the
amount of involved attributes.

A more smart scheme is needed to realize fine-grained
access control for time-sensitive data in cloud storage.

3 SYSTEM AND SECURITY MODEL

3.1 System Model

Similar to most CP-ABE based schemes, the system in this
paper consists of the following entities: a central authority
(CA), several data owners (Owner), many data consumers
(User), and a cloud service provider (Cloud).

� The central authority is responsible to manage the
security protection of the whole system: It publishes
system parameters and distributes security keys to
each user. In addition, it acts as a time agent to main-
tain the timed-releasing function.

� The data owner (Owner) decides the access policy
based on a specific attribute set and one or more

releasing time points for each file, and then encrypts
the file under the decided policy before uploading it.

� The data consumer (User) is assigned a security key
from CA. He/she can query any ciphertext stored in
the cloud, but is able to decrypt it only if both of the
following constraints are satisfied: 1) His/her attri-
bute set satisfies the access policy; 2) The current
access time is later than the specific releasing time.

� Cloud service provider (Cloud) includes the administra-
tor of the cloud and cloud servers. The cloud under-
takes the storage task for other entities, and executes
access privilege releasing algorithm under the con-
trol of CA.

As depicted in Fig. 1, the ciphertexts are transmitted from
owners to the cloud, and users can query any ciphertexts. CA
controls the system with the following two operations: 1) It
issues security keys to each user, according to user’s attribute
set; 2) At each time point, it publishes a time token (TK),
which is used to release access privilege of data to users.

3.2 Security Assumption

In our access control system, the cloud is assumed to be
honest-but-curious, which is similar to that assumed in most
of the related literatures on secure cloud storage [9], [10],
[27], [28]: On the one hand, it offers reliable storage service
and correctly executes every computation mission for other
entities; On the other hand, it may try to gain unauthorized
information for its own benefits.

Beyond the cloud, the whole system consists of one CA,
some owners and users, in which CA is assumed to be fully-
trusted, while users could be malicious. CA is responsible
for key distribution and time token publishing. A malicious
user will try to decrypt the ciphertexts to obtain unautho-
rized data by any possible means, including colluding with
other mailicious users.

The proposed TAFC can realize a fine-grained and
timed-releasing access control system: Only one user with a
satisfied attribute set can access the data after the specific
time. The proposed scheme is defined to be compromised if
either of the following two types of users can successfully
decrypt the ciphertext: 1) A user whose attribute set does
not satisfy the access policy of a corresponding ciphertext;
2) A user who tries to access the data before the specified
releasing time, even if he/she has satisfying attribute set.

Fig. 1. TAFC architecture and operations.

160 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 1, JANUARY/FEBRUARY 2020

4 TECHNICAL PRELIMINARIES

4.1 Bilinear Pairings and Complexity Assumption

Let G1 and G2 be two multiplicative cyclic groups of prime
order p. Let e : G1 � G1 ! G2 be a bilinear map with the fol-
lowing properties:

1) Computability. There is an efficient algorithm to com-
pute eðu; vÞ 2 G2, for any u; v 2 G1.

2) Bilinearity. For all u; v 2 G1 and a; b 2 Zp, we have
eðua; vbÞ ¼ eðu; vÞab.

3) Non-degeneracy. If g is a generator of G1, then eðg; gÞ is
also a generator of G2.

Definition 1 (Decisional BDH Assumption, DBDH).
The DBDH assumption is that no polynomial-time adversary
is able to distinguish the tuple ðga; gb; gc; eðg; gÞabcÞ from
another tuple ðga; gb; gc; eðg; gÞzÞ, if the adversary has no
knowledge of the random elements a; b; c; z 2 Z�

p.

4.2 Ciphertext-Policy Attribute-Based Encryption

CP-ABE [6] is a cryptography prototype for one-to-many
secure communication. In a CP-ABE based scheme, besides
the storage platform, the system consists of three basic par-
ties: the authority, the owner and the user. The authority is
introduced to publish system parameters and issue secret
keys for the users. The owner shares files to the intended
users by designating an access policy and encrypting the
file under the policy. In CP-ABE based approach, the access
policy is expressed as a tree over a set of attributes and logic
gates, which will be illustrated in detail later. Each user
obtains his/her secret key from the authority based on his/
her own attributes.

The functionality and security model of CP-ABE assumes
that the storage platform (e.g., cloud server) does not con-
duct the access control management. This type of schemes
allow the user to query any ciphertext, but he/she is able to
decrypt the ciphertext if and only if his/her attribute set sat-
isfies the access policy of the file. A CP-ABE scheme consists
of the following four algorithms:

Setup. It takes a security parameter � and the attribute
universe description U as the input, and outputs a master
keyMK, and a public parameter PK.

Key Generation. It takes the master key MK and a set of
attributes as the input, and outputs the security key SK
associated with the input attribute set.

Encryption. It takes the public parameter PK, a message
M, and an access policy T over some attributes as the input.
It outputs the ciphertext CT .

Decryption. It takes the security key SK, and the cipher-
text CT as the input, and outputs either a message M or the
distinguished symbol ?.

Please refer to [6] for more details about CP-ABE. The lit-
eratures, such as [8], [9], [41], have introduced CP-ABE to
construct fine-grained access control frameworks.

4.3 Timed-Release Encryption

The concept of timed-release encryption is for scenarios that
someone wants to securely send a message to another one
in the future. In detail, the owner encrypts his/her message
for the purpose that intended users can decrypt it after a
designated time. From the security aspect, TRE satisfies

that: 1) Except the intended users, no one is able to get any
information of the message; 2) Even the intended user can-
not get the plaintext of the message before the designated
releasing time. In order to support an accurate timed-release
mechanism, a trusted time agent is required to manage the
clock of the system. At each time point T , the agent releases
a time token TKT , which is an important notion in TRE.

When encrypting the message, the ciphertext is gener-
ated with the public key of the intended user and the desig-
nated releasing time T . The ciphertext holds the feature that
only with the corresponding user’s secret key and time
token TKT , can a user correctly get the plaintext of the mes-
sage; otherwise, without either of the two components, the
user cannot successfully conduct the decryption.

The literatures, such as [16], [17], have introduced algo-
rithms to realize a practical TRE. Please refer to them for
more details.

5 MAIN CONSTRUCTION OF OUR SCHEME

We first give an overview of our proposed TAFC, mainly
discussing how to achieve timed-release function in this
paper. Then, we introduce the concepts of access policy,
time trapdoor and token. Lastly, we describe our proposed
TAFC in details.

Table 1 describes the basic notations in this paper.

5.1 Overview of TAFC

In order to build a scalable and fine-grained access control
system for outsourced time-sensitive data, we combine two
advanced cryptographic techniques, namely CP-ABE and
TRE. The former one is to provide an expressive access con-
trol primitive with determined attribute sets; and the latter
one is to realize timed-release function.

The general idea of our unique mechanism is to realize
access structures in a new form. As shown in Fig. 3, apart
from attributes and logic gates defined in existing CP-ABE,
the access structure in our scheme contains one or more time
trapdoors (TS), each of which represents a time point. The
trapdoor is implemented for the timed release function in
CP-ABE algorithm. It can be placed upon any node in the
structure, arbitrarily defining access privilege releasing time

TABLE 1
Some Notations

Notation Description

MK Master secret key of CA
PK Public parameter of the system
M Plaintext of the data
T Access policy over attributes and time
CT Ciphertext of the data
Sj Attribute set of user Uj

SKj Attribute-associated security key of user Uj

TSx Time trapdoor upon node x, in unexposed status
TS0

x Time trapdoor upon x, in exposed status
TKt Time token of time t
FT Unified format of time
H1 Hash function that maps elements in f0; 1g� to

elements in G�
1

H2 Hash function that maps elements in G�
2 to

elements in Z�
p

HONG ETAL.: TAFC: TIME AND ATTRIBUTE FACTORS COMBINED ACCESS CONTROL FOR TIME-SENSITIVE DATA IN PUBLIC... 161

for different users. The accessing time, together with user’s
attribute set, determineswhether the user satisfies the policy.

For every shared file, the data owner him/herself deter-
mines the access policy to encrypt the file. Especially, the
time trapdoors in the policy are generated according to a
time point t 2 FT . FT is system’s unified time format, such
as “dd=mm=yyyy”. The time format designates the granular-
ity of timed-release function, e.g., monthly, daily, or hourly.
Such mechanism removes the complicated interactions
between CA and data owners. In the access policy, a node
attached with a time trapdoor is said to be satisfied if it
holds the following features: 1) Just like CP-ABE, if it is a
leaf node, the relevant attribute is among the attribute set;
otherwise, the number of its satisfied child nodes exceeds a
threshold (will be discussed in detail later); 2) The current
access time is later than the relevant releasing time point of
the time trapdoor.

From the cryptographic perspective, such idea is realized
since CA publishes time token TKT in every time point, just
like the time agent does in TRE. Our scheme works if the
following feature holds: A user can decrypt a file if and only
if his/her attribute set and the obtained time tokens satisfy
the access policy. For the performance consideration, in our
scheme, time related decryption can be outsourced to the
cloud without losing confidentiality.

Moreover, in order to ensure an approximate time con-
sistency, we could introduce a less tight time synchroniza-
tion mechanism. For example, a third-party Internet Time
Server can be introduced, or owners and users all synchro-
nize with CA, who opens a time synchronization interface
for the public.

5.2 Access Policy and Time-Related Components

5.2.1 Access Policy Structure

In TAFC, an access policy is over some attributes and one or
more releasing time points. Fig. 2 shows an example of the
policy structure.

A structure T consists of a policy tree of several nodes,
and some time trapdoors TS. A leaf node represents a cer-
tain attribute (In Fig. 2, A0, . . ., A3 are the relevant attrib-
utes), and each non-leaf node represents a threshold gate
(“AND”, “OR”, or others). Each non-leaf node x has two
logic values nx and kx, where nx is the number of its child
node, and kx is the threshold. Particularly, kx ¼ 1 if x is an
OR gate, or kx ¼ nx if x is an AND gate.

In a structure T , the number of included time trapdoors
can be zero, one, or more than one. Each trapdoor TSx is
appended to a node x. From the perspective of algorithm, TS
can be appended to arbitrary node of the structure (leaf, non-
leaf, or even root). For instance, in Fig. 2, TS1 is appended to a

leaf node in order to restrict the attribute A1, while TS2 is
upon a non-leaf node to restrict a sub-policy “A2 ^A3”.

5.2.2 Time Trapdoors and Time Tokens

Time trapdoor (TS) can be embedded in an access structure,
such that the corresponding user’s access permission is
restricted by the status of TS. In this paper, we define two
statuses, namely exposed or unexposed, for the time trapdoor.

� Unexposed. A trapdoor (TS) is unexposed if the
intended users cannot access the corresponding
secret through the trapdoor with their security keys.

� Exposed. A trapdoor is exposed if the intended users
can get the corresponding secret through this trap-
door. An exposed trapdoor is denoted as TS0.

The status of a trapdoor can be transferred from
“Unexposed” to “Exposed” with a relevant time token (TKt).
After TKt is published at time t, anyone, including the cloud
and any users, can transfer the status of corresponding time
trapdoors (In this paper, the cloud server performs the oper-
ation of status transferring, which will not bring about user’s
overhead or introduce other undesired factors).

In our proposed TAFC, a trapdoor TS is generated by a
data owner when encrypting his/her data, and a time token
TK is generated and published by CA. The cloud server can
transfer one particular trapdoor’s status from unexposed to
exposed after obtaining the corresponding TKt.

Taking Fig. 2 as an example: The trapdoor TS1 is related
to a time point t1, and TS2 is related to t2. Users that satisfy
“A0 ^A2 ^A3” (such as U1) cannot get access privilege until
the token TKt1 is published; And users satisfying “A0 ^A1”
(such as U2) should wait for CA to publish TKt2 .

Note that, any time ti in this paper represents a certain
time point rather than a length of time interval. In the
remaining of this paper, if ti < tj, it means that ti is an ear-
lier time point than tj.

5.3 Construction

Our proposed TAFC consists of six procedures: setup, key
generation, encryption, token generation, trapdoor exposure and
decryption. Fig. 3 depicts a brief description of our scheme
(setup and key generation are not included in the figure).

5.3.1 Setup

CA generates I = [p, G1, G2, g, e, H1, H2, FT], where
e : G1 � G1 ! G2 is a bilinear map, G1 and G2 are cyclic
multiplicative groups of a prime order p, g is a generator of
G1,H1 : f0; 1g� ! G�

1,H2 : G�
2 ! Z�

p. FT is the time format.
CA randomly chooses a; b; g 2 Z�

p. The public parame-
ter is published as

PK ¼
�
I; h ¼ gb; f ¼ gg ; eðg; gÞa

�
;

and the master key MK is ðb; g; gaÞ implicitly exists in the
system, and doesn’t need to be obtained by any other entity.
(Note that f and g are used for timed-release function.)

5.3.2 Key Generation

For each user Uj with attribute set Sj, CA first chooses a ran-
dom uj 2 Z�

p as a unique identity for the user. Each attribute

Fig. 2. Example of TAFC access structure.

162 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 1, JANUARY/FEBRUARY 2020

Atti 2 Sj is assigned a random ri. Then, CA computes the
user’s security key as

SKj ¼ fD ¼ gðaþujÞ=b;

8Atti 2 Sj : Di ¼ guj �H1ðAttiÞ�ri ; D0
i ¼ grig:

At the end of this procedure, the security key SKj is sent
to Uj in a secure tunnel.

5.3.3 Encryption

The data owner uses a symmetric cryptography to encrypt
the dataM with a random chosen key K 2 G2.

In this procedure, each node x in the predefined access
structure T will associate with three secret parameters,
denoted as s0x, s

1
x and stx. Here, s0x is shared with its parent

node, s1x is shared with its child node (or dealt with the rele-
vant attribute if x is a leaf node), and stx is a time-related
parameter. Specifically, if x is the root R, s0R is the base secret
of T . The parameter assigning is in a top-down manner,
starting from the root R as follows:

If x is R, the owner randomly chooses a random parame-
ter s0R 2 Zp. For each node x with s0x, the parameters s1x and
stx are chosen as

stx 2 Z�
p; s

t
x � s1x ¼ s0x x is linked to a time trapdoor

stx ¼ 1; s1x ¼ s0x otherwise

�
:

For each non-leaf node x with s1x, the data owner chooses a
polynomial qx, whose degree dx ¼ kx � 1, and qxð0Þ ¼ s1x.
For each of x’s child nodes (y) with a unique index indexy,
the data owner sets s0y ¼ qxðindexyÞ.

For a trapdoor TSx related to a releasing time t 2 FT and
a secret parameter stx, the owner chooses a random rt, and
generates TSx as follows:

TSx ¼
�
Ax ¼ grt ; Bx ¼ stx þH2ðeðH1ðtÞ; fÞrtÞ

�
: (1)

For a leaf node x with s1x and relevant attribute Attx, the
owner computes: Cx ¼ gs

1
x , C0

x ¼ H1ðAttxÞ�s1x . The final
ciphertext is uploaded as follows:

CT ¼�
T ; ~C ¼ EncðM;KÞ; �C ¼ Keðg; gÞas

0
R; C ¼ hs0

R;
8xð2 T Þis a leaf node : Cx;C

0
x;

8TSx 2 T : TSx ¼ ðAx;BxÞ
�
:

5.3.4 Token Generation

At each time point t 2 FT , CA generates and publicly pub-
lishes a time token TKt as follows:

TKt ¼ H1ðtÞg :

5.3.5 Trapdoor Exposure

When arriving at the releasing time point t related to TSx,
the cloud can obtain a corresponding token TKt, which is
published by CA. Then, the cloud server implements this
procedure to expose the trapdoor.

When the cloud gets TKt, it queries all trapdoors associ-
ated with t in all access structures associated with the stored
files on it. For each trapdoor TSx ¼

�
Ax;Bx

�
, the cloud com-

putes the exposed trapdoors as

TS0
x ¼ Bx �H2ðeðTKt;AxÞÞ:

If the procedure is correctly implemented, we can get
TS0

x ¼ stx. The cloud replaces TSx with TS0
x in each relevantCT ,

in which the trapdoor can be removed, and the access privi-
lege is transferred to be determined only by the attribute set.

5.3.6 Decryption

After querying CT from the cloud, a user Uj (with the attri-
bute set Sj) conducts this procedure with the security key
SKj. As TS0

x ¼ stx, For each node x, we can have

stx ¼ TS0
x x is linked to an exposed trapdoor

stx ¼ 1 no trapdoor is set upon x

�
:

The decryption procedure is performed in a bottom-up
manner (from leaf nodes to the root R) as follows:

For a leaf node x with attribute Atti, if Atti 2 Sj and no
unexposed trapdoor is set upon x, then the user computes

Fx ¼ eðDi; CxÞ
eðD0

i; C
0
xÞ

� �stx

¼ eðg; gÞujs
1
xs

t
x ¼ eðg; gÞujs

0
x :

Fig. 3. Procedure description of TAFC construction (SL is the set of leaf nodes in T ; ST is the set of time trapdoors in T , CT 0 is the notion of modified
ciphertext whose time trapdoor has been exposed.).

HONG ETAL.: TAFC: TIME AND ATTRIBUTE FACTORS COMBINED ACCESS CONTROL FOR TIME-SENSITIVE DATA IN PUBLIC... 163

If Atti =2 Sj or TSx is unexposed, then Fx ¼ ?.
For a non-leaf node x, let Sx be an arbitrary kx-size set of

its child nodes, and for each z 2 Sx, Fz 6¼ ?. If such Sx exists,
and x is not embedded with an unexposed trapdoor, then the
user computes

Fx ¼
� Y

z2Sx
F

Q
y2Sx;y6¼z

indexy
indexy�indexz

z

�stx ¼ eðg; gÞujs
0
x :

Otherwise, Fx returns ?.
For the root node R, if FR 6¼ ?, then the user can get

FR ¼ eðg; gÞujs
0
R . Finally, the the user can recover the content

ofM as follows:

K0 ¼
�C

eðC;DÞ=FR
¼ K;

M 0 ¼ Decð ~C;K0Þ ¼ DecðEncðM;KÞ;KÞ ¼ M:

6 SECURITY AND PERFORMANCE ANALYSIS

6.1 Security Analysis

We analyze the security properties of TAFC on some critical
aspects as follows.

1) Fine-Grained and Timed-Release Access Control: Our
proposed TAFC provides data owners with the capa-
bility to define access policies according to flexible
association of attributes and releasing times. With the
access policy embedded in the ciphertext, a user can
decrypt the ciphertext to access the data, only if his/
her attribute set satisfies the policy, and the access
time is later than the predefined releasing time.

2) Security against Collusion Attack: In TAFC, each user’s
attribute set-associated security key SKj is blinded
based on a secure random number uj 2 Z�

p. This
mechanism is implemented to resist the collusion
attack: The adversary cannot combine different secu-
rity keys (SK) to forge a new security key associated
with a different attribute combination which comes
from multiple attribute sets belong to different users.
Therefore, the collusion will not bring more privi-
leges to the adversary.

3) Data Confidentiality: The confidentiality property of
TAFC can be analyzed from two aspects, the cryp-
tography and the protocol as follows:

As a cryptography algorithm to take into account, the
adversary model can be described as the following security
game:

Setup. The challenger runs the Setup algorithm of TAFC
and gives the public parameters to the adversary.

Phase 1. The adversary is allowed to issue queries for a
security key for a set of attributes SU , declare an access time
tA, and a challenge access policy T , where SU does not sat-
isfy T at the time point tA. The challenger generates the
security key associated with SU and a series of time tokens
that represent time points that are not later than tA, and
then gives the security key and time tokens to the adversary.

Challenge. The adversary submits two equal-length mes-
sages M0 and M1. The challenger flips a random coin
n 2 f0; 1g, and encrypts Mn with T . The ciphertext is sent to
the adversary.

Phase 2. Phase 1 is repeated to enhance the size of the
attribute set of challenger’s security key, and to declare a
later access time tB. But the new attribute set cannot satisfy
T at tB.

Guess. The adversary outputs a guess n0 of n.
The advantage of adversary is defined as

AdvA ¼ jPr½n0 ¼ n� � 1

2
j:

Definition 2. Our proposed TAFC is secure if all polynomial
time adversaries have at most a negligible advantage in the
above security game.

Our further analysis classifies all adversaries into two
categories:

1) An adversary without a satisfied attribute set for
challenge access policy T , although arriving at privi-
lege releasing time;

2) An adversary with satisfied attribute set for T , but
the relevant privilege releasing time has not yet
arrived.

Apart from the two categories, the remaining adversaries
are those neither with satisfied attribute set, nor at the privi-
lege releasing time. We can issue them either security keys
for additional attributes, or more time tokens, such that the
adversaries can belong to either of the two categories. As
such appended information at least has not decreased the
adversaries’ advantage, the further analysis only focuses on
the above two kinds. We conclude the confidentiality of
TAFC as follows:

Theorem 1. If DBDH assumption holds, no polynomial-time
adversary belongs to the first category can selectively break
TAFC with non-negligible advantage.

PROOF 1. Suppose we have an adversary A with a non-
negligible advantage AdvA in the selective security game
against TAFC. In such game, the adversary queries ade-
quate time tokens and any secret key. However, the
decryption cannot proceed due to the inadequate attrib-
utes that are embedded in his/her security key.With these
constraints, we can build a simulator B that plays the
DBDHgamewith a non-negligible advantage as follows.

Initialize. The challenger C of the DBDH game sets the
groups G1 and G2 with the bilinear map e and generator
g 2 G1. C securely flips a random coin m 2 ð0; 1Þ. If m ¼ 0,
C sets a tuple ðA;B;C; ZÞ ¼ ðga; gb; gc; eðg; gÞabcÞ; other-
wise, the tuple is set as ðga; gb; gc; eðg; gÞzÞ for random
a; b; c; z. Then, C sends ðA;B;C; ZÞ to B.

Setup. The simulator B reuses G1, G2, e and g from C,
randomly chooses a;b; g 2 Z�

p, and defines the time for-
mat FT . There is a hash function H2 : G

�
2 ! Z�

p. The other
hash function H1 is programmed as a random oracle by
building a table, described as follows:

Considering a call to H1ðAiÞ, if H1ðAiÞ was already
defined in the table, the oracle returns the same answer
in the table. Otherwise, B chooses a random value
di 2 Z�

p, and programs the oracle as H1ðAiÞ ¼ gdi , then
H1ðAiÞ ¼ gdi is inserted into the table. Note that the
response from the oracle is distributed randomly due to
the gdi value. Then the public parameter PK is given as

164 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 1, JANUARY/FEBRUARY 2020

PK ¼
�
p;G1;G2; g; e;H2;FT ; h ¼ gb; f ¼ gg ; eðg; gÞa

�
:

The simulator B then sends PK to the adversary A.
Phase 1. In this phase, A makes requests for a security

key associated with an attribute set SU ¼ ðA1; A2; . . . ; Al1Þ,
and an access time point tA. It also designs a challenge
access policy T such that non subset of SU satisfies T
before or at tA. Let ST denote the attribute set in T .

Upon receiving the request and T , B finds a set G,
which holds the following constraints:

� G
T
SU ¼ ; and G � ST .

� The set ST � G does not satisfy the policy T before
or at tA.

� If two sets G1 and G2 both hold the first two con-
straints, and G1zG2, then choose G1.

Note that there may not be a unique G. For instance,
against a (t; n) gate, A requests attributes that satisfies k
child nodes of the gate, where k 	 t� 2, then there will
be at least Ct�k�1

n�k choices to design G. Such factor will
lead to the withdrawal of the simulation, which will
occurs in the 2nd phase.

The simulator B randomly chooses ri for each element
in SU , and generates D ¼ ðC � gaÞ1=b. For each Ai 2 SU , it
constructs ðDi;D

0
iÞ as

Di ¼ C �H1ðAiÞri ¼ C � ðgdiÞri ; D0
i ¼ gri :

Then B returns
�
D; fDi;D

0
ijAi 2 SUg

�
to A as the security

keys.
Before the Challenge procedure, we first define two

functions: PolySat and PolyUnsat.
PolySat(T x; sx). This procedure sets up the polyno-

mials for the nodes of a sub-tree T x with satisfied root
node x, which means SU satisfies the access policy of T x.
If x links to an attached trapdoor, stx 2R Z�

p; otherwise
stx ¼ 1. It first sets a polynomial qx, with correct degree
constraints, and qxð0Þ ¼ sx=s

t
x. Each child node y obtains

sy ¼ qxðindexyÞ. Then it sets polynomials for each child
node y by calling PolySat(T y; sy).

PolyUnsat(T x; g
sx). It sets up the polynomials for the

nodes of T x with unsatisfied root node, which means
SU does not satisfy T x. s

t
x is defined to be similar to

that in PolySat(T x; sx). It first defines a polynomial qx
with correct degree, and gqxð0Þ ¼ ðgsxÞ1=s

t
x . Due to the

feature of unsatisfied node for x, no more than tx � 1
child nodes are satisfied. The function first classifies
the child nodes y into two categories: If there are suc-
cessor nodes that belongs to the set G, then y is classi-
fied into unsatisfied node; otherwise, it belongs to
satisfied one. For each satisfied y, it chooses a random
sy 2 Zp. It then fixes the remaining unsatisfied points
of qx to complete the definition of the polynomial. The
procedure recursively defines the polynomials for the
child node y by calling:

� PolySat(T y; qxðindexyÞ) if y is a satisfied node. B
knows the value sy ¼ qxðindexyÞ in this case.

� PolyUnsat(T y; g
qxðindexyÞ) if y is an unsatisfied

node. Here, only gsy is known.

Against the challenge policy T , B runs PolyUnsat
(T ; A), where A is the element of DBDH tuple.

Challenge. A submits two challenge messages M0 and
M1 to B, and B flips a secure coin n 2 ð0; 1Þ. For each attri-
bute Ai 2 ST : if Ai =2 G, then Ci ¼ Bqið0Þ; C0

i ¼ ðBtiÞqið0Þ;
otherwise, Ci ¼ gqið0Þ; C0

i ¼ ðgtiÞqið0Þ.
For each time trapdoor TSx whose related time point

satisfies t 	 tA, simulator B can generate TSx ¼ stx to
expose the trapdoor. Accordingly, for each trapdoor
whose related time point holds t > tA, the trapdoor
keeps unexposed, simulator B can compute as in Eq. (1).

The ciphertext CT is constructed as

CT ¼
�
T ;Mn �

eðC � ga; AÞ
Z

; hs ¼ Ab; fCi; C
0
ig; fTSxg

�
:

Thus, user B is able to simulate the scheme. Furthermore,
from the perspective of A, the distribution of each com-
ponent is identical to that in the original scheme.

If m ¼ 0, the Z ¼ eðg; gÞabc. We let the security key of
unsatisfied attribute Ai 2 G be Di ¼ gbc � ðgdiÞri ; D0

i ¼ gri .
Suppose the Lagrange interpolation for secret s is

s ¼
X
Ai2S

�i � qið0Þ;

for any attribute set S that satisfies T . Because the secret
of root node is the logarithm of A, we then have recon-
struction of FR as

FR ¼
Q

Ai2S F
�i
i ¼

Q
Ai2S

�
eðDi;CxÞ
eðD0

i
;C0

xÞ

��i

¼ ðeðg; gÞbcÞ
P

i2S �iqxð0Þ ¼ eðg; gÞabc:

Therefore, CT is a valid random encryption ofMn.
Otherwise, if m ¼ 1, Z ¼ eðg; gÞz is only a random ele-

ment from G2 from the view of A, and such CT contains
no information onMn.

Phase 2. Repeat Phase 1 to request security keys for a
certain larger attribute set, which still does not satisfy T .
As this proof cares about the adversary without adequate
attribute set, the change of access time tA is not taken into
account, which is discussed in the next proof.

Especially, A potentially requests a security key for
attribute Ai 2 ST � G, and this action may still be an
aspect of the constraints of this game. If it occurs, B
aborts the simulation. Otherwise, it continues the game.
Let q denote the possibility that this event does not hap-
pen. This possibility differs the adopted attribute set SU

with the challenge policy T . In general, smaller SU and
more complex T bring larger q. We constrain the com-
plexity of the policy, as Yang, et al. [9] did in their proof,
then we can have a positive constant qD such that
q > qD. This proof does not analyze the value of qD.

Guess. A submits a guess n0 of n. If n0 ¼ n, B will output
its own guess m0 ¼ 0 to indicate that the tuple of DBDH
game is a valid BDH-tuple; otherwise, it outputs m0 ¼ 1
to indicate that it was given a random four-tuple.

We assume the distribution of m and n is independent.
LetX be the event that the simulation is aborted. Consider
the case B has not abort the simulation. When m ¼ 1, A
obtains no information on n. We have Pr½n 6¼ n0jm ¼
1; �X� ¼ 1

2 . Since m0 ¼ 1 when n 6¼ n0, we have Pr½m0 ¼

HONG ETAL.: TAFC: TIME AND ATTRIBUTE FACTORS COMBINED ACCESS CONTROL FOR TIME-SENSITIVE DATA IN PUBLIC... 165

mjm ¼ 1; �X� ¼ 1
2 . Otherwise m ¼ 0, CT is a valid encryp-

tion ofMn. The adversary has an advantageAdvA by defi-
nition. We have Pr½n ¼ n0jm ¼ 0; �X� ¼ 1

2 þAdvA. Since B
will guess m0 ¼ 0 when n ¼ n0, we have Pr½m0 ¼ mjm ¼ 0;
�X� ¼ 1

2 þAdvA. The following formula is derived

Pr½m0 ¼ mj �X� ¼Pr½m0 ¼ mjm ¼ 1; �X� � Pr½m ¼ 1j �X�
þ Pr½m0 ¼ mjm ¼ 0; �X� � Pr½m ¼ 0j �X�

¼ 1

2
� 1

2
þ 1

2
� ð1

2
þAdvAÞ

¼ 1

2
AdvA þ 1

2
:

Now we take into account the case when B aborts the
simulation, it randomly chooses m0 of m. In this case, the
probability of correct guess is up to 1

2.
The overall advantage of B in DBDH game is as

AdvB ¼ Pr½m0 ¼ mj �X� � Pr½ �X� þ Pr½m0 ¼ mjX� � Pr½X� � 1

2

¼ ð1
2
AdvA þ 1

2
Þ � qD þ 1

2
� ð1� qDÞ �

1

2

¼ qD
2
AdvA:

As proved above, there exists a non-negligible polyno-
mial-time adversary qD

2 AdvA in DBDH game if the poly-
nomial-time adversary in our scheme is AdvA. We can
conclude that our scheme is semantically secure against
chosen plaintext attack, for the adversary that lacks ade-
quate attribute-related keys. tu

Theorem 2. If DBDH holds, no polynomial-time adversary
belongs to the second category can selectively break TAFC with
non-negligible advantage.

PROOF 2.We still assume that an adversaryA exists with a
non-negligible advantage AdvA against TAFC. Compared
with the last proof, the difference in this game is that the
decryption cannot be executed at a too-early access time.
Then we can build a simulator B that plays the DBDH
game with non-negligible advantage.

Initialize. It is the same as that in PROOF 1.
Setup. The simulator B does almost the same to gener-

ate public parameter PK like CA does in TAFC. The only
modification in this simulation is the generation of f and
H1ðtÞ; t 2 FT . The time-related parameter is from DBDH
game that f ¼ B. A random oracle is used to formulate
H1 like that in PROOF 1. The public parameter is sent to
the adversary.

Phase 1. A makes a key associated with attribute set
and access time requests with the same constraints like
that in PROOF 1. Faced with the attribute set SU , access
time tA and challenge policy T , the simulator B finds the
earliest time tB, at which time, SU becomes a satisfied set
for T . Note that tB > tA if A obeys the request con-
straints. For any time point t that is not later than tA, B
sets H1ðtÞ ¼ gdt , and TKt ¼ Bdt , with a random dt 2 Z�

p.
The user’s security key SK is generated like the original
TAFC scheme.

Then B sends SK and tokens fTKtjt 	 tAg to A.
Challenge. A sends M0 and M1 to B. After flipping a

coin n 2 ð0; 1Þ, B encrypts Mn as follows: the non-leaf

nodes and leaf nodes are conducted like the original
scheme; for each trapdoor TSx with parameter stx, we
consider two cases:

1) If the access time tx < tB, B selects a random rt,
and calculates Ax ¼ grt , Bx ¼ stx þH2ðeðgdtx ; BÞrtÞ.

2) Otherwise, the randomoracle setsH1ðtxÞ ¼ C � gdtx ,
with random dtx . In the trapdoor, Ax ¼ A � grt with
random rtx , andBx is computed as

Bx ¼ stx þH2

�
Z � eðB;CÞrtx � eðA;BÞdtx � eðg;BÞrtx �dtx

�
:

(2)

Thus, B is able to simulate the scheme, where, the dis-
tribution of each component is identical to that in the
original scheme from the perspective of A.

We consider a trapdoor TSx, whose relevant access
time is tx
 tB, and the secret parameter is stx. With SU ,
there is a Lagrange interpolation for secret s

s ¼ stx �
� X

Ai2S1

�j � qjð0Þ
�
þ

X
Ai2S2

�i � qið0Þ; (3)

where, S1 � SU is a set of attributes that are controlled by
the trapdoor TSx, and S2 is the set of other attributes.

If m ¼ 0, the Z ¼ eðg; gÞabc, the argument of H2 in
Eq. (2) (denoted as �) can be derived as

� ¼Z � eðB;CÞrtx � eðA;BÞdtx � eðg;BÞrtx �dtx

¼eðB;CÞa � eðB;CÞrtx � eðgdtx ; BÞa � eðgdtx ; BÞrtx

¼
�
eðB;CÞ � eðgdtx ; BÞ

�aþrtx

¼eðC � gdtx ; BÞaþrtx ;

where C � gdtx is the output of H1ðtxÞ of the random ora-
cle, B is used for the public parameter f , and
gaþrtx ¼ A � grtx is the other component of TSx. Thus, it is
a valid trapdoor of stx. Furthermore, the interpolation of
Eq. (3) can reconstruct secret s, and the decryption will
ultimately recover the plaintext.

Otherwise, if m ¼ 1, the Z ¼ eðg; gÞz is only a random
element from G2, and the Trapdoor Exposure procedure
will generate a random element of stx. It will lead to a ran-
dom Bx 2 Zp with Eq. (2), then a random staux 2 Zp with
Trapdoor Exposure, further a random secret s 2 Zp with
Eq. (3). Finally, the CT contains no information onMn.

Phase 2. Repeat Phase 1 to request later access time,
which still does not satisfy T with SU .

Guess. A submits a guess n0 of n. If n0 ¼ n, B will out-
puts its guess m ¼ 0; otherwise, it outputs m0 ¼ 1.

When m ¼ 1, A obtains no information on n. We have
Pr½n 6¼ n0jm� 1� ¼ 1

2. Due to the tactics of B, Pr½m ¼ m0jm ¼
1� ¼ 1

2 . Otherwise m ¼ 0, the CT is valid because of valid
trapdoors. The adversary has an advantage AdvA. We

have Pr½n 6¼ n0jm� 1� ¼ 1
2 þAdvA. And B0 tactics leads to

Pr½m ¼ m0jm ¼ 1� ¼ 1
2 þAdvA. The following formula is

derived

AdvB ¼ Pr½m0 ¼ mjm ¼ 1� þ Pr½m0 ¼ mjm ¼ 0� � 1

2

¼ 1

2
AdvA:

166 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 1, JANUARY/FEBRUARY 2020

The proof shows the existence of a non-negligible
adversary 1

2AdvA in DBDH game. We can conclude that
our scheme is semantically secure against chosen plaintext
attack, when the attack takes place before the specific
access time. tu

From the protocol perspective, the stx is exposed with a
relevant time token TKt, which is generated and published
by CA at each release time. As the token can be published to
the system, rather than securely distributed to other entities,
the security feature of this mechanism, therefore, does not
rely on an extra secure tunnel.

6.2 Performance Analysis

In order to give an intuitive evaluation of the performance
of TAFC, we make a comparison with other related
schemes, such as Androulaki et al. [20] (denoted as LoTAC),
and an approach based on CP-ABE, where time is handled
as attribute (denoted as TasA). Since the performance differ-
ences among these three schemes are mainly on communi-
cation and computation cost of CA and the data owner, we
analyze these two aspects as follows.

6.2.1 CA’s Cost for Timed-Release Function

Figs. 4 and 5 show the overhead evaluation of trust entities
(including CA), with increasing number of users and
released data respectively.

In TAFC, a time token TKt is a universal parameter
among all users for one time point t. CA, therefore, only
needs to calculate and publish one token at each time. On
the contrary, if time is handled as an attribute (as in TasA),
CA should distribute time-associated security key to each
user at each time, meaning that the extra cost is linear to the
number of users.

In LoTAC, although CA does not need to do anything for
timed-release function, another trust entity, should imple-
ment the timed-release decryption algorithm for each file at
each release time. The overhead of this trust entity for this
job is linear to the amount of relevant data, as shown in
Fig. 5. On the contrary, in TAFC, the timed-release compu-
tation for every file can be outsourced to the honest-but-
curious cloud, without leaking any unauthorized secret.

Thus, our proposed TAFC shows its superiority on CA’s
cost reduction, when the access control system includes
large amount of users and shared data.

6.2.2 Owner’s Cost versus Number of Intended Users

When the owner uploads his/her file, his/her communica-
tion cost depends on the package size of the corresponding
ciphertext. If we only consider the number of intended
users, the cost of owner in LoTAC is OðjU jÞ, where jU j is the
number of intended users; while the cost in TAFC and TasA
is OðNattÞ, where Natt is the number of attributes in an
access policy. In reality, when the number of intended users
increases, Natt will increase much more slowly than jUj, in
quite a high probability. With this assumption, Fig. 6 gives
the overhead evaluation of data owner with increasing
intended users, when encrypting one data file. Because of
fine granularity inherited from CP-ABE, TAFC and TasA
significantly reduce the communication complexity of data
owner when the access privilege should be released to quite
a number of users.

Based on the performance analysis on various aspects,
we can conclude that TAFC well tolerates the increasing
number of users and shared data. Thus, TAFC can provide

Fig. 4. Cost of CA versus number of users.

Fig. 5. Computation overhead of trust entity versus amount of released
data.

Fig. 6. Cost of owner versus number of intended users.

HONG ETAL.: TAFC: TIME AND ATTRIBUTE FACTORS COMBINED ACCESS CONTROL FOR TIME-SENSITIVE DATA IN PUBLIC... 167

a lightweight, flexible, and fine-grained access control sys-
tem for time-sensitive data in cloud storage.

7 ACCESS POLICY DESIGN FOR GENERAL

TIME-SENSITIVE DATA WITH MULTIPLE

RELEASING TIME POINTS

The main construction in Section 5 provides the basic algo-
rithm and cryptography techniques to embed both time and
attribute factors into access control for public cloud.However,
it lacks a general method for data owners to make an efficient
access structure for arbitrary access privilege construction
with both time and attribute factors, especially, when a policy
is embedded with multiple releasing time points, there exist
many cases as described later in this section. These cases can-
not be defined by a tree-based structure with existing mecha-
nisms. In this section, we first list the potential sub-policies for
time-sensitive data, and then gives an efficient and practical
method to construct relevant access structures.

In this paper, all access policies hold the constraints of
Monotonous Access Capability defined as follows.

Definition 3 (Monotonous Access Capability). The
Access capability should hold the monotonic property that can
be formulated with both of the two constraints:

� For any user Uj, and any fileMi, if t1 < t2 and Uj can
accessMi at t1, then he/she can also access it at t2.

� If two attribute sets S1 and S2 have S1 � S2 for a file,
and the releasing times for these two sets are t1 and t2,
respectively, then we have t1
 t2.

With the above defined constraints, we can summarize the
sub-policy design mechanism faced with boolean formulas
and ðt; nÞ threshold, which have also beenmentioned in [35].

For boolean formulas, there are two types that hold the
above definition: 1) Converting an attribute to an OR gate;
and 2) Removing an attribute from an AND gate. The first
type can be realized with the example structures in Fig. 2,
where we denote P as A2 ^A3. At earlier time t1 (assume
t1 < t2), the sub-policy is an attribute A1, and after t2, the
sub-policy is automatically updated to A1 _ P . As structures
and algorithms for this type can be ideally achieved in the
main constructions, we will discuss how to achieve the sec-
ond type in Section 7.2.

For a ðk; nÞ threshold gate, two potential cases should be
considered: 1) Delaying the time point t and reducing the
threshold k at the same time can hold the defined con-
straints. We will discuss how to efficiently achieve it in
Section 7.3.2) Also, the constraints allow the scenario where
later access brings in larger n. The achievement of this will
be presented in Section 7.4.

With the above considerations, we will first introduce a
modified algorithm for the time trapdoor construction.
Then we will further design structures for the sub-policies
of time-related data into two cases, and any potential access
policy for time-sensitive data can be expressed as the combi-
nation of these proposed structures.

7.1 Unattached Time Trapdoor: A Trapdoor as a
Single Leaf Node

In the main construction of TAFC, a time trapdoor should
be attached to a node of the policy tree. Here we further

give another scheme to support a time trapdoor without
being attached to any node, which will be utilized to realize
time-related sub-policies in the following sections. From the
perspective of the structure construction, such time trap-
door is a leaf node, which can be regarded as a special attri-
bute. In this section, we use attached time trapdoor to indicate
that it’s attached to a certain internal node, and unattached
time trapdoor to indicate that it is not attached to any node.

In the Encryption procedure, we can obtain a secret share
s0x 2 Z�

p and an unattached time trapdoor TSx from its par-
ent node. Then, we can get stx ¼ s0x (different from that for
an attached time trapdoor), and an unexposed trapdoor
TSx ¼ ðAx;BxÞ is generated with stx and the predetermined
releasing time t 2 FT as shown in Eq. (1).

A trapdoor can be exposed by the cloud server with the
same mechanism as that in Section 5.3.5. When a user Uj

has got a ciphertext with an exposed trapdoor TS0
x, he/she

can further compute Fx as follows:

Fx ¼
� eðh; gðaþujÞ=bÞ

eðg; gÞa
�TS0x

¼
� eðgb; gðaþujÞ=bÞ

eðg; gÞa
�stx ¼ eðg; gÞujs

t
x :

(4)

For an unattached time trapdoor, s0x ¼ stx, we can further
get Fx ¼ eðg; gÞujs

0
x , which can be utilized to reconstruct its

parent’s secret Fy as shown in Eq. (2).
In the following sections, we will mainly focus on the

placement of time trapdoors. For clarity,we use time t instead
of the node TSx to indicate the time trapdoor in this section.

7.2 An Additional Satisfied Sub-Policy Wins an
Earlier Access (Case 1)

This case is used to satisfy the scenario: For example, a user
whose attribute set satisfies a sub-policy P1 can access a file
at time t3. If the user can additionally satisfy a sub-policy P2,
the access privilege will be granted at earlier time t2 < t3.

1

The P1 and P2 can be either a single attribute or a sub-
structure with multiple nodes.

Fig. 7a depicts our proposed access structure to realize
the above access policy: An OR gate is set over the addi-
tional policy P2 and the trapdoor t3; and an AND gate is
over this OR gate and the sub-policy P1. Finally, the trap-
door t2 is linked to the AND gate. With this kind of struc-
ture, a user whose attributes satisfy both P1 and P2 will get
access privilege when it reaches the time point t2, while a
user whose attributes only satisfy P1 cannot satisfy the
whole policy until it reaches time point t3, since neither P2

nor t2 under the OR gate can be satisfied.
We can extend this case to a multiple-hierarchy scenario:

If a user’s attribute set satisfies P1, he/she can access the file
at time point t3; If his/her attribute set additionally satisfies
P2, he/she can access the file at time point t2 (earlier than
t3); While his/her attribute set satisfies P3 in addition to P1

and P2, the access privilege will be granted to him/her fur-
ther earlier, say at time t1.

1. In order to easily introduce the multiple-hierarchy scenario with
no puzzle based on this type of one hierarchy scenario, we first use t2
and t3 leaving t1 to be introduced in the multiple-hierarchy scenario
later on.

168 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 1, JANUARY/FEBRUARY 2020

Fig. 7b shows the structure to meet the above require-
ment. The structure in Fig. 7a can be treated as a sub-policy
of the policy indicated in Fig. 7b, which has only a small
modification: the time trapdoor t2 is no longer linked to the
original AND gate. Instead, it is under an OR gate along
with P3. If the modified sub policy is treated as one basic
symbol, the two structures in Figs. 7a and 7b are similar
from the perspective of the policy structure construction.
From this viewpoint, our proposed mechanism can be uti-
lized to construct a recursive structure, which can be
extended to satisfy the scenarios with more hierarchies.

7.3 More Satisfied Sub-Policies Wins an Earlier
Access (Case 2)

In this case, we consider the scenario: There are a collection
of sub-policies (P1, P2, . . ., Pn). If at the time point ti (We
assume tiþ1 > ti), the access policy is a (ki; n) threshold
gate over the above sub-policies, in which, we have

t1 	 ti < tj 	 tm,ki > kj: (5)

Then, we have relevant access structure to realize this kind
of policy requirement as shown in Fig. 8. A non-leaf node
whose threshold is k1 (the relevant access time is t1) is set as
the root of this structure, and it has nþ k1 � km child nodes:
The child nodes include the sub-policies P1, P2, . . ., Pn and
a series of unattached time trapdoors. The number of unat-
tached time trapdoors for each predefined time ti
(2 	 i 	 m) equals to ki�1 � ki. Each of the child nodes,
whether it’s the candidate sub-policy Pn, or the unattached
time trapdoor, will get its unique secret share from the root
node, with a (k1; nþ k1 � km) secret sharing method.
Finally, the time trapdoor t1 is an attached time trapdoor
and is linked to the root.

When it reaches time point ti (1 	 i 	 m), apart from t1,
the trapdoors associated with the time point ft2; t3; . . . ; tig
have been exposed, whose total number is

Pi
j¼2ðkj�1�

kjÞ ¼ k1 � ki. If a user wants to access the data at that time,

he/she can compute Fx for each exposed trapdoor as
Eq. (4), where the number of all trapdoors is k1 � ki. Thus,
if and only if his/her attribute set satisfies at least ki of the
n candidate sub-policies Pj, the total number of satisfied
child nodes equals to k1, which is just the threshold.
Furthermore, Fx of the root node can be reconstructed as
Eq. (2).

If we only consider the access structure at this moment,
the user only needs to concern that whether his/her attri-
bute set can satisfy ki of the n sub-policies. This is just the
access requirement of the access policy depicted in the first
paragraph of this case.

In addition, if the access time is earlier than t1, the
attached trapdoor t1 can prevent such unauthorized access
behaviour. Therefore, the structure in Fig. 8 supports a
ðki; nÞ threshold gate for the n sub-policies at each required
time point ti, and is able to meet the access policy
requirement.

7.4 Later Access has Larger n of (k; n) Gate (Case 3)

In this case, we consider a scenario, where the (k; n) has
such requirement: The threshold k is constant, where more
candidate sub-policies will enlarge the n. In this scenario,
later access means more choice to constitute one’s attributes
to satisfy the access policy. We use a simple access control
requirement as an example: At time point t1, the threshold
of the access policy is (k; 2) gate, where the candidate sub-
polices are P1 and P2. While at time point t2 (t2 > t1), a
user whose attribute set can satisfy k of three sub-policies
can also satisfy the policy, where P3 is the additional candi-
date sub-policy, and k is not changed. Fig. 9 shows the
access structure of this example.

In this structure, the access control at different time is as
follows:

1) An access before t1 will fail because of the trapdoor
t1.

2) If the time is between t1 and t2, the sub-policy P3 is
linked to an unexposed trapdoor t2. Therefore, can-
didate sub-policies that can be used are only P1 and
P2. Whether or not a user’s attribute set satisfies P3

does not affect the access judgement.
3) At time point t2, the remaining time trapdoor is

exposed, which means P3 becomes a candidate sub-
policy of the (k; 3) gate. Therefore, a user whose attri-
bute set satisfies k of the three sub-polices will satisfy
the entire policy.

Note that, if k ¼ 1, the structure is similar to that in Fig. 2.
The above analysis shows that access structures like Fig. 9
can achieve time-sensitive data access control requirement
of Case 3. What is more, if we add unattached time trap-
doors ti > t1 to Fig. 2, as child nodes of the root, we can
achieve increasing threshold k and decreasing candidate n
in one structure, which is the combination of Cases 2 and 3.

Fig. 7. Structure for case 1.

Fig. 8. Structure for case 2.

Fig. 9. Structure for case 3.

HONG ETAL.: TAFC: TIME AND ATTRIBUTE FACTORS COMBINED ACCESS CONTROL FOR TIME-SENSITIVE DATA IN PUBLIC... 169

8 CONCLUSION

This paper aims at fine-grained access control for time-
sensitive data in cloud storage. One challenge is to simulta-
neously achieve both flexible timed release and fine
granularity with lightweight overhead, which was not
explored in existing works. In this paper, we proposed a
scheme to achieve this goal. Our scheme seamlessly incor-
porates the concept of timed-release encryption to the archi-
tecture of ciphertext-policy attribute-based encryption.
With a suit of proposed mechanisms, this scheme provides
data owners with the capability to flexibly release the access
privilege to different users at different time, according to a
well-defined access policy over attributes and release time.
We further studied access policy design for all potential
access requirements of time-sensitive, through suitable
placement of time trapdoors. The analysis shows that our
scheme can preserve the confidentiality of time-sensitive
data, with a lightweight overhead on both CA and data
owners. It thus well suits the practical large-scale access
control system for cloud storage.

ACKNOWLEDGMENTS

The authors sincerely thank the anonymous referees for
their invaluable suggestions that have led to the present
improved version of the original manuscript. This work is
supported by the National Natural Science Foundation of
China under Grant No. 61379129 and No. 61671420, Youth
Innovation Promotion Association CAS, and the Fundamen-
tal Research Funds for the Central Universities. K. Xue is the
corresponding author.

REFERENCES

[1] Z. Qin, H. Xiong, S. Wu, and J. Batamuliza, “A survey of proxy
re-encryption for secure data sharing in cloud computing,” IEEE
Trans. Services Comput., (2016). [Online]. Available: https://doi.
org/10.1109/TSC.2016.2551238

[2] F. Armknecht, J.-M. Bohli, G. O. Karame, and F. Youssef,
“Transparent data deduplication in the cloud,” in Proc. 22nd ACM
SIGSAC Conf. Comput. Commun. Secur., 2015, pp. 886–900.

[3] R. Masood, M. A. Shibli, Y. Ghazi, A. Kanwal, and A. Ali, “Cloud
authorization: Exploring techniques and approach towards effec-
tive access control framework,” Frontiers Comput. Sci., vol. 9, no. 2,
pp. 297–321, 2015.

[4] K. Xue and P. Hong, “A dynamic secure group sharing frame-
work in public cloud computing,” IEEE Trans. Cloud Comput.,
vol. 2, no. 4, pp. 459–470, Oct.–Dec. 2014.

[5] K. Ren, C. Wang, and Q. Wang, “Security challenges for the public
cloud,” IEEE Internet Comput., vol. 16, no. 1, pp. 69–73, Jan./Feb.
2012.

[6] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy
attribute-based encryption,” in Proc. 28th IEEE Symp. Secur.
Privacy, 2007, pp. 321–334.

[7] Y. Zhu, D. Huang, C.-J. Hu, and X. Wang, “From RBAC to ABAC:
Constructing flexible data access control for cloud storage serv-
ices,” IEEE Trans. Services Comput., vol. 8, no. 4, pp. 601–616,
Jul./Aug. 2015.

[8] Z. Wan, J. Liu, and R. H. Deng, “HASBE: A hierarchical attribute-
based solution for flexible and scalable access control in cloud
computing,” IEEE Trans. Inf. Forensics Secur., vol. 7, no. 2, pp. 743–
754, Apr. 2012.

[9] K. Yang, X. Jia, K. Ren, B. Zhang, and R. Xie, “DAC-MACS: Effec-
tive data access control for multi-authority cloud storage sys-
tems,” IEEE Trans. Inf. Forensics Secur., vol. 8, no. 11, pp. 1790–
1801, Nov. 2013.

[10] M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou, “Scalable and secure
sharing of personal health records in cloud computing using attri-
bute-based encryption,” IEEE Trans. Parallel Distrib. Syst., vol. 24,
no. 1, pp. 131–143, Jan. 2013.

[11] W. Li, K. Xue, Y. Xue, and J. Hong, “TMACS: A robust and verifi-
able threshold multi-authority access control system in public
cloud storage,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 5,
pp. 1484–1496, May 2016.

[12] K. Xue, et al., “RAAC: Robust and auditable access control with
multiple attribute authorities for public cloud storage,” IEEE
Trans. Inf. Forensics Secur., vol. 12, no. 4, pp. 953–967, Apr. 2017.

[13] E. Bertino, P. A. Bonatti, and E. Ferrari, “TRBAC: A temporal role-
based access control model,” ACM Trans. Inf. Syst. Secur., vol. 4,
no. 3, pp. 191–233, 2001.

[14] I. Ray and M. Toahchoodee, “A spatio-temporal role-based access
control model,” in Proc. IFIP Annu. Conf. Data Appl. Secur. Privacy,
2007, pp. 211–226.

[15] D. Kulkarni and A. Tripathi, “Context-aware role-based access
control in pervasive computing systems,” in Proc. 13th ACM
Symp. Access Control Models Technol., 2008, pp. 113–122.

[16] R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock puzzles
and timed-release crypto,” Massachusetts Inst. Technol.,
Cambridge, MA, USA, Tech. Rep. MIT-LCS-TR-684, 1996.

[17] K. Yuan, Z. Liu, C. Jia, J. Yang, and S. Lv, “Public key timed-
release searchable encryption,” in Proc. 4th Int. Emerging Intell.
Data Web Technol., 2013, pp. 241–248.

[18] Q. Liu, G. Wang, and J. Wu, “Time-based proxy re-encryption
scheme for secure data sharing in a cloud environment,” Inf. Sci.,
vol. 258, no. 3, pp. 355–370, 2014.

[19] L. Xu, F. Zhang, and S. Tang, “Timed-release oblivious transfer,”
Secur. Commun. Netw., vol. 7, no. 7, pp. 1138–1149, 2014.

[20] E. Androulaki, C. Soriente, L. Malisa, and S. Capkun, “Enforcing
location and time-based access control on cloud-stored data,” in
Proc. 34th IEEE Int. Distrib. Comput. Syst., 2014, pp. 637–648.

[21] C.-I. Fan and S.-Y. Huang, “Timed-release predicate encryption
and its extensions in cloud computing,” J. Internet Technol., vol. 15,
no. 3, pp. 413–426, 2014.

[22] J. Hong, K. Xue, W. Li, and Y. Xue, “TAFC: Time and attribute fac-
tors combined access control on time-sensitive data in public
cloud,” in Proc. IEEE Global Commun. Conf., 2015, pp. 1–6.

[23] H. Tian, et al., “Dynamic-hash-table based public auditing
for secure cloud storage,” IEEE Trans. Services Comput., (2016).
[Online]. Available: https://doi.org/10.1109/TSC.2015.2512589

[24] C. Wang, Q. Wang, K. Ren, N. Cao, and W. Lou, “Toward secure
and dependable storage services in cloud computing,” IEEE
Trans. Services Comput., vol. 5, no. 2, pp. 220–232, Apr.–Jun. 2012.

[25] H. Wang, “Identity-based distributed provable data possession in
multicloud storage,” IEEE Trans. Services Comput., vol. 8, no. 2,
pp. 328–340, Mar./Apr. 2015.

[26] Z. Fu, K. Ren, J. Shu, X. Sun, and F. Huang, “Enabling personal-
ized search over encrypted outsourced data with efficiency
improvement,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 9,
pp. 2546–2559, Sep. 2016.

[27] Z. Zhou, H. Zhang, Q. Zhang, Y. Xu, and P. Li, “Privacy-
preserving granular data retrieval indexes for outsourced cloud
data,” in Proc. IEEE Global Commun. Conf., 2014, pp. 601–606.

[28] Q. Liu, C. C. Tan, J. Wu, and G. Wang, “Reliable re-encryption in
unreliable clouds,” in Proc. IEEE Global Commun. Conf., 2011,
pp. 1–5.

[29] J. Li, W. Yao, Y. Zhang, and H. Qian, “Flexible and fine-grained
attribute-based data storage in cloud computing,” IEEE Trans.
Services Comput., (2016), [Online]. Available: https://doi.org/
10.1109/TSC.2016.2520932

[30] Y. Xue, J. Hong, W. Li, K. Xue, and P. Hong, “LABAC: A location-
aware attribute-based access control scheme for cloud storage,” in
Proc. IEEE Global Commun. Conf., 2016, pp. 1–6.

[31] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in
Proc. 24th Annu. Int. Conf. Theory Appl. Cryptographic Techn., 2005,
pp. 457–473.

[32] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based
encryption for fine-grained access control of encrypted data,” in
Proc. 13th ACM Conf. Comput. Commun. Secur., 2006, pp. 89–98.

[33] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable,
and fine-grained data access control in cloud computing,” in
Proc. 29th IEEE Int. Conf. Comput. Commun., 2010, pp. 1–9.

[34] L. Touati and Y. Challal, “Collaborative KP-ABE for cloud-based
internet of things applications,” in Proc. IEEE Int. Conf. Commun.,
2016, pp. 1–7.

[35] K. Yang, X. Jia, K. Ren, R. Xie, and L. Huang, “Enabling efficient
access control with dynamic policy updating for big data in the
cloud,” in Proc. 33rd IEEE Int. Conf. Comput. Commun., 2014,
pp. 2013–2021.

170 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 1, JANUARY/FEBRUARY 2020

https://doi.org/10.1109/TSC.2016.2551238
https://doi.org/10.1109/TSC.2016.2551238
https://doi.org/10.1109/TSC.2015.2512589
https://doi.org/10.1109/TSC.2016.2520932
https://doi.org/10.1109/TSC.2016.2520932

[36] K. Yang, X. Jia, and K. Ren, “Secure and verifiable policy update
outsourcing for big data access control in the cloud,” IEEE Trans.
Parallel Distrib. Syst., vol. 26, no. 12, pp. 3461–3470, Dec. 2015.

[37] K. Liang, Q. Huang, R. Schlegel, D. S. Wong, and C. Tang, “A con-
ditional proxy broadcast re-encryption scheme supporting timed-
release,” in Information Security Practice and Experience. Berlin,
Germany: Springer, 2013, pp. 132–146.

[38] X. Ma, L. Xu, and F. Zhang, “Oblivious transfer with timed-release
receiver’s privacy,” J. Syst. Softw., vol. 84, no. 3, pp. 460–464, 2011.

[39] Y. Zhu, H. Hu, G.-J. Ahn, D. Huang, and S. Wang, “Towards tem-
poral access control in cloud computing,” in Proc. 31st IEEE Int.
Conf. Comput. Commun., 2012, pp. 2576–2580.

[40] K. Yang, Z. Liu, X. Jia, and X. Shen, “Time-domain attribute-based
access control for cloud-based video content sharing: A crypto-
graphic approach,” IEEE Trans. Multimedia, vol. 18, no. 5, pp. 940–
950, May 2016.

[41] X. Zhu, S. Shi, J. Sun, and S. Jiang, “Privacy-preserving attribute-
based ring signcryption for health social network,” in Proc. IEEE
Global Commun. Conf., 2014, pp. 3032–3036.

Jianan Hong received the BS degree from the
Department of Information Security, University of
Science and Technology of China (USTC), in
2012. He is currently working toward the PhD
degree in information security from the Depart-
ment of Electronic Engineering and Information
Science(EEIS), USTC. His research interests
include secure cloud computing and mobile net-
work security.

Kaiping Xue (M’09-SM’15) received the BS
degree from the Department of Information Secu-
rity, University of Science and Technology of China
(USTC), in 2003 and the PhD degree from the
Department of Electronic Engineering and Infor-
mation Science (EEIS), USTC, in 2007. Currently,
he is an associate professor in the Department of
Information Security and Department of EEIS,
USTC. His research interests include next-gener-
ation Internet, distributed networks, and network
security. He is a senior member of the IEEE.

Yingjie Xue received the BS degree from the
Department of Information Security, University of
Science and Technology of China (USTC), in
July, 2015. She is currently working toward the
master degree in communication and information
system from the Department of Electronic Engi-
neering and Information Science(EEIS), USTC.
Her research interests include network security
and cryptography.

Weikeng Chen is currently working toward the
BS degree from the Department of Information
Security, University of Science and Technology of
China(USTC). He will be a doctoral student at the
University of California, Berkeley, in fall 2017. His
research interests include network security proto-
col design and analysis.

David S. L. Wei (SM’07) received the PhD
degree in computer and information science from
the University of Pennsylvania, in 1991. He is cur-
rently a professor of Computer and Information
Science Department, Fordham University. From
May 1993 to August 1997, he was on the faculty
of computer science and engineering with the
University of Aizu, Japan, (as an associate pro-
fessor and then a professor). He has authored
and co-authored more than 100 technical papers
in various archival journals and conference pro-

ceedings. He served on the program committee and was a session chair
for several reputed international conferences. He was a lead guest editor
of the IEEE Journal on Selected Areas in Communications for the spe-
cial issue on Mobile Computing and Networking, a lead guest editor of
the IEEE Journal on Selected Areas in Communications for the special
issue on Networking Challenges in Cloud Computing Systems and
Applications, a guest editor of the IEEE Journal on Selected Areas in
Communications for the special issue on Peer-to-Peer Communications
and Applications, and a lead guest editor of the IEEE Transactions on
Cloud Computing for the special issue on Cloud Security. He was the
chair of Intelligent Transportation Forum of Globecom 2010, the general
chair of Intelligent Transportation Workshop of ICC 2011, and the chair
of Cloud Security Forum and Intelligent Transportation Forum of Globe-
com 2011. He is currently an associate editor of the IEEE Transactions
on Cloud Computing, an associate editor of the Journal of Circuits, Sys-
tems and Computers, and a guest editor of the IEEE Transactions on
Big Data for the special issue on Trustworthiness in Big Data and Cloud
Computing Systems. Currently, His research interests include cloud
computing, big data, IoT, and cognitive radio networks. He is a senior
member of the IEEE.

Nenghai Yu received the BS degree from the
Nanjing University of Posts and Telecommunica-
tions, Nanjing, China, in 1987, the ME degree
from Tsinghua University, Beijing, China, in 1992,
and the PhD degree from the University of Sci-
ence and Technology of China, Hefei, China, in
2004. Since 1992, he has been a faculty in the
Department of Electronic Engineering and Infor-
mation Science, USTC, where he is currently a
professor. He is the executive director of the
Department of Electronic Engineering and Infor-

mation Science, USTC, and the director of the Information Processing
Center, USTC. He has authored or co-authored more than 130 papers in
journals and international conferences. His research interests include
multimedia security, multimedia information retrieval, video processing,
and information hiding.

Peilin Hong received the BS and MS degrees
from the Department of Electronic Engineering
and Information Science (EEIS), University of
Science and Technology of China (USTC), in
1983 and 1986. Currently, she is a professor and
advisor for PhD candidates in the Department of
EEIS, USTC. Her research interests include next-
generation Internet, policy control, IP QoS, and
information security. She has published two
books and more than 150 academic papers in
several journals and conference proceedings.

HONG ETAL.: TAFC: TIME AND ATTRIBUTE FACTORS COMBINED ACCESS CONTROL FOR TIME-SENSITIVE DATA IN PUBLIC... 171

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

