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Abstract—The new paradigm of outsourcing data to the cloud
is a double-edged sword. On the one hand, it frees data owners
from the technical management, and is easier for data owners to
share their data with intended users. On the other hand, it poses
new challenges on privacy and security protection. To protect
data confidentiality against the honest-but-curious cloud service
provider, numerous works have been proposed to support fine-
grained data access control. However, till now, no schemes can
support both fine-grained access control and time-sensitive data
publishing. In this paper, by embedding timed-release encryption
into CP-ABE (Ciphertext-Policy Attribute-based Encryption),
we propose a new time and attribute factors combined access
control on time-sensitive data for public cloud storage (named
TAFC). Based on the proposed scheme, we further propose an
efficient approach to design access policies faced with diverse
access requirements for time-sensitive data. Extensive security
and performance analysis shows that our proposed scheme is
highly efficient and satisfies the security requirements for time-
sensitive data storage in public cloud.

Index Terms—Cloud Storage, Access control, Time-sensitive
data, Fine granularity.

I. INTRODUCTION

Cloud storage service has significant advantages on both
convenient data sharing and cost reduction [1, 2]. Thus, more
and more enterprises and individuals outsource their data to
the cloud to be benefited from this service. However, this
new paradigm of data storage poses new challenges on data
confidentiality preservation [3]. As cloud service separates the
data from the cloud service client (individuals or entities),
depriving their direct control over these data [4], the data
owner cannot trust the cloud server to conduct secure data
access control. Therefore, the secure access control problem
has become a challenging issue in public cloud storage.

Ciphertext-policy attribute-based encryption (CP-ABE) [5]
is a useful cryptographic method for data access control in
cloud storage [6–8]. All these CP-ABE based schemes enable
data owners to realize fine-grained and flexible access control
on their own data. However, CP-ABE determines users’ access
privilege based only on their inherent attributes without any
other critical factors, such as the time factor. In reality, the
time factor usually plays an important role in dealing with
time-sensitive data [9–11] (e.g. to publish a latest electronic
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magazine, or to expose a company’s future business plan). In
these scenarios, both the mechanism of access privilege timed
releasing and fine-grained access control should be together
taken into account. Let us take the enterprise data exposure for
instance: A company usually prepares some important files for
different intended users, and these users can gain their access
privilege at different time points. For example, the future plan
of this company may contain some business secrets. Thus
at an early time, the access privilege can be released to the
CEO only. Then the managers of some relevant departments
could get access privilege at a later time point, when they take
responsibility for the plan execution. At last, other employees
in some specific departments of the company can access the
data to evaluate the completeness of this enterprise plan. When
uploading time-sensitive data to the cloud, the data owner
wants different users to access the content after different
time points. To the outsourced data storage, CP-ABE can
characterize different users and provide fine-grained access
control. However, to our best knowledge, these schemes cannot
support gradual access privilege releasing.

To realize the function of timed releasing, it is necessary
to introduce an effective scheme, which will not release the
data access privilege to intended users until reaching pre-
defined time points. A trivial solution is to let data owners
manually release the time-sensitive data: The owner uploads
the encrypted data under different policies at each releasing
time such that the intended users cannot access the data
until the corresponding time arrives. However, this solution
forces the owner to repeatedly upload the different encryption
versions of the same data, which puts unnecessary and heavy
burden on the data owner.

From the perspective of cryptography, the function of timed
access privilege releasing can be achieved by Timed-Release
Encryption (TRE). Rivest et al. [12] proposed this first prac-
tical TRE algorithm, which has been subsequently introduced
into different scenarios [13–15]. In a TRE-based system, a
trust time agent, rather than data owner, can uniformly release
the access privilege at a specific time. Some schemes, such
as [16, 17], have been proposed to integrate TRE into remote
data access control. However, these schemes either lack fine-
grained access control or leave an unbearable burden.

How to achieve the capacity of both timed-release and
fine-grained access control in cloud storage? A direct but
naive method is to handle the time factor as an attribute
[16]. However, unbearable number of time-related keys need
to be issued to each user at each pre-defined time point,
which introduces heavy overhead on both computation and
communication. Qin et al. [14] made a preliminary attempt
to integrate time with attributes, but it only addresses the
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issue that the attributes’ life period of each user is limited
by time. A more practical requirement is that: each user with
different attribute set can have different releasing time points
for the same file. Unfortunately, Qin’s scheme cannot meet
this requirement.

In this paper, we propose an efficient time and attribute
factors combined access control scheme, named TAFC, for
time-sensitive data in public cloud. Our scheme possesses
two important capabilities: 1) It inherits the property of fine
granularity from CP-ABE; 2) By introducing the trapdoor
mechanism, it further retains the feature of timed release from
TRE. Note that in TAFC, the introduced trapdoor mechanism
is only related to the time factor, and only one corresponding
secret needs to be published when exposing the related trap-
doors. This makes our scheme highly efficient, which only
brings about little overhead to the original CP-ABE based
scheme. We should address how to design an efficient access
structure for arbitrary access privilege construction with both
time and attribute factors, especially when an access policy
embeds multiple access privilege releasing time points. As an
extension of the previous conference version [18], we give the
potential sub-policies for time-sensitive data, and then present
an efficient and practical method to construct relevant access
structures.

The main contributions of this paper can be summarized as
follows:

1) By integrating TRE and CP-ABE in public cloud storage,
we propose an efficient scheme to realize secure fine-
grained access control for time-sensitive data. In the
proposed scheme, the data owner can autonomously des-
ignate intended users and their relevant access privilege
releasing time points. Besides realizing the function, it is
proved that the negligible burden is upon owners, users
and the trusted CA.

2) We present how to design access structure for any po-
tential timed release access policy, especially embedding
multiple releasing time points for different intended users.
To the best of our knowledge, we are the first to study the
approach to design structures for general time-sensitive
access requirements.

3) Furthermore, a rigorous security proof is given to validate
that the proposed scheme is secure and effective.

The rest of this paper is organized as follows. We first
review some existing work that are related to data access
control for time-sensitive data in Section II. In Section III, we
present the system architecture and state the security model.
Section IV describes main techniques. In Section V, we give
detailed algorithm of our proposed TAFC, and analyze the
scheme in terms of its security and performance in Section
VI. Section VII provides an effective method to design access
polices for any potential access requirement of time-sensitive
data. Finally, we conclude this paper in Section VIII.

II. RELATED WORK

Based on various cryptographic primitives, there have been
numerous works on secure data sharing in cloud storage.
Among these schemes, some aimed at protecting the integrity

of the shared data, e.g., [19–21], and some aimed at protecting
the confidentiality and access control of the data, e.g., [6–
8, 22–25]. In the area of data access control, attribute-based
encryption (ABE) [26] is utilized as a basic cryptograph-
ic technique. These ABE-based access control schemes, in
general, can be divided into two main categories: key-policy
ABE (KP-ABE) based schemes [27], such as [28–30]; and
ciphertext-policy ABE (CP-ABE) based schemes [5], such as
[6, 7]. The latter one is more suitable for achieving flexible
and fine-grained access control for the public cloud, in which
each file is labelled with an access structure, and each user
owes a security key embedded with a set of attributes.

However, the existing ABE based schemes do not support
the scenario where the access privilege of one file is required to
be respectively released to different sets of users after different
time points, but needs only one time of the ciphertext upload.
A trivial solution is to let the data owner him/herself retrieve
the file, re-encrypt it under the new policy, and upload it again
when the releasing time arrives. However, such solution brings
about heavy burden of both communication and computation
overhead on the data owner. Goyal et al. [27] and Yang
et al. [31, 32] have proposed policy update methods for
KP-ABE based and CP-ABE based schemes respectively. In
[27, 31, 32], if the data owner wants to release the access
privilege to new sets of users, he/she does not need to re-
encrypt and upload the whole file. Taking Yang’s scheme
[31] as an example, the data owner generates and sends a
policy update key to the cloud, and the cloud can re-encrypt
the stored file. With the modification of access policy, new
sets of users are able to access the file. However, Yang’s
scheme have just discussed how to update the access structure,
but not embedded the time factor into the access structure,
which requires that the data owner must be online when
implementing policy updating. Therefore, it is desperately
needed to devise an efficient scheme, in which the data owner
can designate all of the file’s future access policies when it is
first encrypted.

Towards this challenge, Timed-Release Encryption (TRE)
becomes a promising primitive, in which, a trusted time
agent, instead of data owners, uniformly executes the timed-
release function. Such notion has been widely intergrated to
many scenarios. Yuan et al. [13] makes TRE be integrated
to the searchable encryption scheme, in which the intended
user is constrained to wait for a particular time to search
the outsourced data. The combination of TRE and proxy-
encryption were proposed in cloud environment [24, 33]. TRE
also helps achieve a conditional oblivious transfer scheme such
that the access pattern is exposed after a specific time [15, 34].

In the scenario of data access control for public cloud
storage, some schemes that adopt the basic idea of TRE have
been proposed [14, 16, 17]. Qin et al. [14] proposed a proxy-
encryption scheme for data sharing, where the data access priv-
ilege can be accurately distributed to intended users who own a
certain attribute set during a specific time period. The proposed
scheme can well preserve data confidentiality. However, it
cannot satisfy the requirement that users are constrained to
access data after particular designated time. Androulaki et
al. [16] designed an approach to realize time-sensitive data
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access control in cloud. However, this approach lacks fine
granularity, which leaves the data owners an unbearable burden
in a large-scale system. Fan et al. [17] proposed timed-release
predicate encryption for cloud computing. However, each file
can be labeled with only one time point, which cannot release
the access privilege of one file to different intended users at
different time.

Some researches have also tried to combine the mechanisms
of TRE and CP-ABE, such as [35, 36], to provide a flexible
and fine-grained access control for time-sensitive data. Zhu
et al. [35] proposed a temporal access control system for
cloud storage, in which the cloud server manages the time
as a universal clock service. Such construction cannot resist
the collusion between cloud server and users. In [36], the
authors proposed a time-domain access control system, in
which access control takes both user’s attribute set and the
access time into consideration. Different from [31, 32], this
work achieves data access privilege automatically releasing
for users without data owner’s online participation. However,
it introduces heavy extra overhead: The authority needs to
generate update keys for all potential attributes each time to
implement the time-related function, and the computational
complexity increases with the amount of involved attributes.

A more smart scheme is needed to realize fine-grained
access control for time-sensitive data in cloud storage.

III. SYSTEM AND SECURITY MODEL

A. System Model

Similar to most CP-ABE based schemes, the system in this
paper consists of the following entities: a central authority
(CA), several data owners (Owner), many data consumers
(User), and a cloud service provider (Cloud).

Fig. 1. TAFC Architecture and Operations

• The central authority (CA) is responsible to manage
the security protection of the whole system: It publishes
system parameters and distributes security keys to each
user. In addition, it acts as a time agent to maintain the
timed-releasing function.

• The data owner (Owner) decides the access policy based
on a specific attribute set and one or more releasing time

points for each file, and then encrypts the file under the
decided policy before uploading it.

• The data consumer (User) is assigned a security key
from CA. He/she can query any ciphertext stored in
the cloud, but is able to decrypt it only if both of the
following constraints are satisfied: 1) His/her attribute set
satisfies the access policy; 2) The current access time is
later than the specific releasing time.

• Cloud service provider (Cloud) includes the administra-
tor of the cloud and cloud servers. The cloud undertakes
the storage task for other entities, and executes access
privilege releasing algorithm under the control of CA.

As depicted in Fig. 1, the ciphertexts are transmitted from
owners to the cloud, and users can query any ciphertexts. CA
controls the system with the following two operations: 1) It
issues security keys to each user, according to user’s attribute
set; 2) At each time point, it publishes a time token (TK),
which is used to release access privilege of data to users.

B. Security Assumption

In our access control system, the cloud is assumed to be
honest-but-curious, which is similar to that assumed in most
of the related literatures on secure cloud storage [7, 8, 23, 24]:
On the one hand, it offers reliable storage service and correctly
executes every computation mission for other entities; On the
other hand, it may try to gain unauthorized information for its
own benefits.

Beyond the cloud, the whole system consists of one CA,
some owners and users, in which CA is assumed to be fully-
trusted, while users could be malicious. CA is responsible
for key distribution and time token publishing. A malicious
user will try to decrypt the ciphertexts to obtain unauthorized
data by any possible means, including colluding with other
mailicious users.

The proposed TAFC can realize a fine-grained and timed-
releasing access control system: Only one user with a satisfied
attribute set can access the data after the specific time. The
proposed scheme is defined to be compromised if either of
the following two types of users can successfully decrypt the
ciphertext: 1) A user whose attribute set does not satisfy the
access policy of a corresponding ciphertext; 2) A user who
tries to access the data before the specified releasing time,
even if he/she has satisfying attribute set.

IV. TECHNICAL PRELIMINARIES

A. Bilinear Pairings and Complexity Assumption

Let G1 and G2 be two multiplicative cyclic groups of prime
order p. Let e : G1 × G1 → G2 be a bilinear map with the
following properties:

1) Computability. There is an efficient algorithm to compute
e(u, v) ∈ G2, for any u, v ∈ G1.

2) Bilinearity. For all u, v ∈ G1 and a, b ∈ Zp, we have
e(ua, vb) = e(u, v)ab.

3) Non-degeneracy. If g is a generator of G1, then e(g, g)
is also a generator of G2.

Definition 1: (Decisional BDH Assumption, DBDH). The
DBDH assumption is that no polynomial-time adversary is
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able to distinguish the tuple (ga, gb, gc, e(g, g)abc) from anoth-
er tuple (ga, gb, gc, e(g, g)z), if the adversary has no knowl-
edge of the random elements a, b, c, z ∈ Z∗

p.

B. Ciphertext-Policy Attribute-based Encryption

CP-ABE [5] is a cryptography prototype for one-to-many
secure communication. In a CP-ABE based scheme, besides
the storage platform, the system consists of three basic par-
ties: the authority, the owner and the user. The authority is
introduced to publish system parameters and issue secret keys
for the users. The owner shares files to the intended users
by designating an access policy and encrypting the file under
the policy. In CP-ABE based approach, the access policy is
expressed as a tree over a set of attributes and logic gates,
which will be illustrated in detail later. Each user obtains
his/her secret key from the authority based on his/her own
attributes.

The functionality and security model of CP-ABE assumes
that the storage platform (e.g., cloud server) does not conduct
the access control management. This type of schemes allow
the user to query any ciphertext, but he/she is able to decrypt
the ciphertext if and only if his/her attribute set satisfies the
access policy of the file. A CP-ABE scheme consists of the
following four algorithms:

Setup. It takes a security parameter λ and the attribute
universe description U as the input, and outputs a master key
MK , and a public parameter PK .

Key Generation. It takes the master key MK and a set
of attributes as the input, and outputs the security key SK
associated with the input attribute set.

Encryption. It takes the public parameter PK , a message
M , and an access policy T over some attributes as the input.
It outputs the ciphertext CT .

Decryption. It takes the security key SK , and the ciphertext
CT as the input, and outputs either a message M or the
distinguished symbol ⊥.

Please refer to [5] for more details about CP-ABE. The
literatures, such as [6, 7, 37], have introduced CP-ABE to
construct fine-grained access control frameworks.

C. Timed-Release Encryption

The concept of timed-release encryption is for scenarios that
someone wants to securely send a message to another one in
the future. In detail, the owner encrypts his/her message for the
purpose that intended users can decrypt it after a designated
time. From the security aspect, TRE satisfies that: 1) Except
the intended users, no one is able to get any information of the
message; 2) Even the intended user cannot get the plaintext of
the message before the designated releasing time. In order to
support an accurate timed-release mechanism, a trusted time
agent is required to manage the clock of the system. At each
time point T , the agent releases a time token TKT , which is
an important notion in TRE.

When encrypting the message, the ciphertext is generated
with the public key of the intended user and the designated
releasing time T . The ciphertext holds the feature that only
with the corresponding user’s secret key and time token TKT ,

can a user correctly get the plaintext of the message; otherwise,
if without either of the two components, the user cannot
successfully conduct the decryption.

The literatures, such as [12, 13], have introduced algorithms
to realize a practical TRE. Please refer to them for more
details.

V. MAIN CONSTRUCTION OF OUR SCHEME

We firstly give an overview of our proposed TAFC, mainly
discussing how to achieve timed-release function in this pa-
per. Then, we introduce the concepts of access policy, time
trapdoor and token. Lastly, we describe our proposed TAFC
in details.

Table I describes the basic notations in this paper.

TABLE I
SOME NOTATIONS

Notation Description

MK Master secret key of CA

PK Public parameter of the system

M Plaintext of the data

T Access policy over attributes and time

CT Ciphertext of the data

Sj Attribute set of user Uj

SKj Attribute-associated security key of user Uj

TSx Time trapdoor upon node x, in unexposed status

TS′
x Time trapdoor upon x, in exposed status

TKt Time token of time t

FT Unified format of time

H1 Hash function that maps elements in {0, 1}∗ to elements in G
∗
1

H2 Hash function that maps elements in G
∗
2 to elements in Z

∗
p

A. Overview of TAFC

In order to build a scalable and fine-grained access control
system for outsourced time-sensitive data, we combine two ad-
vanced cryptographic techniques, namely CP-ABE and TRE.
The former one is to provide an expressive access control
primitive with determined attribute sets; and the latter one is
to realize timed-release function.

The general idea of our unique mechanism is to realize
access structures in a new form. As shown in Fig. 3, apart
from attributes and logic gates defined in existing CP-ABE,
the access structure in our scheme contains one or more time
trapdoors (TS), each of which represents a time point. The
trapdoor is implemented for the timed release function in
CP-ABE algorithm. It can be placed upon any node in the
structure, arbitrarily defining access privilege releasing time
for different users. The accessing time, together with user’s
attribute set, determines whether the user satisfies the policy.

For every shared file, the data owner him/herself determines
the access policy to encrypt the file. Especially, the time
trapdoors in the policy are generated according to a time
point t ∈ FT . FT is system’s unified time format, such as
“dd/mm/yyyy”. The time format designates the granularity
of timed-release function, e.g., monthly, daily, or hourly. Such
mechanism removes the complicated interactions between CA
and data owners. In the access policy, a node attached with a
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time trapdoor is said to be satisfied if it holds the following
features: 1) Just like CP-ABE, if it is a leaf node, the relevant
attribute is among the attribute set; otherwise, the number of
its satisfied child nodes exceeds a threshold (will be discussed
in detail later); 2) The current access time is later than the
relevant releasing time point of the time trapdoor.

From the cryptographic perspective, such idea is realized
since CA publishes time token TKT in every time point, just
like the time agent does in TRE. Our scheme works if the
following feature holds: A user can decrypt a file if and only
if his/her attribute set and the obtained time tokens satisfy
the access policy. For the performance consideration, in our
scheme, time related decryption can be outsourced to the cloud
without losing confidentiality.

Moreover, in order to ensure an approximate time consis-
tency, we could introduce a less tight time synchronization
mechanism. For example, a third-party Internet Time Server
can be introduced, or owners and users all synchronize with
CA, who opens a time synchronization interface for the public.

B. Access Policy and Time-Related Components

1) Access Policy Structure: In TAFC, an access policy is
over some attributes and one or more releasing time points.
Fig. 2 shows an example of the policy structure.

A structure T consists of a policy tree of several nodes,
and some time trapdoors TS. A leaf node represents a certain
attribute (In Fig. 2, A0, · · · , A3 are the relevant attributes),
and each non-leaf node represents a threshold gate (“AND”,
“OR”, or others). Each non-leaf node x has two logic values
nx and kx, where nx is the number of its child node, and kx

is the threshold. Particularly, kx = 1 if x is an OR gate, or
kx = nx if x is an AND gate.

In a structure T , the number of included time trapdoors
can be zero, one, or more than one. Each trapdoor TS x is
appended to a node x. From the perspective of algorithm, TS
can be appended to arbitrary node of the structure (leaf, non-
leaf, or even root). For instance, in Fig. 2, TS1 is appended
to a leaf node in order to restrict the attribute A1, while TS2

is upon a non-leaf node to restrict a sub-policy “A2 ∧ A3”.
2) Time Trapdoors and Time Tokens: Time trapdoor (TS)

can be embedded in an access structure, such that the corre-
sponding user’s access permission is restricted by the status
of TS. In this paper, we define two statuses, namely exposed
or unexposed, for the time trapdoor.

� Unexposed. A trapdoor (TS) is unexposed if the intended
users cannot access the corresponding secret through the
trapdoor with their security keys.

� Exposed. A trapdoor is exposed if the intended users can get
the corresponding secret through this trapdoor. An exposed
trapdoor is denoted as TS ′.

The status of a trapdoor can be transferred from “Un-
exposed” to “Exposed” with a relevant time token (TK t).
After TKt is published at time t, anyone, including the
cloud and any users, can transfer the status of corresponding
time trapdoors (In this paper, the cloud server performs the
operation of status transferring, which will not bring about
user’s overhead or introduce other undesired factors).

In our proposed TAFC, a trapdoor TS is generated by a data
owner when encrypting his/her data, and a time token TK is
generated and published by CA. The cloud server can transfer
one particular trapdoor’s status from unexposed to exposed
after obtaining the corresponding TK t.

Taking Fig. 2 as an example: The trapdoor TS1 is related
to a time point t1, and TS2 is related to t2. Users that satisfy
“A0 ∧A2 ∧A3” (such as U1) cannot get access privilege until
the token TKt1 is published; And users satisfying “A0 ∧A1”
(such as U2) should wait for CA to publish TKt2 .

Note that, any time ti in this paper represents a certain time
point rather than a length of time interval. In the remaining of
this paper, if ti < tj , it means that ti is an earlier time point
than tj .

C. Construction

Our proposed TAFC consists of six procedures: setup, key
generation, encryption, token generation, trapdoor exposure
and decryption. Fig. 3 depicts a brief description of our scheme
(setup and key generation are not included in the figure).

1) Setup: CA generates I = [p, G1, G2, g, e, H1, H2, FT ],
where e : G1 × G1 → G2 is a bilinear map, G1 and G2 are
cyclic multiplicative groups of a prime order p, g is a generator
of G1, H1 : {0, 1}∗ → G∗

1, H2 : G∗
2 → Z∗

p. FT is the time
format.

CA randomly chooses α, β, γ ∈ Z∗
p. The public parameter

is published as:

PK =
(
I, h = gβ, f = gγ , e(g, g)α

)
,

and the master key MK is (β, γ, gα), which implicitly exists
in the system, and doesn’t need to be obtained by any other
entity. (Note that f and γ are used for timed-release function.)

2) Key Generation: For each user Uj with attribute set Sj ,
CA firstly chooses a random uj ∈ Z∗

p as a unique identity for
the user. Each attribute Atti ∈ Sj is assigned a random ri.
Then, CA computes the user’s security key as:

SKj = {D = g(α+uj)/β ,

∀Atti ∈ Sj : Di = guj ·H1(Atti)
−ri , D′

i = gri}.

At the end of this procedure, the security key SK j is sent
to Uj in a secure tunnel.

3) Encryption: The data owner uses a symmetric cryptogra-
phy to encrypt the data M with a random chosen key K ∈ G 2.

In this procedure, each node x in the predefined access
structure T will associate with three secret parameters, denot-
ed as s0x, s1x and sτx. Here, s0x is shared with its parent node,
s1x is shared with its child node (or dealt with the relevant
attribute if x is a leaf node), and sτx is a time-related parameter.
Specifically, if x is the root R, s0R is the base secret of T . The
parameter assigning is in a top-down manner, starting from the
root R as follows:

If x is R, the owner randomly chooses a random parameter
s0R ∈ Zp. For each node x with s0x, the parameters s1x and sτx
are chosen as:{

sτx ∈ Z∗
p, sτx · s1x = s0x x is linked to a time trapdoor

sτx = 1, s1x = s0x otherwise
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∧

A0 ∨

A1 ∧

A2 A3

TS1

TS2

TKt1

TKt2

· U1 : A0, A2, A3

· U2 : A0, A1

Fig. 2. Example of TAFC Access Structure

Owner

• Encryption (M, policy T )→ CT.

1. C̃ ← Enc(M, K), where K is a random
key;

2. (s0R, C̀, C)← K;

3. ∀x ∈ T , (s0x, s
τ
x, s

1
x)← (T , s0R);

4. ∀x ∈ ST , TSx ← IBE(sτx, tx), where tx
is relevant time;

5. ∀x ∈ SL, let Ax be the relevant at-
tribute, then (Cx, C

′
x) ← (s1x, Ax).

CT =
(
C̃, C̀, C, {Cx, C ′

x}x∈SL
, {TSx}x∈ST

)
.

Cloud

• Trapdoor Exposure (TKt,CT)

1. TSx ∈ ST , and related to t;

2. TS ′
x ← (TSx, TKt);

3. Replace TSx with TS′
x,return

CT .

User

• Decryption (CT, SKj)→ M.

1. K ← (C̀, C, {Cx, C
′
x}, {TS′

x}, SKj);

2. M ← Dec(C̃,K).

CA

• Token Generation (t, MK)→ TKt.

1. At time t, TKt ← (t,MK);

2. Publish TKt.

1© CT

2© TK
3©

→CT.′

′

CT
′

′

Fig. 3. Procedure Description of TAFC Construction (SL is the set of leaf nodes in T ; ST is the
set of time trapdoors in T , CT ′ is the notion of modified ciphertext whose time trapdoor has been
exposed.)

For each non-leaf node x with s1x, the data owner chooses a
polynomial qx, whose degree dx = kx − 1, and qx(0) = s1x.
For each of x’s child nodes (y) with a unique index indexy,
the data owner sets s0y = qx(indexy).

For a trapdoor TSx related to a releasing time t ∈ FT and
a secret parameter sτx, the owner chooses a random rt, and
generates TSx as follows:

TSx =
(
Ax = grt , Bx = sτx +H2(e(H1(t), f)

rt)
)
. (1)

For a leaf node x with s1x and relevant attribute Attx, the
owner computes: Cx = gs

1
x , C ′

x = H1(Attx)
−s1x . The final

ciphertext is uploaded as follows:

CT =(
T , C̃ = Enc(M,K), C̀ = Ke(g, g)αs

0
R , C = hs0R ,

∀x (∈ T ) is a leaf node : Cx, C′
x;

∀TSx ∈ T : TSx = (Ax, Bx)
)
.

4) Token Generation: At each time point t ∈ FT , CA
generates and publicly publishes a time token TK t as follows:

TKt = H1(t)
γ .

5) Trapdoor Exposure: When arriving at the releasing time
point t related to TSx, the cloud can obtain a corresponding
token TKt, which is published by CA. Then, the cloud server
implements this procedure to expose the trapdoor.

When the cloud gets TKt, it queries all trapdoors associated
with t in all access structures associated with the stored files
on it. For each trapdoor TSx =

(
Ax, Bx

)
, the cloud computes

the exposed trapdoors as:

TS′
x = Bx −H2(e(TKt, Ax)).

If the procedure is correctly implemented, we can get
TS′

x = sτx. The cloud replaces TSx with TS′
x in each relevant

CT , in which the trapdoor can be removed, and the access
privilege is transferred to be determined only by the attribute
set.

6) Decryption: After querying CT from the cloud, a user
Uj (with the attribute set Sj) conducts this procedure with the
security key SKj . As TS′

x = sτx, For each node x, we can
have:{

sτx = TS′
x x is linked to an exposed trapdoor

sτx = 1 no trapdoor is set upon x

The decryption procedure is performed in a bottom-up manner
(from leaf nodes to the root R) as follows:

For a leaf node x with attribute Atti, if Atti ∈ Sj and no
unexposed trapdoor is set upon x, then the user computes

Fx =
(e(Di, Cx)

e(D′
i, C

′
x)

)sτx
= e(g, g)ujs

1
xs

τ
x = e(g, g)ujs

0
x

If Atti /∈ Sj or TSx is unexposed, then Fx = ⊥.
For a non-leaf node x, let Sx be an arbitrary kx-size set

of its child nodes, and for each z ∈ Sx, Fz �= ⊥. If such Sx

exists, and x is not embedded with an unexposed trapdoor,
then the user computes:

Fx =
( ∏

z∈Sx

F

∏
y∈Sx,y �=z

indexy
indexy−indexz

z

)sτx
= e(g, g)ujs

0
x

Otherwise, Fx returns ⊥.
For the root node R, if FR �= ⊥, then the user can get

FR = e(g, g)ujs
0
R . Finally, the the user can recover the content

of M as follows:

K′ =
C̀

e(C,D)/FR
= K;

M ′ = Dec(C̃,K′) = Dec(Enc(M,K),K) = M.

VI. SECURITY AND PERFORMANCE ANALYSIS

A. Security Analysis

We analyze the security properties of TAFC on some critical
aspects as follows.

1) Fine-Grained and Timed-Release Access Control: Our
proposed TAFC provides data owners with the capability
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to define access policies according to flexible association
of attributes and releasing times. With the access policy
embedded in the ciphertext, a user can decrypt the ci-
phertext to access the data, only if his/her attribute set
satisfies the policy, and the access time is later than the
predefined releasing time.

2) Security against Collusion Attack: In TAFC, each user’s
attribute set-associated security key SKj is blinded based
on a secure random number uj ∈ Z∗

p. This mechanism is
implemented to resist the collusion attack: The adversary
cannot combine different security keys (SK) to forge
a new security key associated with a different attribute
combination which comes from multiple attribute sets
belong to different users. Therefore, the collusion will
not bring more privileges to the adversary.

3) Data Confidentiality: The confidentiality property of
TAFC can be analyzed from two aspects, the cryptog-
raphy and the protocol as follows:

As a cryptography algorithm to take into account, the
adversary model can be described as the following security
game:

Setup. The challenger runs the Setup algorithm of TAFC
and gives the public parameters to the adversary.

Phase 1. The adversary is allowed to issue queries for
a security key for a set of attributes SU , declare an access
time tA, and a challenge access policy T , where SU does not
satisfy T at the time point tA. The challenger generates the
security key associated with SU and a series of time tokens
that represent time points that are not later than tA, and then
gives the security key and time tokens to the adversary.

Challenge. The adversary submits two equal-length mes-
sages M0 and M1. The challenger flips a random coin ν ∈
{0, 1}, and encrypts Mν with T . The ciphertext is sent to the
adversary.

Phase 2. Phase 1 is repeated to enhance the size of the
attribute set of challenger’s security key, and to declare a later
access time tB . But the new attribute set cannot satisfy T at
tB .

Guess. The adversary outputs a guess ν ′ of ν.
The advantage of adversary is defined as:

AdvA = |Pr[ν′ = ν]− 1

2
|.

Definition 2: Our proposed TAFC is secure if all polynomial
time adversaries have at most a negligible advantage in the
above security game.

Our further analysis classifies all adversaries into two cate-
gories:

1) An adversary without a satisfied attribute set for challenge
access policy T , although arriving at privilege releasing
time;

2) An adversary with satisfied attribute set for T , but the
relevant privilege releasing time has not yet arrived.

Apart from the two categories, the remaining adversaries
are those neither with satisfied attribute set, nor at the priv-
ilege releasing time. We can issue them either security keys
for additional attributes, or more time tokens, such that the
adversaries can belong to either of the two categories. As

such appended information at least has not decreased the
adversaries’ advantage, the further analysis only focuses on
the above two kinds. We conclude the confidentiality of TAFC
as follows:

Theorem 1: If DBDH assumption holds, no polynomial-time
adversary belongs to the first category can selectively break
TAFC with non-negligible advantage.

PROOF 1: Suppose we have an adversary A with a non-
negligible advantage AdvA in the selective security game
against TAFC. In such game, the adversary queries adequate
time tokens and any secret key. However, the decryption can-
not proceed due to the inadequate attributes that are embedded
in his/her security key. With these constraints, we can build a
simulator B that plays the DBDH game with a non-negligible
advantage as follows.

Initialize. The challenger C of the DBDH game sets the
groups G1 and G2 with the bilinear map e and generator g ∈
G1. C securely flips a random coin μ ∈ (0, 1). If μ = 0, C sets
a tuple (A,B,C, Z) = (ga, gb, gc, e(g, g)abc); otherwise, the
tuple is set as (ga, gb, gc, e(g, g)z) for random a, b, c, z. Then,
C sends (A,B,C, Z) to B.

Setup. The simulator B reuses G1, G2, e and g from C,
randomly chooses α, β, γ ∈ Z∗

p, and defines the time format
FT . There is a hash function H2 : G∗

2 → Z∗
p. The other hash

function H1 is programmed as a random oracle by building a
table, described as follows:

Considering a call to H1(Ai), if H1(Ai) was already defined
in the table, the oracle returns the same answer in the table.
Otherwise, B chooses a random value di ∈ Z∗

p, and programs
the oracle as H1(Ai) = gdi , then H1(Ai) = gdi is inserted
into the table. Note that the response from the oracle is
distributed randomly due to the gdi value. Then the public
parameter PK is given as:

PK =
(
p,G1,G2, g, e,H2,FT , h = gβ, f = gγ , e(g, g)α

)
.

The simulator B then sends PK to the adversary A.
Phase 1. In this phase, A makes requests for a security key

associated with an attribute set SU = (A1, A2, . . . , Al1), and
an access time point tA. It also designs a challenge access
policy T such that non subset of SU satisfies T before or at
tA. Let ST denote the attribute set in T .

Upon receiving the request and T , B finds a set Γ, which
holds the following constraints:

• Γ
⋂
SU = ∅ and Γ ⊂ ST .

• The set ST − Γ does not satisfy the policy T before or
at tA.

• If two sets Γ1 and Γ2 both hold the first two constraints,
and Γ1 � Γ2, then choose Γ1.

Note that there may not be a unique Γ. For instance, against a
(t, n) gate, A requests attributes that satisfies k child nodes of
the gate, where k ≤ t− 2, then there will be at least C t−k−1

n−k

choices to design Γ. Such factor will lead to the withdrawal
of the simulation, which will occurs in the 2nd phase.

The simulator B randomly chooses ri for each element in
SU , and generates D = (C · gα)1/β . For each Ai ∈ SU , it
constructs (Di, D

′
i) as:

Di = C ·H1(Ai)
ri = C · (gdi)ri , D′

i = gri .
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Then B returns
(
D; {Di, D

′
i|Ai ∈ SU}

)
to A as the security

keys.
Before the Challenge procedure, we first define two func-

tions: PolySat and PolyUnsat.
PolySat(Tx, sx). This procedure sets up the polynomials for

the nodes of a sub-tree Tx with satisfied root node x, which
means SU satisfies the access policy of Tx. If x links to an
attached trapdoor, sτx ∈R Z∗

p; otherwise sτx = 1. It firstly
sets a polynomial qx, with correct degree constraints, and
qx(0) = sx/s

τ
x. Each child node y obtains sy = qx(indexy).

Then it sets polynomials for each child node y by calling
PolySat(Ty, sy).

PolyUnsat(Tx, g
sx). It sets up the polynomials for the nodes

of Tx with unsatisfied root node, which means SU does not
satisfy Tx. sτx is defined to be similar to that in PolySat(Tx, sx).
It first defines a polynomial qx with correct degree, and
gqx(0) = (gsx)1/s

τ
x . Due to the feature of unsatisfied node

for x, no more than tx − 1 child nodes are satisfied. The
function firstly classifies the child nodes y into two categories:
If there are successor nodes that belongs to the set Γ, then
y is classified into unsatisfied node; otherwise, it belongs
to satisfied one. For each satisfied y, it chooses a random
sy ∈ Zp. It then fixes the remaining unsatisfied points of qx
to complete the definition of the polynomial. The procedure
recursively defines the polynomials for the child node y by
calling:

• PolySat(Ty, qx(indexy)) if y is a satisfied node. B knows
the value sy = qx(indexy) in this case.

• PolyUnsat(Ty, gqx(indexy)) if y is an unsatisfied node.
Here, only gsy is known.

Against the challenge policy T , B runs PolyUnsat(T , A),
where A is the element of DBDH tuple.

Challenge. A submits two challenge messages M0 and M1

to B, and B flips a secure coin ν ∈ (0, 1). For each attribute
Ai ∈ ST : if Ai /∈ Γ, then Ci = Bqi(0), C′

i = (Bti)qi(0);
otherwise, Ci = gqi(0), C′

i = (gti)qi(0).
For each time trapdoor TSx whose related time point

satisfies t ≤ tA, user B can generate TSx = sτx to expose the
trapdoor. Accordingly, for each trapdoor whose related time
point holds t > tA, the trapdoor keeps unexposed, user B can
compute as in Eq. (1).

The ciphertext CT is constructed as:

CT =
(
T ,Mν ·

e(C · gα, A)
Z

, hs = Aβ , {Ci, C
′
i}, {TSx}

)
.

Thus, user B is able to simulate the scheme. Furthermore,
from the perspective of A, the distribution of each component
is identical to that in the original scheme.

If μ = 0, the Z = e(g, g)abc. We let the security key of
unsatisfied attribute Ai ∈ Γ be Di = gbc · (gdi)ri , D′

i = gri .
Suppose the Lagrange interpolation for secret s is

s =
∑
Ai∈S

λi · qi(0),

for any attribute set S that satisfies T . Because the secret of
root node is the logarithm of A, we then have reconstruction

of FR as:

FR =
∏

Ai∈S
Fλi

i =
∏

Ai∈S

(e(Di, Cx)

e(D′
i, C

′
x)

)λi

= (e(g, g)bc)
∑

i∈S λiqx(0) = e(g, g)abc

Therefore, CT is a valid random encryption of M ν .
Otherwise, if μ = 1, Z = e(g, g)z is only a random element

from G2 from the view of A, and such CT contains no
information on Mν .

Phase 2. Repeat Phase 1 to request security keys for a
certain larger attribute set, which still does not satisfy T . As
this proof cares about the adversary without adequate attribute
set, the change of access time tA is not taken into account,
which is discussed in the next proof.

Especially, A potentially requests a security key for attribute
Ai ∈ ST − Γ, and this action may still be an aspect of the
constraints of this game. If it occurs, B aborts the simulation.
Otherwise, it continues the game. Let q denote the possibility
that this event does not happen. This possibility differs the
adopted attribute set SU with the challenge policy T . In
general, smaller SU and more complex T bring larger q. We
constrain the complexity of the policy, as Yang, et al. [7] did
in their proof, then we can have a positive constant qD such
that q > qD. This proof does not analyze the value of qD .

Guess. A submits a guess ν ′ of ν. If ν ′ = ν, B will output
its own guess μ′ = 0 to indicate that the tuple of DBDH game
is a valid BDH-tuple; otherwise, it outputs μ′ = 1 to indicate
that it was given a random 4-tuple.

We assume the distribution of μ and ν is independent. Let X
be the event that the simulation is aborted. Consider the case
B has not abort the simulation. When μ = 1, A obtains no
information on ν. We have Pr[ν �= ν ′|μ = 1, X̄ ] = 1

2 . Since
μ′ = 1 when ν �= ν ′, we have Pr[μ′ = μ|μ = 1, X̄ ] = 1

2 .
Otherwise μ = 0, CT is a valid encryption of Mν . The
adversary has an advantage AdvA by definition. We have
Pr[ν = ν′|μ = 0, X̄ ] = 1

2 +AdvA. Since B will guess μ′ = 0
when ν = ν ′, we have Pr[μ′ = μ|μ = 0, X̄ ] = 1

2 + AdvA.
The following formula is derived:

Pr[μ′ = μ|X̄ ] =Pr[μ′ = μ|μ = 1, X̄ ] · Pr[μ = 1|X̄ ]

+ Pr[μ′ = μ|μ = 0, X̄ ] · Pr[μ = 0|X̄ ]

=
1

2
× 1

2
+

1

2
× (

1

2
+AdvA)

=
1

2
AdvA +

1

2

Now we take into account the case when B aborts the
simulation, it randomly chooses μ′ of μ. In this case, the
probability of correct guess is up to 1

2 .
The overall advantage of B in DBDH game is as:

AdvB = Pr[μ′ = μ|X̄ ] · Pr[X̄ ] + Pr[μ′ = μ|X ] · Pr[X ] − 1

2

= (
1

2
AdvA +

1

2
)× qD +

1

2
× (1− qD)− 1

2

=
qD
2
AdvA
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As proved above, there exists a non-negligible polynomial-
time adversary qD

2 AdvA in DBDH game if the polynomial-
time adversary in our scheme is AdvA. We can conclude that
our scheme is semantically secure against chosen plaintext
attack, for the adversary that lacks adequate attribute-related
keys.

Theorem 2: If DBDH holds, no polynomial-time adversary
belongs to the second category can selectively break TAFC
with non-negligible advantage.

PROOF 2: We still assume that an adversary A exists with
a non-negligible advantage AdvA against TAFC. Compared
with the last proof, the difference in this game is that the
decryption cannot be executed at a too-early access time. Then
we can build a simulator B that plays the DBDH game with
non-negligible advantage.

Initialize. It is the same as that in PROOF 1.
Setup. The simulator B does almost the same to generate

public parameter PK like CA does in TAFC. The only
modification in this simulation is the generation of f and
H1(t), t ∈ FT . The time-related parameter is from DBDH
game that f = B. A random oracle is used to formulate H1

like that in PROOF 1. The public parameter is sent to the
adversary.

Phase 1. A makes a key associated with attribute set and
access time requests with the same constraints like that in
PROOF 1. Faced with the attribute set SU , access time tA and
challenge policy T , the simulator B finds the earliest time tB ,
at which time, SU becomes a satisfied set for T . Note that
tB > tA if A obeys the request constraints. For any time
point t that is not later than tA, B sets H1(t) = gdt , and
TKt = Bdt , with a random dt ∈ Z∗

p. The user’s security key
SK is generated like the original TAFC scheme.

Then B sends SK and tokens {TKt|t ≤ tA} to A.
Challenge. A sends M0 and M1 to B. After flipping a coin

ν ∈ (0, 1), B encrypts Mν as follows: the non-leaf nodes and
leaf nodes are conducted like the original scheme; for each
trapdoor TSx with parameter sτx, we consider two cases:

1) If the access time tx < tB , B selects a random rt, and
calculates Ax = grt , Bx = sτx +H2(e(g

dtx , B)rt).
2) Otherwise, the random oracle sets H1(tx) = C ·gdtx , with

random dtx . In the trapdoor, Ax = A · grt with random
rtx , and Bx is computed as:

Bx = sτx+H2

(
Z ·e(B,C)rtx ·e(A,B)dtx ·e(g,B)rtx ·dtx

)
(2)

Thus, B is able to simulate the scheme, where, the distri-
bution of each component is identical to that in the original
scheme from the perspective of A.

We consider a trapdoor TSx, whose relevant access time is
tx ≥ tB , and the secret parameter is sτx. With SU , there is a
Lagrange interpolation for secret s:

s = sτx ·
( ∑

Ai∈S1

λj · qj(0)
)
+

∑
Ai∈S2

λi · qi(0) (3)

Where, S1 ⊂ SU is a set of attributes that are controlled by
the trapdoor TSx, and S2 is the set of other attributes.

If μ = 0, the Z = e(g, g)abc, the argument of H2 in Eq.
(2) (denoted a ξ) can be derived as:

ξ =Z · e(B,C)rtx · e(A,B)dtx · e(g,B)rtx ·dtx

=e(B,C)a · e(B,C)rtx · e(gdtx , B)a · e(gdtx , B)rtx

=
(
e(B,C) · e(gdtx , B)

)a+rtx

=e(C · gdtx , B)a+rtx ,

where C · gdtx is the output of H1(tx) of the random oracle,
B is used for the public parameter f , and ga+rtx = A ·grtx is
the other component of TSx. Thus, it is a valid trapdoor of sτx.
Furthermore, the interpolation of Eq. (3) can reconstruct secret
s, and the decryption will ultimately recover the plaintext.

Otherwise, if μ = 1, the Z = e(g, g)z is only a random
element from G2, and the Trapdoor Exposure procedure will
generate a random element of sτx. It will lead to a random
Bx ∈ Zp with Eq. (2), then a random staux ∈ Zp with Trapdoor
Exposure, further a random secret s ∈ Zp with Eq. (3). Finally,
the CT contains no information on Mν .

Phase 2. Repeat Phase 1 to request later access time, which
still does not satisfy T with SU .

Guess. A submits a guess ν ′ of ν. If ν ′ = ν, B will outputs
its guess μ = 0; otherwise, it outputs μ′ = 1.

When μ = 1, A obtains no information on ν. We have
Pr[ν �= ν′|μ − 1] = 1

2 . Due to the tactics of B, Pr[μ =
μ′|μ = 1] = 1

2 . Otherwise μ = 0, the CT is valid because of
valid trapdoors. The adversary has an advantage AdvA. We
have Pr[ν �= ν ′|μ− 1] = 1

2 + AdvA. And B′ tactics leads to
Pr[μ = μ′|μ = 1] = 1

2 + AdvA. The following formula is
derived:

AdvB =Pr[μ′ = μ|μ = 1] + Pr[μ′ = μ|μ = 0]− 1

2

=
1

2
AdvA

The proof shows the existence of a non-negligible adversary
1
2AdvA in DBDH game. We can conclude that our scheme is
semantically secure against chosen plaintext attack, when the
attack takes place before the specific access time.

From the protocol perspective, the sτx is exposed with a
relevant time token TKt, which is generated and published
by CA at each release time. As the token can be published to
the system, rather than securely distributed to other entities,
the security feature of this mechanism, therefore, does not rely
on an extra secure tunnel.

B. Performance Analysis

In order to give an intuitive evaluation of the performance
of TAFC, we make a comparison with other related schemes,
such as Androulaki et al. [16] (denoted as LoTAC), and
an approach based on CP-ABE, where time is handled as
attribute (denoted as TasA). Since the performance differences
among these three schemes are mainly on communication and
computation cost of CA and the data owner, we analyze these
two aspects as follows.
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1) CA’s Cost for Timed-Release Function: Fig. 4 and Fig. 5
show the overhead evaluation of trust entities (including CA),
with increasing number of users and released data respectively.

In TAFC, a time token TKt is a universal parameter among
all users for one time point t. CA, therefore, only needs to
calculate and publish one token at each time. On the contrary,
if time is handled as an attribute (as in TasA), CA should
distribute time-associated security key to each user at each
time, meaning that the extra cost is linear to the number of
users.

In LoTAC, although CA does not need to do anything for
timed-release function, another trust entity, should implement
the timed-release decryption algorithm for each file at each
release time. The overhead of this trust entity for this job is
linear to the amount of relevant data, as shown in Fig. 5. On
the contrary, in TAFC, the timed-release computation for every
file can be outsourced to the honest-but-curious cloud, without
leaking any unauthorized secret.

Thus, our proposed TAFC shows its superiority on CA’s
cost reduction, when the access control system includes large
amount of users and shared data.

2) Owner’s Cost versus Number of Intended Users: When
the owner uploads his/her file, his/her communication cost
depends on the package size of the corresponding ciphertext.
If we only consider the number of intended users, the cost
of owner in LoTAC is O(|U |), where |U | is the number of
intended users; while the cost in TAFC and TasA is O(Natt),
where Natt is the number of attributes in an access policy. In
reality, when the number of intended users increases, Natt will
increase much more slowly than |U |, in quite a high probabil-
ity. With this assumption, Fig. 6 gives the overhead evaluation
of data owner with increasing intended users, when encrypting
one data file. Because of fine granularity inherited from CP-
ABE, TAFC and TasA significantly reduce the communication
complexity of data owner when the access privilege should be
released to quite a number of users.

Based on the performance analysis on various aspects,
we can conclude that TAFC well tolerates the increasing
number of users and shared data. Thus, TAFC can provide
a lightweight, flexible, and fine-grained access control system
for time-sensitive data in cloud storage.

VII. ACCESS POLICY DESIGN FOR GENERAL

TIME-SENSITIVE DATA WITH MULTIPLE RELEASING TIME

POINTS

The main construction in Section V provides the basic
algorithm and cryptography techniques to embed both time
and attribute factors into access control for public cloud.
However, it lacks a general method for data owners to make
an efficient access structure for arbitrary access privilege
construction with both time and attribute factors, especially,
when a policy is embedded with multiple releasing time points,
there exist many cases as described later in this section. These
cases cannot be defined by a tree-based structure with existing
mechanisms. In this section, we first list the potential sub-
policies for time-sensitive data, and then gives an efficient and
practical method to construct relevant access structures.

In this paper, all access policies hold the constraints of
Monotonous Access Capability defined as follows.

Definition 3: (Monotonous Access Capability). The Access
capability should hold the monotonic property that can be
formulated with both of the two constraints:

• For any user Uj , and any file Mi, if t1 < t2 and Uj can
access Mi at t1, then he/she can also access it at t2.

• If two attribute sets S1 and S2 have S1 ⊂ S2 for a file,
and the releasing times for these two sets are t1 and t2,
respectively, then we have t1 ≥ t2.

With the above defined constraints, we can summarize the
sub-policy design mechanism facing with boolean formulas
and (t, n) threshold, which have also been mentioned in [31].

For boolean formulas, there are two types that hold the
above definition: 1) Converting an attribute to an OR gate;
and 2) Removing an attribute from an AND gate. The first
type can be realized with the example structures in Fig. 2,
where we denote P as A2 ∧ A3. At earlier time t1 (assume
t1 < t2), the sub-policy is an attribute A1, and after t2, the
sub-policy is automatically updated to A1 ∨ P . As structures
and algorithms for this type can be ideally achieved in the main
constructions, we will discuss how to achieve the second type
in Section VII-B.

For a (k, n) threshold gate, two potential cases should be
considered: 1) Delaying the time point t and reducing the
threshold k at the same time can hold the defined constraints.
We will discuss how to efficiently achieve it in Section VII-C.
2) Also, the constraints allow the scenario where later access
brings in larger n. The achievement of this will be presented
in Section VII-D.

With the above considerations, we will firstly introduce a
modified algorithm for the time trapdoor construction. Then
we will further design structures for the sub-policies of time-
related data into two cases, and any potential access policy
for time-sensitive data can be expressed as the combination of
these proposed structures.

A. Unattached time trapdoor: A trapdoor as a single leaf node

In the main construction of TAFC, a time trapdoor should
be attached to a node of the policy tree. Here we further
give another scheme to support a time trapdoor without being
attached to any node, which will be utilized to realize time-
related sub-policies in the following subsections. From the
perspective of the structure construction, such time trapdoor
is a leaf node, which can be regarded as a special attribute.
In this section, we use attached time trapdoor to indicate that
it’s attached to a certain internal node, and unattached time
trapdoor to indicate that it is not attached to any node but
acts as a special attribute.

In the Encryption procedure, we can obtain a secret share
s0x ∈ Z∗

p and an unattached time trapdoor TSx from its parent
node. Then, we can get sτx = s0x (different from that for an
attached time trapdoor), and an unexposed trapdoor TS x =
(Ax, Bx) is generated with sτx and the predetermined releasing
time t ∈ FT as shown in Eq. (1).

A trapdoor can be exposed by the cloud server with the
same mechanism as that in Section V-C5. When a user Uj
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has got a ciphertext with an exposed trapdoor TS ′
x, he/she

can further compute Fx as follows:

Fx =
(e(h, g(α+uj)/β)

e(g, g)α

)TS′
x

=
(e(gβ, g(α+uj)/β)

e(g, g)α

)sτx
= e(g, g)ujs

τ
x

(4)

For an unattached time trapdoor, s0x = sτx, we can further
get Fx = e(g, g)ujs

0
x , which can be utilized to reconstruct its

parent’s secret Fy as shown in Eq. (2).
In the following subsections, we will mainly focus on the

placement of time trapdoors. For clarity, we use time t instead
of the node TSx to indicate the time trapdoor in this section.

B. An additional satisfied sub-policy wins an earlier access
(Case 1)

This case is used to satisfy the scenario: For example, a
user whose attribute set satisfies a sub-policy P1 can access
a file at time t3. If the user can additionally satisfy a sub-
policy P2, the access privilege will be granted at earlier time
t2 < t3

1. The P1 and P2 can be either a single attribute or a
sub-structure with multiple nodes.

Fig. 7(a) depicts our proposed access structure to realize the
above access policy: An OR gate is set over the additional
policy P2 and the trapdoor t3; and an AND gate is over
this OR gate and the sub-policy P1. Finally, the trapdoor t2
is linked to the AND gate. With this kind of structure, a
user whose attributes satisfy both P1 and P2 will get access
privilege when it reaches the time point t2, while a user whose
attributes only satisfy P1 cannot satisfy the whole policy until
it reaches time point t3, since neither P2 nor t2 under the OR
gate can be satisfied.

We can extend this case to a multiple-hierarchy scenario:
If a user’s attribute set satisfies P1, he/she can access the file
at time point t3; If his/her attribute set additionally satisfies
P2, he/she can access the file at time point t2 (earlier than
t3); While his/her attribute set satisfies P3 in addition to P1

and P2, the access privilege will be granted to him/her further
earlier, say at time t1.

1In order to easily introduce the multiple-hierarchy scenario with no puzzle
based on this type of one hierarchy scenario, we first use t2 and t3 leaving
t1 to be introduced in the multiple-hierarchy scenario later on.

∧

P1 ∨

P2 t3

t2

(a) One Hierarchy

∧

∧

P1 ∨

P2 t3

∨

P3 t2

t2

t1

×
Sub Policy

(b) Multiple Hierarchies

Fig. 7. Structure for Case 1

Fig. 7(b) shows the structure to meet the above requirement.
The structure in Fig. 7(a) can be treated as a sub-policy of
the policy indicated in Fig. 7(b), which has only a small
modification: the time trapdoor t2 is no longer linked to the
original AND gate. Instead, it is under an OR gate along
with P3. If the modified sub policy is treated as one basic
symbol, the two structures in Fig. 7(a) and Fig. 7(b) are similar
from the perspective of the policy structure construction. From
this viewpoint, our proposed mechanism can be utilized to
construct a recursive structure, which can be extended to
satisfy the scenarios with more hierarchies.

C. More satisfied sub-policies wins an earlier access (Case
2)

In this case, we consider the scenario: There are a collection
of sub-policies (P1, P2, · · · , Pn). If at the time point ti (We
assume ti+1 > ti), the access policy is a (ki, n) threshold
gate over the above sub-policies, in which, we have

t1 ≤ ti < tj ≤ tm ⇐⇒ ki > kj . (5)

Then, we have relevant access structure to realize this kind
of policy requirement as shown in Fig. 8. A non-leaf node
whose threshold is k1 (the relevant access time is t1) is set
as the root of this structure, and it has n + k1 − km child
nodes: The child nodes include the sub-policies P1, P2, · · · ,
Pn and a series of unattached time trapdoors. The number of
unattached time trapdoors for each predefined time t i (2 ≤ i ≤
m) equals to ki−1 − ki. Each of the child nodes, whether it’s



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2682090, IEEE
Transactions on Services Computing

12

P1 P2 · · · Pn t2 · · · t2

k1 − k2

· · · · · · tm · · · tm
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Fig. 8. Structure for Case 2

the candidate sub-policy Pn, or the unattached time trapdoor,
will get its unique secret share from the root node, with a
(k1, n + k1 − km) secret sharing method. Finally, the time
trapdoor t1 is an attached time trapdoor and is linked to the
root.

When it reaches time point ti (1 ≤ i ≤ m), apart from t1,
the trapdoors associated with the time point {t2, t3, · · · , ti}
have been exposed, whose total number is

∑i
j=2(kj−1−kj) =

k1 − ki. If a user wants to access the data at that time, he/she
can compute Fx for each exposed trapdoor as Eq. (4), where
the number of all trapdoors is k1 − ki. Thus, if and only if
his/her attribute set satisfies at least ki of the n candidate sub-
policies Pj , the total number of satisfied child nodes equals
to k1, which is just the threshold. Furthermore, Fx of the root
node can be reconstructed as Eq. (2).

If we only consider the access structure at this moment,
the user only needs to concern that whether his/her attribute
set can satisfy ki of the n sub-policies. This is just the access
requirement of the access policy depicted in the first paragraph
of this case.

In addition, if the access time is earlier than t1, the attached
trapdoor t1 can prevent such unauthorized access behaviour.
Therefore, the structure in Fig. 8 supports a (k i, n) threshold
gate for the n sub-policies at each required time point t i, and
is able to meet the access policy requirement.

D. Later access has larger n of (k, n) gate (Case 3)

In this case, we consider a scenario, where the (k, n) has
such requirement: The threshold k is constant, where more
candidate sub-policies will enlarge the n. In this scenario,
later access means more choice to constitute one’s attributes
to satisfy the access policy. We use a simple access control
requirement as an example: At time point t1, the threshold
of the access policy is (k, 2) gate, where the candidate sub-
polices are P1 and P2. While at time point t2 (t2 > t1), a user
whose attribute set can satisfy k of three sub-policies can also
satisfy the policy, where P3 is the additional candidate sub-
policy, and k is not changed. Fig. 9 shows the access structure
of this example.

In this structure, the access control at different time is as
follows:

1) An access before t1 will fail because of the trapdoor t1.
2) If the time is between t1 and t2, the sub-policy P3 is

linked to an unexposed trapdoor t2. Therefore, candidate
sub-policies that can be used are only P1 and P2.

(k, 3)

P1 P2 P3

t1

t2

Fig. 9. Structure for Case 3

Whether or not a user’s attribute set satisfies P3 does
not affect the access judgement.

3) At time point t2, the remaining time trapdoor is exposed,
which means P3 becomes a candidate sub-policy of the
(k, 3) gate. Therefore, a user whose attribute set satisfies
k of the three sub-polices will satisfy the entire policy.

Note that, if k = 1, the structure is similar to that in Fig. 2.
The above analysis shows that access structures like Fig. 9 can
achieve time-sensitive data access control requirement of Case
3. What is more, if we add unattached time trapdoors t i > t1
to Fig. 2, as child nodes of the root, we can achieve increasing
threshold k and decreasing candidate n in one structure, which
is the combination of Case 2 and Case 3.

VIII. CONCLUSION

This paper aims at fine-grained access control for time-
sensitive data in cloud storage. One challenge is to simultane-
ously achieve both flexible timed release and fine granularity
with lightweight overhead, which was not explored in existing
works. In this paper, we proposed a scheme to achieve this
goal. Our scheme seamlessly incorporates the concept of
timed-release encryption to the architecture of ciphertext-
policy attribute-based encryption. With a suit of proposed
mechanisms, this scheme provides data owners with the capa-
bility to flexibly release the access privilege to different users
at different time, according to a well-defined access policy
over attributes and release time. We further studied access
policy design for all potential access requirements of time-
sensitive, through suitable placement of time trapdoors. The
analysis shows that our scheme can preserve the confidentiality
of time-sensitive data, with a lightweight overhead on both CA
and data owners. It thus well suits the practical large-scale
access control system for cloud storage.
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