
5268 IEEE TRANSACTIONS ON SMART GRID, VOL. 12, NO. 6, NOVEMBER 2021

Blockchain Based Secure Data Aggregation and
Distributed Power Dispatching for Microgrids

Xinyi Luo, Graduate Student Member, IEEE, Kaiping Xue , Senior Member, IEEE, Jie Xu ,

Qibin Sun, Fellow, IEEE, and Yongdong Zhang , Senior Member, IEEE

Abstract—Power generation systems tend to be distributed and
decentralized, and therefore the concept of microgrid has been
proposed, which needs to implement decentralized data storage
and power dispatching. The traditional power system architec-
ture is no longer suitable in the decentralized microgrid system
because there are no trusted third parties such as control centers.
Therefore, it is challenging to securely implement data aggrega-
tion and power dispatching in microgrids without any trusted
third party. In this paper, by leveraging blockchain, we pro-
pose secure data aggregation based on homomorphic encryption
and the PBFT (Practical Byzantine Fault Tolerance) consensus,
and meanwhile we propose automatic power dispatching by uti-
lizing the PSO (Particle Swarm Optimization) algorithm and
smart contracts. The security and performance analysis shows
the effectiveness and efficiency of our proposed solutions.

Index Terms—Blockchain, microgrid, smart contract, data
aggregation, privacy preserving, power dispatching.

I. INTRODUCTION

IN THE traditional electric system, there is usually a con-
trol center to complete all power management processes [1]

and to decide the plan of power generation, transmission, and
distribution. However, in recent years, due to the surge in elec-
tricity consumption and the promotion of new energy power
generation, traditional power systems, which are specifically
designed for the centralized electric system, have begun to
look beyond their capabilities [2]. We can see that the geo-
graphical span of new energy power stations has caused a
heavy communication burden, and the increasing nodes have
led to significant computing overhead [3]. Besides, the con-
trol center’s reliability, flexibility, and security are vulnerable,

Manuscript received December 23, 2020; revised April 16, 2021 and
July 8, 2021; accepted July 15, 2021. Date of publication July 26, 2021;
date of current version October 21, 2021. This work was supported
in part by the National Natural Science Foundation of China under
Grant 61972371, Grant U19B2023, and Grant U19B2044; and in part by the
Youth Innovation Promotion Association of Chinese Academy of Sciences
(CAS) under Grant Y202093. Paper no. TSG-01903-2020. (Corresponding
author: Kaiping Xue.)

Xinyi Luo, Kaiping Xue, and Qibin Sun are with the School of Cyber
Security, University of Science and Technology of China, Hefei 230027,
Anhui, China (e-mail: kpxue@ustc.edu.cn).

Jie Xu is with the Department of Computer Science, City University of
Hong Kong, Hong Kong.

Yongdong Zhang is with the Department of Electronic Engineering and
Information Science, University of Science and Technology of China,
Hefei 230027, Anhui, China, and also with the Beijing Research Institute,
University of Science and Technology of China, Beijing 100193, China.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TSG.2021.3099347.

Digital Object Identifier 10.1109/TSG.2021.3099347

and data sharing is difficult due to either lack of means or
unwillingness.

Due to the centralized structure’s deficiencies, the decentral-
ized control architecture has been introduced into the power
system, then the concept of the microgrid was proposed [4].
A microgrid is a small power system consists of some power
generations and power consumers within a given area, and is
controlled by a power management system [5]. It can oper-
ate as an independent power system or accept management
from the main grid as its subnets. The decentralized microgrid
system solved the problems in the centralized structure, but it
brought new difficulties to power management.

For running a power management process, there are two
main phases: data aggregation and power dispatching. The data
aggregation phase collects the aggregation result of user power
data within a particular region, and then as the input of the
power dispatching algorithm to calculate the optimal power
generation and distribution plan. In the existing data aggrega-
tion solutions in the electric system, e.g., [6], [7], either the
aggregation gateway is assumed to be reliable, or a trusted
data center is involved. However, for the microgrid system,
since a single microgrid is small in scale and may be dynam-
ically established, changed, or withdrawn, it is difficult to
provide adequate secure aggregation gateways or maintain a
trusted data center. Thus, existing data aggregation schemes
are difficult to provide sufficient security in the microgrid
system. Meanwhile, due to the difficulty of maintaining a
credible authority center for each microgrid, the traditional
power dispatching scheme completed by a control center is
no longer feasible [8]. Therefore, in the current microgrid
system, how to securely complete the data aggregation and
power dispatching processes in the small-scale, distributed,
and weak-trusted microgrid system becomes an urgent issue.
Moreover, considering the requirements for frequent interac-
tions between different microgrids or between microgrids and
the main grid, it is necessary to establish a credible public
database for data sharing between different entities, however,
which is also a big challenge for traditional data center-driven
power systems.

By leveraging the blockchain technology, a solid trust
relationship in distributed environments can be estab-
lished based on its consensus mechanisms and distributed
networks. Therefore, as participants in the microgrid, includ-
ing data aggregators and dispatchers, do not trust each other,
blockchain can be introduced to establish a trust relation-
ship and assist in the energy management process without

1949-3053 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2095-7523
https://orcid.org/0000-0002-9924-4157
https://orcid.org/0000-0002-1151-1792

LUO et al.: BLOCKCHAIN BASED SECURE DATA AGGREGATION AND DISTRIBUTED POWER DISPATCHING FOR MICROGRIDS 5269

a trusted third party. Therefore, in this paper, based on the
blockchain technology, we provide appropriate solutions to
address the challenges in microgrids. Firstly, in the data aggre-
gation phase, it is necessary to ensure that the usage data for
individual users are not leaked [9], and the aggregated results
have not been tampered with, thus protecting the authentic-
ity and correctness of the aggregated data [10]. We utilize
homomorphic encryption and the PBFT (Practical Byzantine
Fault Tolerance) consensus algorithm to solve the problem.
Secondly, microgrids are supposed to obtain fine-grained real-
time power usage data for more accurate dispatching [11].
Thus, a distributed dispatching algorithm that can securely
and automatically run is needed, and we implement it based
on the PSO (Particle Swarm Optimization) algorithm, smart
contracts, and the above aggregation scheme. Thirdly, a public
database for dispatching and auditing is required. The relevant
data should be stored publicly so as to enable distributed dis-
patching and auditing, and we leverage blockchain technology
to solve this problem naturally.

In summary, we make the following contributions.
1) By leveraging Paillier homomorphic encryption and

PBFT consensus, we propose a decentralized microgrid
data aggregation scheme without any authority cen-
ter and resistant malicious aggregators, enabling user
privacy-preserving, data integrity protecting, and public
storage and sharing.

2) We propose an automatic and distributed microgrid
power dispatching solution based on the PSO algorithm
and Ethereum smart contracts, and the above aggrega-
tion method. Moreover, we distribute the PSO algorithm
to use multiple smart contracts to complete one dispatch-
ing, therefore adapting to smart contracts’ computation
limitation.

3) We experimentally implement our proposed scheme with
Ethereum smart contracts, verify its effectiveness and
test the performance, and give a security analysis. The
results show that the proposed solution well meets the
security and performance requirements of microgrids.

The rest of this paper is organized as follows. Section II
presents the related work. Section III introduces the back-
ground. Section IV describes the system model, secu-
rity assumption and design goal. Section V expound our
proposed solution. Sections VI and VII give the security and
performance analysis. Section VIII concludes the paper.

II. RELATED WORK

For user privacy preserving and data validity verification
in smart grid, secure data aggregation is proposed to aggre-
gate the user data and only send the total result to the data
center so that the actual value from a particular user can be
concealed. A common method is to use homomorphic encryp-
tion algorithm. Li et al. [6] proposed a distributed in-network
aggregation approach for smart grids to aggregate data along a
spanning tree. Lu et al. [7] proposed EPPA to efficiently aggre-
gate multidimensional data using a superincreasing sequence
distributed by a trusted operation authority. PPMA proposed

by Li et al. [12] further improves the EPPA to support multi-
subset data aggregation and security under malicious gateways.
Xue et al. [13] also proposed an efficient and robust data
aggregation scheme without a trusted authority for the smart
grid, which not only ensures user’s privacy and efficiency but
also supports flexible dynamic user management with no need
of involving a trusted authority. However, these existing work
cannot provide a comprehensive solution to simultaneously
implement user privacy protection, data integrity verification,
public sharing, and permanent data storage, and most impor-
tantly, without trusted third parties. There are also some data
aggregation schemes based on blockchain and homomorphic
encryption. Ghadamyari and Samet [14] and Zheng et al. [15]
combine blockchain and homomorphic encryption for data
aggregation, though, their scenarios do not involve the issue
of malicious aggregation gateways, which is a key issue in
microgrid data aggregation.

For microgrid dispatching, there are different optimization
goals and algorithms. Most of the existing studies aim to pro-
pose better models and dispatching schemes. Bagherian and
Tafreshi [16] utilized the PSO (Particle Swarm Optimization)
algorithm for microgrid power dispatching to maximize the
profit of the management system. Kakigano et al. [17] com-
bined fuzzy control with gain-scheduling techniques for volt-
age control. Khorsandi et al. [18] proposed a distributed
control method employing the conventional droop control
method, which enables accurate current sharing and desir-
able voltage regulation. Che et al. [5] proposed a three-level
hierarchical coordinate strategy for power exchanges among
neighboring microgrids. Although these works have conducted
sufficient research on dispatching algorithms, how to securely
implement these schemes in a distributed environment lack-
ing trust is still an urgent issue to be solved. Some studies
introduce blockchain to solve the problem, e.g., [19]–[22].
However, most of these work aim at building a blockchain-
based distributed energy trading platform, rather than provid-
ing a microgrid management system. Although [22] uses smart
contracts for microgrid control, it does not implement the com-
plex power dispatching process, but uses smart contracts to
select a subset of power sources that participate in voltage
regulation.

III. PRELIMINARIES

A. Blockchain and Smart Contract

After bitcoin was first proposed by Nakamoto [23], its
underlying technology, blockchain, has gained more and more
dramatic attention. Blockchain is essentially a kind of dis-
tributed database that consists of blocks in linear arrangement
and is identified by height. Each block stores some data
and contains the hash value of the previous block. Providing
the hash value makes it difficult to tamper with any data
on the blockchain because one should change every block
behind the target to make the hash value right. Additionally,
blockchain provides a consensus mechanism to prevent one
node from continuously adding blocks, thus bring more dif-
ficulties to tamper with data because one node cannot be

5270 IEEE TRANSACTIONS ON SMART GRID, VOL. 12, NO. 6, NOVEMBER 2021

Fig. 1. The PBFT consensus algorithm.

sufficiently rapid to change all the blocks. The success of bit-
coin has practically verified the security of the blockchain.
The well-designed data structure and the consensus mech-
anism make the blockchain difficult to attack, thus provide
trusts in distributed environments. Buterin et al. [24] further
found the convergence of blockchain and smart contracts and
proposed the Ethereum blockchain. Ethereum also provides an
object-oriented, high-level language for implementing smart
contracts - Solidity [25]. Other blockchains supporting smart
contracts, such as Hyperledger, have also been developed
after Ethereum. With blockchain-enabled smart contracts, it is
possible to execute programs automatically with enough secu-
rity and reliability, thus enable automatic dispatching in the
microgrid.

B. PBFT Consensus

The PBFT consensus algorithm is proposed to solve the
Byzantine Fault Tolerance (BFT) problem in distributed
systems. A Byzantine fault refers to a condition of a distributed
network where some nodes may fail due to malicious attacks
or software errors and exhibit arbitrary behavior. The Practical
Byzantine Fault Tolerance (PBFT) algorithm is the first to
survive Byzantine faults in asynchronous networks providing
practical performance and has received considerable attention.
It provides security and liveness when no more than � n−1

3 �
nodes are faulty.

Fig. 1 gives a simple example of the PBFT consensus. C is a
client who requests for the execution of the consensus by send-
ing a request message to the primary, i.e., node 0. Then node
0 starts the PBFT protocol together with the backup nodes
1-3 (here node 3 is a Byzantine node). The protocol consists
of three phases: pre-prepare, prepare, and commit. The pre-
prepare and prepare phases are used to reach an agreement
on the content to be verified (named view in the PBFT pro-
tocol), then the prepare and commit phases are used to reach
a consensus on the request and generate the reply. For more
details about the protocol, [26] can be referred to.

C. Paillier Homomorphic Encryption

Homomorphic encryption is a kind of classical crypto-
graphic algorithm, which is constructed based on intractable
mathematical problems. By leveraging homomorphic encryp-
tion, the aggregated result can be obtained from the computa-
tion operation of ciphertext domain without knowing particular
plaintext data. In order to implement summation operation for

Fig. 2. Compute process of the PSO algorithm.

electronic data aggregation, we utilize a Paillier algorithm,
which is an additive homomorphic encryption algorithm. In
an additive homomorphic encryption, if a and b are two num-
bers in the plaintext domain, there are an operation ⊕ such that
E(a+b) = E(a)⊕E(b). There are three main steps in a Paillier
algorithm, i.e., key generation, encryption and decryption.

1) Key Generation: Choose two random large prime p and
q, where gcd(pq, (p−1)(q−1)) = 1. Then compute n =
pq and λ = lcm(p−1, q−1). Nextly, choose a generator
g ∈ Z∗

n2 , and further compute μ = (L(gλ mod n2))−1,
where L(u) = u−1

n . Now we have a public key pk =
(n, g) and the corresponding private key sk = (λ, μ).

2) Encryption: To encrypt the message m ∈ Zn, choose a
random number r ∈ Z∗

n and then calculate the ciphertext
c = E(m) = gm · rn mod n2.

3) Decryption: To decrypt the ciphertext c ∈ Z∗
n2 , calculate

m = D(c) = L(cλ mod n2
) · μ mod n.

For more information about the Paillier encryption algo-
rithm, [27] can be referred to.

D. PSO Algorithm

PSO (Particle Swarm Optimization) is a kind of evolution-
ary computation algorithm that originates from the research
in flock feeding behavior, and it aims to find the optimal
solution by cooperation and information sharing among crowd
individuals. In the PSO algorithm, a group of massless par-
ticles are established with two attributes to simulate birds in
a flock: speed and position, where speed indicates how fast
particles move and position gives their destinations. Then in
the optimization process, particles are supposed to fly around
in a multidimensional search space. Each particle will adjust
its position according to its own experience and the shared
experience of neighboring particles during flight, making use
of the best position encountered by itself and its neighbors
so as to find the optimal solution. The basic algorithm are
described as follows.

1) System Initialization: As illustrated in Fig. 2, during
the system initialization phase, the system parameters
are initialized, e.g., the number of particles pnum, the

LUO et al.: BLOCKCHAIN BASED SECURE DATA AGGREGATION AND DISTRIBUTED POWER DISPATCHING FOR MICROGRIDS 5271

maximum iteration time T , and the raw data including
the power usage data and weather conditions.

2) Particle Initialization: In the PSO initialization phase,
each particle randomly generates the initial speed v0

i
(1 ≤ i ≤ punm) and position x0

i within the range
allowed by the constraint conditions, and initializes the
particle best value pbest0i = v0

i , the global best value
gbest0 = pbest0imin, where imin is the number of the
particle with the least value of the pbest0i .

3) Iterative Optimization: In each iteration t, the speed
of each particle vi is updated according to the parti-
cle optimal value pbesti and the global optimal value
gbest (Eq. 1), and the current position xi is computed
according to the updated speed (Eq. 2).

vt
i = wvt−1

i + c1r1

(
pt−1

i − xt−1
i

)
+ c2r2

(
pt−1

g − xt−1
i

)
,

(1)

xt
i = xt−1

i + vt−1
i , (2)

where w is the inertia weight, and it can be computed as

w = wstart − t(wstart − wend/T).

The parameter t is the current iteration time and T is the
maximum iteration time. The learning factors c1 and c2
represent the effect of local and global optimal values
on particles, which can be computed as

ci = (
cif − ciet/T + cie

)
, i ∈ {1, 2}.

In general, experiences have been shown that the
conditions:

wstart = 0.9, wend = 0.4;
c1e = 2.5, c1f = 2.5, c2e = 0.5, c2f = 2.5

work well for most of the applications [28].

IV. SYSTEM MODEL, SECURITY ASSUMPTION AND

DESIGN GOAL

A. System Model

There are three levels of objects in our designed system:
main grid, microgrids, and individual objects such as users
and energy stations. These objects form a three-level con-
trol structure: internal microgrid, inter-microgrid, and main
grid dispatching. For both microgrid and main grid, there are
two choices for maintenance and control: centralized and dis-
tributed. Due to cost and efficiency considerations, we choose
distributed control for the microgrid and centralized control
for main grid, respectively.

As illuminated in Fig. 3, a microgrid system consists of a
consortium and four layers.

Power Consortium: The power consortium consists of
some entities with strong computing power in the microgrid,
e.g., new energy power generators or buildings’ administra-
tors. Entities in the consortium is responsible for maintaining
dispatching contracts as dispatchers and uploading data to the
blockchain as bookkeepers(BKs).

Control Layer: The control layer is responsible for power
dispatching and consists of a lot of smart contracts. The smart

Fig. 3. The architecture of the microgrid.

contracts are deployed on the Power Chain and maintained by
the dispatchers. They periodically read user data from the data
layer, and implement the dispatching procedure to obtain the
power generation and distribution results.

Power Chain: The power chain is a blockchain responsi-
ble for the power system enabling smart contracts. As shown
in Fig. 3, the power chain has two main functions: support-
ing the dispatching contracts and storing power data. Each
microgrid has its own control layer, aggregation layer, and
user layer, but all the microgrids share the same power chain.
Considering the high latency of existing public blockchains
such as Ethereum, the power system is better to build its
own consortium blockchain to ensure the efficiency of data
aggregation and power dispatching.

Aggregation Layer: The purpose of the aggregation
layer is to securely upload the aggregation result of user’s
power consumption in a particular area to the data layer
while preserving the privacy of individual users’ data. The
aggregation layer is mainly composed of the following entities.

• Bookkeepers (BKs): Each entity in the power consortium
(PC) can act as a BK. The set of BKs is denoted as
B = {B1,B2, . . . ,Bl}, where l is the total number of
BKs in the system. BKs connect to the upper data layer
and upload the aggregated data to the blockchain through
smart contracts.

• Aggregators (AGGs): AGGs under Bi are denoted as
Ai = {Ai1,Ai2, . . . ,Aim}, where m is the number
of AGGs. AGGs are responsible for aggregating the
encrypted data upload from SMs and then sending the
aggregation result to the BK.

• Smart Meters (SMs): The set of SMs under Aij is
denoted as Sij = {Sij1,Sij2, . . . ,Sijn}, where n is the
number of SMs under Aij. SM is installed on the user
side to obtain the user’s real-time power consumption
data periodically, e.g., for every 30 minutes. SM encrypts
each read data by using the Paillier encryption algorithm
and then sends the encryption result to the corresponding
upper AGG.

5272 IEEE TRANSACTIONS ON SMART GRID, VOL. 12, NO. 6, NOVEMBER 2021

User Layer: All end-users are located at the user layer.
End-users’ power consumption data needs to be uploaded to
the data layer for user charging, power dispatching, and some
other personalized services. During data uploading, every user
obviously doesn’t want his/her real-time power consump-
tion data to be disclosed, thereby protecting the privacy of
individuals.

B. Security Assumptions

We assume that AGGs are untrusted and can delete, append,
or change the data uploaded by SMs. Considering that the
AGGs run the PBFT consensus and according to the PBFT
consensus algorithm’s requirements, we assume that more
than 2

3 of participants are honest. Meanwhile, most BKs are
semi-trusted, curious about user data, but honestly submit
the aggregation result to the blockchain. We will show in
Section VI that a malicious BK will be soon detected and
punished. In addition, we assume that the AGGs and the BKs
do not collude with each other. In the power dispatching phase,
the dispatching program runs on the Ethereum smart con-
tracts. As long as the adversary cannot successfully attack the
Ethereum, the dispatching process can run securely.

C. Design Goal

The goal of our design aim to achieving distributed, auto-
matic power dispatching within the microgrid. Distributed
dispatching means a number of entities in the microgrid run the
dispatching process together, without a control center. Since
the dispatching algorithm’s input is user data, we need a secure
data aggregation algorithm first. And on this basis, we further
design a corresponding dispatching algorithm. Here, we elabo-
rate on the design goals from three aspects in data aggregation
and power dispatching as follows.

1) User Privacy Preserving: To protect user privacy, effec-
tive privacy preserving needs to be provided during the entire
energy management process. In the decentralized microgrid
system where there is no trusted third party, requiring that
any entity could not obtain the power consumption data and
power consumption mode of a single user.

2) Malicious Aggregator Resistance and Data Integrity
Protection: Since it’s hard to involve a trusted data center in
the microgrid system, the existing schemes of identifying mali-
cious aggregators through the data center is no longer feasible.
A reliable solution is needed to resist malicious aggrega-
tors, prevent malicious or compromised aggregators from
submitting forged user data, ensure the correctness of data
aggregation results, and ensure the reliability of subsequent
power dispatching.

3) Blockchain-Based Automatic and Distributed Power
Dispatching: The most crucial goal of power dispatching is
to figure out the optimal power distribution plan. Additionally,
this procedure is supposed to run in a distributed, auto-
matic, secure, and reliable way. Distributed way means many
entities in the system execute the dispatching process simul-
taneously, without a control center. An automatic way means
that this procedure can be triggered and run automatically at
the appropriate time without human control or intervention.

V. PROPOSED SOLUTION

A. Overview

The whole microgrid power management process can be
divided into two key steps: data aggregation and power
dispatching. Entities (e.g., BKs, AGGs and SMs) in the aggre-
gation layer aggregate the user data and upload it to the data
layer. Then dispatchers in the dispatching layer take the data as
input and run the dispatching procedure to optimize the system
operation.

To realize secure data aggregation, we exploit consortium
blockchain with the PBFT consensus mechanism to establish
a power data blockchain for a electric system. The aggregation
process is divided into three phases: data reading and encryp-
tion, data aggregation and consensus, and data decryption and
uploading. At first, SM reads the power usage data and the
relevant information of a single user, encrypts it using a homo-
morphic encryption algorithm, signs the message, and then
sends the ciphertext and signature to its associated AGG. AGG
then aggregates the ciphertext periodically, executes the PBFT
consensus algorithm, and sends the aggregation result to its
responsible BK when reaching a PBFT consensus. Finally, BK
decrypts received aggregated data and uploads the decrypted
power data to the data layer. Afterward, dispatching smart
contracts read the aggregation data automatically and predict
future dispatching data. For power dispatching, we leverage the
PSO algorithm and smart contracts to realize automatic dis-
tributed dispatching. As introduced in Section III, PSO can be
utilized as an optimization algorithm for obtaining the optimal
power dispatching results. Meanwhile, in order to imple-
ment the procedure automatically, a group of smart contracts,
including some Particle-Contracts and an Update-Contract will
execute the dispatching algorithm together.

B. System Initialization

1) Microgrid and Power Consortium Construction: The
microgrids’ construction depends on the geographical scope
and the power supply and demand relationship. A microgrid
usually consists of some neighboring residential buildings,
office buildings, and new energy power stations. The divi-
sion of microgrids can be assigned by the upper-level manager
or negotiated between entities. When the power supply and
demand relationship changes, for example, when the supply
in microgrid exceeds demand while a neighboring microgrid
is on the contrary, the two microgrids can exchange some
users or power stations so that they can both reach a balance
of power supply and demand.

When the scope of a microgrid is determined, the first thing
to do is to determine the Power Consortium. The members of
the consortium are usually the managers of entities, such as
buildings or power stations’ administrators. They conduct off-
chain negotiations to determine the consortium members. After
that, one of the members creates a Microgrid Contract on
the Power Chain, recording consortium members, microgrid
scope and other related information. Besides, entities’ iden-
tity information (i.e., identifier, public key) will be uploaded
into the Microgrid Contract for identity authentication. Then,
all consortium members lock the deposit in the Microgrid

LUO et al.: BLOCKCHAIN BASED SECURE DATA AGGREGATION AND DISTRIBUTED POWER DISPATCHING FOR MICROGRIDS 5273

Contract. In this way, the microgrid’s construction is com-
pleted. Besides, it does not matter which member is to release
the Microgrid Contract. Because if the released contract is
incorrect, other members will not lock the deposit in the con-
tract; thus, the contract represents a microgrid consists of the
member itself, which is meaningless.

2) SM/AGG Assignment and Key Registration: When a
microgrid is successfully constructed, the data aggregation
structure is to be divided based on the geographical location.
For example, smart meters in a building are assigned to the
aggregator served by the building administrator. And suppose
that there are l bookkeepers in the microgrid, then the aggre-
gators are divided into l groups and each group is assigned to
a bookkeeper. To prevent collusion, the assignment between
aggregators and bookkeepers can be updated regularly.

After the assignment, entities upload their public keys and
identifiers to the Microgrid Contract. Then in the data aggre-
gation process, they can get the required information from
the Power Chain. Each bookkeeper is supposed to generate a
Paillier homomorphic key pair (ski = (λ, μ), pki = (n, g)) (as
explained in Section III-C) and upload the public key to the
Microgrid Contract. Each aggregator is supposed to generate
an AGG quadruple (Prkij, Pukij, Idij, r), where (Prkij, Pukij)

is a key pair for digital signature and authentication, Idij is
a random unique identifier, and r is a random number used
for homomorphic encryption. Then the aggregator uploads
(Pukij, Idij, r) to the Microgrid Contract. Each user is also
supposed to generate a SM triple (Prkijk, Pukijk, Idijk), where
the key pair is similar to the aggregators’, and Idijk is a unique
identifier consists of Idij (to indicate the assigned AGG) and a
random identifier (for unique number). Then the user imports
the triple into the smart meter and uploads (Pukijk, Idijk) to
the Microgrid Contract.

C. Secure Data Aggregation

The data aggregation process consists of three phases. The
relevant details are described as follows.

1) Data reading and encryption: Each smart meter
Sijk(1≤k≤n) reads the power consumption data pdijk peri-
odically and encrypts it with BK Bi’s Paillier homomorphic
public key pkBi

= (n, g) and a random number r generated
by Aij in the system initialization stage. For data aggrega-
tion, smart meters assigned to one AGG share the same r.
We use cpdijk to denote the encryption result, then we have
cpdijk = E(pkBi

, pdijk) = gpdijk · rn. Next, Sijk generates the
Raw-Data-Message as

RDmsgijk = {
cpdijk||Idijk||dateijk||tsijk

}
,

where Idijk is the identifier number of Sijk, dateijk is the date
information, and tsijk is the timestamp. Then, Sijk signs the
Raw-Data-Message RDmsgijk and get the signature RDsigijk.
Finally, Sijk sends {RDmsgijk||RDsigijk} to its corresponding
AGG Aij.

2) Data aggregation and consensus: AGG Aij is supposed
to collect messages from SM which it is responsible for, i.e.,
Sij1,Sij2, , . . . , Sijn, and verify the corresponding signature
RDsigijk(1≤k≤n) to check whether the message is uploaded

Fig. 4. PBFT consensus for data aggregation.

by a legal SM. Besides, consider that some SMs may fail
and cannot upload data on schedule or upload invalid data
(e.g., with invalid signatures). Under the circumstances, the
AGG ignores these faulty SMs and performs aggregation pro-
cess only on the valid SMs’ data. For clarity, we use VSij

to denote the set of the valid SMs’ under Aij. According to
the homomorphic encryption’ features, Aij then aggregates
users’ power data in the Raw-Data-Messages and gets the
encrypted-Aggregation-Result cAggRSij as

cAggRSij = ⊕kcpdijk,Sijk ∈ VSij.

Then Aij further generates the Message-to-be-Confirmed
TBCmsgij as

TBCmsgij = VSij||cAggRSij||Idij||dateij||tsij,

where Id, date and ts represent the identifier number, date
and timestamp, respectively. After that, Aij signs TBCmsgij
and get the signature TBCsigij. Then, Aij initiates the PBFT
consensus to prove the correctness of the aggregation result
cAggRSij by broadcasting the relevant information (explained
in the Pre-Prepare stage) within the consensus group Ai (m
AGGs under the same BK Bi). Here we should note that each
AGG initiates a PBFT consensus once as a master node and
participate m times as a common node.

As shown in Fig. 4, the PBFT consensus process consists
of three main stages: Pre-Prepare, Prepare and Commit:

• Pre-Prepare: The Pre-Prepare stage is used to
initiate the PBFT consensus process. On the
Pre-Prepare stage, the master node Aij generate
the Pre-Prepare-Message with three contents: 1)
{VSij||(RDmsgijk||RDsigijk)(Sijk ∈ VSij)}, which is the
message sent from SMs, 2) the Aggregation-Result and
relevant information TBCmsgij, and 3) the signature
TBCsigij. Then Aij broadcast the Pre-Prepare-Message
to all other AGGs (called common nodes in PBFT
algorithm) in the charge of Bi, i.e., Aij′ , 1≤j′≤m, j′
=j.

• Prepare: The Prepare stage is used for aggregators to
verify and declare the correctness of the aggregation
result. After receiving the Pre-Prepare-Message from the

5274 IEEE TRANSACTIONS ON SMART GRID, VOL. 12, NO. 6, NOVEMBER 2021

Fig. 5. The dispatching contracts consist of the update-contract and some
particle-contracts.

master node, Aij′ first verify RDsigijk(Sijk ∈ VSij) to con-
firm the correctness of the data source. If correct, Aij′ then
calculates cAggRS′ = ⊕kcpdijk(Sijk ∈ VSij) and deter-
mines whether cAggRS′ is equal to cAggRS. If equal,
Aij′ now enters Prepared-State, then signs TBCmsgij to
get the Prepared-Signature Psigij′ and broadcasts it. In
brief, entering the Prepared-State means that Aij′ declares
that he considers the aggregation result from Aij is correct
and waits for the verification results of other aggregators.

• Commit: The Commit stage is used to reach the PBFT
consensus on the total system status. On the Commit
stage, the master node Aij and also common nodes Aij′
collect the Prepared-Signatures Psigij′′ , 1≤j′′≤m. For the
description, assume that m = 3f +1. Then, once Aij or
Aij′ collect more than 2f +1 Prepared-Signatures, they
then enter the Commited-State. Afterward, for a common
node Aij′ , it generates a signature set Psigset from the
collected signatures. Then Aij′ signs Psigset and gets the
Commited-Signature Csigij′ , and the Commit-Message is
Psigset||Csigij′ . Finally, Aij′ send the Commit-Message
to the master node Aij. Unlike the common nodes, how-
ever, the master node Aij do not need to generate the
Commit-Message. When entered into the Committed-
State, Aij only waits for the Commit-Messages sent from
other nodes. Once Aij collects 2f Commit-Messages, the
system reaches a PBFT consensus.

The significance of the Pre-Prepare and Prepare stage is rel-
atively obvious, we need to specially explain why the Commit
stage is necessary. If we remove the commit stage, Aij′ verify
the aggregation result and send the declaration to Aij. In this
case, only Aij knows the consensus result, each AGG only has
partial system information. However, with commit stage, Aij′
not only verifies by itself, but also refers to other AGGs’ veri-
fication results. In this way, all honest AGGs’ assertions on all
aggregated results are consistent. Besides, the honest AGGs’
have consistent perceptions of which AGGs are Byzantine at
this moment. This provides the possibility for some system
requirements, such as finding and correcting the wrong AGGs.

When reaching the PBFT consensus, Aij then uploads
TBCmsgij and the Commit-Messages Psigset||Csigij′ to the
BK Bi.

3) Data decryption and uploading: After receiving messages
uploaded from Aij, 1≤j≤m, BK Bi first validates the Commit-
Messagess to determine whether the aggregation result is
trusted. If there are no problems, Bi then decrypts the
encrypted-Aggregation-Result to acquire the aggregation result
AggRSij = �n

k=1pdijk, and then upload the decrypted data and
the digest of relevant verification information (i.e., Commit-
Messages) to the blockchain. Except for the aggregation result,
the data uploaded to the blockchain also contains the valid SM
set VS, which can help the power system’s administrators to
check which SMs are faulty (not in VS) and notify the corre-
sponding users to repair the SMs. Besides, this also prevents
AGGs from maliciously discarding some SMs’ data.

D. Dispatching Over Smart Contract

To use the PSO algorithm for power dispatching, we model
the power system to evaluate the cost of each power generator.
The objective function of the dispatching algorithm is the
total system cost. Afterward, under the constraints of power
balance, capacity limitation, and other restrictions, the objec-
tive function’s optimal value representing the minimum system
cost is computed.

On the foundation of the secure public data aggregation
system proposed in Section V-C, we realize the distributed
automatic dispatching in a microgrid through smart contracts.
Participants, including power stations, positive users, and BKs
within the microgrid, will contribute to the deployment and
maintaining of the dispatch program. At the initially estab-
lishing stage of the dispatch contract, the PSO algorithm and
relevant parameters will be written into the smart contracts as
initial parameters. Afterward, the distributed power dispatch-
ing system now exists in the blockchain in the form of smart
contracts.

1) The Dispatching Contracts: Considering the comput-
ing power limitation of the smart contract, we distribute the
dispatching process to multiple smart contracts, and they coor-
dinate to complete the dispatching process. The dispatching
process consists of two kinds of smart contract: some Particle-
Contracts and an Update-Contract. Each Particle-Contracti
represents a particle i in the PSO algorithm, and the Update-
Contract is responsible for global adjustment. Similar to the
PSO algorithm, the dispatching process is divided into three
main step.

• Invoke update-contract: To start a dispatching process,
entities in blockchain need to invoke the update-contract,
and take the user data, environmental conditions and other
relevant information as input.

• PSO initialization: The Update-Contract will first call
the updateInit(input) function to initiate the PSO algo-
rithm. The input is the relevant information inputted
in the invoking stage. The updateInit function invokes
each Particle-Contracti (1≤i≤pnum) in turn, and call
the particleInit(input) function to initiate each particle,
including the speedi, positioni and pbest (particle best

LUO et al.: BLOCKCHAIN BASED SECURE DATA AGGREGATION AND DISTRIBUTED POWER DISPATCHING FOR MICROGRIDS 5275

value). Then the particleInit function will return pbesti,
and the updateInit function update gbest (global best
value) according to it.

• Iterative optimization: After PSO initialization, the
Update-Contract will execute the updatePSO() function,
iteratively invokes each Particle-Contracti and passes
gbest to the particlePSO function. The particlePSO func-
tion firstly updates speedi according to gbest, then
updates the positioni on the basis of speedi, and finally
updates and returns the particle best value pbest. The
Update-Contracti then update the global best value gbest
according to all the pbesti (1≤i≤ pnum). After each
iteration is completed, gbest represents the system’s
current optimal solution.

When reaching the maximum iteration time or the optimal
solution threshold, the scheduling algorithm then terminates,
and the Update-Contract then returns the dispatching result.

2) Deployment of the Dispatching Contracts: In a microgrid,
all power generation and distribution process within a period of
time should follow the same rules. Therefore, there is only one
correct dispatching contract in each period. The dispatching
rules (including a security factor ε, 0 < ε ≤ 1) are nego-
tiated and decided by the power consortium’s members, and
this process is unrelated to the blockchain. After reaching an
agreement on the dispatching rules, one of the members con-
verts the rules into smart contract codes and publishes them
on the blockchain. The dispatching contract will trigger an
activation challenge when first released. Then other members
respond to the challenge to activate the dispatch contract (see
Section V-D for more details). The contract is activated after
receiving more than εl (l is the number of dispatchers in the
power consortium) responses and starts the dispatching pro-
cess. If the contract does not receive enough responses within
the time limit, it will close, and dispatchers need to reissue a
new dispatching contract.

VI. SECURITY ANALYSIS

To illustrate the security features of our proposed microgrid
system, we analyze the aggregating and dispatching process.

A. User Privacy Preserving

Theorem 1: Eavesdropping on the user side cannot reveal
individual user data.

Proof: In the data reading and encryption phase in data
aggregation, the user Sijk’s power data pdSijk

is encrypted
to cpdijk by cpdijk= E(PukBi , pdSijk

). Thus, only the BK Bi

can reveal pdijk from cpdijk. We assume that an adversary
A can lurk on the user side and eavesdrop the data commu-
nicated between SM and AGG. As long as A is not Bi, it
cannot decrypt cpdijk. However, we propose in the security
assumption that B is curious but honest, so it will not actively
eavesdrop data on the user side. Thus, no attacker can obtain
the actual data of a single user. Therefore, user privacy can be
effectively preserved.

Theorem 2: Compromising a BK cannot reveal individual
user data.

Proof: After receiving messages sent from AGGs
Aij(1≤j≤m), BK Bi can acquire the aggregation result
AggRSAij

=�n
k=1pdSijk

by decrypting the Aggregation-Result
cAggRSAij

. Although the adversary A successfully compro-
mised the BK Bi and accessed its database, A could only
get the aggregation result AggRSij which is the sum of n
user’s data, but cannot reveal the specific data of an individual
user Sjik.

B. Malicious Aggregator Resistance and Data Integrity
Protection

Theorem 3: Compromising less than 1
3 AGGs cannot tam-

per with user data.
Proof: Suppose that an adversary A can either mas-

querade as a smart meter Sijk to upload false user
data cpd′

ijk, or compromise an aggregator Aij to tamper
with cpdijk to cpd′

ijk, and then lead to a false aggre-
gation result cAggRS′

Aij
= cpdij1⊕ · · · ⊕cpd′

ijk⊕ · · · ⊕cpdijn.
In the consensus process’s prepare phase, other AGGs
Aij′(1≤j′≤m, j′
=j) will verify each RDsigSijk

to determine
cpdijk’s validity, but A cannot provide a valid RDsig′

Sijk
for

cpd′
ijk due to the lack of Sijk’s private key PrkSijk . Thus, the

false data will not reach the PBFT consensus and thus cannot
be uploaded to the blockchain. Hence compromising no more
than f (m=3f +1) AGGs cannot tamper with user data.

Theorem 4: Compromising an AGG to deliberately discard
some SMs’ power data can be detected.

Proof: Suppose that an adversary A can compromise an
AGG Aij to deliberately discard a SM’s power data pbijk.
In this case, the aggregation process will be executed nor-
mally, and pbijk is not contained in the final aggregation
result. However, as thus, k will also be not in the valid SM
set VS, and the administrators will consider Sijk as faulty
and notify the corresponding user to repair the SM. If they
find that Sijk has been operating normally, they can deter-
mine that Aij is compromised and perform the corresponding
process.

Theorem 5: Masquerading as a legal SM cannot submit
false user data.

Proof: An adversary A may try to masquerade as a SM Sijk′
to upload false user data pdSijk′ to disturb the system’s regular
operation. However, in the data reading and encryption phase,
each SM Sijk will sign the encrypted data before uploading.
And in the data aggregation and consensus phase, the AGG
Aij will first verify the signature to determine whether the
data is from a legal SM. Thus, data submitted by an illegal
SM will be dropped directly, and this kind of attack will not
succeed.

Theorem 6: Compromising a BK to upload false data can
be detected.

Proof: Suppose that an adversary A can compromise a book-
keeper Bi to upload false aggregation data AggRS′

ij. Although
this type of attack cannot be prevented in advance, any entity
can soon detect it. In the data decryption and uploading phase,
the digest of the relevant verification information (including
AGGs’ PBFT signatures PSigset and CSigAij

) need to be

5276 IEEE TRANSACTIONS ON SMART GRID, VOL. 12, NO. 6, NOVEMBER 2021

uploaded together with AggRSij. However, A can only gener-
ate AggRS′

ij but cannot calculate the corresponding PSigset
and CSigAij

due to the lack of the AGGs’ private keys
for signature. Therefore, once A uploads the data that has
been tampered with, any entity in the system can detect
that the signatures (PSigset and CSigAij

) are not consis-
tent with the data, thereby determining that BK Bi has been
attacked by an adversary A, and perform the corresponding
process.

C. Security of Automatic and Distributed Power Dispatching

Theorem 7: Compromising less than (1 − ε) · l dispatchers
cannot corrupt the dispatching procedure.

Proof: The dispatching process runs on the blockchain. Due
to the security of the blockchain, we can assert that as long as
a correct set of dispatching contracts is deployed, it can run
in accordance with the expected steps. However, a compro-
mised dispatcher may deploy malicious dispatching contracts
with wrong optimal algorithms, which may lead to false dis-
patching results. The security of the dispatching algorithm is
determined by the security factor ε; that is, the algorithm can
tolerate less than (1 − ε) · l malicious dispatchers. The value
of ε is related to the trust among consortium members and
is jointly determined by the members. For example, when
the proportions of power station-side dispatchers and user-side
dispatchers in the consortium are similar, it is reasonable to
set ε = 1

2 .

D. Comparison With Existing Data Aggregation Solutions

As mentioned in Section II, there are several solutions
for smart grid data aggregation, including Li’s solution [6],
EPPA [7], PPMA [12], and Ghadamyari’s solution [14].
As shown in Table I, we compare the solutions from five
aspects: privacy preserving, malicious AGG resistance, mali-
cious BK/DC resistance, no trusted third party, and trusted
sharing. Privacy preserving is the most basic requirements of
a data aggregation scheme, and is provided by data encryp-
tion. Malicious AGG resistance protects data integrity, which
requires that if there are malicious aggregators (or aggregation
gateways) that attempt to tamper with, delete, or forge data,
this malicious behavior can be discovered. Similarly, malicious
BK/DC resistance requires that if some bookkeepers (or the
data center) is compromised and try to tamper with, delete,
or forge data, this malicious behavior can be discovered. No
trusted third party means that entities generate their security
parameters themselves, without the need for a trusted third
party. Trusted sharing means that entities without mutual trust
can share their data reliably, that is, the shared data is correct.

VII. PERFORMANCE ANALYSIS

In this section, we first implement the proposed data aggre-
gation scheme by python3 to conduct its performance analysis.
To get close to the actual computing power of the aggregators
in microgrids, we produce our experiments on the Raspberry
Pi with ARM1776 CPU and 256 MB memory. Furthermore,
we implement the power dispatching algorithm by Solidity
and test it on Ethereum test network. We verify the dispatching

TABLE I
SECURITY FUNCTIONS OF DATA AGGREGATION SOLUTIONS

TABLE II
COMPUTATION OVERHEAD OF THE DATA AGGREGATION PROCESS

effectiveness and estimate the computation overhead measured
in gas consumption.

A. Computational and Communication Overhead of Data
Aggregation Scheme

Suppose that the computational cost for Paillier encryp-
tion or decryption is CP, for signature or verification is CSig,
and for aggregation of n ciphertexts is Cn

Agg. Table II shows
the computational overhead of our proposed data aggrega-
tion scheme. The data aggregation scheme consists of three
phases, which are respectively completed by SM, AGG, and
BK. In the data reading and encryption phase, a SM need
to execute one encryption and one signature operation. Thus,
the total cost of a SM is CP+CSig. In the data aggregation
and consensus phase, AGG Aij(1≤j≤m) first verifies RDsig,
then aggregate the received SMs’ power data and generate
TBCmsg, and finally sign it. Therefore, the computational
overhead is nCsig+Cn

Agg+Csig. Then, each AGG executes
once as the PBFT master node and m−1 times as a PBFT com-
mon node. As the master node, Aij first verifies Sijk(1≤k≤n)’s
signatures, then aggregate cpdijk(1≤k≤n), and afterward ini-
tiate the PBFT consensus process. In the Pre-Prepare stage,
Aij broadcasts the Pre-Prepare-Message. In the Prepare stage,
each common node verify Sijk(1≤k≤n)’s signatures, aggregate
cpdijk(1≤k≤n), and sign the aggregation result. Therefore,
the overhead is m(nCsig+Cn

Agg) In the Commit stage, each
node need to verify and sign the Psigset, and the overhead is
mCsig. Finally, in the data decryption and uploading phase, BK
need to validate Psigij and Csigij(1≤j≤m) firstly, then decrypt
cAggRSij(1≤j≤m), and finally sign the decryption result and
upload it to the blockchain.

We implement the data aggregation process and test the run-
time under different number of users on the Raspberry Pi with
ARM1776 CPU and 256 MB memory. The total number of
users is l · m · n, where l is the number of bookkeepers in the
microgrid, m represents the number of aggregators under the
same bookkeeper and running the PBFT process together, and
n represents the number of smart meters that each aggregator
is responsible for. We test the runtime to aggregate m ·n users’
data under one bookkeeper. As Fig. 6 shows, the runtime has a

LUO et al.: BLOCKCHAIN BASED SECURE DATA AGGREGATION AND DISTRIBUTED POWER DISPATCHING FOR MICROGRIDS 5277

Fig. 6. The runtime of the proposed data aggregation scheme with different
m and n.

linear relation with both m and n, which is consistent with the
above analysis. When m = 50 and n = 500, a bookkeeper can
aggregate 50 · 500 = 25, 000 users’ data within 90 seconds.
Since all the aggregation processes under the l bookkeepers are
parallel, the whole microgrid can aggregate 25, 000 · l users’
data within 90s, perfectly achieving the practically applied
request.

Besides, suppose that the average communication over-
head between two aggregators is Ccom. The arrows in Fig. 4
represent the communications between AGGs. In the Pre-
Prepare stage, the master node Aij broadcast the Pre-Prepare-
Message to other AGGs, and the communication overhead is
(m−1)Ccom. In the Prepare stage, each AGG except for the
master node need to make a broadcast, and cause (m−1)2Ccom
communication overhead. In the Commit stage, each AGG
send a message to the master node, and the overhead is
(m − 1)Ccom. Thus, the total communication overhead of the
consensus process is (m2−1)Ccom.

B. Dispatching Effects of Power Dispatching Scheme

To effectively evaluate the dispatching contracts’ running
cost, we complete the dispatching contracts using Solidity
and deploy them on an Ethereum test blockchain. We set the
user power consumption and natural environments (e.g., light
intensity and wind power) within 24 hours of a day and run
dispatching contracts each hour. The power consumption of
users is between 40-150 kW, and the power of the gener-
ators is 50 kW. The cost of power generation is calculated
according to practice standards, including the construction,
maintenance, pollution treatment, etc., and the unit is 1, 000$.
In fact, we don’t need to pay much attention to the absolute
power generation cost, cause there are various cost calcula-
tion methods. What is important is the optimization that power
dispatching can bring. For power dispatching, we invoke the
Update-Contract and input the sum of user power data, light
intensity, and wind speed (as environmental conditions) for
each hour. The Update-Contract then run the dispatching pro-
gram to compute the optimal generation amount of each power

Fig. 7. The power dispatching’s impact on the power generation cost in a
day.

Fig. 8. Gas consumption of the dispatching contract with different particle
numbers and iteration times.

generator to make the total cost lowest. We record the dis-
patching result when pnum = 10 and t = 50. Moreover, we
use an equal distribution that evenly distributes power demand
to each power station to validate the dispatching effects. Fig. 7
shows the dispatching result for 24 hours of a day, the x-axis
represents the 24 hours of the day, and the y-axis represents the
dispatching overhead. The circular icon line represents the cost
of equal distribution (means evenly distributes power demand
to each power station), and the line of the square icon is the
cost of running the dispatching algorithm. It is clear that run-
ning power dispatching can significantly reduce the system
cost.

C. Running Cost of Power Dispatching Scheme

The running cost of Ethereum smart contracts can be mea-
sured by gas consumption. We test the gas consumption with
different particle number pnum (5, 10, 15) and iteration time
t (1≤t≤50). By splitting the PSO algorithm into multiple
smart contracts and execute together, the gas consumption
is controlled within the gas limited range, and the dispatch-
ing algorithm can be executed through the smart contract. As
Fig. 8 shows, when pnum is 5, 10, and 15, the average gas
consumption is 619, 428, 1, 157, 659, and 1, 756, 952. The gas

5278 IEEE TRANSACTIONS ON SMART GRID, VOL. 12, NO. 6, NOVEMBER 2021

consumption increases as pnum increases and is roughly lin-
early related. As for a fixed pnum, as t increases, the gas
consumption fluctuates around a higher value at an earlier
stage, then slowly decreases, and finally drops significantly
somewhere. This is because the result of each iteration will
be closer to the optimal solution. Thus the computation cost
of the next iteration will be lower. When a particle reaches
the optimal solution, its cost reaches the minimum and no
longer drops. As the iteration time increases, more particles
reach the optimal solution and then the total overhead begins
to decrease significantly, and eventually, all particles reach
the optimal solution, and the total gas cost will stabilize at
a lower value. However, the iterative process does not wait
until all particles reach the optimal solution, but as long as
one particle reaches the optimal value, we can then get the
system optimal value. Therefore, when the gas consumption
drops significantly, the optimal solution has been found (actu-
ally earlier, but the impact of a single particle reaching the
optimal value on the total cost is not obvious). In addition,
the more particles there are, the more obvious the downward
trend of gas will be. This is because the algorithm can find
the optimal solution faster when the particle number is large;
and since each particle’s computation cost will reduce, the
total cost will naturally reduce more obviously as the particle
number increases.

It should be noted that we chose Ethereum smart con-
tract for experiments because Ethereum is widely accepted
and the contracts’ computation overhead can be measured by
gas consumption, so as to better evaluate the performance
of our proposed dispatching scheme. In practice, the power
system can build its own Power Chain (as shown in Fig. 3)
instead of directly using the expensive Ethereum. Therefore,
the actual price of Ether that the experiment results show is
not important.

VIII. CONCLUSION

In this paper, by leveraging the blockchain technology, we
proposed an decentralized energy management solutions for
microgrids, which have two innovation parts. 1) A data aggre-
gation scheme based on the Paillier homomorphic encryption
and the PBFT consensus algorithm, which can guarantee the
correctness of aggregation results in a decentralized environ-
ment without any authority third party. 2) An automatic and
distributed power dispatching scheme by utilizing Ethereum
smart contracts and the PSO algorithm. Through the security
analysis and the experimental implementation, we prove that
the proposed solution can well achieve all the required secu-
rity features while providing high efficiency and guaranteed
correctness of aggregation results.

REFERENCES

[1] F. F. Wu, K. Moslehi, and A. Bose, “Power system control centers:
Past, present, and future,” Proc. IEEE, vol. 93, no. 11, pp. 1890–1908,
Nov. 2005.

[2] F. R. Badal, P. Das, S. K. Sarker, and S. K. Das, “A survey on control
issues in renewable energy integration and microgrid,” Prot. Control
Mod. Power Syst., vol. 4, no. 1, pp. 1–27, 2019.

[3] S. Anand and B. G. Fernandes, “Reduced-order model and stability anal-
ysis of low-voltage DC microgrid,” IEEE Trans. Ind. Electron., vol. 60,
no. 11, pp. 5040–5049, Nov. 2013.

[4] R. H. Lasseter and P. Paigi, “Microgrid: A conceptual solution,” in
Proc. 35th IEEE Annu. Power Electron. Spec. Conf. (PESC), Aachen,
Germany, 2004, pp. 4285–4290.

[5] L. Che, M. Shahidehpour, and A. S. Alabdulwahab and Y. Al-Turki,
“Hierarchical coordination of a community microgrid with AC and DC
microgrids,” IEEE Trans. Smart Grid, vol. 6, no. 6, pp. 3042–3051,
Nov. 2015.

[6] F. Li, B. Luo, and P. Liu, “Secure information aggregation for smart
grids using homomorphic encryption,” in Proc. 1st IEEE Int. Conf.
Smart Grid Commun. (SmartGridComm), Gaithersburg, MD, USA,
2010, pp. 327–332.

[7] R. Lu, X. Liang, X. Li, X. Lin, and X. Shen, “EPPA: An effi-
cient and privacy-preserving aggregation scheme for secure smart grid
communications,” IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 9,
pp. 1621–1631, Sep. 2012.

[8] L. E. Zubieta, “Power management and optimization concept for DC
microgrids,” in Proc. 1st IEEE Int. Conf. DC Microgrids (ICDCM),
Atlanta, GA, USA, 2015, pp. 81–85.

[9] M. Lisovich and S. Wicker, “Privacy concerns in upcoming residential
and commercial demand-response systems,” IEEE Proc. Power Syst.,
vol. 1, no. 1, pp. 1–10, 2008.

[10] C. Peng, H. Sun, M. Yang, and Y.-L. Wang, “A survey on security com-
munication and control for smart grids under malicious cyber attacks,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 49, no. 8, pp. 1554–1569,
Aug. 2019.

[11] S. M. Amin and B. F. Wollenberg, “Toward a smart grid: Power delivery
for the 21st century,” IEEE Power Energy Mag., vol. 3, no. 5, pp. 34–41,
Sep./Oct. 2005.

[12] S. Li, K. Xue, Q. Yang, and P. Hong, “PPMA: Privacy-preserving mul-
tisubset data aggregation in smart grid,” IEEE Trans. Ind. Informat.,
vol. 14, no. 2, pp. 462–471, Feb. 2018.

[13] K. Xue, B. Zhu, Q. Yang, D. S. L. Wei, and M. Guizani, “An efficient
and robust data aggregation scheme without a trusted authority for smart
grid,” IEEE Internet Things J., vol. 7, no. 3, pp. 1949–1959, Mar. 2020.

[14] M. Ghadamyari and S. Samet, “Privacy-preserving statistical analysis
of health data using paillier homomorphic encryption and permissioned
blockchain,” in Proc. IEEE Int. Conf. Big Data (BigData), Los Angeles,
CA, USA, 2019, pp. 5474–5479.

[15] B.-K. Zheng et al., “Scalable and privacy-preserving data sharing based
on blockchain,” J. Comput. Sci. Technol., vol. 33, no. 3, pp. 557–567,
2018.

[16] A. Bagherian and S. M. M. Tafreshi, “A developed energy management
system for a microgrid in the competitive electricity market,” in Proc.
IEEE Bucharest PowerTech, Bucharest, Romania, 2009, pp. 1–6.

[17] H. Kakigano, Y. Miura, and T. Ise, “Distribution voltage control for DC
microgrids using fuzzy control and gain-scheduling technique,” IEEE
Trans. Power Electron., vol. 28, no. 5, pp. 2246–2258, May 2013.

[18] A. Khorsandi, M. Ashourloo, and H. Mokhtari, “A decentralized control
method for a low-voltage DC microgrid,” IEEE Trans. Energy Convers.,
vol. 29, no. 4, pp. 793–801, Dec. 2014.

[19] L. Xue, Y. Teng, Z. Zhang, J. Li, K. Wang, and Q. Huang, “Blockchain
technology for electricity market in microgrid,” in Proc. 2nd Int. Conf.
Power Renew. Energy (ICPRE), Chengdu, China, 2017, pp. 704–708.

[20] E. Mengelkamp, B. Notheisen, C. Beer, D. Dauer, and C. Weinhardt, “A
blockchain-based smart grid: Towards sustainable local energy markets,”
Comput. Sci. Res. Develop., vol. 33, no. 1, pp. 207–214, 2018.

[21] Z. Li, J. Kang, R. Yu, D. Ye, Q. Deng, and Y. Zhang, “Consortium
blockchain for secure energy trading in industrial Internet of Things,”
IEEE Trans. Ind. Informat., vol. 14, no. 8, pp. 3690–3700, Aug. 2018.

[22] P. Danzi, M. Angjelichinoski, C. Stefanovic, and P. Popovski,
“Distributed proportional-fairness control in microgrids via blockchain
smart contracts,” in Proc. IEEE Int. Conf. Smart Grid Commun.
(SmartGridComm), Dresden, Germany, 2017, pp. 45–51.

[23] S. Nakamoto. (2008). Bitcoin: A Peer-to-Peer Electronic
Cash System. Accessed: Jun. 2021. [Online]. Available:
https://www.bitcoinpaper.info/bitcoinpaper-html/

[24] V. Buterin et al., “A next generation smart contract and decen-
tralized application platform,” Ethereum, Zug, Switzerland,
White Paper, 2014. Accessed: Jun. 2021. [Online]. Available:
https://cryptorating.eu/whitepapers/Ethereum/Ethereum_white_paper.pdf

[25] Solidity. Accessed: Jun. 2021. [Online]. Available:
https://docs.soliditylang.org

LUO et al.: BLOCKCHAIN BASED SECURE DATA AGGREGATION AND DISTRIBUTED POWER DISPATCHING FOR MICROGRIDS 5279

[26] M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in
Proc. USENIX Symp. Oper. Syst. Design Implement. (OSDI), 1999,
pp. 173–186.

[27] P. Paillier, “Paillier encryption and signature schemes,” in Encyclopedia
of Cryptography and Security, H. C. A. V. Tilborg and S. Jajodia,
Eds. Boston, MA, USA: Springer, 2011. [Online]. Available:
https://doi.org/10.1007/978-1-4419-5906-5_488

[28] F. Marini and B. Walczak, “Particle swarm optimization (PSO). A tuto-
rial,” Chemometr. Intell. Lab. Syst., vol. 149, pp. 153–165, Dec. 2015.

Xinyi Luo (Graduate Student Member, IEEE)
received the B.S. degree in information security
from the School of the Gifted Young, University
of Science and Technology of China in July, 2020,
where she is currently a graduated student with the
School of Cyber Security. Her research interests
include network security and cryptography.

Kaiping Xue (Senior Member, IEEE) received
the bachelor’s degree from the Department of
Information Security, University of Science and
Technology of China (USTC), in 2003, and the
Ph.D. degree from the Department of Electronic
Engineering and Information Science (EEIS),
USTC, in 2007. From May 2012 to May 2013, he
was a Postdoctoral Researcher with the Department
of Electrical and Computer Engineering, University
of Florida. He is currently a Professor with the
School of Cyber Security and the Department of

EEIS, USTC. His research interests include next-generation Internet archi-
tecture design, transmission optimization, and network security. He serves on
the Editorial Board of several journals, including the IEEE TRANSACTIONS

ON DEPENDABLE AND SECURE COMPUTING, the IEEE TRANSACTIONS

ON WIRELESS COMMUNICATIONS, and the IEEE TRANSACTIONS ON

NETWORK AND SERVICE MANAGEMENT. He has also served as a Guest
Editor of IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS,
and a Lead Guest Editor of IEEE Communications Magazine and IEEE
NETWORK. He is an IET Fellow.

Jie Xu received the B.S. degree from the Department
of Information Security, University of Science and
Technology of China (USTC) in July, 2017, and
the M.S. degree from the Department of Electronic
Engineering and Information Science, USTC, in
2020. She is currently pursuing the Ph.D. degree
with the Department of Computer Science, City
University of Hong Kong. Her research interests
include network security and cryptography.

Qibin Sun (Fellow, IEEE) received the Ph.D. degree
from the Department of Electronic Engineering
and Information Science, University of Science and
Technology of China, in 1997, where he is currently
a Professor with the School of Cyber Security. He
has published more than 120 papers in international
journals and conferences. His research interests
include multimedia security, network intelligence,
and security.

Yongdong Zhang (Senior Member, IEEE) received
the Ph.D. degree in electronic engineering from
Tianjin University, Tianjin, China, in 2002. He
is currently a Professor with the Department of
Electronic Engineering and Information Science and
the Beijing Research Institute, University of Science
and Technology of China. He has authored over 100
refereed journal and conference papers. His current
research interests are in the fields of multimedia
content analysis and understanding, multimedia con-
tent security, video encoding, and streaming media

technology. He was a recipient of the Best Paper Awards in PCM 2013,
ICIMCS 2013, and ICME 2010, and the Best Paper Candidate at ICME 2011.
He is a member of the Editorial Board of the IEEE TRANSACTIONS ON

MULTIMEDIA and Multimedia Systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

