
914 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 1, JANUARY 2021

BBR-Based Congestion Control and Packet
Scheduling for Bottleneck Fairness Considered

Multipath TCP in Heterogeneous Wireless Networks
Wenjia Wei, Member, IEEE, Kaiping Xue , Senior Member, IEEE, Jiangping Han,

Yitao Xing, Graduate Student Member, IEEE, David S. L. Wei, Senior Member, IEEE, and Peilin Hong

Abstract—Aiming at improving the performance of Multipath
TCP (MPTCP) in heterogeneous wireless network environments,
in this paper, by taking the advantages Bottleneck Bandwidth and
Round-trip propagation time (BBR) and considering bottleneck
fairness, we propose BBR-based Congestion Control and Packet
Scheduling scheme, called BCCPS. The proposed BCCPS first con-
siders a BBR-based congestion control algorithm, MPTCP-BBR,
for MPTCP by adaptively adjusting the sending rate of each sub-
flow according to the real probing rate rather than the loss informa-
tion to enhance the goodput while keeping bottleneck fairness with
regular TCP. Then, considering that the different sending rates
of the subflows in heterogeneous wireless networks will result in
the problem of out-of-order (OFO) delivery, a fine-grained packet
scheduling scheme is proposed to keep in-order delivery and so as
to reduce the application layer completion time. The performance
of the proposed scheme is evaluated via both NS-3 and real network
scenarios. Experimental results show that our proposed scheme far
outperforms existing MPTCP schemes in heterogeneous wireless
environment.

Index Terms—BBR, bottleneck fairness, congestion control,
multipath TCP, packet scheduling.

I. INTRODUCTION

NOWADAYS, it is common that one communication device
has more than one network interface (e.g., a mobile phone

with 3 G/4 G and wifi interfaces). However, more than 90% of
Internet traffic is transported via TCP [1], while the traditional
TCP can only utilize one interface between the two end hosts
even though the end hosts are equipped with multiple interfaces.
As the available capacity in a single network connection cannot

Manuscript received October 29, 2020; revised December 23, 2020; accepted
December 24, 2020. Date of publication December 29, 2020; date of current
version February 12, 2021. This work was supported in part by the National
Natural Science Foundation of China under Grant 61972371, and in part by the
Youth Innovation Promotion Association of the Chinese Academy of Sciences
(CAS) under Grant 2016394. The review of this article was coordinated by Dr.
B. Mao. (Corresponding author: Kaiping Xue.)

Wenjia Wei, Jiangping Han, and Peilin Hong are with the Department of Elec-
tronic Engineering and Information Science, University of Science and Tech-
nology of China, Hefei 230027, China (e-mail: wwj2014@mail.ustc.edu.cn;
jphang@mail.ustc.edu.cn; plhong@ustc.edu.cn).

Kaiping Xue and Yitao Xing are with the School of Cyber Security, Uni-
versity of Science and Technology of China, Hefei 230027, China (e-mail:
kpxue@ustc.edu.cn; ytxing@mail.ustc.edu.cn).

David S. L. Wei is with the Department of Computer and Information Science,
Fordham University, Bronx, NY 10458 USA (e-mail: wei@cis.fordham.edu).

Digital Object Identifier 10.1109/TVT.2020.3047877

satisfy the goodput and delay demands of high-quality applica-
tions, new research trends have moved towards integrating the
multiple access technology to gain bandwidth aggregation, such
as the work in [2]–[6].

As a new bandwidth aggregation technology at the transport
layer, Multipath TCP (MPTCP) [7] has got much attention due
to its support for concurrent use of multiple interfaces and
compatibility with the existing applications [8]. MPTCP uses
multiple subflows for parallel transmission to improve goodput
and robustness [9], [10]. However, simultaneous use of multiple
subflows may create multiple times of aggression on a single-
path TCP flow at the shared bottleneck, which means that the
existing congestion control algorithms cannot be directly ported
to MPTCP [11]. To address this problem, some coupled conges-
tion algorithms, such as LIA [12], OLIA [13], and BALIA [14]
have been proposed to enhance the goodput performance and
fairness of MPTCP. These packet-loss-based congestion control
schemes often incorrectly interpret a packet loss as the signal of
congestion. Such congestion control strategy frequently results
in goodput fluctuations in lossy networks, and significantly in-
creases the end-to-end delay even when the loss rate is low [15],
[16]. Furthermore, all these schemes simply couple the through-
put of all subflows to achieve network fairness, making the
overall throughput of an MPTCP connection be no more than
that of a single-path TCP on the best end-to-end path. Although
this operation can guarantee the fairness of coupled MPTCP
subflows in one MPTCP connection and other TCP/MPTCP
flows at shared-bottleneck links, it limits the performance of the
subflows at non-shared-bottleneck links. If we distinguish bot-
tlenecks of different paths for an MPTCP connection, decouple
the subflows at different non-shared-bottleneck links, and only
couple the subflows at each shared-bottleneck link, the overall
throughput can be improved while achieving bottleneck fairness
with single-path TCP flows and other MPTCP flows.

Recently, BBR (Bottleneck Bandwidth and Round-trip prop-
agation time) [17], also named TCP-BBR, a rate-based conges-
tion control scheme, is proposed by Google Inc. to improve
TCP’s transmission performance. This scheme estimates the
end-to-end propagation delay and the available link bandwidth
at the bottleneck of a subflow to determine the sending rate of the
subflow. BBR tries to provide high link utilization while avoid-
ing queueing packets in intermediate routers’ buffers. Thus,

0018-9545 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 15,2021 at 14:58:00 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2095-7523
https://orcid.org/0000-0002-3027-1990
mailto:wwj2014@mail.ustc.edu.cn
mailto:jphang@mail.ustc.edu.cn
mailto:plhong@ustc.edu.cn
mailto:kpxue@ustc.edu.cn
mailto:ytxing@mail.ustc.edu.cn
mailto:wei@cis.fordham.edu

WEI et al.: BBR-BASED CONGESTION CONTROL AND PACKET SCHEDULING FOR BOTTLENECK FAIRNESS CONSIDERED 915

BBR can not only improve the goodput but also reduce end-
to-end delay of a TCP flow in wireless networks [18], so BBR
can be further considered in improving MPTCP’s performance
in Heterogeneous Wireless Networks. However, if we only
implement MPTCP over multiple independent BBR-based TCP
subflows without overall consideration about congestion control
and packet scheduling of subflows in an MPTCP connection,
the transmission performance of MPTCP can not be guaranteed
and the fairness with other TCP/MPTCP flows can not be
achieved.

In this paper, we first propose a BBR-based coupled con-
gestion control algorithm for MPTCP, named MPTCP-BBR,
which integrates the advantages of multipath transmission and
BBR. MPTCP-BBR can improve the overall goodput and reduce
end-to-end delay while achieving bottleneck fairness with other
TCP/MPTCP flows. MPTCP-BBR completes the detection of
the shared bottleneck set when each BBR subflow of an MPTCP
connnetion periodically probing bandwidth and RTT. Then,
MPTCP-BBR couples the growth rate of subflow at each shared
bottleneck in Probing Bandwidth state and adaptively adjusts
the sending rate of subflows to balance the loads while en-
suring fair bandwidth allocation with regular TCP flows and
other MPTCP flows. Furthermore, all the existing predictive
scheduling schemes, e.g., [19], [20] work on packet-loss-based
congestion control, which rely on modeling congestion window
(CWND) changes in multiple scheduling cycles when predicting
the throughput on each subflow. The sending rate of TCP-BBR
does not change according to a specific regular rule, so a new
packet scheduling algorithm needs to be designed based on
our proposed MPTCP-BBR. Therefore, we further propose a
new fine-grained packet scheduling scheme for MPTCP-BBR.
Specifically, our packet scheduling scheme works in two phases
to accommodate data transmission with different sizes: Initially,
it sends data redundantly from multiple paths, which can use
more bandwidth consumption in exchange for less delay. This
operation is beneficial to mouse flows since they are latency-
sensitive. After a specific amount of data is sent out, the scheme
switches to a regular MPTCP mode with non-redundant packet
scheduling and delivers packets over all end-to-end communi-
cation paths with regard to the path quality.

To sum up, our innovative work about BCCPS in this pa-
per mainly includes two parts: a new BBR-based bottleneck
fairness considered coupled congestion control algorithm and
a fine-grained packet scheduling algorithm for MPTCP used in
heterogeneous wireless networks. The first part aims to improve
transmission performance while achieving bottleneck fairness.
The second part aims to reduce the number of out-of-order
packets within multiple asymmetric paths at the receiver. The
main contributions of our work can be further summarized as
follows:

1) By leveraging BBR, we propose a new bottleneck fairness
considered coupled congestion control algorithm, named
MPTCP-BBR, which probes the available bottleneck link
bandwidth and the propagation delay of each TCP sub-
flow. Based on these probed information, MPTCP-BBR
dynamically judges shared-bottleneck sets for all subflows
in a MPTCP connection and adaptively adjusts the sending

rates on each subflow to balance the congestion and opti-
mize the goodput while achieving bottleneck fairness with
other TCP flows and MPTCP flows at shared bottlenecks.

2) In order to reduce the completion time caused by the
out-of-order delivery problem, our scheme employs a
new fine-grained packet scheduling scheme, which is im-
plemented on the basis of our proposed MPTCP-BBR.
Furthermore, we divide the scheduling procedure into
two phases: the redundant data transmission phase and
the regular MPTCP packet scheduling phase. This design
can both achieve high goodput for elephant flows and low
completion time for mouse flows.

3) We conduct experiments with NS-3 and in a real network
environment. The experimental results show that our pro-
posed scheme can reduce the out-of-order packets in the
receiver’s buffer by >50% and increase the goodput by
>30% compared with the comparison schemes, while
achieving bottleneck fairness with other TCP/MPTCP
flows.

The remainder of this paper is structured as follows. Section II
reviews the related work on congestion control and packet
scheduling. In Section III, we present the system design of
our proposed BCCPS. The performance analysis is given in
Section IV, and finally Section V gives the concluding remarks
of this work and discusses the future work.

II. RELATED WORK AND BACKGROUND

As an extension to TCP, MPTCP has been developed to
meet such expection by taking into account the multi-homing
properties of the end-hosts. However, the legacy MPTCP only
spreads the data to all available paths to aggregate the bandwidth.
In order to enhance the performance of MPTCP in respect of
goodput and end-to-end delay, and while achieving fairness.
Many studies have been conducted to deal with these challenges
by means of congestion control and packet scheduling. Here,
we will introduce some representative solutions in these two
aspects, and give a brief introduction of BBR.

A. Congestion Control

To meet the aforementioned requirements, an MPTCP con-
gestion control is expected to possess three features [11], namely
(1) “Improve Goodput,” (2) “Do No Harm,” and (3) “Balance
Congestion,” in which “Do No Harm” means that an MPTCP
connection should be TCP friendly which is called Network
Fairness. Many congestion control schemes based on Network
Fairness, such as LIA [12], OLIA [13], and BALIA [14], have
been proposed. In order to be friendly to TCP, Network Fairness
restricts that the total goodput of an MPTCP connection in
the network is no more than that of a regular TCP, whether
or not the subflows share a bottleneck with TCP. Thus, these
schemes fail to maximize the goodput of the disjoint paths. On
the contrary, Bottleneck Fairness only restricts the total goodput
of the subflows sharing the same bottleneck not bigger than that
of the TCP path sharing this bottleneck.

Besides, the above mentioned congestion control schemes are
all packet-loss-based. They always interpret a packet loss event

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 15,2021 at 14:58:00 UTC from IEEE Xplore. Restrictions apply.

916 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 1, JANUARY 2021

as the signal of congestion. They change the CWND based on the
strategy of Additive Increase Multiplicative Decrease (AIMD)
and only modify the congestion avoidance phase to perform
coupled congestion control for all subflows according to the
network condition. When a packet loss is detected at the sender,
all of these schemes move traffic away from lossy subflows
and halve the CWND. Such strategy results in the frequent
throughput fluctuations in lossy networks, especially in wireless
networks, with random packet loss caused by link errors. Thus,
the performance of MPTCP will be seriously degraded. Besides,
the packet-loss-based congestion control also suffers bufferbloat
in cellular networks, which causes excessively long delay and
bring about no contribution to the goodput improvement [15].
Cao et al. [21] proposed a delay-based MPTCP congestion
control algorithm, named wVegas, which takes the queuing
delay as the congestion signal and balance the traffic among
subflows. This algorithm can avoid the increasing of end-to-end
delay. However, it also cannot perform well in lossy network
environments since a random packet loss event will cause the
estimated queuing delay increase, which represents that a con-
gestion happens in the corresponding path, the scheme will set
the sending rate of this subflow to a very small value, which will
reduce the overall goodput of MPTCP.

Machine learn have been leveraged to improve network per-
formance from several aspects [22]–[24]. Meanwhile, several
learning-based congestion control approaches have been pro-
posed recently. Li et al. [25] proposed a reinforcement learning-
based congestion control scheme for MPTCP, named SmartCC,
which learns a set of congestion rules and makes online con-
gestion control decisions adaptively to fit different network
situations. Xu et al. [26] proposed a deep reinforcement learning
(DRL)-based congestion control scheme for MPTCP, named
DRL-CC, which dynamically and jointly adjusts all subflows’
CWND with a DRL agent. Learning-based approaches have the
potential to converge to the best decision to improve goodput
under the network conditions that have occurred in offline train-
ing stage. However, these approaches, such as SmartCC and
DRL-CC, might have a worse performance when facing new
network conditions and have a long convergence time to achieve
the best sending rate on each subflow [27].

B. Brief Introduction of BBR

BBR [17] is a novel congestion control scheme proposed by
Google Inc. to improve the performance of TCP. The objective
of BBR is to maximize delivered rate and also minimize end-
to-end delay by reducing the queuing delay. Instead of filling
the bottleneck buffer, BBR tries to reach the optimal operating
point [28] by keeping the amount of inflight packets I in the link
to the BDP (Bandwidth Delay Product).

As shown in Fig. 1, BBR implements a four-stage rate ad-
justment scheme, which includes: Startup, Drain, ProbeBW,
and ProbeRTT. It adaptively changes the sending rate and takes
BDP as its convergence condition. Startup is implemented to
obtain the link bandwidth as quickly as possible at the beginning
of the transmission and Drain is the reverse process of Startup,

Fig. 1. State-transition diagram of BBR congestion control algorithm.

which reduce the inflight packets in the link. ProbeBW is imple-
mented to estimate the bottleneck bandwidth, and ProbeRTT
is implemented to probe the minimum round-trip propagation
time. BBR estimates the bottleneck bandwidth and RTT peri-
odically and adjusts its sending rate according to the real-time
estimated link capacity. This can not only improve the goodput
but also reduce the end-to-end delay.

C. Packet Scheduling

MPTCP establishes a connection with multiple subflows on
different paths. When an MPTCP sender has data to send, it must
choose a path over which to send that data. Round-Robin (RR)
is the simplest scheduling algorithm for MPTCP, in which all
subflows have the same priority and the sender just schedules
data from the send buffer in sequence to the available send win-
dows of all subflows in polling order. Unfortunately, this simple
means cannot alleviate the effects brought up by heterogeneous
path characteristics, and it causes out-of-order delivery, where
packets with larger sequence number may arrive at receiver
earlier than the packets with smaller sequence number, and have
to wait until the arriving of the packets with smaller sequence
numbers. In current MPTCP specification [7], Lowest RTT First
(LRF) [29] is used as the default scheduling algorithm, which
relies on the RTT measured on each subflow, and preferentially
sends data over the subflow having the lowest RTT. However,
LRF also fails to guarantee packets’ arriving at the receiver in
order. In-order delivery among different paths remains a main
challenge for multipath transmission, where out-of-order pack-
ets will cause the head-of-line blocking problem at receiver [30].

Moreover, this problem will become more serious in the
scenarios with asymmetric communications, where multiple
paths have significantly different end-to-end delay. Firstly, the
receiver has to maintain a great number of out-of-order packets
for reordering, which degrades transmission efficiency. At the
same time, in multihomed wireless mobile networks, a mobile
device generally has limited memory capacity, and thus has small
free space for the receive buffer. Furthermore, the increased
out-of-order data and selective acknowledgments will result in
more unnecessary fast retransmissions.

Quite a few intelligent predictive packet scheduling algo-
rithms have been proposed to minimize the number of out-
of-order packets, [19] and [20], in which the amount of data

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 15,2021 at 14:58:00 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: BBR-BASED CONGESTION CONTROL AND PACKET SCHEDULING FOR BOTTLENECK FAIRNESS CONSIDERED 917

Fig. 2. Framework of BCCPS, which consists of a well-designed BBR-based congestion control algorithm and a fine-grained prediction-based packet scheduling
scheme. 1©BCCPS groups the subflows into different shared-bottleneck sets according to the state of each subflow. The subflows share the same bottleneck are
implemented with coupled congestion control while subflows that are not in a same shared-bottleneck set act as single BBR flows. 2©BCCPS then estimates the
number of packets scheduled to each subflow based on each subflow’s BtlBW and RTT.

scheduled on each subflow is in proportion to the estimated band-
width of the path. Delay-aware Packet Scheduling (DAPS) [19]
takes the network latency into consideration at the sender, which
dispatches packets to multiple schedulers instead of the paths in
circular order. Compared with DAPS, BLocking ESTimation
(BLEST) [20] takes into account the variation characteristics of
the fast subflow’s CWND, which further improves the accuracy
of the estimation of the number of packets transmitted by the
fast subflow. However, BLEST does not consider the impact of
packet loss on the CWND, and thus it’s unable to accurately
estimate the CWND when the packet loss occurs. DEcoupled
Multipath Scheduler (DEMS) [31] aims to reduce the download
time through forward and backward bidirectional scheduling.
DEMS is designed for the transmission of small files and requires
that the size of application data cannot exceed its MPTCP layer
sending buffer. When the transmitting end of the file is large,
for example, the data size exceeds the length of the sending
buffer of the MPTCP layer, the performance of DEMS de-
grades severely [32]. Reinforcement Learning based Scheduler
(ReLeS) leverages DRL techniques to learn a neural network
through experience and generates generate the control policy for
packet scheduling to improve goodput, shorten the completion
time and reduce the out-of-order queue [32]. However, ReLeS
might schedule too many packets on a poor subflow at the very
beginning when facing new network conditions. This will have
a great influence on the completion time of mouse flows.

Meanwhile, all the proposed predictive scheduling schemes,
e.g., BLEST, work on packet-loss-based congestion control,
which relies on modeling CWND changes in multiple schedul-
ing cycles when predicting the throughput on each subflow. The
send rate of BBR congestion control algorithm does not change
according to specific regular rule, these scheduling algorithms
cannot work well on a BBR-based congestion control algorithm.

III. SYSTEM DESIGN OF OUR PROPOSED SCHEME

The system overview of the proposed BCCPS scheme is
illuminated in Fig. 2. Assume that all the data are transmitted
through an MPTCP connection with multiple TCP-BBR sub-
flows between the sender and the receiver. The key working
components at the sender include a BBR-based coupled con-
gestion control algorithm and a fine-grained packet scheduling
algorithm. The latter one is implemented based on implementing
the former one.

1) The congestion control scheme consists of a shared bottle-
neck detection scheme and a coupled congestion control
algorithm which can make an MPTCP flow achieve bottle-
neck fairness with other BBR-based TCP/MPTCP flows.
Firstly, based on the detected path parameters of each
subflow, the bottleneck shared by two or more subflows
can be judged accurately. In BBR’s ProbeBW state, If
the increase in RTT occurs in two or more subflows of
an MPTCP connection simultaneously in a same time,
we can preliminarily judge that these subflows share a
same bottleneck. The preliminary judgement result of
shared bottleneck sets should be further confirmed in the
subsequent ProbeRTT state. Then, the proposed coupled
congestion control algorithm is implemented to couple
the CWND of subflows within the same bottleneck set
and adjust the sending rate of each subflow according
to the path quality so as to achieve Bottleneck Fairness.
On the contrary, subflows with different shared-bottleneck
sets should be decoupled to achieve a better transmission
capacity.

2) The packet scheduling algorithm is implemented based
on the implementation result of our congestion control
algorithm, which is further divided in two phases: Initially,

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 15,2021 at 14:58:00 UTC from IEEE Xplore. Restrictions apply.

918 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 1, JANUARY 2021

Fig. 3. Inflight packets and RTT in TCP-BBR’s four states.

redundant transmission is realized on different subflows,
which can shorten the completion time of latency-sensitive
mouse flows through more bandwidth consumption. After
reaching a fixed statistical threshold, a fine-grained packet
scheduling algorithm is run to accurately estimate the
completion time of each packet on each subflow based on
the values of BtlBW and RTT obtained by the proposed
congestion control algorithm.

A. Bottleneck Fairness Considered Coupled
Congestion Control

When we introduce BBR into MPTCP, we have to redesign the
congestion control scheme such that the developed congestion
control possesses all of the three features, namely (i) “Improve
Goodput,” (ii) “Do No Harm,” and (iii) “Balance Congestion”
[11]. Therefore, in order to achieve bottleneck fairness, all
subflows in an MPTCP connection can be divided into one
or more shared-bottleneck sets. In each shared-bottleneck set,
MPTCP-BBR should perform equally well as a single-path
TCP-BBR flow running on the best path at the shared-bottleneck.
Therefore, the overall MPTCP connection can achieve at least as
well as the sum of single-path TCP-BBR flows at all shared bot-
tlenecks. Besides, the multipath BBR-based coupled congestion
control should be able to promptly move traffic from its most
congested paths to other paths as much as possible. For the sake
of description, we name our proposed BBR-based congestion
control scheme as MPTCP-BBR, and we name TCP with BBR
as TCP-BBR.

In order to make the designed scheme to achieve the above
mentioned three features simultaneously, we first need to be
able to detect all shared-bottleneck sets among subflows in
an MPTCP connection, then coupled subflows in each shared-
bottleneck set to be fair with a single-path TCP-BBR flow
from the same bottleneck. To be noted, a subflow not in any
shared-bottleneck set can be treated as a single-path TCP-BBR
flow.

1) Network State Collection and Shared Bottleneck Set De-
tection: As stated in [17], BDP is regarded as the convergence
condition of BBR, i.e., the design of BBR aims to make the
number of inflight packets converge to BDP. Fig. 3 shows
changing trend of inflight packets and RTTs in ProbeBW and
ProbeRTT. In the ProbeBW state, BBR adjusts the sending

rate with the pacing gain G ∈ [1.25, 0.75, 1, 1, 1, 1, 1, 1] in an
eight-phase cycle to detect the maximum BtlBW. Consequently,
BBR periodically spends an RTprop interval at a pacing gain
“> 1,” which increases inflight packets so as to probe for a bigger
sending rate. If the number of inflight packets has converged to
BDP, some transmitted packets will queue at the bottleneck and
not only the RTT of the probed flow but also the RTTs of other
flows from the shared bottleneck will increase simultaneously.
During the next RTprop, this queue will be removed by set the
sending rate at a compensating pacing gain “< 1”.

So we can find that in the above process, RTT’s increment
process shows a linear feature and the subflows traversing the
shared bottleneck would be observed with a similar RTT’s
changing trend. Based on this observation and inspired by the
work in [33] and [34], we leverage the feature of RTT’s changing
trend of different subflows in a shared bottleneck set in ProbeBW
to determine whether the subflows share bottleneck. In this way,
when the RTTs of two subflows increase nearly at the same
time (we set the judgement period as one RTprop), the subflows
can be judged as sharing a bottleneck. This detection can be
implemented on sender’s side.

Due to the influence of background flows in the network,
RTT’s measurement error will affect the detection accuracy of
shared-bottleneck sets. So the previous detection result need
to be verified. We introduce a further confirmation mechanism
in our scheme to confirm the detected shared-bottleneck set in
the subsequent ProbeRTT phase. In order to measure RTTmin,
BBR uses a periodically execution phase, called ProbeRTT. As
defined in BBR, this phase is entered when the value of RTTmin

hasn’t been updated with a lower measured value for several
seconds (default: 10 s). In ProbeRTT, the sender limits its inflight
data amount to 4 packets a maximum value. This state lasts for
200 ms and then returns to the previous state. When a subflow
drains the bottleneck queue by reducing the sending rate so as to
obtain theRTTmin. This will promote other subflows in the same
bottleneck to detect the new RTprop and further enter ProbeRTT
together. Thus, subflows traversing from a same bottleneck could
approximately synchronize the above process of state change at
the same time. When different subflows enter the ProbeRTT state
nearly at the same time, we can confirm the subflows judged to
share a bottleneck previously actually share the bottleneck.

Specifically, our shared-bottleneck set detection mechanism
works as follows:

S1: The MPTCP sender monitors the RTTs of all subflows in
respective ProbeBW states. When the RTT of one sub-
flow increases, the sender further detect whether there are
other subflows whose RRTs are also linearly increasing
in the same time. If so, these subflows can be judged to
share a bottleneck, which can be treated to belong to a
shared-bottleneck set.

S2: Furthermore, for a shared bottleneck set judged pre-
viously, if the minimum RTTs of the subflows in a
shared bottleneck set are measured simultaneously in
the ProbeRTT state, then this bottleneck set can be
confirmed finally and all the subflows in this set should
be coupled together. Otherwise, the previously judged
shared-bottleneck set should be cancelled.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 15,2021 at 14:58:00 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: BBR-BASED CONGESTION CONTROL AND PACKET SCHEDULING FOR BOTTLENECK FAIRNESS CONSIDERED 919

This procedure with two steps needs to ensure that all subflows
are determined, each of which belongs to a shared bottleneck
set or is independent and doesn’t share a bottleneck with any
other subflows. What is more, this procedure should be executed
periodically and the detected shared bottleneck sets can be
dynamically changed as on each subflow, as BBR probes the
link state periodically and the probe result is always dynamic
changed.

2) Bottleneck Fairness Considered Coupled Congestion
Control: [18], [35] In our proposed congestion control mech-
anism, based on the result of shared bottleneck set judgement,
the subflows in a shared bottleneck set are coupled together,
and the subflows that are not in the same shared-bottleneck set
should be decoupled and perform congestion control processes
independently of each other, which represents Bottleneck Fai-
ness. Besides, we also need to ensure fairness between different
subflows with different RTTs that are coupled together from
a shared bottleneck link. The problem of the fairness about
TCP-BBR flows with different RTTs has been discussed in some
literatures, e.g., [36]–[39], in which long RTT flows always
occupy more bandwidth than short RTT flows at the shared
bottleneck link. The cause of this phenomenon is that, a long
RTT flow floods in a larger volume of excess inflight packets than
a short RTT flow does during the probing period (one RTprop),
which dominating the queue backlog as well as the sending rate.
Therefore, this factor needs to be considered in the design of our
fairness considered scheme.

In order to achieve feature (i), i.e., “Improve Goodput,”
MPTCP should perform equally well as a single-path TCP
running on the best path from a bottleneck, in our scheme, which
means MPTCP-BBR should spend as much time as that spent
by a single-path TCP-BBR in the probing period. According
to [36], the time length of the probing period for all the subflows
in a shared-bottleneck set Si can be chosen as defined in Eq. (1):

RTT ′ = max{RTpropr}
r∈Si

, (1)

where RTpropr is the minimum RTT estimated by subflow
r. RTT ′ is the maximum RTpropr belongs to the MPTCP
connection in the shared-bottleneck set Si. The computation of
RTT ′ guarantees that all subflows in the same shared-bottleneck
set probe respective sending rate in each subflow will be propor-
tional to its pacing gain. Let xr(t) be the measured sending rate
of subflow r at time t, the rate control in can be expressed as:

BDPr = max{xr(t)} ×RTT ′ t ∈ [T −W,T], (2)

Rr =

{
Gr ×max{xr(t)} I ≤BDPr,
0 I >BDPr.

(3)

where max{x(t)} is the maximum delivery rate during the last
period W which is typically 6 to 10 times of RTprop.

In ProbeBW state, Gr represents the gain of sending rate in
one of the eight-phase on subflow r. A single-path TCP-BBR
controls the pacing rate asG ∈ [1.25, 0.75, 1, 1, 1, 1, 1, 1]. When
multiple subflows are competing with each other on a shared-
bottleneck link, the bandwidth obtained by each subflow should
be proportional to its occupied buffer size in the link queue.
Thus, it is reasonable for a subflow to set the parameter αr as a

Fig. 4. Example of a HoL-blocking state. Packet 1, delivered on the slow path
delays the entire transmission, even though packets 2-11 have already arrived.

knob to control the aggressiveness of competition for bandwidth
consumption. Then each subflow’s pacing gain can be set as:

Gr ∈ [1.25, 0.75, αr, αr, αr, αr, αr, αr] . (4)

Moreover, in order to have feature (ii), i.e., “Do No Harm”
and feature (iii), i.e., “Balance Congestion,” the throughput of
each subflow in a shared-bottleneck should be equal to the
throughput of the best subflow with maxBtlBWr from the
same bottleneck link. Then, the throughput of each subflow
is allocated proportionally according to the currently measured
bandwidth. Therefore, the parameter αr can be computed as in
Eq. (6).

BtlBWr = max{xr(t)} t ∈ [T −W,T], (5)

αr =
max
r∈Si

BtlBWr∑
r∈Si

BtlBWr
. (6)

In this way, a new BBR-based coupled congestion control al-
gorithm, i.e., MPTCP-BBR, is developed for MPTCP. MPTCP-
BBR possesses the three before-discussed features. Algorithm 1
gives pseudocode of our proposed MPTCP-BBR.

B. Fine-Grained Packet Scheduling

In this subsection, based on the path quality detected by BBR,
we further introduce a new scheduling algorithm that addresses
out-of-order delivery problem and spurious retransmissions to
increase application performance in heterogeneous scenarios.

In heterogeneous scenarios, due to the uneven performance
between different subflows, the data allocated to different sub-
flows will not reach the receiver at the same time, causing
out-of-order problems. The performance of MPTCP will seri-
ously degraded as the subflow performance difference increases,
especially for mouse flows [40]. As shown in Fig. 4, a first packet
is sent on a slow path, and subsequent packets are sent on the
fast path to fill the receive buffer. While the subsequent packets

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 15,2021 at 14:58:00 UTC from IEEE Xplore. Restrictions apply.

920 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 1, JANUARY 2021

Fig. 5. In the initial phase, we use redundant packet transmission to reduce
latency and jitter.

are received in a timely manner, the transmission is blocked,
waiting for the first packet to be received.

In order to achieve high goodput for elephant flows and low
latency for mouse flows, we divide the process into two phases.
In the initial phase, packets are redundantly transmitted over
multiple paths until the amount of transmitted packets reaches
a certain threshold. In the second phase, the parameters of
different paths are collected, and the sender allocates packets
over multiple paths according to the path quality.

1) Redundancy Packet Transmission: In initial phase, the
sender sends data packets redundantly over multiple paths in
heterogeneous network. As shown in Fig. 5, although WiFi,
ethernet, and LTE have different link bandwidth, delays, and

Fig. 6. Forward-prediction based scheduling to reduce latency.

packet loss rates, BCCPS sends the same packet sequence on
different subflows, exchanging bandwidth consumption for re-
ducing latency. This approach guarantees the lowest possible
latency in existing best-effort networks. It is essential to mouse
flows, since retransmissions due to packet drops can increase the
end-to-end delay obviously. We heuristically mandate that flows
less than or equal to 100 KB are considered mouse flows, and
are replicated to achieve better latency. This threshold value is
chosen in accordance with many existing literatures [41]–[43].
This threshold is small, so it will not waste too much bandwidth.
At the same time, it can also collect the network parameters
(i.e., BtlBW and RTT) for the second phase with BBR’s pacing
mechanism.

2) Forward Prediction Packet Scheduling: In this phase the
packets generated by applications come into the send buffer. The
algorithm allocates packets to different subflow according to the
completion time to solve the performance degradation problem
with path heterogeneity.

This algorithm aims at scheduling more packets on a subflow
than what it can currently send, so the queues may therefore
build up at the sender. For each packet in the queue, scheduler
selects the appropriate subflow to transmit according to its arrival
time in FIFO order. As shown in Fig. 6, assume that there
are packets needed to be allocated to Subflowf and Subflows.
If the faster subflow Subflowf in terms of RTT has available
capability, current scheduled packets can simply be dispatched
to Subflowf . As the unsent packets on Subflowf increases,
the time that new packets wait to be dispatched to Subflowf

will increase. If Subflowf does not have available space and
subsequent packets can arrive faster via Subflows, then these
packets should be scheduled to and sent via Subflows.

When scheduling a connection level packet, the algorithm
estimates its arrival time, denoted by Tr, if sent over subflow
r, which is the end-to-end delay of subflow r. Then it chooses
the subflow with the earliest arrival time. Tr is the sum of two
major delay: the delay introduced in network T r

net and the delay
introduced in sendbuffer T r

wait.

Tr = T r
net + T r

wait, (7)

T r
net =

RTTr

2
+ qr ·RTTr, (8)

T r
wait =

kr
BtlBWr

, (9)

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 15,2021 at 14:58:00 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: BBR-BASED CONGESTION CONTROL AND PACKET SCHEDULING FOR BOTTLENECK FAIRNESS CONSIDERED 921

where T r
net represents the time it takes for the data to arrive at

the receiver in the network transmission with the packet loss
rate qr. When the sender detects a loss event, it updates the loss
rate qr, calculates the average loss rate, and forecast the time
arriving at the destination. In the calculation process of T r

net,
we assume that the lost packet can successfully arrive at the
receiver by one retransmission. T r

wait is related to the number of
packets scheduled on this subflow. In order to make the data on
different subflows reach the receive buffer at the same time, the
fast subflow will be scheduled for much more data, so the waiting
time on the fast subflow needs to be estimated. The estimation
is performed based on a subflow’s BtlBWr, and the number of
unsent packets in queue kr.

When the scheduling of a packet is completed, the packet
will be sent via the allocated subflow. If the queue is empty of
packets on this subflow, the current scheduled packet can be sent
on the subflow immediately. Otherwise, the packet have to wait
in the queue and will be sent by the assigned subflow later when
the previous scheduled packets in the queue are sent out. In this
way, all these packets will arrive at receiver in order. Algorithm
2 give the pseudocode about how the packet is scheduled, based
on the RTT, BtlBW, and the loss rate in our proposed BCCPS.

IV. PERFORMANCE ANALYSIS

In this section, we first evaluate our BCCPS proposed in this
paper through NS-3 simulator [44]. The MPTCP NS-3 code is
provided by Google MPTCP group [45]. Then we implement
BCCPS in Linux kernel base on MPTCP v0.94 and test it in
real network. We first evaluate the performance of BCCPS’s
congestion control algorithm MPTCP-BBR, and then evaluate
the performance of our packet scheduling algorithm based on
MPTCP-BBR. For the performance comparison in the aspect of

Fig. 7. Base topology for BCCPS evalution. (a) Shared bottleneck scenario.
(b) Non-shared bottleneck scenario.

TABLE I
NETWORK CHARACTERISTICS IN NS3

congestion control, we compare our scheme with MPTCP using
LIA and BALIA. Furthermore, for the performance comparison
in the aspect of packet scheduling, RR and LRF and BLEST [20]
are used to compare with our scheme.

Performance Metrics: 1) Goodput: the application-level
throughput of a communication, which can accurately reflect
algorithm performance, especially for bulk transmission. 2) Av-
erage MPTCP OFO queue size: the average out-of-order queue
size counted at receiver, which can reveal the effectiveness of
scheduling algorithm. 3) Download time: the completion time
to download a specific size file, especially for small-size data
transmission.

A. Performance Evaluation in NS-3

1) Simulation Setup: We consider two typical scenarios,
Shared bottleneck scenario shown in Fig. 7(a) and Non-shared
bottleneck scenario shown in Fig. 7(b). The simulation parame-
ters and their values are shown as Table I.

1) Fig. 7(a) is the shared bottleneck scenario. In this sce-
nario, the network has a common bottleneck. Two sub-
flows (Subflow 0 and Subflow 1) are established between
MPTCP client (C0) and server (S0). The subflows compete
with each other in this bottleneck. Besides, we will intro-
duce single-path BBR and MPTCP flows as background
traffic into this bottleneck to analysis the fairness. The
bottleneck bandwidth is set to 1 Mbps and the link delay
is set to 10 ms. Bandwidth of other links is set to 100 Mbps.

2) Fig. 7(b) is the non-shared bottleneck scenario. In this
scenario, two subflows are established between MPTCP

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 15,2021 at 14:58:00 UTC from IEEE Xplore. Restrictions apply.

922 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 1, JANUARY 2021

client (C0) and server (S0), Subflow 0 and Subflow 1 do
not share a bottleneck. Subflow 0 has 1 Mbps bandwidth,
10 ms latency and 0.1% loss rate. In this simulation we
keep the parameters of Subflow 0 unchanged, while the
delay of Subflow 1 vary from 10 ms to 50 ms and the loss
rate vary from 0.1% to 5%. single-path BBR and MPTCP
background flows produce background traffic between
clients (C1, C2) and servers (S1, S2), and compete with
MPTCP flow at bottleneck.

2) Congestion Control Algorithm: We first compare BC-
CPS’s congestion control algorithm MPTCP-BBR with
MPTCP-LIA and MPTCP-BALIA. In this part of the compari-
son, we simply use LRF as the scheduling algorithm.

In the shared bottleneck scenario as shown in Fig. 7(a),
Subflow 0 and Subflow 1 share the same bottleneck with single-
path flow. In this scenario, both Bottleneck Fairness and Network
Fairness principles will limit MPTCP’s aggregate goodput sim-
ilarly with a single-path BBR flow sharing the same bottleneck.
Thus in theory, MPTCP-BBR should achieve nearly equivalent
goodput to the single-path single-path BBR flow. In Fig. 7(a),
we change the delay of subflow 1 from 10 ms to 20 ms and set
the random packet loss on both subflow 0.1%.

Fig. 8(a) shows the detection accuracy of our detection
mechanism and loss-and-delay-based mechanism, i.e., DWC,
in the shared bottleneck scenario. In the lossy network, us-
ing DWC, random packet loss will increase the probability of
mis-detection, and moreover, the improperly set delay thresh-
old also easily results in shared bottleneck detection errors.
As shown in this figure, MPTCP-BBR’s detection accuracy is
higher than DWC. Then, we evaluate the goodput of MPTCP-
BBR, MPTCP-LIA and MPTCP-BALIA, and set the goodput of
single-path BBR as the baseline to compute the ratio. Fig. 8(b)
shows the result of transmission goodput comparison in the two
scenarios with the same end-to-end delay and different delay
on the two paths. We can see that MPTCP-BBR outperforms
MPTCP-LIA and MPTCP-BALIA obviously as MPTCP-BBR
can continuously probes the current transmission capacity and its
transmission goodput is closer to theoretical bandwidth. When
the RTT of Subflow 1 increases, MP-BBR can still achieves
higher goodput. Moreover, the performance of MPTCP-BBR
in Fig. 8(b) is close to single-path TCP-BBR, which means that
MPTCP-BBR detects bottleneck correctly and achieves fairness
with regular single-path TCP-BBR flow at the shared bottleneck.

In the Non-shared bottleneck scenario as shown in Fig. 7(b),
Subflow 0 and Subflow 1 share different bottlenecks with
single-path flows. Subflow 0 shares the same bottleneck with
BBR0, while Subflow 1 shares the same bottleneck with BBR1.
We first measure the accuracy of bottleneck detection of our
detection mechanism in this scenario. Fig. 9(a) shows the de-
tection accuracy results. Since the background flow is dynamic
on the two paths, it is more difficult to judge in this scenario,
but our solution is still better than DWC. In this scenario, each
subflow of MPTCP-BBR should behave like a single-path BBR
flow to achieve bottleneck fairness, and the aggregated goodput
of MPTCP-BBR should be similar to BBR0+BBR1. We set the
goodput of single-path BBR0+BBR1 as baseline evaluate the
goodput of MPTCP-BBR, MPTCP-LIA and MPTCP-BALIA.

Fig. 8. Bottleneck detection accuracy and goodput in shared bottleneck
scenario. (a) Bottleneck detection accuracy. (b) Obtained goodput in shared
bottleneck scenario.

In Fig. 9(b), we can see that MPTCP-BBR outperforms MPTCP-
LIA and MPTCP-BALIA close to BBR0+BBR1, which means
that each of the disjoint subflows can reach the goodput of
single-path TCP-BBR and a good bottleneck fairness can be
achieved.

3) Scheduling Algorithm: We further evaluate the perfor-
mance improvement brought by the scheduling algorithm in our
proposed BCCPS. We compare BCCPS’s scheduling algorithm
with RR and LRF. In this part of the comparison, BCCPS,
MPTCP-BBR-RR and MPTCP-BBR-LRF all use MPTCP-BBR
as congestion control algorithm. BLEST, as a predictive schedul-
ing scheme works on loss-based congestion control, which rely
on modeling window change in multiple scheduling cycles when
predicting the throughput on each subflow, can not be applied to
MPTCP-BBR. However, we still compare the scheduling algo-
rithm of BCCPS with MPTCP-BLEST in terms of out-of-order
queue size.

We first compare the normalized download time of different
schemes (taking the best single-path TCP-BBR as a baseline,

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 15,2021 at 14:58:00 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: BBR-BASED CONGESTION CONTROL AND PACKET SCHEDULING FOR BOTTLENECK FAIRNESS CONSIDERED 923

Fig. 9. Bottleneck detection accuracy and goodput in non-shared bottleneck
scenario. (a) Bottleneck detection accuracy. (b) Obtained goodput in shared
bottleneck scenario.

which is theoretical performance value) in shared bottleneck sce-
nario. In Fig. 10, we observe that the amount of data and the path
heterogeneity have significant influence on the performance of
scheduling algorithms. Fig. 10(a) shows that the best single-path
BBR outperforms MPTCP-BBR-RR and MPTCP-BBR-LRF
when the amount of data is less than 100 KB, since the packet loss
has a great impact on the completion time of the mouse flows.
Compared with MPTCP-BBR-RR and MPTCP-BBR-LRF, BC-
CPS avoids the long time caused by packet loss during the startup
phase with redundancy packet transmission. When the amount of
data is greater than 100 KB, all the three scheduling algorithms
perform nearly the same as the best single-path BBR and BCCPS
has the highest performance. Fig. 10(b) shows the performance
of these scheduling algorithms when the RTTs of subflows are
different. BCCPS still performs the best since precisely distribut-
ing data packets on both paths yields the optimum regardless of
the size of the file.

Fig. 10. Normalized download time in shared bottleneck scenario. (a) RTT0
= RTT1 = 10 ms. (b) RTT0 = 10 ms, RTT1 = 20 ms.

In non-shared bottleneck scenario, we first exchange a small
file with a size of 100 KB between MPTCP client (C0) and
server (S0) to evaluate the performance of mouse flows in lossy
network. Then we conduct a large file transmission to verify the
performance of BCCPS in terms of goodput and out-of-order
packets.

In Fig. 7(b), we set the loss rate of Subflow 0 and Subflow 1 to
0.1% and 0.5% respectively. Then we exchange the 100 KB data
through the two disjoint paths and they compete with dynamic
background traffic. From the Fig. 11, we can see that BCCPS out-
performs MPTCP-BBR-RR and MPTCP-BBR-LRF. The result
is consistent with the results we measured in shared bottleneck
scenario. This proves that BCCPS reduces the completion time
of mouse flows since the redundancy packet transmission reduce
the possibility of retransmission.

Fig. 12 shows the result of transmission goodput corre-
sponding to different link loss rate when we set the delay of
Subflow 0 and Subflow 1 to 10 ms. Since the RTT settings of
the two subflows are equal, we find MPTCP-BBR-RR and

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 15,2021 at 14:58:00 UTC from IEEE Xplore. Restrictions apply.

924 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 1, JANUARY 2021

Fig. 11. CDF of end-to-end RTT in non-shared bottleneck scenario.

Fig. 12. Obtained goodput with varying loss rate in non-shared bottleneck
scenario.

MPTCP-BBR-LRF behave nearly the same. We can see that
BCCPS performs best regardless of the loss rate. The reason
is that BCCPS accurately assigns data to each subflow based
on the completion time of each subflow, which maximizes the
performance of each subflow and makes its performance better
than MPTCP-BBR-RR and MPTCP-BBR-LRF in this scenario.

Fig. 13 shows obtained goodput with varying link delay of
Subflow 1 in non-shared bottleneck scenario. It is obviously that
the goodput of them degrades as the delay increases. Because the
increasing delay makes the links more asymmetric. However, we
can also see that, with the increase in the distinction of available
paths, the superiority of BCCPS over MPTCP-BBR-RR and
MPTCP-BBR-LRF becomes more obvious as the scheduling
algorithm is able to effectively leverage the path diversity to
optimize the aggregate goodput.

As shown in Fig. 14, MPTCP-BBR-RR and MPTCP-BBR-
LRF induce more out-of-order packets than MPTCP-BLEST
and BCCPS since they do not take the link quality into consid-
eration. MPTCP-BLEST and BCCPS periodically estimate the
latest information available in terms of path status and distributes

Fig. 13. Obtained goodput with varying link delay of subflow 1 in non-shared
bottleneck scenario.

Fig. 14. MPTCP OFO queue in non-shared bottleneck scenario.

the traffic loads according to the predicted arrival time. Since
MPTCP-BLEST does not consider the impact of packet loss, the
CWND estimation will be inaccurate when packet loss occurs.
However, in this network scenario, BBR can more accurately
estimate the network bandwidth, and BCCPS predicts the ar-
rival time of a packet on each subflow based on the accurate
bandwidth detected by BBR. Thus, BCCPS allocates packets
to different subflows more accurately, reduces the out-of-order
queue size and performs better than other reference schemes.

B. Performance Evaluation in Real Network

1) System Settings and Network Parameters: Considering
that the existing application server does not support MPTCP, we
develop a heterogeneous wireless network test framework based
on Socks proxy according to [46], and compare the performance
of BCCPS and traditional MPTCP. We implement our BCCPS
in the Linux kernel of Socks Proxy and the client. As shown in
Fig. 15, we evaluate the performance of MPTCP, MPTCP-BBR,
and BCCPS in a constructed non-shared bottleneck scenario as

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 15,2021 at 14:58:00 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: BBR-BASED CONGESTION CONTROL AND PACKET SCHEDULING FOR BOTTLENECK FAIRNESS CONSIDERED 925

Fig. 15. Real network experiment setup.

TABLE II
REAL NETWORK CHARACTERISTICS

Fig. 16. Normalized download time and average MPTCP OFO queue for bulk
traffic in real network experiments.

used in the NS-3 experiments. The client has both WiFi and
LTE interfaces, and can downloads data from the application
server through WiFi and LTE at the same time. We first measure
the single-path network parameters of the WiFi and LTE, then
compare the performance of the algorithm against different
applications. The network characteristics are summarized as
Table II:

2) Bulk Traffic: We first test the performance of the algo-
rithm in the case of elephant flows by bulk traffic. We directly
download a 100 MB file from the server to test the performance
of MPTCP, MPTCP-BBR, and BCCPS. We compare the nor-
malized download time and average MPTCP OFO queue size of
MPTCP, MPTCP-BBR, and BCCPS. The results are illustrated
in Fig. 16.

Fig. 16 shows that, in heterogeneous scenario, the BBR-based
congestion control algorithms, MPTCP-BBR, achieves greater
goodput and less download time than legacy MPTCP. Besides,
compared to MPTCP-BBR, BCCPS further shortens download
time because of our new scheduling algorithm. Although the
scheduling algorithms of MPTCP and MPTCP-BBR are both
LRF, the average MPTCP OFO queue size of MPTCP-BBR is
still larger than that of MPTCP, due to the goodput gain brought
by BBR. Compared with MPTCP and MPTCP-BBR, BCCPS
reduces the average MPTCP OFO queue size.

Fig. 17. Normalized download time and average MPTCP OFO queue for web
traffic in real network experiments. (a) Normalized download time. (b) Average
MPTCP OFO queue.

3) Web Traffic: We further test the performance of the algo-
rithm in the case of mouse flows by web traffic. We choose 3
different web traffic: Instagram, Amazon, and Wikipedia. The
average file size is sorted as Instagram >Amazon > Wikipedia.
Then compare the normalized download time and average
MPTCP OFO queue size between MPTCP, MPTCP-BBR, and
BCCPS. As shown in Fig. 17, BCCPS performs the best because
it reduces overall download time and average MPTCP OFO
queue through redundant transmission and fine-grained packet
scheduling. Besides, as the size of the web traffic increases,
we can see that BCCPS’s advantages in performance are more
obvious.

V. CONCLUSION AND FUTURE WORK

In this paper, in order to improve the performance of MPTCP
in heterogeneous wireless networks, by taking the advantages
of BBR and for considering bottleneck fairness, we proposed
a BBR-based Congestion Control and Packet Scheduling (BC-
CPS) for Multipath TCP which focuses on reducing the com-
pletion time of mouse flows and providing excellent goodput
to elephant flows. BCCPS relies on two new mechanisms: a
well-designed BBR-based congestion control to maximize the
goodput over all available paths, and a fine-grained packet
scheduling algorithm. Using these mechanisms, BCCPS mon-
itors and analyzes the dynamic network environment in real

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 15,2021 at 14:58:00 UTC from IEEE Xplore. Restrictions apply.

926 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 1, JANUARY 2021

time and estimates each transmission path’s quality. Based on
the output of the path quality evaluation, BCCPS intelligently
detects the shared bottleneck and balances the congestion among
the subflows while keeping fairness with the single flow shared
the bottleneck. Besides, BCCPS employs a two phase packet
scheduling scheme to maximize the goodput for elephant flows
while reduce the end-to-end delay for mouse flows. The two
phase packet scheduling scheme improves data delivery effi-
ciency. The simulation results and real network tests demonstrate
that the proposed BCCPS offers better performance than default
MPTCP in terms of goodput and end-to-end delay.

In the future, we will consider more complex simulation
scenarios to analyze the performance of the proposed algorithms
and further evaluate our scheme in real scenarios. Meanwhile,
we will further refine the scheme design to consider fine-grained
scheduling policies for different types of transmitted data.

REFERENCES

[1] M. Allman, V. Paxson, and E. Blanton, “TCP congestion control,” 2009,
RFC 5681, Accessed: Dec. 3, 2020. [Online]. Available: https://www.ietf.
org/rfc/rfc5681.txt

[2] W. Lee, J. Koo, Y. Park, and S. Choi, “Transfer time, energy, and quota-
aware multi-RAT operation scheme in smartphone,” IEEE Trans. Veh.
Technol., vol. 65, no. 1, pp. 307–317, Jan. 2016.

[3] X. Zheng, Z. Cai, J. Li, and H. Gao, “A study on application-aware
scheduling in wireless networks,” IEEE Trans. Mobile Comput., vol. 16,
no. 7, pp. 1787–1801, Jul. 2017.

[4] B. Jin, S. Kim, D. Yun, H. Lee, W. Kim and Y. Yi, “Aggregating LTE
and Wi-Fi: Toward intra-cell fairness and high TCP performance,” IEEE
Trans. Wireless Commun., vol. 16, no. 10, pp. 6295–6308, Oct. 2017.

[5] J. Wu, B. Cheng, M. Wang, and J. Chen, “Energy-aware concurrent multi-
path transfer for real-time video streaming over heterogeneous wireless
networks,” IEEE Trans. Circuits Syst. Video Technol., vol. 28, no. 8,
pp. 2007–2023, Aug. 2018.

[6] M. G. Kibria, K. Nguyen, G. P. Villardi, K. Ishizu and F. Kojima, “Next
generation new radio small cell enhancement: Architectural options, func-
tionality and performance aspects,” IEEE Wirel. Commun., vol. 25, no. 4,
pp. 120–128, Aug. 2018.

[7] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP extensions for
multipath operation with multiple addresses,” 2013, RFC 6824, Accessed:
Dec. 3, 2020. [Online]. Available: https://www.ietf.org/rfc/rfc6824.txt

[8] Y. Xing, J. Han, K. Xue, J. Liu, M. Pan, and P. Hong, “MPTCP meets
big data: Customizing transmission strategy for various data flows,” IEEE
Netw., vol. 34, no. 4, pp. 35–41, Jul./Aug. 2020.

[9] H. Sinky, B. Hamdaoui, and M. Guizani, “Seamless handoffs in wireless
hetnets: Transport-layer challenges and multi-path TCP solutions with
cross-layer awareness,” IEEE Netw., vol. 33, no. 2, pp. 195–201, Mar./Apr.
2019.

[10] J. Xu, B. Ai, L. Chen, L. Pei, Y. Li and Y. Y. Nazaruddin, “When high-speed
railway networks meet multipath TCP: Supporting dependable commu-
nications,” IEEE Wireless Commun. Lett., vol. 9, no. 2, pp. 202–205,
Feb. 2020.

[11] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design, im-
plementation and evaluation of congestion control for multipath TCP,”
in Proc. 8th USENIX Symp. Netw. Syst. Des. Implementation, 2011,
pp. 99–122.

[12] C. Raiciu, M. Handley, and D. Wischik, “Coupled congestion control for
multipath transport protocols,” 2011, RFC 6356, Accessed: Dec. 3, 2020.
[Online]. Available: https://www.ietf.org/rfc/rfc6356.txt

[13] R. Khalili, N. Gast, M. Popovic, and J.-Y. Le Boudec, “MPTCP is not
pareto-optimal: Performance issues and a possible solution,” IEEE/ACM
Trans. Netw., vol. 21, no. 5, pp. 1651–1665, Oct. 2013.

[14] Q. Peng, A. Walid, J. Hwang, and S. H. Low, “Multipath TCP: Analysis,
design, and implementation,” IEEE/ACM Trans. Netw., vol. 24, no. 1,
pp. 596–609, Feb. 2016.

[15] S. Ferlin-Oliveira, T. Dreibholz, and Ö. Alay, “Tackling the challenge of
bufferbloat in multi-path transport over heterogeneous wireless networks,”
in Proc. 22nd IEEE Int. Symp. Qual. Serv., 2014, pp. 123–128.

[16] H. Im, C. Joo, T. Lee, and S. Bahk, “Receiver-side TCP countermeasure
to bufferbloat in wireless access networks,” IEEE Trans. Mobile Comput.,
vol. 15, no. 8, pp. 2080–2093, Aug. 2016.

[17] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson, “BBR:
Congestion-based congestion control,” Queue, vol. 14, no. 5, pp. 20–53,
2016.

[18] E. Atxutegi, F. Liberal, H. K. Haile, K. Grinnemo, A. Brunstrom, and A.
Arvidsson, “On the use of TCP BBR in cellular networks,” IEEE Commun.
Mag., vol. 56, no. 3, pp. 172–179, Mar. 2018.

[19] N. Kuhn, E. Lochin, A. Mifdaoui, G. Sarwar, O. Mehani, and R. Boreli,
“DAPS: Intelligent delay-aware packet scheduling for multipath trans-
port,” in Proc. IEEE Int. Conf. Commun., 2014, pp. 1222–1227.

[20] S. Ferlin, Ö. Alay, O. Mehani, and R. Boreli, “BLEST: Blocking
estimation-based MPTCP scheduler for heterogeneous networks,” in Proc.
IEEE IFIP Netw. Conf., 2016, pp. 431–439.

[21] Y. Cao, M. Xu, and X. Fu, “Delay-based congestion control for multipath
TCP,” in Proc. 20th IEEE Int. Conf. Netw. Protoc., 2012, pp. 1–10.

[22] B. Mao et al., “Routing or computing? The paradigm shift towards in-
telligent computer network packet transmission based on deep learning,”
IEEE Trans. Comput., vol. 66, no. 11, pp. 1946–1960, Nov. 2017.

[23] B. Mao et al., “A novel non-supervised deep-learning-based network
traffic control method for software defined wireless networks,” IEEE Wirel.
Commun., vol. 25, no. 4, pp. 74–81, Aug. 2018.

[24] J. Pei, P. Hong, K. Xue, D. Li, D. S. Wei, and F. Wu, “Two-phase virtual
network function selection and chaining algorithm based on deep learning
in SDN/NFV-enabled networks,” IEEE J. Sel. Areas Commun., vol. 38,
no. 6, pp. 1102–1117, Jun. 2020.

[25] W. Li, H. Zhang, S. Gao, C. Xue, X. Wang, and S. Lu, “SmartCC: A
reinforcement learning approach for multipath TCP congestion control in
heterogeneous networks,” IEEE J. Sel. Areas Commun., vol. 37, no. 11,
pp. 2621–2633, Nov. 2019.

[26] Z. Xu, J. Tang, C. Yin, Y. Wang, and G. Xue, “Experience-driven conges-
tion control: When multi-path TCP meets deep reinforcement learning,”
IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1325–1336, Jun. 2019.

[27] T. Zhang and S. Mao, “Machine learning for end-to-end congestion con-
trol,” IEEE Commun. Mag., vol. 58, no. 6, pp. 52–57, Jun. 2020.

[28] M. Polese, F. Chiariotti, E. Bonetto, F. Rigotto, A. Zanella, and M. Zorzi,
“A survey on recent advances in transport layer protocols,” IEEE Commun.
Surveys Tut., vol. 21, no. 4, pp. 3584–3608, Oct.–Dec. 2019.

[29] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure, “Experimental evalu-
ation of multipath TCP schedulers,” in Proc. ACM SIGCOMM Workshop
Capacity Sharing Workshop, 2014, pp. 27–32.

[30] C. Xu, Z. Li, J. Li, H. Zhang, and G.-M. Muntean, “Cross-layer fairness-
driven concurrent multipath video delivery over heterogeneous wireless
networks,” IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 7,
pp. 1175–1189, Jul. 2015.

[31] Y. E. Guo, A. Nikravesh, Z. M. Mao, F. Qian, and S. Sen, “Accelerating
multipath transport through balanced subflow completion,” in Proc. ACM
Int. Conf. Mobile Comput. Netw., 2017, pp. 141–153.

[32] H. Zhang, W. Li, S. Gao et al. “Reles: A neural adaptive multipath
scheduler based on deep reinforcement learning,” in Proc. 38th IEEE Int.
Conf. Comput. Commun., 2019, pp. 1648–1656.

[33] S. Hassayoun, J. Iyengar, and D. Ros, “Dynamic window coupling for
multipath congestion control,” in Proc. 20th IEEE Int. Conf. Netw. Protoc.,
2011, pp. 341–352.

[34] W. Wei, K. Xue, J. H. Han, D. S. Wei, and P. Hong, “Shared bottleneck
based congestion control and packet scheduling for multipath TCP,”
IEEE/ACM Trans. Netw., vol. 28, no. 2, pp. 653–666, Apr. 2020.

[35] D. Scholz, B. Jaeger, L. Schwaighofer, D. Raumer, F. Geyer, and G. Carle,
“Towards a deeper understanding of TCP BBR congestion control,” in
Proc. IFIP Netw. Conf. Workshops., 2018, pp. 1–9.

[36] S. Ma, J. Jiang, W. Wang, and B. Li, “Fairness of congestion-
based congestion control: Experimental evaluation and analysis,” 2017,
arXiv:1706.09115. [Online]. Available: https://arxiv.org/abs/1706.09115

[37] M. Hock, R. Bless, and M. Zitterbart, “Experimental evaluation of BBR
congestion control,” in Proc. 25th IEEE Int. Conf. Netw. Protoc., 2017,
pp. 1–10.

[38] Y. Tao, J. Jiang, S. Ma, L. Wang, W. Wang, and B. Li, “Unraveling the
RTT-fairness problem for BBR: A queueing model,” in Proc. IEEE Glob.
Commun. Conf, 2018, pp. 1–6.

[39] S. Abbasloo, Y. Xu, and H. J. Chao, “C2TCP: A flexible cellular TCP to
meet stringent delay requirements,” IEEE J. Sel. Areas Commun., vol. 37,
no. 4, pp. 918–932, Apr. 2019.

[40] M. Kheirkhah, I. Wakeman, and G. Parisis, “MMPTCP: A multipath
transport protocol for data centers,” in Proc. 35th IEEE Int. Conf. Comput.
Commun., 2016, pp. 1–9.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 15,2021 at 14:58:00 UTC from IEEE Xplore. Restrictions apply.

https://www.ietf.org/rfc/rfc5681.txt
https://www.ietf.org/rfc/rfc6824.txt
https://www.ietf.org/rfc/rfc6356.txt
https://arxiv.org/abs/1706.09115

WEI et al.: BBR-BASED CONGESTION CONTROL AND PACKET SCHEDULING FOR BOTTLENECK FAIRNESS CONSIDERED 927

[41] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly with
preemptive scheduling,” ACM SIGCOMM Comput. Commun. Rev., vol. 42,
no. 4, pp. 127–138, 2012.

[42] A. Munir et al., “Minimizing flow completion times in data centers,” in
Proc. 32th IEEE Int. Conf. Comput. Commun., 2013, pp. 2157–2165.

[43] A. Munir et al., “PASE: Synthesizing existing transport strategies for near-
optimal data center transport,” IEEE/ACM Trans. Netw., vol. 25, no. 1,
pp. 320–334, Feb. 2016.

[44] “NS3 simulator,” Accessed: Dec. 3, 2020. [Online]. Available: https://
www.nsnam.org/

[45] “MPTCP NS3 code,” Accessed: Dec. 3, 2020. [Online]. Available: http:
//code.google.com/p/mptcp-ns3/

[46] Q. De Coninck, M. Baerts, B. Hesmans, and O. Bonaventure, “Observing
real smartphone applications over multipath TCP,” IEEE Commun. Mag.,
vol. 54, no. 3, pp. 88–93, Mar. 2016.

Wenjia Wei (Member, IEEE) received the bachelor’s
degree from the School of Information Science and
Engineering in 2013. He is currently working toward
the Ph.D. degree in information and communication
engineering with the Department of Electronic Engi-
neering and Information Science (EEIS), University
of Science and Technology of China . His research
interests include future Internet architecture design
and transmission optimization.

Kaiping Xue (Senior Member, IEEE) received the
bachelor’s degree from the Department of Informa-
tion Security, University of Science and Technology
of China (USTC), in 2003 and the Ph.D. degree
from the Department of Electronic Engineering and
Information Science (EEIS), USTC, in 2007. From
May 2012 to May 2013, he was a Postdoctoral Re-
searcher with Department of Electrical and Computer
Engineering, University of Florida. He is currently a
Professor with the School of Cyber Security and the
Department of EEIS, USTC. His research interests

include next-generation Internet, distributed networks and network security.
He has authored and coauthored more than 80 technical papers in the areas
of communication networks and network security. His work won Best Paper
Awards in IEEE MSN 2017, IEEE HotICN 2019, and Best Paper Runner-up
Award in IEEE MASS 2018. He is on the Editorial Board of several journals,
including the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (TWC),
the IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT (TNSM),
and Ad Hoc Networks. He is an IET Fellow.

Jiangping Han received the bachelor’s degree from
the Department of Electronic Engineering and Infor-
mation Science (EEIS), University of Science and
Technology of China, in 2016. She is currently work-
ing toward the Ph.D. degree in communication and in-
formation systems with the Department of Electronic
Engineering and Information Science, University of
Science and Technology of China. Her research in-
terests include future Internet architecture design and
transmission optimization.

Yitao Xing (Graduate Student Member, IEEE) re-
ceived the bachelor’s degree in information security
from the School of the Gifted Young, University of
Science and Technology of China (USTC), in 2018.
He is currently a Graduated Student in communi-
cation and information system with the Department
of Electronic Engineering and Information Science
(EEIS), USTC. His research interests include future
Internet architecture and transmission optimization.

David S. L. Wei (Senior Member, IEEE) received the
Ph.D. degree in computer and information science
from the University of Pennsylvania in 1991. From
May 1993 to August 1997, he was on the Faculty of
Computer Science and Engineering with the Univer-
sity of Aizu, Japan (as an Associate Professor and
then a Professor). He has authored and coauthored
more than 100 technical papers in various archival
journals and conference proceedings. He is currently
a Professor of Computer and Information Science
Department with Fordham University. His research

interests include cloud computing, big data, IoT, and cognitive radio networks.
He was a Guest Editor or a Lead Guest Editor for several Special Issues
in the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, the IEEE
TRANSACTIONS ON CLOUD COMPUTING and the IEEETRANSACTIONS ON BIG

DATA. He also was an Associate Editor for IEEE TRANSACTIONS ON CLOUD

COMPUTING, 2014–2018, and an Associate Editor for Journal of Circuits,
Systems and Computers, 2013–2018.

Peilin Hong received the B.S. and M.S. degrees
from the Department of Electronic Engineering and
Information Science (EEIS), University of Science
and Technology of China (USTC), in 1983 and 1986,
respectively. She is currently a Professor and Advisor
for Ph.D. candidate with the Department of EEIS,
USTC. Her research interests include next-generation
Internet, policy control, IP QoS, and information se-
curity. She has authored or coauthored two books and
more than 150 academic papers in several journals
and conference proceedings.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 15,2021 at 14:58:00 UTC from IEEE Xplore. Restrictions apply.

https://www.nsnam.org/
http://code.google.com/p/mptcp-ns3/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

