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Abstract— Multipath TCP (MPTCP) improves the bandwidth
utilization in wireless network scenarios, since it can simultane-
ously utilize multiple interfaces for data transmission. However,
with the fast growth of mobile devices and applications, link
interruptions caused by handoffs still lead to drastic performance
degradation in such scenarios. Typically, a series of packet
losses on part of the links will block the transmission of the
entire connection when handoff occurs. This paper proposes an
Experience-driven Adaptive Redundant packet scheduler (EdAR)
for MPTCP, aiming at achieving seamless handoffs in mobile
networks. EdAR enables flexibly scheduling redundant packets
with an experience-driven learning-based approach in the face of
drastic network environment changes for multipath performance
enhancement. To enable accurate learning and prediction, both
the network environment and the best course of actions are
jointly learned via a Deep Reinforcement Learning (DRL) agent,
which we design with a hybrid structure to deal with the
complexity of system states. Furthermore, both offline and online
learning are utilized to allow the agent to adapt to different
and changing network environments. Evaluation results show
that EdAR outperforms the state-of-the-art MPTCP schedulers
in most network scenarios. Specifically in mobile networks with
frequent handoffs, EdAR brings 2× improvement in terms of
the overall goodput.

Index Terms— MPTCP, scheduler, handoff, experience-driven,
deep reinforcement learning.

I. INTRODUCTION

WITH the development of wireless networks, mobile
devices are growing rapidly and have become the

mainstream in modern networks [1], [2], [3], [4]. At the same
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time, the increasing demands of users and applications lead
to a further rise in requirement for bandwidth and robustness
in wireless scenarios [5], [6]. To meet the demands, multipath
transmission protocols, such as Multipath TCP (MPTCP) [7],
[8], have become a major trend in today’s mobile wire-
less networks with the prevalence of multi-homed terminals.
By dividing a conventional TCP flow into multiple subflows,
MPTCP can make use of as many connected interfaces of
a device as possible to achieve bandwidth aggregation and
improve quality-of-service (QoS) for users [9], [10], [11].
Ideally, it can aggregate bandwidth and overcome transmission
instability on a single path to improve the reliability of mobile
communications [12], [13], [14].

However, in wireless mobile scenarios, handoffs caused by
user mobility is becoming the main factor affecting network
transmission [15], [16]. MPTCP still faces challenges in such
scenarios, where the unpredictable degradation of a single path
may severely degrade the performance of the whole MPTCP
connection [17], [18]. Specifically, existing works have shown
that MPTCP does not perform well in the network scenarios
where the path conditions change fast. The asymmetric path
conditions (such as different packet loss and delay) can make
an unexpected performance degradation of the entire MPTCP
connection. To deal with this issue, MPTCP utilizes multipath
scheduling schemes to allocate different packets on subflows
and improve performance under various scenarios [19], [20],
[21]. The key idea is to adjust the scheduling strategy based on
the estimation of subflow conditions and out-of-order packets,
reducing head-of-line (HoL) blocking caused by path asymme-
try. However, most previous works do not consider the frequent
handoffs, hence they cannot handle the degradation in mobile
scenarios. If a large number of consecutive packet losses
occur, the sender still needs to wait until several timeouts to
retransmit the lost data, thus blocking the entire connection
and causing performance degradation. This is why MPTCP’s
performance is not as superimposed as expected, or sometimes
even worse than a TCP flow on the best path [22], [23].

Fortunately, the use of multiple subflows makes MPTCP
possible to handle packet loss or link interruption in parallel
on different subflows to improve robustness. One approach
to improve robustness and ensure low latency is to always
transmit the same redundant copies of packets on different
subflows. Therefore, the packet loss on one subflow will not
affect the transmission of the entire connection. However,
it causes a duplicate packet delivery and a waste of bandwidth
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resources when the network condition is good and stable.
To achieve both efficiency and robustness, a scheduler should
be well-designed to smoothly change between sending redun-
dant copies of packets and sending new packets. It also needs
the ability to accurately decide when to send and not send
redundant copies of packets according to real-time path condi-
tions in wireless mobile networks where the network condition
changes fast. Due to the dynamic network environments and
the complexity of mobile scenarios, a traditional model-based
approach can hardly be applied to all situations nor adapt
to the rapid changes in mobile networks. To overcome the
issue of unpredictable performance degradation in wireless
mobile networks, we consider a learning-based approach to
learn new knowledge from past experiences and constantly
update decisions to better adapt to the changing network
environments.

In this paper, we propose an Experience-driven Adaptive
Redundant MPTCP packet scheduler (EdAR) that utilizes
flexible redundant packet scheduling to overcome the trans-
mission instability in changing network scenarios. To satisfy
this requirement, EdAR conducts a redundant buffer linking to
the send buffer and subflows for smoothly switching between
redundant and normal transmissions. Further, it utilizes Deep
Reinforcement Learning (DRL) to learn an optimal policy,
taking into account the hybrid network state information
including current connection states and alterable subflow states
with historical information. EdAR also formulates multiple
measurable network performance metrics including goodput,
bandwidth utilization, and out-of-order packets to enable
accurate decisions. To address the cold start problem of
the DRL agent and asynchronism in MPTCP transmission,
EdAR includes both offline learning and asynchronous online
learning, where the online learning is decoupled with asyn-
chronous data collection of the sender and receiver to keep
low computational overhead and fast online scheduling. The
contributions of this paper are summarized as follows:
• We design EdAR, an MPTCP packet scheduler to

overcome the poor performance of MPTCP in mobile sce-
narios. EdAR enables flexible redundant packet schedul-
ing with an experience-driven agent extracting the most
appropriate decision accordingly, ensuring both high
bandwidth utilization and seamless handoff in wireless
networks.

• EdAR takes a multi-objective reward function considering
various performance metrics that make different contri-
butions. A special network structure is designed for the
EdAR agent that consists of a representation network and
a core network, which gives EdAR the ability to deal with
the complex relationship of system states and make full
use of alterable network interfaces.

• EdAR runs a learning approach offline and updates online
to adapt to different scenarios. Based on extensive NS-3
simulation experiments, we show that EdAR has superior
performance compared to state-of-the-art schedulers in
mobile scenarios, making 2× improvement in terms of
goodput during handoff situations.

The rest of the paper is organized as follows. Section II
describes the background and related work. Section III

describes the problem formulation in handoff situations.
Sections IV and V describe the design of EdAR scheduler
and learning approaches, respectively. Section VI presents the
evaluation results. Finally, Section VII concludes this paper.

II. BACKGROUND, RELATED WORK AND PRELIMINARIES

A. Overview of Multipath Transmission Protocols

Nowadays, most of the end-hosts are equipped with more
than one interface, and users expect to be able to use
them simultaneously for performance enhancement [24], [25].
MPTCP is one of the most popular multipath transport proto-
cols, which extends TCP to utilize multiple paths simultane-
ously for bandwidth aggregation as well as ensuring reliable
transmission [26]. With the development of MPTCP gradually
improving, it has become an important transmission protocol
in current mobile networks [27], [28]. While fully compatible
with existing network protocols, MPTCP can greatly improve
transmission performance, providing higher transmission effi-
ciency and better robustness. However, with the increase of
user mobility in wireless networks, it has been shown that
MPTCP meets unpredictable degradation when path conditions
change fast. For example, Li et al. [3] showed that the perfor-
mance of MPTCP declines significantly on high-speed rails,
where the low efficiency can be attributed to poor adaptability
to frequent handoffs under high-speed mobility. While coupled
congestion control algorithms [29], [30], [31], [32] can be used
to jointly control subflow rates for enhanced migratability,
condition changes on one path can still negatively affect the
performance of the entire MPTCP connection, such as when
increased delay and packet losses happen due to handoffs or
link interruptions.

B. Overview of Multipath Packet Scheduling Schemes

To deal with different and changing network environments,
MPTCP can utilize multipath packet scheduling schemes that
schedule packets on different subflows to improve performance
under different scenarios. Existing multipath packet scheduling
schemes mainly aim at avoiding out-of-order packets and
improving overall throughput [33], [34], [35], [36]. Among
them, two basic static schemes are Round-Robin (RR) and
minimum RTT first (minRTT) [37]. RR constantly polls sub-
flows and sends packets to aggregate bandwidth, but increases
RTT when the RTT gap among subflows is large. MinRTT
sends packets first on the available subflow with the mini-
mum RTT to reduce RTT. Compared with the static packet
scheduling schemes, ECF [33] and BLEST [34] change the
scheduling decision according to the real-time path conditions
to enhance transmission performance. The main idea behind
them is to keep the buffer blocking under control by deciding
whether to send new packets on a subflow or pause a subflow
from sending packets. ECF and BLEST all treat the fast
subflow (i.e., the subflow with the shortest RTT) as the best
subflow, and send new packets to the fastest subflow whenever
it becomes available. Otherwise, the slower subflows are only
utilized to send new packet when they do not make HoL
blocking. Therefore, the out-of-order packets can be reduced
in asymmetric scenarios.
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To be generically applicable in different and changing
network environments, some learning-based schemes, such as
ReLeS [35] and Peekaboo [36], are proposed to make schedul-
ing decisions based on different scheduling methods and
metrics. ReLeS applies a learning-based approach to teach the
multipath scheduler to find the best set of split ratios of packets
over subflows. Peekaboo is designed for MPQUIC [38], but
the mechanism is also applicable in MPTCP. Peekaboo utilizes
a lightweight online learning solution based on Multi-Armed
Bandit (MAB) to decide whether and when to pause a subflow
from sending packets, so as to reduce out-of-order packets.
The use of learning-based approaches makes them more adapt-
able to the dynamic characteristics of the paths. However, they
do not consider the handoff situations in wireless networks.

Besides, there are also some schedulers that use model-
based redundant transmissions with different performance
metrics. RAVEN [19] mitigates tail latency and network
unpredictability for latency-sensitive traffic by using redundant
transmissions. To ensure low latency, RAVEN selects the
subflow with the shortest RTT to send data. If the confidence
interval of the measured RTT is unreliable, RAVEN sends
redundant data on other subflows to ensure low latency. The
redundant transmission mode is only used for short flows, i.e.
when the kernel data queue is smaller than a preset threshold.
If the kernel data queue is large, RAVEN considers the flow
as non-latency-sensitive and uses the original non-redundant
transmission to aggregate bandwidth. As a result, RAVEN
greatly improves the delay performance of short delay-
sensitive flows, however, it does not provide dynamic adjust-
ment for long flows. AR&P [14] is a scheduler that designs
for BBR-based coupled congestion control algorithm (Coupled
BBR) with adaptively redundant transmission to improve the
throughput in wireless networks. It decides whether to send
redundant packets on a subflow in “poor” states based on the
bandwidth and delay information detected by Coupled BBR.
However, since AR&P utilizes the measurement result from
Coupled BBR and is designed for Coupled BBR’s pacing
mechanism, it does not suitable for all congestion control
algorithms as a universal scheduler.

Moreover, for the model-based packet schedulers, they can
only make decisions based on a fixed model and current
transmission states, for example, the given threshold and the
current measured RTT, etc. However, in mobile networks and
heterogeneous networks, a fixed model cannot be suitable
for all the different network environments. Once the network
environment changes, they will fail to adapt to the new
network environment. In addition, in mobile networks, there
is hysteresis in the current measurements, which can cause
bias in future decisions. Using Deep Reinforcement Learning
(DRL) can learn the trends of the changing network environ-
ment and make more accurate scheduling decisions. In this
paper, the proposed EdAR scheduler utilizes flexible redundant
scheduling strategies with a DRL-based approach and focuses
on the handoff situations in mobile scenarios. By constantly
learning from historical experiences, EdAR enables seamless
handoff as well as high transmission efficiency in wireless
networks.

Fig. 1. Test topology under handoff situations.

C. Deep Reinforcement Learning

DRL is a combination of Deep Learning (DL) and Rein-
forcement Learning (RL), which integrates DL’s strong under-
standing ability in vision and other perceptual problems as
well as the decision-making ability of RL. The emergence
of DRL makes learning-based technologies practical and
can solve complex problems in real scenes. In a general
DRL framework, the agent interacts with the environment,
observes the environment states st, executes strategies at, and
receives rewards rt. With feedback reward information from
the environment, the agent can find a policy of mapping its
states to actions that optimize the cumulative discount reward.
Let µθ denote a policy that chooses actions depending on
the states, at = µθ(st). With feedback reward information
from the environment, DRL learns the optimal policy µ∗θ for
mapping its states to actions that optimize the cumulative
discount reward. Because of its powerful learning ability and
adaptability to changing environments, DRL is increasingly
being used in network optimization [39], [40], [41], [42].

III. PROBLEM FORMULATION IN HANDOFF SITUATIONS

In mobile networks, the transmission performance is easily
affected by frequent handoffs. Packet loss and link interruption
of a single path can seriously affect the overall transmission
performance. Specifically, lost packets on one subflow will
cause a large number of out-of-order packets at the receiver
and block the entire MPTCP connection, even when all other
subflows do not have packet loss nor performance degradation.
As a result, it leads to a throughput degradation in mobile
scenarios.

We show the real-time performance of MPTCP using a test
topology shown in Fig. 1 to illustrate the performance degrada-
tion caused by a single path handoff. The MPTCP connection
has two subflows, each of which goes through a path with
bandwidth of 5 Mbps, delay of 25 ms, and loss rate of 0.1%.
During the transmission, path 2 suffers handoffs at 20-40s
and 60-80s. Fig. 2 shows the real-time goodput of MPTCP
using minRTT and ReMP [37]. Different from throughput,
goodput is the actual receiving rate at the receiver, which
expects the redundant and lost packets. MinRTT is the default
scheduler of MPTCP, which always schedules new packets on
any available subflow to aggregate bandwidth. ReMP utilizes
a redundant multipath scheduling scheme, which schedules
redundant packets on different subflows to ensure robustness.
As shown in Fig. 2, goodput is the actual throughput at a
receiver excluding redundant packets and lost packets. TCP 1
and TCP 2 denote the goodput of a TCP flow running alone
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Fig. 2. Real-time goodput of minRTT and ReMP schedulers.

Fig. 3. Real-time out-of-order packets of minRTT and ReMP schedulers.

on path 1 and path 2, respectively. “TCP 1 + TCP 2” denotes
the cumulative goodput of TCP 1 and TCP 2.

During the transmission, TCP 1 always delivers a goodput
of 5 Mbps. The goodput of TCP 2 decreases to close to 0 Mbps
when handoff happens. MPTCP with minRTT provides high
bandwidth utilization under stable situations (that is, both two
paths are not in handoff). But the goodput of MPTCP with
minRTT decreases significantly at 20-40s and 60-80s when
one of the subflows suffers handoff situations, which is less
than the goodput of a TCP flow on the best paths. Different
from minRTT, ReMP sends redundant copies of packets on
each subflow to provide high robustness in mobile network
scenarios. ReMP provides at least the same goodput as the best
TCP flow when handoff happens. However, sending redundant
packets causes a waste of bandwidth in stable situations, where
the goodput of a MPTCP connection utilizing two paths is only
50% of the cumulative goodput of TCP 1 and TCP 2.

Fig. 3 shows the out-of-order packets at the MPTCP receiver
during 0 to 100 s. MPTCP with minRTT causes a much larger
number of out-of-order packets during handoffs compared to
MPTCP with ReMP, and the out-of-order packets even fully
occupy the receive buffer and cause HoL blocking, severely
affecting transmission performance. In contrast, MPTCP with
ReMP has maintained a very low number of out-of-order
packets. Even when handoff happens, there is only a small
increase in the number of out-of-order packets.

Therefore, to provide high bandwidth utilization as well
as seamless handoff performance, we propose a scheduler to
smartly send redundant packets according to the real-time path
and connection conditions, based on several key performance
indicators include goodput, bandwidth utilization, and out-of-
order packets. Due to complexity in the network state and
dynamic network conditions, it is hard for a model-based
approach to distinguish between different path conditions, such
as random loss, congestion loss, and handoff situations to make
accurate decisions, especially in mobile scenarios where path
conditions change fast.

DRL has been proposed in existing transmission proto-
cols, such as congestion control [43], [44], routing [45], and
scheduling [46] algorithms. A DRL-based approach can make
decisions according to real-time path conditions and update
strategies when the network status changes. Therefore, it can
be suitable for dynamic network situations. However, previous
scheduling schemes do not consider the impact of mobile net-
work scenarios and handoff situations, and therefore they do
not perform well in dynamic mobile scenarios. In this paper,
we study this issue and design an experience-driven multipath
scheduler, named EdAR, to achieve seamless handoff with
high QoS for MPTCP transmissions.

IV. DESIGN OF EDAR

In this section, we present the design of Experience-driven
Adaptive Redundant packet scheduler (EdAR) for MPTCP.

A. EdAR Scheduling Strategies

EdAR utilizes a flexible redundant packet scheduling
scheme to provide transmission robustness with high efficiency
guarantee, especially during handoff situations in mobile
networks. The advantage of sending redundant packets is
considered as two aspects. First, sending redundant packets
is used to improve transmission performance when the path
conditions are far from optimal. When handoff occurs on a
subflow and causes packet loss, sending redundant packets on
other subflows can prevent transmission from being blocked by
lost packets immediately. Second, sending redundant packets
is used to always keep the activity of subflow. That is to say,
a subflow needs to always send packets to trace path states in
mobile scenarios, including adjusting the congestion window
and perceiving the good path conditions. Then, it can sacrifice
a small percentage of network usage caused by redundant
packets to improve transmission performance and robustness.

To achieve these goals, EdAR includes two modes: nor-
mal transmission and redundant transmission, and utilizes a
redundant buffer to make smooth switching between them.
The redundant buffer stores packets that have been sent once
but have not yet been acknowledged (ACKed) yet. If a new
packet is sent on subflows from the send buffer, it will be
copied to the redundant buffer. Otherwise, if a packet in the
redundant buffer is sent out or ACKed, it will be removed from
the redundant buffer. To be noted, since MPTCP needs to keep
the data packets before they are ACKed to provide reliable
transmission, EdAR does not include extra storage overhead of
redundant packets. The redundant buffer is a visual buffer that
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Fig. 4. The packet scheduling strategies in EdAR scheduler.

contains the pointers to the packets. Based on the redundant
buffer, the normal and redundant transmissions are defined as:
• Normal: In a normal transmission, the redundant buffer

is not linked to subflows and all packets will be sent only
once. When a subflow is available to send packets, EdAR
takes new packets from send buffer and sends packets on
the available subflow.

• Redundant: In a redundant transmission, the redundant
buffer is linked to subflows for redundant packet sending,
where a packet can be sent more than once on different
subflows before it is ACKed. Once a subflow is available
to send a packet, EdAR first checks the redundant buffer.
If the first available redundant packet has not been sent
on the subflow, EdAR schedules the redundant packet
and removes it from the redundant buffer. Otherwise,
EdAR schedules a new packet from the send buffer on
the subflow.

In addition, if there are more than one subflows available,
EdAR always schedules packets on the available subflow
with the minimum RTT to fill its congestion window, before
scheduling packets on the other subflows.

As shown in Fig. 4, The redundant buffer always stores
redundant copies of packets from the send buffer. Once a
subflow experiences a dramatic deterioration (e.g., a large
increase in packet loss or delay) or interruption, the lost
packets and enlarged delay will cause a large number of out-
of-order packets or even block the data transmission. A well-
trained EdAR scheduler can respond to the changing network
conditions and switch from normal to redundant transmission,
quickly retransmitting old packets from the redundant buffer
to protect transmission performance. With our design, EdAR
guarantees a goodput consistent with a single path TCP on
the best path if it is always in the redundant transmission,
and aggregates bandwidth if it is always in the normal
transmission.

B. Design of EdAR Agent

EdAR determines scheduling strategies through a
DRL-based approach. It utilize an EdAR agent to perceive
the state of each MPTCP connection and learn to choose an
appropriate action. The agent interacts with the environment,
observes the states, take actions, and receives feedback
rewards. With learning from the feedback reward information
of the environment, the agent can learn the optimal actions to
maximize the long-term cumulative discount reward.

To reduce the computational overhead, EdAR makes deci-
sions in each time interval (TI), where TI is the minimum
round trip time (RTT) of all subflows in the MPTCP connec-
tion and may change over time. In each time of scheduling,

TABLE I
THE NOTATIONS

EdAR collects the state of the last TI and determines the
scheduling strategy of the next TI. Furthermore, we also test
the implementation of making decisions for every packet but
not every TI to achieve more flexibility in packet scheduling.
However, it does not make an obvious improvement but brings
about a high computational overhead. Therefore, we still
use the per-TI decision in EdAR. Moreover, since MPTCP
sender does not have information of observed states when
a connection first starts, EdAR uses redundant transmission
at the very beginning of a connection, which can provide
robustness and reduce RTT for mice flows. Table I summarizes
the notations used in this section.

In the EdAR agent, the state, action, reward, and policy are
defined as follows:

1) State: A state st is the information observed by the
MPTCP sender. Different from the single path transmission,
MPTCP could use a variable number of subflows in a connec-
tion and the data transmission is considered in both connection
level and subflow level. Therefore, we define the states that
take both the connection level states and the different number
of subflow level states into account. At each TI, the sender
observes the state of the entire connection and each subflow,
which is expressed as:

st = (Mt,E1
t , . . . ,E

n
t ),

where Mt is the connection state, Ei
t is the subflow state

of subflow i, and n is the number of subflows. In the t-th
TI, the connection state is defined as Mt = (at−1, bt, It),
where at−1 is the action at time t − 1, bt is the current
receive window, It is the current inflight packets at connection
level. The connection states only include current information,
while the subflow states include both current information and
historical information. The subflow state Ei

t of a subflow i is
defined as:

Ei
t =


di

t, oi
t, xi

t, wi
t, lit, f i

t

di
t−1, oi

t−1, xi
t−1, wi

t−1, lit−1, f i
t−1

...
...

...
...

...
...

di
t−k, oi

t−k, xi
t−k, wi

t−k, lit−k, f i
t−k

 ,

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 12,2023 at 13:51:36 UTC from IEEE Xplore.  Restrictions apply. 



6844 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 10, OCTOBER 2023

where di
t, o

i
t, x

i
t, w

i
t, l

i
t, f

i
t are the average RTT, retransmission

timeout (RTO), throughput, congestion window, packet loss
rate and inflight packets (at subflow level) of subflow i at time
t, respectively. Here, k is a hyperparameter that denotes how
much historical information could be included in the subflow
state. The system state of EdAR is defined as a combination
of connection states and subflow states, which includes 3 +
6× n× (k + 1) observations.

2) Action: An action at indicates how the agent responds
to the observed state. In EdAR, an action is a scheduling
decision that determines the current packet scheduling strategy.
An action can be described by at ∈ {normal, redundant},
which indicates normal transmission and redundant transmis-
sion, respectively.

EdAR takes redundant packets to improve the transmission
performance when the path conditions are far from optimal.
The exact overheads of redundant packet transmission can
be totally different according to the ever-changing conditions
of network paths and user devices. In most cases, there can
be very few redundant packets, costing very low overhead.
Typically, when all paths’ conditions are good, there will be
no redundant packet transmission. When one path’s conditions
are getting worse (usually occurs in mobile networks), there
can be a few redundant packets sent on the “bad” subflow,
since the “bad” subflow usually occupies a smaller proportion
of the bandwidth of the whole connection. In the worst cases,
which rarely occur, all packets will get redundant copies to
send and the overhead of redundant transmission is up to half
of the overall throughput.

3) Reward: Different from other learning-based schedulers
which observe both state and reward at the sender, EdAR
utilizes a collector at each MPTCP receiver to observe reward
features, considering that MPTCP receiver gives more accurate
information and also provides observation of out-of-order
packets. At each TI, the receiver observes the average goodput
Gt of the entire MPTCP connection, average throughput of
each subflow (Y 1

t , . . . , Y n
t ), average out-of-order packets Ot,

receive buffer size Bt and HoL blocking time Ft for calculat-
ing the reward function. Among them, Bt is usually remaining
stable during the transmission of an MPTCP connection. Ft

denotes the time that the receive buffer is fully occupied by
out-of-order packets.

In this paper, we consider three key factors of high trans-
mission performance in mobile scenarios: goodput, bandwidth
utilization, and out-of-order packets. EdAR combines these
three key factors and formulates the reward function as a
multiple objective reward function:

rt = Vg − αVw − βVo,

where α > 0 and β > 0 are the weights of Vw and Vo,
respectively. And

Vg = Gt,

Vw =
∑n

i=1 Y i
t −Gt∑n

i=1 Y i
t

,

Vo =
Ot

Bt
+

Ft

TIt
,

where TIt is the observation and decision time interval of t,
which is defined by the minimum RTT of subflows of the last
observation: TIt = mini ri

t−1.
The goal of EdAR is to improve goodput, achieve high

bandwidth utilization, and reduce out-of-order packets in dif-
ferent network environments. In the multiple objective reward
function, Vg denotes the goodput achievement by successfully
transmitting data, and makes positive contribution to the
reward. On the basis of high goodput, a MPTCP scheduler
needs to send as less as redundant packet to achieve high
bandwidth utilization. Vw denotes the waste of bandwidth by
sending redundant packets, which makes negative contribu-
tion to the reward. Vg denotes the degree of receive buffer
occupancy, which indicates the HoL blocking degree and also
makes negative contribution to the reward.

4) Policy: A policy is a rule that the agent uses to decide
which action to take. In our framework, we use µθ(·): S → A
to denote the mapping from the observed states of to the
actions, where θ is the set of parameters used in the model of
a DRL agent, S and A are the state space and action space,
respectively. In a learning task, the goal is to maximize the
expected cumulative discount rewards: maxθ{E[

∑∞
t=0 γtrt]},

where E[·] is the expectation function, γ ∈ (0, 1) is a factor
in discounting future rewards.

EdAR is based on Deep Q-learning (DQN) [47], which
utilizes a deep network to represent the value function, and
continuously updates the network until convergence. It trains
a neural network (also known as Q-network) to output the
Q-value function Q(s,a|θ), and utilizes greedy policy for
generating action: µθ(s) = arg maxa{Q(s,a|θ)}, where
Q(s,a|θ) is the output Q-value.

C. Q-Network of EdAR

The learning task of EdAR in mobile scenarios faces
different challenges. First, due to the multiple paths used in
MPTCP, different MPTCP flows can have a different number
of subflows, that make the different dimensions of observed
states. Second, to deal with the mobile networks, an well-
designed scheduler needs ability to perceive the changing
network conditions and predict future conditions for decision
making. Therefore, the Q-network of EdAR should be able to
deal with the different input sizes of subflows, and also jointly
take the connection state into consideration. To deal with it,
we design a special Q-network as shown in Fig. 5.

The Q-network of EdAR consists of two parts: a repre-
sentation network and a core network. The representation
network is used to extract representative features from subflow
states, which can deal with the changing network conditions
and different number of subflows. The input of representation
network is (E1

t , . . . ,E
n
t ) and output is hθ(E1

t , . . . ,E
n
t ). The

core network is a fully connected convolutional neural network
(CNN), which is used to represent the complex relationship
of different input features. The input of the core network can
be written as s̃t = {Mt,hθ(E1

t , . . . ,E
n
t )}, which consists of

the connection states and the representation output of subflow
states. The output of core network is Q(st,at|θ), which is the
approximation of long-term accumulative discount reward.
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Fig. 5. Q-network of EdAR.

Fig. 6. Representation network of EdAR.

Fig. 6 shows the structure of the representation network,
which consists of several Long Short Term Memory (LSTM)
networks [48]. First, a series of LSTM networks extract
subflow features from historical states, where each LSTM
network has the same structure and can be called LSTM1.
The input of each LSTM1 is a historical series of a single
subflow state, such as {d1

t−k, d1
t−k+1, . . . , d

1
t}, and the output

is the last two hidden states of the LSTM network. In the
constructed representation network, the last two hidden states
of LSTM1 represent the prediction of the average state and
trends of each time series of data, respectively. After that,
an LSTM with a different structure (also called LSTM2) is
used to deal with the input of the different number of MPTCP
subflows. Results from each LSTM1 are then aggregated as the
input of LSTM2. The output of LSTM2 is the last 24 hidden
states.

Both LSTM1 and LSTM2 in the representation network are
represented as single-layer LSTM. Each LSTM1 has 10 LSTM
units, and LSTM1 has 60 LSTM units. The core network has
two hidden layers that contain 128 and 32 units, respectively.
Each layer is activated by a Rectified Linear (ReLU) function
and the output layer is not activated.

V. ASYNCHRONOUS LEARNING APPROACHES

In this section, we propose the learning approach for EdAR
considering the following challenges:
• Cold start: A DRL agent usually has a cold start time

with poor performance until convergence, where it may
take actions that are far from the optimal.

Fig. 7. EdAR framework.

• Asynchronous: For MPTCP transmissions, states and
rewards need to be collected separately on the sender
and receiver.

• Environment diversity: Different MPTCP servers face
different environments and the network environment is
constantly changing.

To address these challenges, as shown in Fig. 7, EdAR inte-
grates both offline and online learning approaches. The offline
learning approach is used to provide a pre-trained model
which adapts to most environments with baseline performance.
The online learning approach is conducted individually on
each MPTCP server using asynchronous learning methods,
reducing computational complexity while adapting to each
server’s target network environments.

A. Loss Function and Learning Process

EdAR utilizes the gradient descent to train the network
parameters and minimize the loss function. There are two
Q-networks (target Q-network and main Q-network) in the
model, which have the same structure. The loss function is
defined as:

L(θ) = E
[
(yt −Q(st,at; θ))2

]
= E

[
(rt + γ max

at+1
{Q(st+1,at+1; θ′)}

−Q(st,at; θ))2
]
,

where θ′ denotes the parameters of the target Q-network,
Q(s,a; θ′) denotes the output of the target Q-network,
Q(s,a; θ) denotes the output of the main Q-network, and
yt = rt + γ · maxat+1{Q(st+1,at+1; θ′)} denotes the target
Q-value. Using two networks reduces the correlation between
the current Q-value and the target Q-value, and improves the
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stability. The weight of the target Q-network updates slowly
to track the main Q-network:

θ′ = (1− τ)θ′ + τθ,

where τ < 1 is the updating rate. This setting is used to make
slow change of the constraint target value, which significantly
improves the stability of the learning approach.

B. Offline Learning

Since all parameters of the Q-network are randomly initial-
ized, an agent cannot entirely rely on network-derived actions
early in learning. As shown in Fig. 7, EdAR adopts an offline
learning approach that uses data collected from all MPTCP
flows in the network to expand the diversities of data and
pre-trains a model for baseline performance. In the offline
learning approach, MPTCP senders do not use the agent to
generate actions. Instead, two determined policies, µ(s) =
normal and µ(s) = redundant are used, which represent
always using normal transmission and redundant transmission,
respectively. This simplifies the process of collecting data for
offline learning, where the MPTCP scheduler does not need
to add additional functionality to generate action in the offline
data collection. In addition, the data collector runs on both
sender and receiver of each MPTCP flow to collect data.
The observation collected by the data collector that includes
transitions in the form of (st,at, rt, st+1) is stored in the
replay buffer for offline learning.

The offline learning algorithm is given in Algorithm 1.
It runs only once and uses collected data from all MPTCP
flows to train a pre-trained model. After that, MPTCP
flows can use the pre-trained model for achieving baseline
performance.

C. Asynchronous Online Learning and Scheduling

EdAR utilizes an asynchronous online learning approach to
support parallel data collection on sender and receiver. At the
same time, it decouples data collection and model learning
so that real-time scheduling and learning can be performed
in parallel. After synchronizing the pre-trained model, each
MPTCP server creates its own agent and retrains a customized
model online for adopting different environments. An agent
serves all the MPTCP flows on the server, constantly using
the latest experience collected from the flows (at both the
sender and receiver) to train the Q-network, and iteratively
synchronizes its Q-network parameters with the scheduler.
When the network environment changes, EdAR can learn from
new data and adapt to the new environment as soon as possible.

The online learning and scheduling algorithm is given
in Algorithm 2. EdAR runs a complete online scheduling
procedure and a complete online learning episode for each
MPTCP flow,respectively. During the online scheduling pro-
cedure, EdAR observes a set of original network signals and
subscribes as a state input to the agent to output an action.
The reward is then observed at the receiver. After an MPTCP
flow is completed, the collected states, actions, and rewards are
used to update the replay buffer for learning and improving the
agent. Due to the capacity limitation of the replay buffer, the

Algorithm 1 Offline Learning and Data Collection

1 /* Data collection */
2 for each MPTCP flow do
3 Randomly initialize µ(s) = normal or

µ(s) = redundant;
4 for t ∈ [1, T ] do
5 Sender observes st and execute at = µ(st);
6 Sender observes st+1;
7 Receiver observes rt;

8 Send all transitions {(st,at, rt, st+1)} to the replay
buffer;

9 /* Offline learning */
Input: Collected transitions
Output: Q-network parameters Θ

10 Initialize the replay buffer with transitions of
(st,at, rt, st+1);

11 Randomly initialize the main Q-network with
normalized parameters θ;

12 Initialize the target Q-network with the parameters as
the main Q-network θ′ ← θ;

13 for iteration ∈ [1, M ] do
14 Sample a random minibatch of H transitions of

(st,at, rt, st+1) from the replay buffer;
15 if the MPTCP flow ends after t then
16 yt = rt ;
17 else
18 yt = rt + γ maxai+1{Q(st+1,at+1|θ′)};
19 Update the weight θ by minimizing the loss:

L = 1
H

∑
(yt −Q(st,at|θ))2;

20 Update the target Q-network: θ′ ← τθ + (1− τ)θ′

21 return Θ = θ;

old transitions will be deleted if the replay buffer is full. Only
the recent collected transitions will be used for online learning.
According to the real network trajectory collected, each server
can train its customized agent. Note that inexperienced agents
need to make full use of the random transfer samples to
explore and gain the necessary good and bad experiences
and ultimately learn a good (hopefully best) policy. EdAR
uses a ϵ-greedy policy to generate action, which combines
“exploration” and “exploitation” with probability ϵ < 1.
It randomly chooses an action from action space with the prob-
ability ϵ, and chooses the action a = arg maxa{Q(s,a|θ)}
with the probability (1 − ϵ). Randomly choosing an action
guarantees the agent go through all the actions in the action
space, therefore providing extra information for the agent to
train the Q-network. The ϵ-greedy policy is only used to
generate actions in the online learning approach. After the
online learning ends, that is, the learning loss converges to
a lower value and the server does not need to collect more
data to train the model. Then the server will close the online
learning approach and use a greedy policy where µθ(s) =
arg maxa{Q(s,a|θ)} to generate action.
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Algorithm 2 Online Learning and Scheduling

1 Initialize an empty replay buffer;
2 Initialize the pre-trained main Q-network parameters

θ ← Θ;
3 Initialize the target Q-network with the parameters as

the main Q-network θ′ ← θ;
4 for each MPTCP flow do
5 for each time t do
6 if random() < ϵ then
7 randomly choose at = normal or

at = redundant;
8 else
9 at = arg maxat

{Q(st,at|θ)};
10 Sender executes at and observes st+1;
11 Receiver observes rt;

12 Send all transitions of (st,at, rt, st+1) to the
replay buffer;

13 for iteration ∈ [1, M ] do
14 Sample a random minibatch of H transitions of

(st,at, rt, st+1) from the replay buffer;
15 if the MPTCP flow ends after t then
16 yt = rt ;
17 else
18 yt = rt + γ maxat+1{Q(st+1,at+1|θ′)};
19 Update the weight θ by minimizing the loss:

L = 1
H

∑
(yt −Q(st,at|θ))2;

20 Update the target Q-network:
θ′ ← τθ + (1− τ)θ′

21 Synchronize θ to the scheduler;

An agent needs to be retrained when the network environ-
ment changes, such as changing from low-bandwidth networks
to high-bandwidth networks or changing from low-latency
networks to high-latency networks. Since the old experience
will bring a deviation in the new environment, it needs to
collect transition samples and update the agent to gain enough
experience for making the right decisions. For EdAR, if the
network changes, it only needs to restart an online learning
approach and synchronize the model at the current server.

We analyze the computation overhead of EdAR when using
it to enhance the transmission performance in real-time. Since
the learning approaches are decoupled with online scheduling,
they will not increase the computational overhead during
transmission. The following shows the computation overhead
of online decisions, which depend on the network structure.
The Q-network of EdAR consists of L × n LSTM1, one
LSTM2, and a core network, where L is the number of subflow
statements, and n is the number of subflows. The overall
computation complexity of LSTM is linear to its units. Then,
the computation complexity L × n LSTM1 and an LSTM2
is O(L × n × K1 + K2), where K1, K2 are the number of
units of LSTM1 and LSTM2, respectively. The computation
complexity of the core network depends on the input size
and the units of each layer. Let C1, C2, and C3 denote the

input size, units of the first layer, and units of the second
layer, respectively, and the computation complexity of the core
network is O(C1×C2+C2×C3+C3). The overall computation
complexity of one time online decision is O(L × n × K1 +
K2 + C1 × C2 + C2 × C3 + C3), where n depends on the
actual using subflows, and L, K1, K2, C1, C2, C3 depend on
the network structure. For using EdAR in mobile networks, the
number of subflows is limited (usually ≤ 3) and the network
structure of Q-network is small, so the computation overhead
of making real-time decisions is acceptable.

VI. PERFORMANCE EVALUATION

In this section, we evaluate EdAR in the NS-3 simulator [49]
and evaluate its performance in different network scenarios.
The parameter settings in the implementation of EdAR are
k = 5, α = 1.0, and β = 0.5, respectively. The Q-network is
trained by Adam Optimizer, with a learning rate of 0.0001,
τ = 0.01, and the discount factor γ = 0.6. We compare
EdAR with the existing mechanisms with the model-based
approaches (minRTT [37], BLEST [50]) and the learning-
based approaches (Peekaboo [36]) in the evaluations, where
we implement Peekaboo in NS-3 using the same parameter
setting in [36].

A. Simulation Settings

For today’s commonly used mobile devices, such as cell
phones and tablets, there are usually two different wireless
interfaces, where an MPTCP connection usually establishes
two subflows over different paths. We let each MPTCP flow
contain two subflows in the simulation, which uses the same
topology as Fig. 1. The path characteristics are chosen from
Table II, where each characteristic is randomly chosen from
the range given in the table. We configure five different set-
tings with different ranges for the path characteristics, where
each path is characterized by a 5-tuple including its bandwidth,
delay, random packet loss rate, and whether handoff happens.
If handoff is enabled, the last hop link of a path randomly
suffers a mobile link and causes handoff every 40s (starts at
time t1 and ends at time t2). Handoff always gives rise to a
decrease of link quality. The link between the MPTCP receiver
and router is a mobile link. The user starts moving away from
the router at t1 until the link is unavailable, and moves back
at t2. After t2, the link return to the initial state.

EdAR utilizes both offline learning and online learning
approaches. We use EdAR-p and EdAR-o to denote the EdAR
scheduler with offline learning and online learning approaches,
respectively. Only data collected from settings i, ii, and iii
are used for offline learning, where we collect 100 different
trajectories in each setting of transmitting 10-100 MB (with
a uniform distribution) data. The performance evaluations in
settings i, ii, and iii use the same ranges of the path charac-
teristics as offline learning data collection, but with different
random realizations of the characteristics. Each episode of
online training contains a complete trajectory of an MPTCP
flow. After a flow completes, both the sender and receiver
send the collected data to the server. The replay buffer is then
updated with the new trajectory and removes the outdated
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TABLE II
PATH CHARACTERISTICS SETTINGS FOR DIFFERENT NETWORK ENVIRONMENTS

TABLE III
PATH CHARACTERISTICS

data. Then, the agent uses the data in the replay buffer to
train the Q-network, and synchronizes the trained Q-network
parameters with the scheduler. Usually, the online training
converges after several or tens of training episodes (depending
on how much the network environment deviates from the
offline training data). Moreover, the offline and online learning
approaches are decoupled with online scheduling, which will
not increase the computational overhead of online scheduling.
When applying the model for real-time scheduling decision, its
computation time of generating an action from a given state is
less than 10−1 ms. The computation is conducted on Intel Core
i7-12700K CPU, 16GB Random Access Memory (RAM).
The computational overhead is acceptable since the online
scheduling makes one time decision for every TI (usually
tens of milliseconds), which only occupy a small part of time
during the data transmission.

B. Simulation Results

We first show the comparison of different schedulers where
handoff happens during the transmission. The specific path
characteristics are shown in Table III, where path 2 enables
handoffs and suffers handoff at 20-40s and 60-80s. The path
characteristics are in the range of setting ii, which means that
an EdAR pre-trained model could provide a good performance.
We illustrate the results of continuing data transmission during
0-100s. During 40-60s and 60-80s, the goodput of minRTT,
BLEST, and Peekaboo significantly decreases, even though
path 1 still has the ability to provide 10 Mbps throughput.
Among them, minRTT has the lowest goodput, since it always
sends data on all paths and the packet loss on path 2 will
block the transmission. BLEST and Peekaboo are better than
minRTT, because they can decide to pause a subflow with a
high RTT to reduce HoL blocking and enhance performance.
However, if packet loss has already occurred on a “handoff”
subflow and block the data transmission, they still need to
wait for the packet retransmission and thus cause a goodput
degradation.

Fig. 8 shows the real-time goodput during the transmission.
The goodput of minRTT, BLEST, and Peekaboo decreases
to less than the available goodput on the best path during

Fig. 8. Real-time goodput of different schedulers under a handoff situation.

20-40 s and 60-80 s. Compared with them, EdAR can utilize
redundant packets to provide high robustness, while the packet
loss on a subflow can be compensated by redundant packets
send on the other subflows where the path condition is better.
Moreover, by learning from old data, EdAR is able to switch
its scheduling strategies according to real-time states and pro-
vide high goodput under different situations. In this scenario,
the performance of EdAR-p and EdAR-o is almost identical.
Both are able to maintain the highest goodhput during handoff
states while aggregating bandwidth in stable states. This is
because the pre-trained dataset contains the data with similar
parameters to this scenario, so the pre-trained model is able
to perform well.

Fig. 9 shows the statistics of goodput and out-of-order
packets during the transmission. Fig. 9(a) shows the average
goodput during both stable and handoff situations. “Stable”
denotes the statistics during 0-20 s, 40-60 s, and 80-100 s,
where handoff does not happen on both the two paths.
“Handoff” denotes the statistics during 20-40 s, and 60-80 s,
where handoff happens on path 2. In stable situations, all
the schedulers can aggregate bandwidth and provide a high
goodput. When one path is suffering handoffs, the overall
goodput decreases. Among different schedulers, the goodput
of minRTT is the lowest, which decreases to 2.4 Mbps. The
goodput of BLEST and Pekaboo is better than that of minRTT
but is still as good as expected. Compared with them, EdAR-p
and EdAR-o outperform the other comparison schemes during
handoff situations. Among them, EdAR-o is more stable than
EdAR-p, since it retrains the model using the recent data,
therefore it is more suitable to current situations. Fig. 9(b)
shows the distribution of out-of-order packets. Compared with
others, EdAR-p and EdAR-o reduce the out-of-order packets,
which gives the credit to the redundant packet sending during
handoffs. However, the out-of-order packet of EdAR-o does
not always outperform EdAR-p. On the one hand, it is caused
by the randomness of the path states. On the other hand, out-
of-order packets are not the only factor in the reward function.
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Fig. 9. Comparison of goodput and out-of-order packets of different
schedulers under a handoff situation.

The overall reward function is a combination of multiple
metrics. Because the setting is not very different from the
parameter settings in the offline training set, the performance
gap between EdAR-o and EdAR-p is not obvious. But overall,
EdAR-o is slightly better than EdAR-p.

We then change the delay and loss rate of path 2 and show
the performance of different schedulers in Fig. 10 and Fig. 11.
The bandwidth, delay and loss of path 1 are set to 10 Mbps,
25 ms, and 0.1%, respectively. In Fig. 10, the bandwidth and
RTT of path 2 are keeping as 10 Mbps and 25 ms, respectively,
and the random loss rate of path 2 is varying from 0.01% to
3.0%. In Fig. 11, the bandwidth and random loss rate of
path 2 are keeping as 10 Mbps and 0.1% respectively, and the
delay of path 2 is varying from 20 to 100 ms. We illustrate
the flow completion time (FCT) of downloading a 10MB file
for 50 times at each parameter setting to show the simulation
results of statistics.

As shown in Fig. 10, with the delay of path 2 increases, the
overall FCT of MPTCP gradually increases, which means the
overall performance of MPTCP degrades. On the one hand,
this is partly due to the poor transmission performance of
path 2. On the other hand, the increase of the asymmetry of the
two paths leads to the increase of out-of-order packets and thus
affects the overall transmission. Among different schedulers,
minRTT and BLEST usually perform the highest FCT. Since
there are unpredictable handoffs during the data transmission,
minRTT and BLEST also have the highest fluctuation in
FCT. Peekaboo is better than minRTT and BLEST. However,
it also can not perform well in high mobile scenarios. EdAR-p
and EdAR-o reduce the FCT a lot under different parameter
settings. Since redundant packets are utilized to improve
robustness during handoff time, EdAR-p and EdAR-o also
have the lowest fluctuation in FCT.

As shown in Fig. 11, as the random loss rate of path 2
increases, the overall FCT of MPTCP also gradually increases.

Fig. 10. Comparison of flow completion time with different path delays.

Fig. 11. Comparison of flow completion time with different random loss
rates.

This is not only because the packet loss on path 2 causes a
degradation of the single path performance, but also because
the packet loss on a single path affects the transmission on the
entire MPTCP connection. Compared with minRTT, BLEST,
and Peekaboo, EdAR-p and EdAR-o provide the shortest FCT.
The advantage of EdAR-p and EdAR-o is more obvious in
the case of a low random loss rate. This is because a low
random loss rate means that the path state is stable, so the
scheduler can make more accurate judgments. Moreover, in the
situation where the random loss rate of path 2 is more than 1%,
EdAR-p has almost the same performance as Peekaboo and
minRTT, which only shows a small performance improvement.
This is due to the large gap between such a scenario and the
data in the previous training set. Therefore the pre-trained
model does not bring much improvement. Moreover, after
online training, EdAR-o further improves the transmission
performance substantially.

Moreover, we also compare the performance of different
schedulers under different path parameter settings in Table II.
For different path parameter settings, they take different ranges
of bandwidth, delay, and packet loss rate, as well as different
receive buffer size. Among the different path parameter set-
tings, setting i is set as the asymmetric network, which has the
same ranges of bandwidth, delay, and packet loss rate. Settings
ii and iii are set to asymmetric networks with different ranges
of path delay, bandwidth, and loss rate. Settings iv and v are
far away from settings i, ii, and iii of the ranges of path delay,
bandwidth, and loss rate. Among them, settings iv reflects to
high bandwidth and low delay networks, settings v reflects
to low bandwidth and high delay networks. In addition, the
receive buffer size of settings iv and v is different from settings
i, ii, and iii. Only the data collected from setting i, ii, and iii
is used in the offline learning approach, settings iv and v are
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Fig. 12. Comparison of goodput, FCT, and out-of-order packets under different network settings.

considered as new environments that do not have collected
data for offline learning. Therefore, EdAR-p that utilizes the
pre-trained model is more suitable in settings i, ii, and iii.

Fig. 12 shows the comparison of goodput, FCT, and out-
of-order packets under different network settings. In settings
i, ii, and iii, EdAR-p and EdAR-o outperform minRTT,
BLEST, and Peekaboo in average goodput, FCT, and out-
of-order packets, as well as making the lowest fluctuation in
their performance. Since the pre-trained model has already
got experience from historical data, EdAR-p is well trained
for these environments and could provide good performance.
EdAR-o only makes a slight improvement based on EdAR-p.
Among them, in settings i, the total goodput is the highest
and EdAR-p brings the largest improvement on the overall
goodput. Because setting i is a symmetric network scenario
with low loss rates. In such a more stable network environ-
ment, the pre-trained model can make more accurate decisions.
Compared with it, EdAR-o brings a more improvement in
setting ii and iii.

On the contrary, since the pre-trained model does not have
enough experience of settings iv and v, EdAR-p does not make
a significant improvement. Among them, setting v is signifi-
cantly different from the offline learning data set, which makes
EdAR-p underperform other schedulers. After collecting new
data and going through an online learning approach, EdAR-o
makes an obvious improvement of transmission efficiency and
robustness compared to EdAR-p in settings iv and v, providing
the highest goodput, lowest FCT, and lowest out-of-order
packet among all the schedulers.

VII. CONCLUSION

In this paper, we introduced the design of EdAR,
an experience-driven multipath scheduler that presents a novel
trainable model with flexible redundant packet scheduling
to deal with the handoff issue in wireless mobile networks.
A well-trained EdAR scheduler has the ability to respond
quickly to the changing network conditions, and to take accu-
rate scheduling decisions in different network environments.
The experimental results also show the effectiveness of EdAR,
whose robustness is much better than that of state-of-the-art
multipath schedulers, especially in mobile scenarios.
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