
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 4, APRIL 2023 2775

A Stream-Aware MPQUIC Scheduler for
HTTP Traffic in Mobile Networks

Yitao Xing , Graduate Student Member, IEEE, Kaiping Xue , Senior Member, IEEE, Yuan Zhang ,

Jiangping Han , Member, IEEE, Jian Li , Member, IEEE, David S. L. Wei , Life Senior Member, IEEE,

Ruidong Li , Senior Member, IEEE, Qibin Sun, Fellow, IEEE, and Jun Lu

Abstract— A QUIC (Quick UDP Internet Connections) proto-
col is designed to improve Hypertext Transfer Protocol (HTTP)
traffic and carries a non-negligible portion of the traffic in the
current Internet. As its extension, Multipath QUIC (MPQUIC)
provides higher bandwidth and smoother network handover
by using multiple network interfaces simultaneously. However,
to improve HTTP traffic, there are still some issues not yet care-
fully addressed in the existing MPQUIC, and packet scheduling
is a vital one among the issues. Specifically, existing methods
fail to respond to the stream prioritization of HTTP Version 2
(HTTP/2), leading to unsatisfying web page load performance.
Besides, managing asymmetric and dynamic network paths is
also a challenging issue, which may result in Head-of-Line (HoL)
blocking and excessive buffer usage if not effectively handled.
In this paper, we present a stream-aware per-packet scheduler,
HoL Blocking Eliminating Scheduler (HBES), to improve the
performance of MPQUIC in mobile networks. Firstly, HBES
provides a fair allocation of aggregated bandwidth for different
streams based on their priority. Then, it keeps stream data
arriving at the receiver in order by estimating packet arrival
time to mitigate HoL blocking and excessive buffer usage.
We implement HBES and evaluate its performance in various
network scenarios. Experimental results verify the superiority of
HBES in reducing stream completion time and buffer occupation
over those existing MPQUIC schedulers.

Index Terms— Multipath QUIC, head-of-line blocking, mobile
networks, packet scheduling algorithm.

I. INTRODUCTION

S INCE a significant fraction of Internet bandwidth is con-
sumed by web browsing, web page loading time has been

Manuscript received 4 April 2022; revised 22 July 2022; accepted
30 September 2022. Date of publication 18 October 2022; date of current
version 11 April 2023. This work was supported in part by the National
Natural Science Foundation of China under Grant 61972371 and in part by
the Youth Innovation Promotion Association of Chinese Academy of Sciences
(CAS) under Grant Y202093. The associate editor coordinating the review of
this article and approving it for publication was J. Liu. (Corresponding author:
Kaiping Xue.)

Yitao Xing, Kaiping Xue, Jiangping Han, Jian Li, and Qibin Sun are with
the School of Cyber Science and Technology, University of Science and Tech-
nology of China, Hefei, Anhui 230027, China (e-mail: kpxue@ustc.edu.cn).

Yuan Zhang and Jun Lu are with the Department of Electronic Engineering
and Information Science, University of Science and Technology of China,
Hefei, Anhui 230027, China.

David S. L. Wei is with the Department of Computer and Information
Science, Fordham University, Bronx, NY 10458 USA.

Ruidong Li is with the College of Science and Engineering, Kanazawa
University, Kakuma, Kanazawa 920-1192, Japan.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TWC.2022.3213638.

Digital Object Identifier 10.1109/TWC.2022.3213638

a crucial metric to the Internet. Studies show that even a
small improvement in web performance can have a significant
positive impact in terms of revenue and customer base [1], [2].
Over time, more services are provided as web pages, such as
search engines like Google and Bing, online shopping centers
like Amazon, and online video platforms like YouTube. With
the continuous enrichment of web page functions, the types
and sizes of components in web pages are becoming more
diverse, which makes it a challenge to optimize web page
performance.

Web pages are typically composed of a number of individual
objects, and all of them need to be downloaded in order to
complete the web page loading. To speed up a web page load-
ing task, Hypertext Transfer Protocol version 2 (HTTP/2) [3]
is proposed with features such as multiplexing, stream prior-
itization, header compressions, and server push. Except for
the effort to reduce protocol overhead for more efficient
transmission, HTTP/2 brings about significant improvements
by supporting the prioritization of all web page objects in
order to properly allocate limited network resources to each
object according to its priority and dependency. In this way, the
crucial objects in the web page rendering process (e.g., HTML
files, CSS files, script files, figures with key information, etc.)
will be downloaded first or with more network resources.
Given the same network capabilities, browsers with proper
prioritization settings may finally provide a much better quality
of experience for users [4].

In order to further improve the transport performance of
HTTP/2 traffic, QUIC [5], an encrypted, multiplexed, and low-
latency transport protocol is proposed. HTTP/2 over QUIC
aims to break some fundamental limitations of the original
version of HTTP/2 over TLS and TCP, including protocol
entrenchment, handshake delay, and head-of-line (HoL) block-
ing [6]. QUIC has shown its advantages by successfully
reducing the latency of Google Search responses by 3.6%
and rebuffer rates of YouTube playbacks by 15.3% for mobile
users. Until now, it has been widely deployed [6] and sup-
ported by many major browsers [7].

Although HTTP/2 and QUIC optimize the web page loading
process with many methods, the bandwidth limitation of a
specific network interface still remains a constraint on the
loading speed, which has spawned a technology of concur-
rently using multiple network interfaces (e.g., Wi-Fi and LTE)
of a single device. Such technology is deemed as multipath

1536-1276 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 11,2023 at 17:13:42 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8123-0347
https://orcid.org/0000-0003-2095-7523
https://orcid.org/0000-0002-1911-7087
https://orcid.org/0000-0003-1674-8884
https://orcid.org/0000-0002-6979-4510
https://orcid.org/0000-0002-9905-8952
https://orcid.org/0000-0002-3839-5576

2776 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 4, APRIL 2023

QUIC extensions. By sending data over multiple paths
between a client and a server, QUIC with multipath exten-
sions provides both higher bandwidth and smoother network
handover compared with single-path QUIC. Since multipath
capability has been proven to be very beneficial and has been
adopted by some major software vendors [8], [9], multipath
QUIC extensions such as multipath QUIC (MPQUIC) [10],
pluginizing QUIC [11] and multiflow QUIC [12] have the
potential to be widely used in the foreseeable future. Note
that though we focus on MPQUIC in this paper, our work
is not necessary to be built on top of any specific multipath
QUIC extension implementation because it only utilizes the
most common features and can be implemented easily based
on different extension versions.

However, extensions like MPQUIC are still prototypes
and are inadequate to support complex HTTP/2 traffic in
mobile networks. Though it achieves bandwidth aggregation
to improve the overall transport performance, two main issues
prevent it from reaching its optimal performance. The first one
is its under-designed packet scheduling method. Highly moti-
vated by multipath TCP (MPTCP) [13], the packet scheduling
method of MPQUIC is based on TCP’s single bytestream
abstraction instead of the multiplexing stream abstraction of
HTTP/2 or QUIC. That means that existing MPQUIC cannot
fully support the methods that HTTP/2 uses, such as stream
prioritization and dependency, to speed up website loading.
The second one is the heterogeneous and dynamic conditions
of mobile networks. Dealing with mobile networks is chal-
lenging in many previous studies [14], [15], [16], [17]. In the
context of multipath transmission, the out-of-order packets
problem is a well-known issue caused by mobile networks.
Specifically, out-of-order (OFO) packets may be generated
by sending data through multiple paths with asymmetric and
ever-changing conditions in mobile networks, leading to HoL
blocking and excessive receive buffer occupation. This issue
is also known to other multipath protocols such as MPTCP
and CMT-SCTP [18]. Though several packet scheduling meth-
ods are designed to solve the issues [19], [20], [21], [22],
[23], [24], they are not perfectly suitable for MPQUIC because
of the stream multiplexing abstraction and are not very effec-
tive in dynamic mobile networks either.

To solve the two issues mentioned above, we propose
a stream-aware packet scheduler for MPQUIC called HoL
Blocking Eliminating Scheduler (HBES), which is able to
make priority-based bandwidth allocation for multiplexing
streams and execute fine-grained per-packet scheduling based
on multipath network conditions. To be specific, HBES adopts
the dependency tree structure to handle stream prioritization
and decides the number of packets for each stream to send
based on a scattered weighted Round-Robin (SWRR) algo-
rithm. Then, HBES schedules each packet according to its
estimated arrival time to ensure that packets through different
paths arrive at the receiver in order. By doing so, the issues
of HoL blocking and excessive buffer occupation can be miti-
gated. To cope with the fluctuations in mobile networks, HBES
tracks the round-trip time (RTT) and throughput of each path,
and thus it is able to modify its scheduling decisions when
network fluctuation occurs. We implement HBES based on the

MPQUIC open-source implementation written in go [25], and
evaluate its performance by comparing it with other schedulers
in a Mininet-based [26] testbed.

The main contributions of this paper are summarized as
follows.

• We propose a stream manager to achieve priority-based
bandwidth allocation with the SWRR algorithm, which
avoids the HoL blocking among HTTP’s multiplexing
streams in existing stream managing algorithms. Specif-
ically, SWRR scales down the number of packets each
stream can send at a time to prevent a fraction of streams
from overusing the send window.

• We propose a stream-aware packet scheduler, called
HBES, for MPQUIC, which is designed to estimate
the arrival time of each packet and make scheduling
decisions accordingly. HBES keeps tracking the RTT
and throughput of all paths and modifies its scheduling
decisions to stay effective even when network fluctuation
occurs in mobile networks. In this way, HBES tries to
ensure that packets sent through different paths arrive in
order so as to mitigate the HoL blocking caused by OFO
packets.

• We implement an HBES prototype in go language and
compare its performance with some existing MPQUIC
schedulers. To implement HBES, we add a path-level
send buffer and modify the dependency tree of the
original MPQUIC implementation. We also keep the
modifications transparent to the applications that use
HTTP. The results show that HBES reduces the two kinds
of HoL blocking and optimizes the loading performance
of various kinds of web pages, even in asymmetric and
dynamic scenarios.

The rest of this paper is organized as follows. In Section II,
we introduce HTTP and (MP)QUIC protocols and point
out the deficiency of the current MPQUIC design. Then,
in Section III, we carefully describe our proposed MPQUIC
scheduling algorithm named HBES, followed by some discus-
sion and analysis of HBES in Section IV. We evaluate HBES
along with other existing MPQUIC schedulers in a Mininet-
based testbed in Section V. And in Section VI, we discuss
some relevant scheduling algorithms for different multipath
transport protocols. Finally, Section VII concludes our work.

II. BACKGROUND AND MOTIVATION

In this section, we first present an overview of HTTP, QUIC,
and MPQUIC. Then, we discuss how multipath extensions like
MPQUIC can benefit HTTP traffic in mobile networks and
why its performance is currently below expectations.

A. The Hypertext Transfer Protocol and QUIC Protocol

Hypertext Transfer Protocol (HTTP) is an application layer
protocol for distributed, collaborative, hypermedia informa-
tion systems. It has become one of the foundations of data
communication for the World Wide Web, providing easy
access to abundant network resources for users. Nowadays,
HTTP/2 [3] is the most efficient version used by more than
43.3% of the websites [27] and is supported by almost all

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 11,2023 at 17:13:42 UTC from IEEE Xplore. Restrictions apply.

XING et al.: STREAM-AWARE MPQUIC SCHEDULER FOR HTTP TRAFFIC IN MOBILE NETWORKS 2777

Fig. 1. High-level architecture of Multipath QUIC.

web browsers because of its ability to speed up page loading.
For example, HTTP/2 supports header compression to reduce
protocol overhead and allows a server to “push” resources
before a client requests them with a server push mechanism.

Additionally, a significant improvement in HTTP/2 comes
from stream multiplexing, which aims at solving HoL blocking
problem in HTTP/1. Stream multiplexing allows multiple
streams of data to reach the receiver in arbitrary order without
waiting for a slow stream that is blocking others. And HTTP/2
prioritization allows a client (e.g., a browser) to assign a pri-
ority for each stream, which can be used to instruct the server
to allocate limited network capacity for different streams
accordingly. However, despite all these efforts, HTTP/2 hosted
on TCP may still suffer HoL blocking if any of the TCP
packets are delayed or lost.

To further optimize the performance of HTTP traffic,
QUIC [5] is designed to break some fundamental limitations of
the TLS/TCP ecosystem. QUIC uses a UDP-based lightweight
data-structuring abstraction, streams, which are multiplexed
within a single connection, so that the loss of a single packet
blocks only the streams with data in that packet [6] rather
than all streams. Compared with HTTP/2 over TLS and TCP,
HTTP/2 over QUIC eliminates HoL blocking delays caused
by TCP’s single-bytestream abstraction and can be rapidly
improved and easily deployed by moving from kernel space to
user space. Considering its great advantages, the IETF’s HTTP
and QUIC Working Groups have jointly decided to call the
HTTP mapping over QUIC “HTTP/3”, making it a worldwide
standard in advance [28].

B. Multipath Extension for QUIC

One missing feature of the current design of QUIC is
the ability to exploit the multiple paths that potentially exist
between the two hosts. Given the fact that mobile devices
nowadays are always equipped with multiple network inter-
faces (e.g., LTE and Wi-Fi), MPQUIC [10], as one of the
multipath extensions for QUIC, is designed to aggregate
bandwidth from those interfaces and also to achieve smoother
network handovers. The architecture of MPQUIC is shown
in Fig. 1.

MPQUIC creates one path with a unique Path ID over
each interface, and packets are selected and transmitted over
different paths by a packet scheduler. Each path has its own
packet number space. Thus, each packet can be identified
with the combination of Path ID and packet number in its

Fig. 2. Two kinds of HoL blocking that MPQUIC may suffer from.

public header, which can be used to generate ACKs for reliable
transmission. Except for the header, a QUIC packet consists
of one or more frames carrying control information or stream
data. Frames carrying stream data as well as a stream identifier
(Stream ID) and a byte offset are named STREAM frames, and
a receiver is able to reorder STREAM frames from different
paths only with the information attached to them.

C. Current MPQUIC Design Faces Challenges

Although MPQUIC can actually improve overall per-
formance compared with single-path QUIC by providing
higher bandwidth, its performance of supporting HTTP traffic
(e.g., web page load) is not yet optimized. To be specific, the
de facto packet schedulers in MPQUIC are borrowed from
MPTCP directly. Thus, these schedulers cannot respond to
stream priority properly and may lead to inter-stream HoL
blocking. For example, when loading a web page, current
MPQUIC schedulers may choose to send low-priority streams,
such as some unimportant images, first. However, the web
page will not show any of them since the crucial CSS
or JavaScript files that are actually blocking the webpage
rendering process have not yet been transmitted, as shown in
Fig. 2a. Since the inter-stream HoL blocking has been proven
to be an obstacle to satisfying performances of jobs such as
webpage loading [29], the ability to handle the multiplexing
and prioritized streams is a must for MPQUIC schedulers.

Besides, current schedulers may also cause intra-stream
HoL blocking by sending packets carrying STREAM frames
from one stream through several asymmetric paths. As shown
in Fig. 2b, when packets carrying frames with lower byte offset
are delayed on paths with higher RTT, HoL blocking occurs
and may lead to extra reordering delay and excessive receive
buffer usage. Coping with paths with heterogeneous character-
istics is a known issue for multipath transport protocols, and
designing better packet schedulers is an effective approach to
solve it [19], [20], [21], [22]. However, since these schedulers
are not designed for MPQUIC featuring stream multiplexing,
using them directly is not a wise decision. In addition, they
may not be able to stay effective in mobile networks where
network conditions of paths are asymmetric and fluctuating.
As a result, in order to improve the performance of HTTP

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 11,2023 at 17:13:42 UTC from IEEE Xplore. Restrictions apply.

2778 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 4, APRIL 2023

Fig. 3. The framework of HBES, consist of two schemes named PSM and
SAPS.

traffic over MPQUIC in mobile networks, a new packet
scheduler needs to be developed.

D. Design Objectives

To sum up, MPQUIC packet schedulers have to deal with
the out-of-order issue of multipath transmission and handle
HTTP’s multiplexing and prioritized streams. Simultaneously
dealing with the two issues becomes a unique problem with
carrying HTTP traffic with MPQUIC.

In this paper, we propose a new MPQUIC scheduler that
achieves the following two goals at the same time.

• Priority-based network resources allocation among
streams without any inter-stream HoL blocking.

• Reducing the number of out-of-order packets caused
by heterogeneous wireless network paths with changing
characteristics to avoid intra-stream HoL blocking.

III. HOL BLOCKING ELIMINATING SCHEDULER:
DESIGN AND IMPLEMENTATION

A. Overview

The HoL Blocking Eliminating Scheduler (HBES) consists
of two schemes, namely, a Priority-based Stream Manager
(PSM) and a Stream-aware Arrival-time-based Path Selector
(SAPS). In general, PSM is designed to decide which stream
to transmit data and how many packets it can send according to
its priority in order to avoid inter-stream HoL blocking caused
by non-optimal network capacity allocation among streams.
And then, for each packet, SAPS selects a path in which the
arrival time of this packet is the lowest. In this way, intra-
stream HoL blocking can be mitigated when packets arrive
in order. SAPS also considers network fluctuation for effec-
tiveness in ever-changing mobile networks. The framework of
HBES is shown in Fig. 3.

In order to handle HTTP/2 stream prioritization, PSM
adopts a dependency tree structure defined in RFC 7540 [3].
Fig. 4 is an example of a dependency tree. Each node in the
tree represents a stream created by the MPQUIC connection.
A client assigns a priority to each stream in the depen-
dency tree, and streams can be given an explicit dependency
on another stream, which makes them children and parent.

Fig. 4. An example of the HTTP/2 dependency tree. Each node represents
a prioritized stream.

A stream is only allowed to transmit after its parent completes
transmission, and its priority can be used to determine the
relative proportion of available resources that are assigned
among its siblings (the streams that have the same parent).
Specifically, a stream that is not dependent on any other stream
is a child of the root.

Weighted Round-Robin (WRR) is a widely used algorithm
to manage the prioritized streams and achieve priority-based
network resource allocation. A common way [30], [31] to
implement a WRR-based stream managing algorithm is letting
each stream send a specific number (equal to its priority)
of packets in a round, then continues with another round
of execution. But such an implementation is not optimal
because it still causes HoL blocking even with the multiplexing
and prioritization features. The reason is that streams can be
blocked if other streams have consumed the sending window
(swnd) before they are allowed to send anything. And the order
to traverse the streams is not related to the streams’ priority,
as the RFC states, which can lead to the blocking of high-
priority streams. This issue happens more frequently when
the streams’ priority numbers are relatively large (e.g., from
110 to 256 in Chrome [29]).

For PSM, we design a better stream managing algorithm
called scattered WRR (SWRR) to mitigate this blocking issue.
Based on the streams’ priority, SWRR scales down the number
of packets a stream can send in each round (or in each
scheduling cycle), leaving the send windows available and
letting more streams send packets in each round. In other
words, with SWRR, the send windows will not be exhausted
by a fraction of streams that are luckily at the front.

After PSM selects a stream to send a packet, SAPS decides
the path through which the packet should be sent. Basically,
SAPS tries to eliminate the HoL blocking caused by OFO data
frames by sending each packet according to its arrival time.
For more precise arrival time estimation, SPAS needs to track
the current RTT, throughput, and send buffer occupation of
each path. Then, SPAS estimates the arrival time T of a packet
consisting of its queuing time in send buffer and its inflight
time, though it may schedule packets to a currently unavailable
path. For example, when SPAS estimates that a packet will
arrive at the receiver through path l in Tl = 20 ms and through
another path k in Tk = 40 ms, then the packet should be
delivered via path l, even though it is not available due to
limited congestion window. In this situation, SAPS believes
that though the packet will be queued in the send buffer of
path l and wait for a period, it will still arrive earlier.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 11,2023 at 17:13:42 UTC from IEEE Xplore. Restrictions apply.

XING et al.: STREAM-AWARE MPQUIC SCHEDULER FOR HTTP TRAFFIC IN MOBILE NETWORKS 2779

We present detailed descriptions of these two schemes in the
rest of this section. In this paper, we assume that all streams are
client-initiated, and we use odd IDs [6] to identify the streams
for presentation simplicity. Note that our schemes do not rely
on the stream IDs, so they can be deployed on both client
and server sides, wherever an endpoint must handle prioritized
streams over multiple network paths.

B. Priority-Based Stream Manager (PSM)

To mitigate the inter-stream HoL blocking and further
improve the performance of HTTP traffic over MPQUIC,
the ability to handle stream prioritization and dependency
is a necessity, and PSM is designed for this purpose. First,
PSM creates a dependency tree every time when an MPQUIC
connection starts, and the root of the tree contains a virtual
stream with Stream ID 3 (stream 1 is a crypto stream and is
handled separately with the highest priority). When a stream
is initiated, it is added to the tree. If the stream depends
on another stream, it will be a child of that stream. Also,
an independent stream is a child of the root.

Then, PSM selects a stream to send data using a
modified WRR algorithm called scattered WRR (SWRR)
(in Algorithm 1). Firstly, PSM decides how many packets a
stream can send in a scheduling cycle and assigns a token
to each stream with SWRR algorithm. Then PSM visits the
children streams of the root in the order they are established
and sends token number of packets of each visited child.

To show the difference between the original WRR and
SWRR, we first describe the blocking issue that WRR may
cause. WRR traverses all the children (or streams) of a parent
and allows each of them (e.g., stream i) to send priorityi

numbers of packets. Then it continues with another round of
execution. Here, priorityi is an integer number between 1 and
256 (inclusive) given by an HTTP/2 client (or a browser). Such
a design follows RFC’s [3] suggestions for prioritized streams,
but it still causes HoL blocking since a fraction of streams with
large priority numbers can exhaust the sending window (swnd)
before others. Note that low-priority streams can have large
priority numbers (e.g., 110 is the lowest in Chrome [29]). For
example, consider this scenario: There are only 32 packets
that the MPQUIC connection can send due to the limited
window size. And a stream i with priorityi = 32 may
be allowed to send 32 packets, blocking a stream j with
priorityj = 128 which only has 2 packets to send.

A better strategy here is to let stream i send 1 packet and let
stream j send 4 packets according to the ratio of their priority,
which is the basic idea of SWRR. With SWRR, the token is
no longer directly equal to the priority number. Instead, it is
smaller to avoid the blocking issue. Specifically, as shown in
SetRescaledToken in Algorithm 1, PSM scales down the
priority of all siblings (streams that have the same parent) to
a smaller range according to a rescale factor r1 (token is set
to 1 if it equals 0). By doing so, the number of packets sent
in one scheduling cycle is much smaller, so the send window
is less likely to be exhausted before some streams even have

1We will discuss how r works in practical use in Section IV.

Algorithm 1 Priority-Based Stream Managing

1 Function ScatteredWRR(node):
2 if for all the siblings, token = 0 then
3 SetRescaledToken(node.parent)
4 stream = node.stream
5 if node.token > 0 then
6 if stream has data to send then
7 selected = stream
8 else
9 selected =

ScatteredWRR(node.nextChild)

10 if selected �= nil then
11 node.token -= 1

12 if selected = nil or node.token = 0 then
13 node.parent.nextChild = node.nextSibling

14 return selected

15 Function SetRescaledToken(node):
16 find the maximal priority M of all children
17 /* r is a given parameter */
18 γ = M/r
19 foreach child of the node do
20 /* each stream can send a token

number of packets per round */
21 child.token = [node.priority/γ]

22 Function Main:
23 all the nodes are initiated with token = 0
24 while there is active node in the tree do
25 stream = ScatteredWRR(root.nextChild)
26 send one packet of the stream
27 foreach node in the tree do
28 if node.stream finishs sending then
29 deactive node

the chance to be visited by PSM. That is the way PSM uses
to mitigate the inter-stream HoL blocking.

Overall, starting from the root, the children are allowed to
send data in packets and consume their tokens one by one.
After all, streams run out of their sending opportunities, PSM
resets them for a new scheduling round.

Note that PSM ensures that each stream gets certain “oppor-
tunities” to send data in packets but does not guarantee that
the packets only contain its STREAM frames. This is because,
in QUIC protocol, certain frames carrying control information
or the frames being retransmitted should be prioritized over
STREAM frames. Thus, they are encapsulated in packets first,
and the remaining space is for STREAM frames to use. As a
result, the amount of stream data that a packet can carry
is uncertain. There may be two ways to make sure that a
stream can always send a fair share amount of data. The first
one is to additionally generate small packets to carry control
information and retransmissions, which is not efficient due to
increasing header overhead. The other option is to attach its

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 11,2023 at 17:13:42 UTC from IEEE Xplore. Restrictions apply.

2780 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 4, APRIL 2023

TABLE I

SYMBOLS AND MEANINGS

leftover data to another packet with remaining space, which
is not ideal either because a lost packet may affect multiple
streams in this situation. As a result, PSM allocates sending
opportunities instead of a certain amount of data to make it
simple and flexible.

C. Stream-Aware Arrival-Time-Based Path Selector (SAPS)

In order to mitigate the intra-stream HoL blocking, SAPS
is designed to make frames from the same stream arrive in
order at the receiver side. Algorithm 2 presents the overall
working process of SAPS, and TABLE I summarizes all the
acronyms used in this paper. For this purpose, SAPS estimates
the arrival time of each packet according to current RTT and
queuing delay and then schedules the packet for the path with
the shortest arrival time. In other words, let Ti denotes the
arrival time of a packet sent via path i, then SAPS should
schedule the packet for path k which satisfies k = argmini Ti.

Ti consists of two parts, which are the time that a packet
wait in the send buffer of path i (i.e., queuing time, qti), and
the time that it is inflight (i.e., flight time, fti). That is,

Ti = qti + fti

=
qsi + ps

tpi
+

rtti
2

, (1)

where qsi, rtti and tpi denote the queue size of the send
buffer, the smoothed RTT, and throughput of path i, respec-
tively. And ps denotes the size of a packet, which is not always
the same actually. However, since MPQUIC tries to send the
largest possible packets for higher efficiency, it is safe to use a
fixed ps for all packets, which is the max packet size defined
in QUIC protocol (1450 bytes in implementation). And the
throughput can be estimated by

tpi =
cwndi

rtti
× ps. (2)

Since Ti is a function of rtti, we can present it in the form
of Ti(rtti) as shown in Algorithm 2.

In this way, SAPS may not always try to fill the congestion
windows of all available paths. Instead, it may keep building
up the queue in the buffer of a path with lower RTT and finally
switch to another path when the queuing time is too long. And
at the same time, SAPS keeps tracking the current RTT and
queuing data size of all paths in order to adjust its scheduling

Algorithm 2 Path Selecting Algorithm of SAPS
Input : path set P, packet of stream i,

stream i data was previously sent on path p.
Output: selected path (path).

1 Function PathSelecting(P, i, p):
2 if cwnds of all paths are full then
3 return nil

4 for j ∈ P do
5 calculate arrival time using Tj(rttj)

6 find path path = arg minj Tj(rttj)
7 return path

decisions accordingly in changing network scenarios. Note that
though the scheduling decisions for the queued packets may be
outdated due to abrupt network changes, such mistakes will
not accumulate or significantly negatively affect the overall
performance. That is because SAPS will pause when all paths’
congestion windows are unavailable, and current scheduling
decisions only affect the limited number of scheduled packets.
And when SAPS continues to schedule packets, it makes
decisions based on up-to-date network conditions.

In Section V, we prove that SAPS work effectively in a
wide range of scenarios that are common in mobile networks.

D. Implementation

Our HBES is implemented based on the open-source code
of MPQUIC [10], PStream [31] and SA-ECF [30]. PStream
and SA-ECF build the dependency tree structure on top of
MPQUIC, which can be used for PSM’s SWRR algorithm
with some modifications and bug fixes.

To implement SAPS, we have to implement a path-level
send buffer in addition to the existing “main send buffer”.
In the current MPQUIC implementation, there is no send
buffer for each path. Thus, a packet will be immediately sent
out after it is derived from the main send buffer and is sched-
uled to a certain path. But SAPS sends packets through the
path with the shortest packet arrival time, even though the path
may not be available currently. That means that some packets
may have to wait for the path to be available in the path-level
send buffer. In the implementation of SAPS, we maintain a
path-level send buffer to store the payloads of the packets.
Because MPQUIC sends packets with strictly monotonically
increasing packet sequence numbers, the payloads are sealed
with the packet headers when they are finally sent out. Note
that such a structure can also support the implementations
of some schedulers that are initially designed for MPTCP to
improve MPQUIC.

IV. DISCUSSION ON HBES

In this section, we discuss how HBES benefits HTTP/2-like
traffic carried by MPQUIC in heterogeneous networks.

A. Reducing Intra-Stream HoL Blocking

When packets arrive at the receiver out-of-order, intra-
stream HoL blocking happens. It is such a common issue

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 11,2023 at 17:13:42 UTC from IEEE Xplore. Restrictions apply.

XING et al.: STREAM-AWARE MPQUIC SCHEDULER FOR HTTP TRAFFIC IN MOBILE NETWORKS 2781

Fig. 5. Network topology for performance evaluation in our Mininet-based
testbed.

that some naive multipath schedulers take it for granted.
However, in mobile networks where devices may be buffer
limited, these out-of-order may be dropped if the receive
buffer is full, leading to severe performance degradation.
To illustrate how HBES mitigates this issue, we discuss and
present the sufficient buffer size needed to prevent MPQUIC’s
overall throughput from decreasing for different schedulers.
The following discussion is based on one of the most common
topologies in mobile networks (shown in Fig. 5a), which
contains two paths denoted by path 1 and 2. The RTT,
congestion window size, and throughput of path i are denoted
by rtti, cwndi, and tpi, respectively.

A naive scheduler named Round-Robin (RR) ignores the
different characteristics of subflows and simply sends one
packet on each subflow in turn. Such a scheduler requires a
large buffer size on the receiver side. Specifically, assuming
rtt2 > rtt1, the receive buffer should be large enough to store
all the packets from path 1 before the packets from path 2
arrive. That is, the required buffer size should be larger than

tp1 × rtt2
2

= cwnd1 × rtt2
2 × rtt1

.

That means that the needed buffer size is proportional to the
capacity of path 1 and the RTT ratio of the two paths. With
the growth of link capacities, such a scheduler may take up
much memory space and even consume more in heterogeneous
mobile networks.

Lowest-RTT-First (LRF) scheduler takes heterogeneity into
consideration. It will fill the congestion window of the subflow
with the lowest RTT before using other subflows. For small
streams, LRF guarantees no out-of-order packets, but when
the streams are large enough, LRF has to use the subflow
with higher RTT, which will, again, cause intra-stream HoL
blocking. Since we are discussing the sufficient buffer size
needed, we can assume that rtt2 > 2×rtt1 in a heterogeneous
network. In this case, the first cwnd1 packets from path
1 arrive in order and will be passed to applications directly.
But before packets from path 2 arrive, there are more packets

TABLE II

RESCALING CHROME’S PRIORITY VALUES WITH r = 10

from path 1 arrive earlier. As a result, the needed buffer size
for LRF should be larger than

tp1 × (
rtt2
2

− rtt1) = cwnd1 × (
rtt2

2 × rtt1
− 1).

This result illustrates that LRF only reduces a limited amount
of receive buffer occupation than RR, and the buffer needed is
also proportional to the link capacity and the RTT ratio. Note
that SA-ECF behaves the same as LRF when there is much
data left to send. Thus, it also requires a large receive buffer
to achieve the expected performance.

HBES, different from all the MPQUIC schedulers men-
tioned above, will not create OFO packets theoretically.
Because by skipping some subflows, it always sends packets
through the subflow that enables the packets to arrive as early
as possible. However, it cannot be denied that in practical use,
it will cause some OFO packets because the measurements of
link capacity and RTT can be inaccurate. But the number of
OFO packets can be largely reduced even in highly heteroge-
neous network conditions. Our evaluation in Section V verifies
our analysis.

B. Reducing Inter-Stream HoL Blocking

The inter-stream HoL blocking issue is a unique problem
that multipath QUIC encounters when dealing with multiple
streams simultaneously. To mitigate this issue, WRR algorithm
is used by some MPQUIC schedulers such as SA-ECF [30].
However, as we discussed in Section III-B, the way browsers
set stream priority may lead to a large scheduling cycle which
may finally cause the blocking of short streams. For example,
Chrome’s priority values are from 110 to 256 [29], and thus
hundreds of packets will be scheduled within one cycle. Even
with the per-stream swnd constraint of HTTP/2, blocking can
still happen when there are many streams. And the same
problem happens to Safari and Firefox too. As a result, HBES
uses SWRR algorithm to rescale the priority to a smaller range
with a rescale factor r. TABLE II presents the rescaled value of
Chrome’s priority values, which are calculated following the
SetRescaledToken function in Algorithm 1. For example,
in the case in TABLE II, PSM firstly finds the maximal priority
M of all streams (M = 256), and calculates γ = M/r = 25.6.
Finally, a stream with the lowest priority gets a rescaled value
equaling [110/25.6] = 4.

We now estimate the period that a short high-priority stream
has to wait before it can actually be sent with the original
WRR or SWRR algorithm. We assume that MPQUIC needs
to send n streams simultaneously, and each stream is allowed
to send m packets within one scheduling cycle. Note that m
is usually limited by the flow control window of the streams

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 11,2023 at 17:13:42 UTC from IEEE Xplore. Restrictions apply.

2782 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 4, APRIL 2023

according to [25] instead of the large priority values. Since
the priority values do not indicate the transmission order, the
high-priority stream may be randomly sent at the Xth place
with uniform distribution. That means that the stream has to
wait for (X − 1) × m packets from other streams to be sent
first. The expected number of those packets is

E((X − 1) × m) =
n∑

x=1

(x − 1) × m

n
=

m × (n − 1)
2

.

When the number of concurrent streams grows higher, the
high-priority stream has to wait for more linearly growing
packets. In some cases, short high-priority streams, which are
expected to finish sending in the first RTT, must wait for
another RTT or even more RTTs. With SWRR algorithm,
the number can be decreased to m′×(n−1)

2 where m′ is the
rescaled priority value of the streams. In current MPQUIC
implementation [25], m ≈ 11, while with SWRR, m′ can
be 4 when choosing r = 10. Thus, the expected waiting time
of the high-priority stream can be reduced by over 60%
theoretically.

To be of practical use, the rescale factor r should be chosen
according to the traffics that MPQUIC carries. When the
number of concurrent streams is large, a smaller rescale factor
can reduce the probability of inter-stream blocking. But if
it is too small, the difference in the bandwidth obtained by
high-priority streams and low-priority ones will be reduced.
In our evaluation, we show that SWRR algorithm with r = 10
can effectively mitigate the inter-stream blocking issue while
providing differentiated services for multiple streams at the
same time.

V. PERFORMANCE EVALUATION

A. Experimental Setup

For performance evaluation, we implement HBES in go
language and build a testbed based on the Mininet virtual
machine offered by De Coninck et al. [25] with OLIA [32]
congestion control algorithm inside. In general, in order to
evaluate HBES in the mobile network scenario, we build a
testbed with two paths of widely varying network conditions
(e.g., RTT, bandwidth, etc.) as shown in Fig. 5a to simulate a
prevalent mobile network scenario (Fig. 5b) where the network
capability and RTT may significantly change with issues like
user movement [33], bufferbloat, etc. Such a topology is
common in practical mobile networks, and it is also widely
used in other papers [10], [19], [30], [31], [34] for evaluation.
Note that the RTT we set for each path is not static in all the
experiments. Instead, it is the minimum RTT of the path, and
actual RTT may significantly vary due to bufferbloat, which is
the same as that in the actual mobile networks. Then, a client
generates various kinds of HTTP/2 requests (called workflows
in this section) to a server over two paths representing the LTE
and Wi-Fi paths which are widely used by mobile devices.
The network conditions of the two paths are set from totally
symmetric to highly asymmetric in a wide range in order
to cover different network scenarios that mobile users may
encounter in real networks. Except for HBES, we also evaluate

Fig. 6. The average and maximal FCT of 5 small streams with various
network conditions of paths.

SA-ECF, Lowest-RTT-First (LRF), and Round-Robin (RR) for
comparison.

Note that to simulate the web page load processes in the
real network, before actually generating test workflows, the
client will request for an HTML file in advance. And we start
the flow completion time (FCT) recording after receiving the
HTML file. In this way, HBES and other schedulers have
preliminary estimations about the RTT and throughput of
paths.

We conduct two groups of experiments, namely, stream-
level evaluation and the evaluation on typical web page loading
workflows. We carefully describe them and analyze the results
in the next part of this section.

B. Stream-Level Evaluation

In this group of experiments, we generate traffic of short,
long, and mixed-size streams over a wide range of path
conditions to clearly illustrate the performance of HBES with
different workflows.

1) HBES Reduces FCT of Small Streams: In this experi-
ment, a client generates five requests for five 20 KB files with
the same priority from a server over two paths, and each test
is repeated several times. Path 1 has 10 Mbps bandwidth and
20 ms RTT, while the RTT and bandwidth of path 2 vary in
a wide range (from 20 ms to 160 ms). The detailed settings
and the results are shown in Fig. 6.

The reasons why we use five 20 KB files as representatives
of small stream workflows are as follows: 1) There should be
enough data to send on both paths to reveal the difference
among schedulers. And since the initial cwnd of each path
is roughly 40 KB (according to current MPQUIC implemen-
tation), we set the total amount of data as 100 KB; 2) There
should be more than one scheduling cycle to show the effect of
the stream managing functions of HBES and SA-ECF. Thus,
each stream gets 20 KB of data to send, which is larger than
the initial stream flow control window (16 KB).

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 11,2023 at 17:13:42 UTC from IEEE Xplore. Restrictions apply.

XING et al.: STREAM-AWARE MPQUIC SCHEDULER FOR HTTP TRAFFIC IN MOBILE NETWORKS 2783

We first focus on the average FCT of the five streams,
which is presented in Fig. 6a and 6c. Obviously, when the
two paths are of the same RTTs (20 ms for both paths), all
schedulers perform well, and RR outperforms other schedulers
in this ideal network condition. This is because RR effectively
aggregates bandwidth by sending data on both paths, while
others prefer to send data on one path with a relatively smaller
RTT estimation. As the asymmetry increases, the results illus-
trate that well-defined HBES and SA-ECF still achieve low
FCT while LRF and RR suffer from high FCT, which means
that though the designs of HBES and SA-ECF are different,
they both can effectively mitigate HoL blocking. Besides,
by comparing Figs. 6a and 6c, we found out that although
the increment of total bandwidth from 15 Mbps to 20 Mbps
reduces the mean and median average FCT of all schedulers,
the overall performance improvement may be blurred by the
asymmetric paths. One of the reasons is that in order to
provide higher bandwidth, schedulers send more data to path 2,
but the gain brought by aggregated bandwidth is offset by
HoL blocking delay. In a word, HBES and SA-ECF bring
significant benefits for small streams whose FCT is relatively
small, and HoL blocking delay may account for a large portion
of it. We can also state that HBES performs slightly better than
SA-ECF in asymmetric scenarios, according to the results.

We also present the maximal FCT of the five streams in
Figs. 6b and 6d, which can also be treated as the page loading
completion time when all streams finish delivery. These two
figures illustrate that the performance of LRF and RR is even
worse because they are not aware of multiplexing streams
and cannot properly allocate network capacity among streams.
In particular, LRF and RR may send a stream exclusively until
it is limited by a per-stream send window of HTTP, which
leads to a short FCT for that stream, but a much longer FCT
for other streams since they have to wait or be sent on path
2 with high RTT. On the contrary, HBES and SA-ECF always
provide low maximal FCT by ensuring each stream’s fair share
of network capacity.

2) HBES Reduces Receive Buffer Usage of Long Streams:
In this experiment, a client requests two large 10 MB files
with the same priority from a server. The topology and path
characteristics are the same as above, and the RTT of Path 1 is
20ms. The results are shown in Fig. 7 and Fig. 8. Fig. 7 shows
that HBES still outperforms other schedulers in asymmetric
network scenarios by mitigating HoL blocking delay at the tail
of a stream, and the most obvious improvement brought about
by HBES is the low receive buffer usage for long streams,
as shown in Fig. 8.

We collect the size of OFO data stored in the receive buffer
by recording the bytes offset of STREAM frames. Noted that
though there may be different approaches to implementing
MPQUIC, we make conservative estimations on buffer usage
by realistically assuming that a receiver will retrieve all
in-order data and empty its buffer as soon as possible.

Fig. 8 illustrates the superiority of HBES in reducing OFO
data size. In other words, it’s in saving receive buffer usage.
This is because HBES is designed to keep data arriving in
order all the time, which can mitigate HoL blocking at the
end of stream transmitting and reduce OFO data in the middle

Fig. 7. The average FCT of long streams under various network scenarios.

Fig. 8. The average size of OFO data stored in receive buffer within flow
completion time.

of transmitting. By contrast, SA-ECF functions well at the end
of stream transmitting but has similar behavior to LRF when
a stream still gets much data to send (i.e., in the middle of
transmitting). As a result, it also suffers excessive buffer usage
in asymmetric network scenarios. To sum up, HBES has the
ability to better support buffer-limited devices in asymmetric
mobile networks, preventing them from suffering unnecessary
retransmissions due to buffer overflow.

3) HBES Mitigates Inter-Stream HoL Blocking Issue:
In this experiment, a client requests 10 128 KB files and
a 5 KB file with priority set to 110 and 255, respectively.
The bandwidth of both paths is 10 Mbps, and the RTT of
path 1 is 20 ms. In order to show how small but important
streams can be overwhelmed by low-priority streams and how
HBES solves this problem, we focus on the FCT of the high-
priority small stream, which is presented in Fig. 9. We note the
full-functioned HBES (i.e., HBES with SWRR algorithm) as
HBES-SWRR, and note HBES with original WRR algorithm
as HBES-WRR.

The result shows that in asymmetric network scenarios if a
scheduler does not care about the priority of streams (such as
LRF or RR), the important stream may suffer long FCT, which
is about 1.7 times higher than the median. However, HBES
with the original WRR algorithm also delays the FCT of the
high-priority stream in the cases where the high-priority stream
is scheduled after some other low-priority ones (the scheduling
order is random and not priority-related), which also builds up
a long queue before high-priority data. Though SA-ECF also
uses WRR, it seems that the blocking issue is less severe. This
is because SA-ECF is designed to send data of large streams
to the path with longer RTT and thus reduces the amount of
data that has to be sent before high-priority data. In general,
HBES (with SWRR) successfully reduces the FCT of the most

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 11,2023 at 17:13:42 UTC from IEEE Xplore. Restrictions apply.

2784 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 4, APRIL 2023

Fig. 9. FCT of the small but high-priority stream using full-functioned HBES
(with SWRR) and other schedulers.

Fig. 10. Two kinds of typical workflows that make up dependency trees of
common web pages.

important stream by shortening the scheduling cycle, which
means that in complex tasks with many concurrent streams,
high-priority streams can complete transmission as soon as
possible.

C. Typical Workflows Evaluation

In this section, we compare the performance of HBES with
other schedulers based on two kinds of typical workflows,
namely, parallel loading and serial loading. In this paper, the
term parallel loading refers to a kind of web page loading
process which is composed of several streams depending on
the same stream (Fig. 10a). The term serial loading refers to
another kind of process that several streams are loaded one
by one (Fig. 10b). These two kinds of loading workflow are
regarded as typical because they can make up most of the web
page dependency trees generated by different browsers [29].
Thus, evaluation based on them can reflect how schedulers
work in practical use and is much easier to analyze than
loading complex real web pages. In the following experiments,
the bandwidth of both paths is set to 10 Mbps, and the RTT of
the two paths is set to 5 and 50 ms, which simulates the latency
of a good Wi-Fi channel and an average 4G channel [35],
respectively.

1) HBES Speeds up High-Priority Streams Loading: In this
experiment, the client requires a parallel loading workflow
consisting of one 10 KB files followed by 6 different files.
The 6 files are divided into two priority level (priority is set
as 110 and 256 respectively) and three sizes (10 KB, 50 KB

Fig. 11. FCT of all streams in “parallel” workflows.

Fig. 12. FCT of all streams in “serial” workflows.

and 250 KB). Timing starts from the first stream, the FCT of
all streams are presented in Fig. 11. The figure is split into
two parts for easy viewing.

Fig. 11 illustrates that LRF outperforms others in terms of
the completion time of the whole loading process because
the total size of all streams is so large that the aggregated
bandwidth becomes the biggest influencing factor instead of
intra-stream HoL blocking delay. However, LRF, as well
as RR, ignores the different priority of streams, which is
undesired. And surprisingly, SA-ECF fails to react to streams
of different priority — for 10 and 50 KB streams, the FCT of
the high-priority ones is longer than that of the low-priority
ones due to the blocking issue caused by WRR algorithm
that we mentioned in Section III-B. On the contrary, HBES
shows its ability to allocate network resources among streams
properly. The result shows that HBES successfully shortens the
FCT of high-priority streams of all sizes. As a result, when
downloading several web page objects in parallel, HBES is
able to speed up the important high-priority object loading to
optimize the web page rendering process.

2) HBES Shortens Stream FCT of Serial Loading Work-
flows: In this experiment, the client requests a serial loading
workflow consisting of 5 different files of 10, 20, 50, 100,
and 250 KB, which are downloaded one by one. Timing also
starts from the first stream, and the FCT of all streams is
presented in Fig. 12.

In this experiment, HBES and SA-ECF show superiority
in speeding up stream transmitting in asymmetric mobile net-
works. For smaller streams (i.e., 10, 20, and 50 KB streams),
only RR suffers longer FCT because it is the only algorithm
that will use the path with longer latency, while for other
streams, LRF starts to send data on the path with long latency.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 11,2023 at 17:13:42 UTC from IEEE Xplore. Restrictions apply.

XING et al.: STREAM-AWARE MPQUIC SCHEDULER FOR HTTP TRAFFIC IN MOBILE NETWORKS 2785

TABLE III

DOMAINS OF THE INFLUENCING PARAMETERS

Fig. 13. The FCT ratio of different schedulers over RR.

On the contrary, HBES and SA-ECF still achieve shorter FCT
because they choose to skip the long-latency path. Although
HBES and SA-ECF behave similarly in this experiment,
their scheduling decisions are different. Specifically, SA-ECF
chooses to wait until the preferred path is available or act like
LRF, while HBES can still schedule packets to the currently
unavailable path thanks to an extra send buffer structure.
This difference leads to performance distinction as shown in
previous experiments (Fig. 8), but it is not obvious in this
experiment.

3) Overall Performance Evaluation Across the Parameter
Space: Though the results shown above have validated the
advantages of HBES in some typical network scenarios, the
network conditions in the real wireless network are random
and complicated. To fully evaluate HBES and other MPQUIC
schedulers, we need to conduct experiments across the whole
parameter space. As a result, we adopt the WSP algorithm [36]
to generate a spacing-filling design that fills the parameter
space evenly with over 200 parameter sets (the domains of
the parameters are shown in TABLE III). By going through
the whole parameter space, we can evaluate HBES and other
schedulers thoroughly with over 200 random network sce-
narios. We adopt the same parallel loading workflow in this
experiment as we describe above. Then the FCT of the whole
workflow represents schedulers’ performances of transmitting
a trunk of data, and the FCT of high-priority streams illustrates
how schedulers deal with streams of different priority.

The results are shown in Fig. 13. We divide the FCT of
HBES, SA-ECF, and LRF by that of RR (denoted by FCT
ratio over RR) in the same network scenario to show the
performance improvement of these schedulers. The lower the
FCT ratio is, the better a scheduler performs in this case.

As shown in Fig. 13a, HBES and SA-ECF shorten the
overall FCT of the workload by 70% of all cases, while LRF
does not show significant improvement. This result illustrates
that HBES, as well as SA-ECF, does well in reducing intra-
stream HoL blocking. Moreover, HBES outperforms SA-ECF
in some cases where the FCT is longer due to harsh network
conditions.

Then, we focus on how different schedulers handle high-
priority streams of different sizes. For 10 KB and 50 KB
streams, HBES significantly reduces their FCT by mitigating
the inter-stream HoL blocking as shown in Fig. 13b and
Fig. 13c, respectively. Though SA-ECF reacts to the stream
priority, high-priority streams may sometimes be blocked
when they get a backward transmission order. In comparison,
HBES solves such an issue with SWRR algorithm. As for
the 250 KB stream, the difference among schedulers is less
significant because the network conditions impact the FCT of
larger streams more, and inter-stream HoL blocking affects
them less. However, HBES and SA-ECF can still reduce the
FCT since they allocate more bandwidth to the high-priority
stream.

Finally, by combining the results of the above experiments,
we can conclude that, in a wide range of scenarios that
users may encounter in mobile networks, HBES successfully
achieves shorter FCT and less buffer occupation by mitigating
HoL blocking. Additionally, evaluation of the two typical
workflows also shows HBES is more capable of handling
complex HTTP streams with priority information and speeding
up web page object loading.

VI. RELATED WORK

Multipath transport protocols enable concurrent transmis-
sion over multiple network interfaces, which bring advantages
such as bandwidth aggregation and connection robustness,
but also pose challenges that single-path protocols never
had [33], [37], [38], [39]. One known challenge is handling
concurrent usage of multiple heterogeneous network paths
with ever-changing conditions in wireless networks. Sending
data through paths with different latency may cause out-of-
order delivery, causing HoL blocking and excessive buffer
usage. Worse still, the asymmetry between LTE and WLAN
networks can be dramatic in mobile networks, which increases
the difficulty of using multiple network paths efficiently.

Since it is hard for some naive schedulers (e.g., LRF and
RR) to handle complex networks, several scheduling algo-
rithms have been proposed to mitigate the OFO delivery issue.
For example, DAPS (Delay-Aware Packet Scheduler [21]),
which is designed as an extension to CMT-SCTP, makes
scheduling decisions according to the one-way-delay and
capacities of paths in order to reduce HoL blocking over
asymmetric links. However, it is shown to generate spurious
retransmissions, so BLEST (Blocking Estimation [19]) is

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 11,2023 at 17:13:42 UTC from IEEE Xplore. Restrictions apply.

2786 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 4, APRIL 2023

designed to reduce buffer blocking in a better way. Specifi-
cally, BLEST is designed to skip a certain currently available
path, waiting for a more advantageous path that can offer a
lower risk of blocking. Besides, OTIAS (Out-of-Order Trans-
mission for In-Order Arrival Scheduler [22]), ECF (Earliest
Completion First [20]) and STTF (Shortest Transfer Time
First [19]) try to estimate the arrival time of each packet
more precisely by taking the queuing delay in send buffer into
consideration. These three scheduling algorithms are similar to
SAPS algorithm in HBES, but they are designed specially for
MPTCP and cannot be directly used in the context of MPQUIC
because stream multiplexing is not considered. Although Wu
et al. [39] presented their implementation of a learning-based
scheduling algorithm in MPQUIC, the stream multiplexing
feature is still not discussed.

As a promising multipath protocol, there have already been
many scheduling algorithms designed for MPQUIC, such
as SA-ECF [30], PStream [31] and FStream [34]. Different
from the aforementioned schedulers, they are all stream-
aware and designed to handle multiplexing streams. Among
them, PStream and FStream are designed to achieve optimal
bandwidth allocation among different streams to avoid inter-
stream HoL blocking. However, they both make a stream-
level scheduling decision before streams are sent, which is
efficient in static network conditions but not quite suitable
for ever-changing mobile networks. Besides, in the cases that
new streams are initiated during transmission, their scheduling
decisions may become sub-optimal. SA-ECF, instead, makes
per-packet scheduling which is more applicable to real traffic.
Since extra delay is caused by HoL blocking at the end of
stream transmission, SA-ECF may avoid sending data to a
path with longer RTT if the stream can finish sooner through
a faster but currently unavailable path. SA-ECF provides a
simple yet efficient way to reduce HoL blocking delay, but
high receive buffer occupation during transmission remains
an unsolved problem.

Although it seems to be a conventional choice to concur-
rently transmit multiplexing streams as all MPQUIC sched-
ulers mentioned above take such a measure (i.e., using WRR
algorithm), Wang et al. [40] proposed a different stream
scheduling policy called exclusive delivery. The exclusive
delivery policy aims at reducing the average stream completion
time by transmitting streams one by one. Since exclusive
delivery may cause low-priority streams to starve, further
research is needed to determine the pros and cons of different
stream scheduling policies.

Recently, to improve certain video applications’ perfor-
mance, Zheng et al. [41] proposed XLINK as a cross-layer
multipath extension for QUIC, which is driven by user-
perceived QoE and built on top of a client-server feed-
back mechanism. These feedbacks from clients help XLINK
“re-injecting” unacknowledged packets (i.e., sending dupli-
cated packets) of a stream into a fast network path. Thus,
it is able to shorten the completion time of currently high-
priority streams and avoid intra-stream HoL blocking. XLINK
achieved remarkable improvement in large-scale evaluation,
but how it works with unchanged QUIC clients is not
discussed.

Since we are trying to improve common HTTP traffic in
mobile networks, our scheduler should always be ready to
handle newly initiated streams of various priority and ever-
changing network conditions, and we should not assume that
clients run specific well-designed applications. As a result,
in this paper, we choose SA-ECF as one of the comparison
schemes, which is also a per-packet scheduling algorithm.
Besides, HBES and SA-ECF need no prior knowledge, such
as path latency and capacity, which some MPQUIC schedulers
need to make stream-level scheduling decisions in advance.
Overall, our contribution is to design a new per-packet sched-
uler for MPQUIC, which is able to handle complex HTTP-like
multiplexed traffic in heterogeneous mobile networks.

VII. CONCLUSION

In this paper, we designed a new scheduler, HBES, to handle
prioritized streams and make per-packet scheduling decisions
to mitigate HoL blocking and excessive receive occupation
caused by asymmetric and dynamic paths in mobile networks.
Unlike existing MPQUIC schedulers, HBES uses a modified
weighted round-robin algorithm to avoid inter-stream blocking
caused by long scheduling cycles, ensuring that stream priority
can be correctly reflected from the completion time. Then,
HBES schedules each packet according to its arrival time
by constantly tracking network conditions. Thus, it needs no
prior knowledge about the network paths and makes real-time
per-packet scheduling instead of assigning streams to certain
paths in advance. That means that HBES is able to adapt
to current network conditions and thus more applicable in
changing mobile networks. We further implement HBES in
user space based on MPQUIC open-source code. Moreover,
our evaluation shows that HBES successfully achieves its goals
to mitigate blocking issues as well as reduce buffer occupation,
and when carrying traffic with typical patterns commonly seen
in practice, HBES outperforms other schedulers in various
simulated mobile network scenarios.

REFERENCES

[1] K. Eaton. (Mar. 2012). How One Second Could Cost Amazon
$1.6 Billion in Sales. Accessed: Oct. 2022. [Online]. Available:
https://www.fastcompany.com/1825005/how-one-second-could-cost-
amazon-16-billion-salesl

[2] E. Schurman and J. Brutlag. (Jun. 2009). Performance Related Changes
and Their User Impact. Accessed: Oct. 2022. [Online]. Available:
https://www.youtube.com/watch?v=bQSE51-gr2s

[3] M. Belshe, R. Peon, and M. Thomson. (2015). Hypertext Transfer
Protocol Version 2 (HTTP/2). Accessed: Oct. 2022. [Online]. Available:
https://rfc-editor.org/rfc/rfc7540.txt RFC 7540, IETF.

[4] P. Meenan. (May 2019). Better HTTP/2 Prioritization for
a Faster Web. Accessed: Oct. 2022. [Online]. Available:
https://blog.cloudflare.com/better-http-2-prioritization-for-a-faster-web/

[5] J. Iyengar and M. Thomson. QUIC: A UDP-Based Multiplexed and
Secure Transport. Accessed: Oct. 2022. [Online]. Available: https://rfc-
editor.org/rfc/rfc9000.txt

[6] A. Langley et al., “The QUIC transport protocol: Design and internet-
scale deployment,” in Proc. Conf. ACM Special Interest Group Data
Commun. (SIGCOMM), 2017, pp. 183–196.

[7] (Sep. 2022). HTTP/3 Protocol. Accessed: Oct. 2022. [Online]. Available:
https://caniuse.com/http3

[8] Advances in Networking, Part 1 and Part 2. Accessed: Oct. 2022.
[Online]. Available: https://developer.apple.com/videos/wwdc2017/

[9] O. Bonaventure. (2019). Apple Music on IOS13 Uses Multipath TCP
Through Load-Balancers. Accessed: Oct. 2022. [Online]. Available:
http://blog.multipath-tcp.org/blog/html/2019/10/27/apple_mus
ic_on_ios13_uses_multipath_tcp_through_load_balancers.html

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 11,2023 at 17:13:42 UTC from IEEE Xplore. Restrictions apply.

XING et al.: STREAM-AWARE MPQUIC SCHEDULER FOR HTTP TRAFFIC IN MOBILE NETWORKS 2787

[10] Q. De Coninck and O. Bonaventure, “Multipath QUIC: Design and
evaluation,” in Proc. 13th Int. Conf. Emerg. Netw. Experiments Technol.,
Nov. 2017, pp. 160–166.

[11] Q. De Coninck et al., “Pluginizing QUIC,” in Proc. ACM Special Interest
Group Data Commun. (SIGCOMM), 2019, pp. 59–74.

[12] Q. De Coninck and O. Bonaventure, “Multiflow QUIC: A generic
multipath transport protocol,” IEEE Commun. Mag., vol. 59, no. 5,
pp. 108–113, May 2021.

[13] A. Ford, C. Raiciu, M. J. Handley, O. Bonaventure, and C. Paasch.
(2020). TCP Extensions for Multipath Operation With Multiple
Addresses. RFC 8684, IETF. Accessed: Oct. 2022. [Online]. Available:
https://www.ietf.org/rfc/rfc8684.txt

[14] J. Chung, D. Han, J. Kim, and C. K. Kim, “Machine learning based
path management for mobile devices over MPTCP,” in Proc. IEEE Int.
Conf. Big Data Smart Comput. (BigComp), Feb. 2017, pp. 206–209.

[15] J. Wang, L. Zhao, J. Liu, and N. Kato, “Smart resource allocation for
mobile edge computing: A deep reinforcement learning approach,” IEEE
Trans. Emerg. Topics Comput., vol. 9, no. 3, pp. 1529–1541, Jul. 2021.

[16] J. Liu and N. Kato, “A Markovian analysis for explicit probabilistic
stopping-based information propagation in postdisaster ad hoc mobile
networks,” IEEE Trans. Wireless Commun., vol. 15, no. 1, pp. 81–90,
Jan. 2016.

[17] Y. Qiao, Y. Cheng, J. Yang, J. Liu, and N. Kato, “A mobility analytical
framework for big mobile data in densely populated area,” IEEE Trans.
Veh. Technol., vol. 66, no. 2, pp. 1443–1455, Feb. 2017.

[18] J. R. Iyengar, P. D. Amer, and R. Stewart, “Concurrent multipath
transfer using SCTP multihoming over independent end-to-end paths,”
IEEE/ACM Trans. Netw., vol. 14, no. 5, pp. 951–964, Oct. 2006.

[19] P. Hurtig, K.-J. Grinnemo, A. Brunstrom, S. Ferlin, O. Alay, and
N. Kuhn, “Low-latency scheduling in MPTCP,” IEEE/ACM Trans. Netw.,
vol. 27, no. 1, pp. 302–315, Feb. 2019.

[20] Y.-S. Lim, E. M. Nahum, D. Towsley, and R. J. Gibbens, “ECF:
An MPTCP path scheduler to manage heterogeneous paths,” in Proc.
13th Int. Conf. Emerg. Netw. EXperiments Technol. (CoNEXT), 2017,
pp. 147–159.

[21] G. Sarwar, R. Boreli, E. Lochin, A. Mifdaoui, and G. Smith, “Mitigating
receiver’s buffer blocking by delay aware packet scheduling in multipath
data transfer,” in Proc. 27th Int. Conf. Adv. Inf. Netw. Appl. Workshops,
Mar. 2013, pp. 1119–1124.

[22] F. Yang, Q. Wang, and P. D. Amer, “Out-of-order transmission for in-
order arrival scheduling for multipath TCP,” in Proc. 28th Int. Conf. Adv.
Inf. Netw. Appl. Workshops, May 2014, pp. 749–752.

[23] J. Han et al., “Leveraging coupled BBR and adaptive packet scheduling
to boost MPTCP,” IEEE Trans. Wireless Commun., vol. 20, no. 11,
pp. 7555–7567, 2021.

[24] Y. Xing et al., “A low-latency MPTCP scheduler for live video streaming
in mobile networks,” IEEE Trans. Wireless Commun., vol. 20, no. 11,
pp. 7230–7242, 2021.

[25] Q. D. Coninck. (Dec. 2019). Multipath QUIC. Website of the
Multipath QUIC Project. Accessed: Oct. 2022. [Online]. Available:
https://multipath-quic.org/

[26] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible network experiments using container-based emulation,”
in Proc. 8th Int. Conf. Emerg. Netw. Exp. Technol. (CoNEXT), 2012,
pp. 253–264.

[27] (Oct. 2022). W3Techs. Usage Statistics of HTTP/2 for Web-
sites. Accessed: Oct. 2022. [Online]. Available: https://w3techs.com/t
echnologies/details/ce-http2

[28] M. Bishop. (2021). Hypertext Transfer Protocol Version 3 (HTTP/3).
Internet Engineering Task Force. Accessed: Oct. 2022. [Online]. Avail-
able: https://tools.ietf.org/html/draft-ietf-quic-http-34

[29] M. Wijnants, R. Marx, P. Quax, and W. Lamotte, “HTTP/2 prioritization
and its impact on web performance,” in Proc. World Wide Web Conf.
World Wide Web (WWW), 2018, pp. 1755–1764.

[30] A. Rabitsch, P. Hurtig, and A. Brunstrom, “A stream-aware multipath
QUIC scheduler for heterogeneous paths,” in Proc. Workshop Evol.,
Perform., Interoperability QUIC, Dec. 2018, pp. 29–35.

[31] X. Shi, L. Wang, F. Zhang, B. Zhou, and Z. Liu, “PStream: Priority-
based stream scheduling for heterogeneous paths in multipath-QUIC,”
in Proc. 29th Int. Conf. Comput. Commun. Netw. (ICCCN), Aug. 2020,
pp. 1–8.

[32] R. Khalili, N. Gast, M. Popovic, and J.-Y. Le Boudec, “MPTCP is not
Pareto-optimal: Performance issues and a possible solution,” IEEE/ACM
Trans. Netw., vol. 21, no. 5, pp. 1651–1665, Oct. 2013.

[33] L. Li et al., “A measurement study on multi-path TCP with multiple
cellular carriers on high speed rails,” in Proc. Conf. ACM Special Interest
Group Data Commun. (SIGCOMM), 2018, pp. 161–175.

[34] X. Shi, L. Wang, F. Zhang, and Z. Liu, “FStream: Flexible stream
scheduling and prioritizing in multipath-QUIC,” in Proc. IEEE 25th Int.
Conf. Parallel Distrib. Syst. (ICPADS), Dec. 2019, pp. 921–924.

[35] S. O’Dea. (2021). 4G and 3G Network Latency in the
United States 2019. Accessed: Oct. 2022. [Online]. Available:
https://www.statista.com/statistics/818205/4g-and-3g-network-latency-
in-the-united-states-2017-by-provider/

[36] C. Paasch, R. Khalili, and O. Bonaventure, “On the benefits of applying
experimental design to improve multipath TCP,” in Proc. 9th ACM Conf.
Emerg. Netw. Exp. Technol., Dec. 2013, pp. 393–398.

[37] C. Paasch and O. Bonaventure, “Multipath TCP,” Commun. ACM,
vol. 57, no. 4, pp. 51–57, Apr. 2014.

[38] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving datacenter performance and robustness with
multipath TCP,” in Proc. ACM SIGCOMM Conf. SIGCOMM (SIG-
COMM), 2011, pp. 266–277.

[39] H. Wu, O. Alay, A. Brunstrom, S. Ferlin, and G. Caso, “Peekaboo:
Learning-based multipath scheduling for dynamic heterogeneous envi-
ronments,” IEEE J. Sel. Areas Commun., vol. 38, no. 10, pp. 2295–2310,
Oct. 2020.

[40] J. Wang, Y. Gao, and C. Xu, “A multipath QUIC scheduler for mobile
HTTP/2,” in Proc. 3rd Asia–Pacific Workshop Netw. (APNet), 2019,
pp. 43–49.

[41] Z. Zheng et al., “XLINK: QoE-driven multi-path QUIC transport in
large-scale video services,” in Proc. ACM Special Interest Group Data
Commun. (SIGCOMM), 2021, pp. 418–432.

Yitao Xing (Graduate Student Member, IEEE)
received the bachelor’s degree in information secu-
rity from the School of the Gifted Young, Univer-
sity of Science and Technology of China (USTC),
in 2018, where he is currently pursuing the Ph.D.
degree in information security with the School of
Cyber Science and Technology. His research inter-
ests include future internet architecture and trans-
mission optimization.

Kaiping Xue (Senior Member, IEEE) received the
bachelor’s degree from the Department of Infor-
mation Security, University of Science and Tech-
nology of China (USTC), in 2003, and the Ph.D.
degree from the Department of Electronic Engi-
neering and Information Science (EEIS), USTC,
in 2007. From May 2012 to May 2013, he was
a Post-Doctoral Researcher with the Department
of Electrical and Computer Engineering, University
of Florida. Currently, he is a Professor with the
School of Cyber Science and Technology, USTC.

His research interests include next-generation internet architecture design,
transmission optimization, and network security. He serves on the Editorial
Board of several journals, including the IEEE TRANSACTIONS ON DEPEND-
ABLE AND SECURE COMPUTING (TDSC), the IEEE TRANSACTIONS ON

WIRELESS COMMUNICATIONS (TWC), and the IEEE TRANSACTIONS ON
NETWORK AND SERVICE MANAGEMENT (TNSM). He has also served
as a (Lead) Guest Editor for many reputed journals/magazines, including
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS (JSAC), IEEE
Communications Magazine, and IEEE Network. He is a fellow of the IET.

Yuan Zhang received the bachelor’s degree from the
Department of Electronic Engineering and Informa-
tion Science (EEIS), University of Science and Tech-
nology of China (USTC), in 2019, and the master’s
degree in communication and information system
from the Department of EEIS, USTC, in 2022. His
research interests include future internet architecture
design and transmission optimization.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 11,2023 at 17:13:42 UTC from IEEE Xplore. Restrictions apply.

2788 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 4, APRIL 2023

Jiangping Han (Member, IEEE) received the B.S.
and Ph.D. degrees from the Department of Elec-
tronic Engineering and Information Science (EEIS),
USTC, in July 2016 and 2021, respectively. She
was a Visiting Student at Arizona State University
in 2020 and 2021. She is currently a Post-Doctoral
Fellow with the School of Cyber Science and Tech-
nology, USTC. Her research interests include data
center network, future internet architecture design,
and transmission optimization.

Jian Li (Member, IEEE) received the B.S. degree
from the Department of Electronics and Information
Engineering, Anhui University, in 2015, and the
Ph.D. degree from the Department of Electronic
Engineering and Information Science (EEIS), Uni-
versity of Science and Technology of China (USTC),
in 2020. From November 2019 to November 2020,
he was a Visiting Scholar with the Department of
Electronic and Computer Engineering, University of
Florida. He is currently a Post-Doctoral Fellow with
the School of Cyber Science and Technology, USTC.

His research interests include wireless communications, satellite-terrestrial
integrated networks, next-generation internet, and quantum networks.

David S. L. Wei (Life Senior Member, IEEE)
received the Ph.D. degree in computer and infor-
mation science from the University of Pennsylvania
in 1991. From May 1993 to August 1997, he was a
Faculty Member of Computer Science and Engineer-
ing at the University of Aizu, Japan (as an Associate
Professor and then a Professor). He has authored
or coauthored more than 130 technical papers in
various archival journals and conference proceed-
ings. He is currently a Professor with the Com-
puter and Information Science Department, Fordham

University. He has authored or coauthored more than 140 technical papers
in the areas of distributed and parallel processing, wireless networks and
mobile computing, optical networks, peer-to-peer communications, cloud and
edge computing, cybersecurity, and quantum computing and communica-
tions in various archival journals and conference proceedings. The broad
impact of his research can be verified by the fact that his works appear in
35 different journals, including 17 IEEE sponsored top-tier journals, such as
IEEE TRANSACTIONS ON COMPUTERS, IEEE TRANSACTIONS ON MOBILE
COMPUTING, IEEE TRANSACTIONS ON INFORMATION FORENSICS AND

SECURITY, IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COM-
PUTING, IEEE/ACM TRANSACTIONS ON NETWORKING, IEEE JOURNAL

ON SELECTED AREAS IN COMMUNICATIONS, IEEE TRANSACTIONS ON
WIRELESS COMMUNICATIONS, and IEEE TRANSACTIONS ON VEHICULAR

TECHNOLOGY and the works also appear in top conferences, such as CVPR,
INFOCOM, ICC, GLOBECOM, and SIGCOMM. His research interests
include cloud and edge computing, cybersecurity, and quantum computing
and communications. He is a member of ACM and AAAS and a Life Senior
Member of IEEE Computer Society and IEEE Communications Society.

Ruidong Li (Senior Member, IEEE) received the
bachelor’s degree in engineering from Zhejiang Uni-
versity, China, in 2001, and the Doctorate of Engi-
neering degree from the University of Tsukuba in
2008. He is currently an Associate Professor with
the College of Science and Engineering, Kanazawa
University, Japan. Before joining Kanazawa Univer-
sity, he was a Senior Researcher with the Network
System Research Institute and the National Institute
of Information and Communications Technology
(NICT). He is also the Founder and the Chair of the

IEEE SIG on Big Data Intelligent Networking and IEEE SIG on Intelligent
Internet Edge and the Secretary of IEEE Internet Technical Committee.
He also serves as the Chair for conferences and workshops, such as IWQoS
2021, MSN 2020, BRAINS 2020, ICC 2021 NMIC Symposium, ICCN
2019/2020, and NMIC 2019/2020 and organized the special issues for the
leading magazines and journals, such as IEEE Communications Magazine,
IEEE Network, and IEEE TRANSACTIONS ON NETWORK SCIENCE AND

ENGINEERING (TNSE). His current research interests include future networks,
big data networking, blockchain, information-centric networks, the Internet of
Things, network security, wireless networks, and quantum internet. He is a
member of the IEICE.

Qibin Sun (Fellow, IEEE) received the Ph.D. degree
from the Department of Electronic Engineering
and Information Science (EEIS), University of Sci-
ence and Technology of China (USTC), in 1997.
Currently, he is a Professor with the School of
Cyber Security, USTC. He has published more than
120 papers in international journals and conferences.
His research interests include multimedia security
and network intelligence and security.

Jun Lu received the bachelor’s degree from
Southeast University in 1985 and the master’s degree
from the Department of Electronic Engineering
and Information Science (EEIS), University of Sci-
ence and Technology of China (USTC), in 1988.
Currently, he is a Professor with the Department
of EEIS, USTC. His research interests include the-
oretical research and system development in the
field of integrated electronic information systems.
He is an Academician of the Chinese Academy of
Engineering (CAE).

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 11,2023 at 17:13:42 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

