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Abstract— It is a known issue that low-latency communication
is hard to achieve when using multiple network interfaces with
asymmetric capacity and delay (e.g., LTE and WLAN) simulta-
neously. A main underlying cause of this issue is that the packets
with lower sequence number are stalled on a high-latency path,
thus the early arriving packets with higher sequence number
become “out-of-order (OFO)” packets. These OFO packets may
excessively consume receiver’s buffer, causing long reordering
delay and unnecessary packet retransmission. In this paper,
we present a novel design of packet scheduling for Multipath TCP
(MPTCP), called OverLapped Scheduler (OLS), able to tackle
the OFO-packet problem more effectively. OLS can guarantee
sufficient throughput on demand of upper layer applications,
and utilizes the remaining bandwidth to reduce OFO-packets.
To do so, OLS schedules packets according to their arrival time
and sends a controlled number of redundant packets to avoid
the impact of inaccurate arrival-time estimations due to network
jitter. We implement OLS in a Linux kernel, and the experiments
show that in asymmetric networks with or without jitter, OLS
can effectively reduce OFO-packets and transmission latency
while maintaining a sufficient throughput, which makes it fully
capable to meet the requirements of applications such as live
video streaming.

Index Terms— Multipath TCP, live video streaming, out-of-
order packets, scheduler.

I. INTRODUCTION

L IVE video streaming applications are getting a worldwide
popularity, and with the increasing number of mobile
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users and devices, providing proper transmission service for
live streaming applications in mobile networks has become
an urgent issue. According to [1], global mobile data traffic
will grow sixfold from 2017 to 2022, and Internet video will
represent 82% of all business Internet traffic by 2022. Since
mobile users are expecting to get access to the internet anytime
anywhere, mobile devices nowadays are usually equipped
with multiple network interfaces to work with various access
technologies such as 4G, 5G, Wi-Fi and Wi-Fi6. As a result,
live video streaming traffic may encounter different network
conditions, which challenges the data transmission underlying.

To be more specific, live streaming applications have high
requirements on both bandwidth and transmission latency.
On the one hand, live streaming is bandwidth-consuming with
the need of high-quality video streaming capabilities. For
example, there is a trend that Ultra-High-Definition (UHD)
and 4K video streaming is becoming prevalent [1], and Multi-
View Video (MVV) as well as 8K will also be in the
foreseeable future, which will consume much more amount of
network bandwidth. On the other hand, some video streaming
applications nowadays require low and even near real-time
transmission latency. Such applications include two-way chat,
video conferencing, real-time device control, cloud gaming,
etc., which are springing up rapidly in recent years.

Providing data transmission service for live streaming appli-
cations with such complex requirements is quite challenging,
especially in mobile networks. For one thing, in wireless envi-
ronments where bandwidth is scarce and expensive, to expand
the bandwidth capacity of a single network interface needs
long-term research and huge investment(e.g., the emerging 5G
standard). For another, to provide low-latency and robust data
transmission is also a tough task because of user mobility,
limited signal range, frequent handoffs and other common
issues in mobile networks. To tackle these problems, a feasible
approach is to utilize multiple network interfaces equipped in
almost every mobile device simultaneously, such as LTE and
WLAN access. Such design is deemed as a multipath protocol.

Several developed multipath protocols have shown their
potential for providing higher aggregated bandwidth, improved
robustness and better support for user mobility compared with
single-path protocols. For example, there are some transport
layer protocols such as CMT-SCTP [2], multipath QUIC
(MPQUIC) [3] and multipath TCP (MPTCP) [4], have been
widely studied. Among them, MPTCP, as a drop-in extension
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to regular TCP, is now a recent IETF standard [4] and used
by major software vendors, including the Siri service of
Apple [5], [6]. Besides, MPTCP has also become a part of
the ATSSS (Access Traffic Steering, Switching and Splitting)
function in 5GC (5G Core) network [7]. MPTCP gains its wide
popularity by offering performance enhancements such as
seamless handover between network interfaces to support user
mobility, resilience to link failures and aggregated bandwidth
from multiple paths [8]–[11].

However, using MPTCP straightforwardly does not always
guarantee satisfying transmission performance, especially
when asymmetric link technologies are used (e.g. LTE and
WLAN). In this situation, it is hard for MPTCP to provide low-
latency transmission service for delay-sensitive applications,
and the underlying cause of this issue is the problem of out-
of-order (OFO) packets. Specifically, when data packets do
not arrive in original preserved order, packets with higher
sequence number have to be stored and remain unprocessed
in the receiver’s TCP buffer till the reception of packets with
lower sequence numbers, which causes occupied (thus wasted)
buffer space, head-of-line (HOL) blocking, unnecessary packet
retransmissions, and long reordering delay [12]. That makes
OFO-packet problem a thorny obstacle for MPTCP to provide
low-latency transmission service [13]–[15].

To make MPTCP able to provide low-latency transmis-
sion, some scheduling methods have been made to reduce
OFO-packets caused by asymmetric network paths. The basic
idea behind them is to estimate the arrival time of pack-
ets based on network conditions, and then to send packets
according to the arrival-time estimations instead of their
native sequence numbers [16]–[18]. But OFO-packet problem
still remains in practical use, because existing schedulers
may not work well in mobile networks with jitter. And the
unpredictable network jitter leads to inaccurate arrival-time
estimations, which make some well-designed schedulers even
underperform the naive Round-Robin scheduler [19] in certain
situations.

An alternative approach to getting around the OFO-packet
problem is to allocate a larger TCP buffer at receiver, but
unfortunately, delay-sensitive applications such as live video
streaming is unable to take advantage of it. Though a large
enough TCP buffer stores OFO-packets for reordering and the
retransmission problem can be mitigated, the HoL blocking
and long reordering delay still exist, which delay-sensitive
applications such as live streaming care more about. Worse
still, mobile devices are usually equipped with limited buffer.
As a result, the OFO-packet problem is still a burning issue for
delay-sensitive applications and MPTCP should be improved
to tackle it.

In this paper, we propose a novel MPTCP scheduling
method named OverLapped Scheduler (OLS) to solve the
problem, which is designed to trade part of the aggregated
bandwidth for fewer OFO-packets in asymmetric networks
with jitter. Its design is based on an observation that live
video streaming applications always generates traffic with a
limited video bitrate, so the aggregated bandwidth higher
than the bitrate is idle. OLS then sends a controlled number
of redundant packets, i.e. repeated packets, to fill the idle

bandwidth, in order to create headroom for inaccurate arrival-
time estimations caused by network jitter. We implement OLS
in a Linux kernel based on MPTCP v0.95 [20] and compare its
performance with the existing schedulers. Experiments show
that OLS effectively reduces OFO-packets and consequently
provides lower transmission latency, while maintaining a suffi-
cient throughput in asymmetric networks with or without jitter.

The main contributions of this paper are summarized as
follows.

• We propose OLS to reduce transmission latency in mobile
networks with unpredictable network jitter. Basically,
OLS does not seek higher throughput than needed, but
uniquely trades the remaining bandwidth for lower trans-
mission latency. To do this, OLS sends packets according
to their arrival time to ensure that they arrive in order, and
meanwhile sends redundant packets to avoid the impact
of inaccurate arrival-time estimations when network jitter
occurs.

• We analyze the performance of different scheduling algo-
rithms to study how OFO-packets can be reduced in
asymmetric networks with jitter. It illustrates that sending
redundant packets effectively reduces the number of
OFO-packets when network jitter occurs. And with OLS,
MPTCP is more tolerant of unstable mobile networks and
able to provide low transmission latency.

• OLS is implemented in a Linux kernel, with mini-
mal cross-layer design which applications can easily
get access to. And experimental evaluation shows that
OLS outperforms other scheduling algorithms in reduc-
ing OFO-packets effectively while providing sufficient
throughput even in a highly asymmetric network with
an amount of jitter.

The rest of this paper is organized as follows. In Section II,
we give a brief introduction of MPTCP and the challenges it
meets, then present the motivations of our job. Related work
is stated in Section III. In Section IV, the design and imple-
mentation of OLS are discussed. In Section V, we analyze the
performance of different scheduling algorithms. In Section VI,
we evaluate OLS with unstable heterogeneous networks. And
finally, a conclusion is included in Section VII.

II. BACKGROUND AND MOTIVATION

This section includes the overview of MPTCP and the
challenges of it when providing low latency transmission.
Then, we discuss the motivation of our proposed scheduler.

A. The Multipath TCP (MPTCP) Protocol

Mobile devices nowadays are always equipped with multi-
ple network interfaces, allowing them to switch their access
technologies when users move around. And thanks to the
multipath protocols, these multi-homed devices can not only
flip between several access technologies, but can also use them
simultaneously to increase throughput and robustness against
network failures [9], [21]. MPTCP, as a set of extensions to
regular TCP, enables a transport-layer connection (a.k.a., ses-
sion) to operate across multiple paths simultaneously. MPTCP
operates at the transport layer and is transparent to both
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Fig. 1. An MPTCP connection over several asymmetric paths, creating
OFO-packets at connection level. Data from the upper-layer application is
scheduled by an MPTCP scheduler.

higher and lower layers, which means MPTCP can bring
benefits to already existing applications and work well with
current network middleboxes. Besides, MPTCP offers band-
width aggregation, mobility enhancement, resilience to link
failures [8], [10] and the ability to mitigate network congestion
by shifting traffic away from the congested paths [22]–[26].
Since MPTCP has such attractive features, it is standardized by
the IETF [4] and adopted by some major software vendors [6],
[27]. Recently, MPTCP is selected to support Wi-Fi/5G
co-existence in future 5G networks by 3GPP [7].

Fig. 1 illustrates how MPTCP works in the network stack.
An MPTCP connection includes several subflows which act
as regular TCP connections, and MPTCP scheduler takes
the responsibility to split data among the subflows. For each
data segment, the scheduler decides which subflow to use for
transmission with respect to network properties.

B. Challenges Brought by Asymmetric and Dynamic Paths

MPTCP, just like regular TCP, provides reliable and in-order
delivery, which is more challenging for a multipath protocol
than a single-path one. Since MPTCP splits data among sub-
flows, chances are that segments arrive out-of-order, especially
for MPTCP operating over paths with asymmetric capacity
and/or delay, which is a core use case of MPTCP [28]. When
OFO-packets appear, some well-known problems may occur
causing poor transmission performance [29]. For example,
as shown in Fig. 1, packets on subflow No.1 are stalled due to
higher delay, thus the red packets with higher sequence number
become OFO-packets. These unprocessed OFO-packets are
stuck in receiver’s TCP buffer, causing long reordering delay,
unnecessary retransmission and HoL blocking, which may
greatly damage the performance of a delay-sensitive applica-
tion such as live video streaming.

MPTCP scheduler plays a key role in reducing
OFO-packets [29], because it is the very component
that makes the decision on which packet should be sent
on which subflow. The reason why current MPTCP suffers
from OFO-packet problem is that in-kernel schedulers, such
as Round-Robin and Lowest RTT First (LRF, the default

scheduler), consider little to none about the asymmetry of
multiple subflows. Some state-of-art schedulers are thus
aiming at reducing OFO-packets by estimating the arrival
time of packets on different subflows and make scheduling
decision accordingly. But they only solve a part of the
problem brought by asymmetric paths, and still remain
ineffective with largely asymmetric paths or in dynamic
networks where the capacity and RTT is ever changing and
unpredictable. A brief survey of these schedulers is presented
in Section III. Noted that MPTCP over highly asymmetric
and dynamic paths is a practical scenario rather than a
fictional one: as over 70 percent of the global population will
have mobile connectivity by 2023 according to Cisco [1],
MPTCP needs to be able to solve the OFO-problem in mobile
networks with asymmetric and dynamic network properties
due to heterogeneous access technologies, user movement
and frequent network handoffs, etc.

It is worth mentioning that, there is one scheduler that
creates few OFO-packets even under harsh network conditions,
which is the ReMP scheduler [30] (a.k.a. the redundant sched-
uler in Linux kernel). But to this end, ReMP simply sends
repeated packets on all subflows thus the benefit of aggregating
bandwidth does not show up. Despite that, we actually borrow
the idea of sending redundant packets to design our proposed
scheduler.

C. Trading Bandwidth for Low Transmission Latency

As we mention above, there are two kinds of current
schedulers, but both have drawbacks. They are:

1) Schedulers aiming at reducing OFO-packets by estimat-
ing packet arrival time precisely, which may not work
well in dynamic networks.

2) Schedulers such as ReMP that are designed to achieve
as low transmission latency as possible, at the cost of
sacrificing the bandwidth aggregation ability of MPTCP.

In this paper, we try to solve the OFO-packet problem through
taking the advantages of both. Since the mobile network
conditions are unpredictable due to network jitter, to create
some headroom for arrival time estimation to mitigate the
effects of inaccurate estimation can be a good choice. Specif-
ically, a scheduler can send repeated packets (i.e., redundant
packets) on different subflows where jitter occurs. Obviously,
this scheduler concerns more about OFO-packet problem and
does not seek the highest bandwidth an MPTCP connection
can reach, which may be not suitable for bandwidth-hungry
applications such as bulk transfer, but it is good for delay-
sensitive applications with limited throughput. Typically, live
streaming applications only require a certain bandwidth lim-
ited by video bitrate, and the bandwidth higher than needed
(i.e., remaining bandwidth) is useless. And the remaining
bandwidth is exactly what we can use to send redundant
packets and avoid OFO-packets.

The following section includes a brief review of some
multipath transport schemes aiming at achieving low-latency
transmission, and we explain how our scheduler is designed
differently with other ones.
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III. RELATED WORK

Improving live streaming service quality in mobile net-
works has always been a research highlight [31]–[33]. And
as multipath transport protocols are gradually deployed in
the network [6], [7], [27], many multipath video streaming
approaches are proposed in order to break the bandwidth
limit of single network interface and be more resilient to
link failures. For instance, MP-DASH [34] is a cross layer
approach between application and transport layer, with a goal
of enhancing MPTCP to support dynamic adaptive video
streaming over HTTP (DASH), and ADMIT [35] is a complex
MPTCP scheme with quality-driven FEC coding and rate
allocation to mitigate End-to-End video streaming distortion.
Song and Zhuang [36] suggested that each video burst can
be dispatched to an available wireless network according to a
flow splitting probability, in order to reduce the flow blocking
probability and achieve a high resource utilization.

However, though lots of research has been done to validate
the advantages of multipath protocols, their disadvantages are
also pointed out [8]–[10]. One of the well known issues is
that it is hard for multipath protocols to provide low-latency
transmission services for delay-sensitive applications. And as
live streaming applications emerge, the demand of low trans-
mission latency will become ubiquitous, making it an urgent
problem to be solved. Yedugundla et al. [29] evaluate the suf-
ficiency of CMT-SCTP and MPTCP to transport video, web,
and gaming traffic. They demonstrate that refining MPTCP
scheduler is a crucial step to reduce multi-path transmission
latency. In other words, though there are lots of well-designed
upper-layer schemes, if MPTCP fails providing low-latency
transmission at transport layer, applications are still unable
to achieve expected performance. Unfortunately, MPTCP’s
good performance strongly relies on network properties of
each subflow, and MPTCP over asymmetric paths does not
outperform a single-path protocol [12], due to the occurrence
of out-of-order and thus blocking. Worse still, in mobile
networks, the asymmetry between WLAN and cellular can
change dramatically due to network jitter.

Since it is a hard for Round-Robin and LRF to cope with
asymmetric paths, several MPTCP schedulers aiming at reduc-
ing OFO-packets with asymmetric paths have been proposed.
For example, DAPS (Delay-Aware Packet Scheduler [37]),
which is designed as an extension to the CMT-SCTP, sched-
ules packets according to the one-way-delay and capacities of
paths in order to reduce HoL blocking over asymmetric links.
But it is insensitive to dynamic network conditions change
due to ignoring the queuing delay in send buffer [38], and
is shown to generate spurious retransmissions [18]. To cope
with this, BLEST (Blocking Estimation [18]) is designed
to reducing buffer blocking. Compared with LRF, BLEST
is able to skip a currently available subflow, waiting for a
more advantageous subflow which can offer a lower risk
of blocking. Then OTIAS (Out-of-Order Transmission for
In-Order Arrival Scheduler [17]), ECF (Earliest Completion
First [16]) and STTF (Shortest Transfer Time First [18]) try
to estimate the arrival time of each packet more precisely
by taking queuing delay in send buffer into consideration.
Specifically, OTIAS builds on the idea of scheduling a segment

on the subflow with the shortest transfer time, and every
time a segment is to be scheduled, the OTIAS scheduler
computes the expected transfer time over each of the available
subflows with (�unsent_bytes

cwnd �+ 0.5)× rtt. With similar idea,
ECF uses (unsent_bytes

cwnd + 1) × rtt to expect the arrival
time. For more precise estimations, STTF even concerns
about the congestion state of each subflow to calculate the
cwnd increment in order to deal with short data flows that
may finish in slow start. Besides, some other methods are
used for precise estimations. For example, DPSAF (Forward
Prediction based Dynamic Packet Scheduling and Adjusting
with Feedback [39]) takes packet loss into consideration, and
utilizes maximum likelihood estimation in TCP modeling to
estimate the amount of data sent on paths simultaneously.
And BCCPS (BBR-based Congestion Control and Packet
Scheduling scheme) [26] designs its scheduler based on a
coupled BBR algorithm and a shared bottleneck detection
scheme.

Also, there are several scheduling methods designed for
CMT-SCTP [40], [41] and MPQUIC [42]–[44]. To mitigate
HoL blocking, the literature [40] tracks the bytes in flight
and schedules packets accordingly, while another scheme [41]
works in finer granularity called SCTP stream. Similarly,
literarures [42]–[44] take QUIC’s stream multiplexing feature
into consideration and makes scheduling decisions to mitigate
inter-stream blocking.

To sum up, the MPTCP schedulers mentioned above try
to pursuit precise arrival-time estimations, however, it may
not be a good choice especially in a network with severe
and unpredictable jitter. As a result in this paper, we try
to design a scheduler that creates headroom for inaccurate
arrival-time estimations at the cost of remaining bandwidth,
which is useless for video streaming and other applications
with limited throughput. In the next section, we present our
scheduler based on this distinctive idea, which turns out to be
quite effective dealing with networks with jitter, and enables
MPTCP provides low-latency transmission in this situation.

IV. OVERLAPPED SCHEDULER FOR MPTCP:
DESIGN AND IMPLEMENTATION

A. Overview

To mitigate OFO-packet problem, reduce transmission
latency in mobile networks, and guarantee sufficient through-
put for live video streaming, we propose OverLapped Sched-
uler (OLS). Generally speaking, OLS includes two scheduling
algorithms, namely DElay-and-Jitter-Aware (DEJA) algorithm
and ThroughPut Assurance (TPA) algorithm, which are to
fulfill corresponding design objectives. The framework of OLS
is shown in Fig. 2.

In order to reduce OFO-packets, DEJA is designed to send
packets on the subflow with the shortest arrival time at the
receiver side. DEJA estimates an arrival time for every packet
on each subflow based on current send buffer size, cwnd
(congestion window) and RTT of the subflow, which is a
common approach in other schedulers. The uniqueness of
DEJA is that it additionally takes network jitter into consid-
eration when estimating the arrival time. And consequently
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Fig. 2. The framework of OLS, including two algorithms named DEJA and
TPA, which are designed to fulfill corresponding design objectives.

the arrival time of a packet on subflow i is estimated in
the form of an interval Ti, instead of a precise value. The
left bound of such an interval is the arrival time estimated
with the method mentioned above, and the right bound of
it represents an arrival-time estimation which additionally
includes the possible delay caused by network jitter. Thus
when the right bound of Ti is smaller than the left bound
of Tj , the shortest arrival time is considered to be achieved
on subflow i. However, when Ti and Tj are overlapped (i.e.,
Tj ∩ Ts �= ∅), on which subflow the shortest arrival time
will be achieved is stochastic. In order to make sure packets
with lower sequence number arrive first, DEJA will decide
to sent redundant packets, on both subflows until the two
intervals are overlapped no more. By doing so, no matter
there is jitter or not, the packets always arrive with successive
sequence number.

On the other hand, TPA is designed to ensure sufficient
throughput for upper-layer applications by limiting the num-
ber of redundant packets created by DEJA. The number of
redundant packets is carefully calculated according to a given
target throughput, i.e., the data generation rate of upper-layer
applications, which need a minor cross-layer design. TPA
limits the number of redundant packets that can be sent within
the current cwnd to make sure enough packets carrying new
data are sent to fill the rest of the cwnd. Every time a cwnd
is filled, the number of redundant packets is refreshed using
the latest cwnd and RTT for another round of scheduling.

OLS functions properly on the premise that the aggregated
network bandwidth is higher than the target throughput of
upper-layer applications, but there is a chance that this premise
is not satisfied. In this situation, OLS should spend all the
bandwidth for higher throughput to meet the upper-layer
requirement, thus no redundant packet is allowed to send.
Though this degraded version of OLS may work unsatisfactory
in networks with jitter, it can still estimate arrival time of
each packet to reduce OFO-packets. Actually, in this worst
case, OLS is similar to some other schedulers such as ECF
and OTIAS described in Section III, and it is evaluated in
Section VI as “w/o-DEJA” algorithm. Though this situation
is undesirable, it will not happen for the most of the time,
because applications want to avoid that situation as well, and
some of them are designed to accommodate the low bandwidth
connection. For example, live streaming applications using
adaptive bitrate (ABR) streaming technique [45], [46] such
as HTTP Live Streaming (HLS) [47] will cut down the video
bitrate for smooth playback.

We present detailed descriptions about these two algorithms
in the following sections. For the sake of presentation simplic-
ity, we use RTT and smoothed RTT (srtt) interchangeably for
the same meaning.

B. DElay-and-Jitter-Aware (DEJA) Scheduling Algorithm

To make packets arrive in-order at the receiver side,
the basic idea behind OLS is to estimate the arrival time of
every packet, and then to schedule the packet on the subflow
with the shortest arrival time. Define T j

i as the arrival time for
a packet i at subflow j. Then packet i is scheduled on subflow
j if T j

i is the smallest of all subflows.
T j

i consists of two parts, which are the time that packet i
waits in the send queue of subflow j (qtimej

i ), and the time
that packet i is inflight (flight_timej

i ). In other words,

T j
i = qtimej

i + flight_timej
i

=
qbytesj + pkt_sizei

throughputj
+

srttj
2

, (1)

where qbytesj and pkt_sizei denote the bytes in send queue
of subflow j and the bytes of packet i, respectively. And srttj
and throughputj denotes the smoothed RTT and throughput
of subflow j, respectively.

For computation and implementation efficiency, we rewrite
some terms in the Eq. (1):

qbytesj = qlenj × MSSj ,

pkt_sizei = MSSj ,

throughputj =
cwndj

srttj
× MSSj ,

where qlenj and cwndj denote the number of packets in
send queue of subflow j and its congestion window size,
respectively.

Since now T j
i is a function of srttj , we might present it

in the form of T j
i (srttj) as well. Then, we can estimate the

arrival time of packet i over subflow j as follows:

T j
i (srttj) = (

qlenj + 1
cwndj

+
1
2
) × srttj . (2)

In static networks, to estimate the arrival time using
T j

i (srttj) is feasible, but it is not the case when net-
work jitter exists. The existence of network jitter makes it
impossible to make precise estimations on the packet arrival
time. As a result, the arrival time over a network with
jitter can be described as an arrival-time interval Tj =
(T j

i (srttj), T
j
i (srttj + Δj)), where Δj characterizes the net-

work jitter on subflow j. Δj can be calculated using previous
RTT samples on subflow j. For example, Δj can be the median
deviation of the RTT samples, and we use it in our in-kernel
implementation. Now we can safely estimate that packet i will
arrive at the receiver side within a time interval Tj .

DEJA is presented in Algorithm 1. Generally, DEJA not
only sends a packet on the subflow s with the shortest arrival
time, but also sends the same packets to every subflow whose
arrival-time interval is overlapped with that of the subflow s.
Then, even though some packets may be delayed on some
subflows because of network jitter, other redundant packets
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Fig. 3. OLS schedules packets from send buffer to different subflows.
The yellow packets are “overlapped”, which means the two subflows are
transmitting repeated packets.

will fill the holes and no OFO-packet will be created. In other
words, at connection level, all packets arrive in their preserved
order. Packets in a send buffer will be scheduled as illustrated
in Fig. 3. Redundant packets are sent on subflows with
overlapped arrival-time intervals, which is where the name
“overlapped scheduler” comes from.

Algorithm 1 Delay-and-Jitter-Aware Scheduling
Input : packet i, subflow set S

Output: selected subflows (sel_flows) to send packet i

1 if cwnds in all subflow are full then
2 return NULL
3 end
4 for subflowj ∈ S do
5 calculate arrival time interval

Tj = (T j
i (srttj), T

j
i (srttj + Δj))

6 end
7 find subflows with minimal arrival time T s

i

8 sel_flows + = subflows

9 for subflowj ∈ S and j �= s do
10 if Tj ∩ Ts �= ∅ then
11 sel_flows + = subflowj

12 end
13 end
14 return sel_flows

There is one thing we need to note that in order to incur
as few OFO-packets as possible, sometimes DEJA decides
to send redundant packets instead of packets carrying unsent
data. At worst, DEJA acts like ReMP [30] scheduler and
thus may provide insufficient throughput. To tackle this issue,
the throughput assurance algorithm is proposed in next section.

C. ThroughPut Assurance (TPA) Scheduling Algorithm

DEJA may trade as much bandwidth as possible for reduc-
ing the number of OFO-packets and even zero OFO-packet
can be achieved when redundant packets fill the cwnd of
a subflow. But it is unable to ensure sufficient throughput
for upper-layer applications because of too many redundant
packets. Therefore, in this section, we present TPA scheduling
algorithm, which limits the number of redundant packets and
guarantees good enough number of packets carrying new
data.

To function properly, TPA algorithm needs a cross-layer
information (see Section IV-D) which is the target throughput

(tgrt_thp) given by upper-layer applications, such as the video
bitrate of the streaming video content. As we discuss in
Section II-C, throughput higher than the target is not necessary
since live streaming does not support content caching in
advance. Thus, instead of seeking the maximal throughput,
TPA algorithm only keeps the throughput of the MPTCP
connection merely beyond the target throughput, while the
remaining available bandwidth can be used by DEJA to send
redundant packets for low transmission latency.

To achieve the goal, TPA is designed to limit the number
of redundant packets. A parameter red_thpj is introduced
to represent the total throughput that can be used to sent
redundant packets by subflow j. TPA calculates red_thpj as

red_thpj = throughputj − rsv_thpj

=
cwndj × MSSj

srttj
− rsv_thpj , (3)

where rsv_thpj is the reserved throughput which is needed to
send packets carrying new data and ensure sufficient through-
put. And the reserved throughput of subflow j is

rsv_thpj = tgrt_thp −
∑

i∈S,i�=j

cwndi × MSSi

srtti
,

and if rsv_thpj < 0, set it to zero. Note that rsv_thpj >
throughputj may happen when the MPTCP connection does
not have sufficient bandwidth to carry the traffic with such
a high target throughput. In this situation, red_thp is set
to zero and no redundant packet is allowed to send. It is
also worth mentioning that TPA estimates throughputj using
MSSj instead of pkt_sizej in Eq. (2). In this way, only
the payload of a packet (excluding the header) is used to
calculate the throughput, and thus throughputj represents
the actual throughput that an application can get. In other
words, throughputj matches the given target throughput at
application level, and no conversion is needed when live
streaming applications set their video bitrate as the target
throughput.

TPA works as follows. When the first packet is scheduled on
subflow j, TPA initiates red_thpj according to Eq. (3). Then
whenever a packet is scheduled by DEJA on subflow j, TPA
intervenes the scheduling decision according to Algorithm 2.
Specifically, TPA decreases red_thpj , and when red_thpj ≤
0, the redundant packet is not allowed to send. Instead,
TPA waits until packets carrying fresh data are scheduled
by DEJA to fill the remaining cwndj . Finally when current
cwndj is filled, red_thpj is refreshed for the next round of
scheduling.

By combining DEJA and TPA algorithms, we finally get
OLS. OLS is a new way to balance the trade-off between
reduced number of OFO-packets and high throughput. Specif-
ically, some existing schedulers, such as LRF, try to use
all available bandwidth to transmit fresh data for maximal
throughput, but consequently create lots of OFO-packets.
In contrast, schedulers like ReMP send repeated data through
all the subflows, creating no OFO-packets but providing
low throughput. OLS is an elastic design that guarantees
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Fig. 4. Packets arrive in receive buffer with different scheduling algorithms, creating OFO-packets due to asymmetric paths with network jitter. Packets with
high sequence number are on the left side of the receive buffer.

Algorithm 2 TPA’s Actions on Packet Scheduling

1 if a redundant packet is scheduled on subflowj then
2 if red_thp − MSSj

srttj
> 0 then

3 red_thp− = MSSj

srttj

4 redundant packet is allowed to send
5 else
6 discard the scheduling decision
7 end
8 end

9 if cwndj is filled then
10 recalculate red_thp with Eq. (3)
11 end

sufficient, though not maximal, throughput and at the same
time also keeps the number of OFO-packets as small as
possible.

D. Implementation of the Cross-Layer
Design in TPA Algorithm

In this subsection, we explain how OLS is implemented in a
Linux kernel and how an application react with OLS through
easy access. In short, we use the proc file system (procfs) to
achieve information interaction between kernel modules and
user processes [48]. The procfs provides some interfaces to
the kernel variables in the form of some writable files, which
is mounted at /proc like common files in Linux kernel by
default. By modifying these files, some parameters in Linux
kernel modules can be changed.

In the case of OLS, since it is implemented as a kernel
module, it can use proc_create function to create a writable
pseudo-file which contains a variable that can be modified by
applications. All an application needs to do is to write its target
throughput to the pseudo-file. Then OLS can read from the file
and will automatically keep the actual throughput above it with
our TPA algorithm.

Noted that helping an application setting their target band-
width is out of scope for our job, and some applications
are aware of their target throughput naively. For instance,
streaming servers are aware of the bitrate of their video content
according to its resolution, frame rate, encoder, etc. And
these servers allow their users to select one of the several

video qualities given, manually or with mechanisms such as
ABR [49]. Thus when an MPTCP connection is established
for video streaming, the target throughput can be directly set
as the video bitrate. Since TPA algorithm only concerns about
the payload of a packet and ignoring the header overhead, its
estimated throughput matches the given target throughput at
application level and need no conversion.

V. DISCUSSION ON DEJA SCHEDULING ALGORITHM

In this section, we analyze the behaviors of three scheduling
algorithms about generating OFO-packets in networks with
jitter, which are LRF as a baseline, “w/o-DEJA” (defined in
Section VI) scheduling algorithm that sends no redundant
packet, and the proposed DEJA scheduling algorithm.

We focus on one of the most common scenarios of an
MPTCP connection with two subflows, namely subflow 1 and
subflow 2. For the convenience of explanation, we assume
that RTT of subflow 2 is larger than that of subflow 1
(srtt2 > srtt1). In following discussions, we calculate the
theoretical maximum OFO-packets. Fig. 4 presents the situa-
tion of receive buffer with different scheduling algorithms and
network conditions.

A. Lowest RTT First (LRF)

The number of OFO-packets created by LRF scheduler can
be simply calculated as:

ofo_size = (
srtt2

2 × srtt1
− 1) × cwnd1 + incre_cwnd1,

where incre_cwnd1 is the increment of cwnd1 in srtt2
2 . It can

be calculated as:

incre_cwnd1 = (
dRTT − 1

2
) × dRTT,

dRTT =
srtt2
srtt1

.

As illustration in Fig. 4(a), OFO-packets are created because
LRF schedules packets on subflow 2 when cwnd1 is full.
However, packets sent from subflow 1 in subsequent cwnds
may arrive earlier. They have higher sequence number and
form queue in receive buffer. The queue becomes longer with
greater RTT difference and bigger cwnd1. Thus, LRF cannot
handle an MPTCP connection with asymmetric paths. Note
that theoretically, all OFO-packets will be passed to upper
layer within srtt2

2 .
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B. W/o-DEJA

All packets are scheduled according to their arrival time
by w/o-DEJA, thus they arrive at the receiver side in order.
These in-order packets can be immediately passed to upper-
layer application, creating no queue as shown in Fig. 4(b).

But when network jitter occurs, for example a packet on
subflow 1 is delayed for δ1 which is unexpected by the
scheduler, the packets with higher sequence will queue up in
buffer. Then the maximal OFO queue will be generated right
before the delayed packet arrives as shown in Fig. 4(c). Then
we can calculate the number of OFO-packets as follows:

ofo_size = min{ throughput2
MSS2

× δ1, cwnd2}

= min{cwnd2

srtt2
× δ1, cwnd2}.

Compared with LRF, asymmetric RTTs are not the cause
of OFO-packets for w/o-DEJA, but network jitter remains a
problem according to the δ1 term in the equation.

C. DEJA

DEJA defines arrival time as an interval Tj instead of a
precise value T j

i like w/o-DEJA does. This interval creates
some headroom for possible errors due to jitter, and finally
reduce OFO-packets. In static networks, DEJA theoretically
creates no OFO-packet, either. Then, an unexpected delay
occurs at a packet on subflow 1 for δ1 as shown in Fig. 4(d).
Different from w/o-DEJA, DEJA is aware of the jitter thus
schedules some redundant packets. These packets are the keys
to offset the effect of jitter, so we estimate the number of
them.

According to Algorithm 1, DEJA schedules identical pack-
ets on both subflows when T1 ∩ T2 �= ∅. In our scenario,
subflow 2 is relatively stable, thus T2 = T 2(srtt2) (ignoring
the packet number here for expression convenience). At the
beginning, we have T 2(srtt2) > T 1(srtt1 + Δ1) and packets
are scheduled on subflow 1. The moment subflow 2 begins to
send redundant packets when T 2(srtt2) = T 1(srtt1+Δ1) and
after sending N redundant packets, subflow 2 stops sending
another redundant packets under two different situations. Here
we denote the number of redundant packets is N and after
N scheduled packets, the estimated arrival time of subflow
i is denoted as T i

N+1. The subflow 2 stops sending another
redundant packets when:

1) T 2
N+1(srtt2) > T 1

N+1(srtt1 + Δ1), which means sub-
flow 2 only sends redundant packets and thus it creates
no OFO-packet. That may be caused by the mitigated
jitter on subflow 1 or T 2

N+1(srtt2) increases rapidly
because of a big srtt2. Though subflow 2 may creates
OFO-packets later, the number of them will not outnum-
ber the theoretical maximum in next situation.

2) T 2
N+1(srtt2) < T 1

N+1(srtt1), which means the esti-
mated arrival time on subflow 2 is shorter than that
on subflow 1. From this moment on, DEJA schedules
new packets on subflow 2 to fill the space left in
cwnd2, and the number is cwnd2−N . To illustrate how
OFO-packets are created by DEJA, we need to calculate

the number of redundant packets N first, we have

N = throughput1 × (T 1
N+1(srtt1) − T 1(srtt1))

= throughput1 × (T 1(srtt1 + Δ1) − T 1(srtt1))

=
cwnd1

srtt1
× (

qlenj + 1
cwndj

+
1
2
) × Δ1.

With the constraint of cwnd2, we finally get:

N = min{cwnd1

srtt1
× (

qlenj + 1
cwndj

+
1
2
) × Δ1, cwnd2}.

(4)

If the estimation of jitter Δ1 covers the actual packet
delay δ1 on subflow 1, no OFO-packet is created.
Because in this situation, even though packets (less
than N ) on subflow 1 is delayed, their copies arrive
at receiver from other subflows in order.
DEJA generates OFO-packets only when the actual
delay of the packets on subflow 1 is beyond our
estimation, and no redundant packet can fill the hole.
In this situation, DEJA creates the same number of
OFO-packets as w/o-DEJA does.

In a word, DEJA only creates OFO-packets when network
jitter is severe, more specifically, when the unexpected delayed
packets number Nu exceeds N in Eq. (4). That is,

ofo_size = min{cwnd2

srtt2
× δ1, cwnd2},

which will soon disappear after the Nu − N delayed packets
arrives.

VI. PERFORMANCE EVALUATION

A. Experimental Setup

Performance evaluation is presented in this section. For
performance comparison, several well known schedulers, such
as Round-Robin, LRF, and BLEST, are also evaluated in
our evaluation. Besides, in addition to the full-featured OLS,
we also disable DEJA or TPA algorithm separately to test their
functions under different circumstances. We denote OLS dis-
abling DEJA and TPA as w/o-DEJA and w/o-TPA respectively.
Descriptions about them are as follows:

• W/o-DEJA is an important algorithm as a contrast to
OLS. It can be regarded as a degraded version of
OLS that ignores network jitter (Δj = 0, ∀j), which
means it sends no redundant packets. Its performances
correspond to existing MPTCP schedulers that try to
reduce OFO-packets with arrival-time estimations, such
as ECF [16] and OTIAS [17] (described in Section III).
Furthermore, it can also be regarded as a OLS when
the video generation rate is higher than the total band-
width (red_thp = 0, for all subflows). We implement
w/o-DEJA by simply setting Δj = 0 in Algorithm 1,
or setting red_thp = 0 in Algorithm 2.

• W/o-TPA does not limit the number of redundant packets
that DEJA creates, thus it does not ensure sufficient
throughput (red_thp = cwnd, for all subflows). As a
comparison, its performances illustrate that OFO-packets
can be greatly reduced by sacrificing throughput, and
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Fig. 5. The network topology for performance evaluation.

shows how OLS balances the trade-off between reduced
number of OFO-packets and high throughput. We imple-
ment w/o-TPA by simply setting red_thp − MSSj

srttj
> 0

in Algorithm 2.
We conduct two experiments in our testbed. As shown

in Fig. 5, our testbed has a common topology in real mobile
networks, e.g. an MPTCP connection with two subflows,
using 4G and Wi-Fi respectively. Though the topologies of
the experiments are the same, different network conditions of
the two subflows are introduced in the two routers in Fig. 5
with tc in Linux kernel, such as RTTs, capabilities and the
existence of network jitter. To simulate the performance of a
live video streaming server, the server provides a data stream
of a certain rate for the client with iperf3, which is also
the target throughput of TPA. The client and the server are
MPTCP-enabled with OLS, based on MPTCP v0.95 [20].

B. OFO-Packet Reduction in Static Asymmetric Network

The first experience illustrates the superiority of OLS in
reducing OFO-packets in static asymmetric network. In this
experiment, the server offers a 10 Mbps traffic through the
two paths of different RTTs to mimic an application generating
10 Mbps video streaming traffic. The bandwidth of the two
paths is 6 Mbps respectively, which means one path provides
insufficient throughput while two paths provides more than
necessity. The subflow 1 runs on a 20 ms-RTT path and
the RTTs of path 2 are set from 20 ms to 160 ms in
order to fully investigate the performance of OLS in different
asymmetric scenarios. Our settings borrow some ideas from
Hurtig et al. [18], who fix the RTT of one path and the RTT
of another path covers a wide range.

Compared with other in-kernel schedulers, such as BLEST,
LRF and Round-Robin (RR), OLS can reduce OFO-packets
thanks to the basic idea of estimating packets arrival time.
Up to 80% of the OFO-packets are eliminated using OLS in
very asymmetric networks. Note that the actual throughput
of OLS is almost equal to that of the in-kernel schedulers
(Table I), which means the same number of packets are sent
to the client every moment. However, not all of them are
handed immediately to upper-layer applications. Instead, they
stay unprocessed in OFO queue and have to wait for the
packets with lower sequence number, which are supposed to
arrive earlier. As shown in Fig. 6, OLS generates much less
OFO queue per 0.1 second, which shows its superiority on
providing low-latency transmission.

We also evaluate w/o-DEJA and w/o-TPA. In static
networks, they also successfully reduce the number of
OFO-packets. However, we can observe from Fig. 6 that

Fig. 6. The average size of OFO queue that is created every 0.1 second in
static asymmetric networks by different schedulers. The RTT of subflow 1 is
20 ms.

TABLE I

THROUGHPUT OF SCHEDULERS IN STATIC ASYMMETRIC NETWORKS

w/o-DEJA creates a little more OFO-packets than full-
featured OLS. In addition, even though w/o-TPA creates the
least OFO-packets, it only provides a throughput less than
8.48 Mbps as shown in Table I, while other schedulers reach
at least 9.57 Mbps. These disadvantages are even amplified by
network jitter as we present in next subsection.

C. OFO-Packet Reduction in a Network With Jitter

Mobile networks are full of jitter caused by issues such as
users movement, limited range of wireless signals, etc. For
example, Li et al. [10] illustrated that significant RTT spikes
appear before a network handoff, and thus the OFO queue
size rises with the jitter and increase in the RTT of subflows,
especially around moments of handoffs. Furthermore, they
also indicated that since only in-order packets can be used by
upper-layer applications, the total throughput may be higher
than the actual data rate due to OFO-packet problem.

As a result, in the second experiment, RTT jitter is intro-
duced to one of the two subflows to simulate the situation
before a handoff in real mobile networks. We treat the severity
of the RTT jitter and increase as the variable in this experi-
ment, and evaluate the efficiency of different schedulers in
reducing OFO-packets. Though OLS, w/o-DEJA and w/o-TPA
work well in static networks, network jitter may magnify the
OFO-packet problem and may make it harder to handle. Note
that though implemented with some difference, w/o-DEJA is
actually the idea that most of the schedulers use to reduce
OFO-packets without caring about network jitter. So by testing
w/o-DEJA, we can find out if OLS has a superiority over
existing schedulers in reducing OFO-packets and transmission
latency in networks with jitter.
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Fig. 7. The performances of different schedulers in networks with jitter.
(a) The average size of OFO-packets they create per 0.1 second; (b) The total
throughput they provide for the upper-layer application.

In this experiment, the server provides a 10 Mbps traffic
over the two paths with the same bandwidth of 8 Mbps,
to mimic a streaming application with 10 Mbps bitrate. The
RTT of path 2 is 160 ms, and the RTT of path 1 is with
jitter. In the following description and figures, expressions
like “80±40 ms” denote that the RTT of path 1 is changing
randomly from 40 ms to 120 ms. Intuitively, schedulers may
prefer path 1 with lower average RTT (e.g., LRF) and send
more packets through it, as a result, when this path suffers
jitter and the arrival-time estimations are inaccurate, more
OFO-packets would be created.

We record the average OFO queue size, the total throughput
at connection level and bytes received at each subflow in a
period of twenty seconds during transmission. The statistics
are presented in Fig. 7.

First, OLS, w/o-DEJA and w/o-TPA create far fewer
OFO-packets than some in-kernel schedulers, namely Round-
Robin and LRF. As shown in 7a, though network jitter has
effects on these schedulers, creating more OFO-packets when
RTT jitter is severer, the major factor is actually the difference
of average RTTs, i.e., asymmetry of RTTs, between two paths.
Surprisingly, BLEST fails to reduce OFO-packets in both
experiments. Apparently, to use existing in-kernel schedulers
in asymmetric networks is not a wise choice.

Though w/o-DEJA creates fewer OFO-packets than
in-kernel schedulers, we can observe from Fig. 7a that
w/o-DEJA creates more OFO-packets twice as many as what
OLS does (13.1 kB to 6.3 kB, at the 60 ± 20 ms column).
The reason is that w/o-DEJA ignores network jitter. As a result,
when estimating the arrival time of certain packets, w/o-DEJA
makes lots of mistakes about on which subflow the packets will
arrive earlier because of the jittering RTT of path 1. Another
thing that we observe from the figure is that the median of
the RTT of path 1 only has minor effect on OFO-packets, and
the range of RTT jitter is the most influential factor, which
confirms our theory in Section V.

Except for OFO-packets, sufficient throughput is also what
qualified schedulers need to ensure and w/o-TPA is apparently
not one of them. We mentioned in Section IV that without
TPA, unlimited redundant packets are sent to fill the cwnd
and at worse it works like ReMP. The throughput of w/o-TPA
in Fig. 7b is slightly higher than 8 Mbps – the bandwidth of a
single path, which is much lower than the target rate 10 Mbps.
And the other schedulers manage to maintain a throughput
around 10 Mbps. Note that the throughput of OLS is slightly

Fig. 8. The total bytes received from the both subflows and the actual number
of bytes that are passed to the upper-layer application. The RTT of path 1 is
80±40 ms. The shaded areas represent extra redundant data, and the two lines
of w/o-DEJA are overlapping.

lower than the target because of some implementation issues
such as inaccurate throughput estimation with cwnd and RTT.
Since the prototype of OLS we implemented is function-
ally good enough, we leave the work of refinement for the
future.

We take a closer look at how OLS works when the RTT of
path 1 is 80±40 ms. In Fig. 8, we present the bytes received by
the client. In the context of MPTCP, the total number of bytes
received from both subflows are equal to or larger than that
are finally passed to upper layer (marked respectively with
text in Fig. 8), because redundant packets will be dropped
by MPTCP. For w/o-TPA and OLS, the number of bytes
received from the two subflows are more than what upper-layer
applications actually need, because redundant packets are sent
to reduce OFO-packets. On the other hand, w/o-DEJA and
OLS pass the same number of bytes (25.0 MB and 25.2 MB
respectively) to upper layer within twenty seconds, but while
providing the same throughput, OLS utilizes more bandwidth.
The total bytes sent to the two subflows by OLS is 31MB, and
the 6 MB redundant bytes are the key of fewer OFO-packets.
Note that the server provides traffic with a limited rate just
like real live streaming server, thus it is impossible to reach
a throughput higher than 10 Mbps. OLS actually makes full
use of the available bandwidth aggregated by MPTCP, not
for higher throughput, but for fewer OFO-packets, in other
words, for lower latency. While o/w-DEJA does not utilize
available bandwidth, it is indeed a waste of the aggregated
bandwidth.

Now, we have a direct observation of the reordering delay
that OFO-packets wait for in OFO queue in Fig. 9. The
in-kernel schedulers not only create numerous OFO-packets,
but also have more than 10% of them stuck in receive buffer
for more than 60 ms (BLEST) or 125 ms (Round-Robin and
LRF). In a word, compared with other three schedulers, the
in-kernel schedulers many more OFO-packets stuck in receive
buffer for a longer period. On the other hand, compared with
OLS and w/o-TPA, w/o-DEJA generates more OFO-packets,
and also makes them wait for longer periods in queue before
they are passed to upper layer. For example, more than 10%
of the OFO-packets wait for longer than 125 ms in queue,
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Fig. 9. The time that packets wait and stay unprocessed in OFO queue. The
RTT of path 1 is 80±40 ms.

which is almost equally poor to some in-kernel schedulers.
Since the RTT of path 2 is only 160 ms, 125 ms has severe
influence on transmission latency. On the contrary, over 90%
of the OFO-packets are freed within 35 ms by OLS, which is
a much shorter period. This phenomenon confirms the validity
of our algorithm that even though some packets may be stalled
on one subflow because of jitter, the same packets arrive soon
through another subflow and empty the OFO queue. This
figure provides a clear illustration that OLS indeed reduces
the reordering latency, showing its superiority over other
schedulers to provide low-latency transmission in networks
with jitter.

In a word, OLS reduces the number of OFO-packets,
provides low latency transmission, and ensures sufficient
throughput, even in networks with a considerable amount of
jitter like mobile networks. The comparison between OLS and
w/o-DEJA illustrates that our core idea of trading bandwidth
for low transmission latency is efficient, and TPA also shows
its importance in throughput assurance.

VII. CONCLUSION

Multipath TCP, as an IETF standard supposed to outper-
form single-path TCP, fails providing low-latency transmis-
sion in mobile networks, where asymmetric network paths
and network jitter are common. The reason for that failure
can be found in the scheduler which decides over which
interface to transmit data. In this paper, we proposed OLS
in order to provide low-latency transmission and sufficient
throughput for live video streaming applications and other
delay-sensitive applications consuming limited bandwidth by
tackle the OFO-packet problem. To reduce OFO-packets, OLS
sends packets according to the estimated arrival time of each
packet, and instead of pursuing precise estimation, OLS sends
a controlled number of redundant packets on certain subflows
when network jitter occurs so as to make sure in-order arrivals
at MPTCP connection level. We implement OLS in a Linux
kernel and experimental evaluation shows that it outperforms
existing schedulers in creating fewer number of OFO-packets
while maintaining a target throughput even in the networks
with a considerable amount of jitter. In a word, MPTCP with

OLS is fully capable to meet the requirements of live stream-
ing applications as well as other delay-sensitive applications.
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