
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023 2297

An Online Learning Assisted Packet Scheduler for
MPTCP in Mobile Networks

Yitao Xing , Graduate Student Member, IEEE, Kaiping Xue , Senior Member, IEEE, Yuan Zhang ,
Jiangping Han , Member, IEEE, Jian Li , Member, IEEE,

and David S. L. Wei , Life Senior Member, IEEE, Member, ACM

Abstract— Multipath TCP is designed to utilize multiple net-
work paths to achieve improved throughput and robustness
against network failure. These features are supposed to make
MPTCP preferable to single-path TCP in mobile networks.
However, it fails to achieve the expected performance in practice.
A key challenge of using MPTCP in mobile networks is how
to effectively spread packets over heterogeneous and unstable
network paths to mobile devices with limited buffers. If packets
are not sent in an effective way, MPTCP may only provide
equal or even lower throughput than single-path TCP. Several
packet scheduling algorithms have been designed to tackle this
challenge. Unfortunately, they still cannot achieve the expected
performance in dynamic scenarios such as mobile networks.
In this paper, we propose an Online-Learning Assisted Packet
Scheduler (OLAPS) to solve the packet scheduling problem
by modeling it as a multi-armed bandit problem. Over time,
OLAPS can adaptively learn from current network conditions to
make the best scheduling policy to provide the highest possible
throughput in a dynamic environment. Moreover, when the
inbuilt reward monitor detects the mismatch between network
conditions and the learned policy, OLAPS aborts the outdated
policy and switches to a new one swiftly. We implement OLAPS
as a Linux kernel module and evaluate it over a wide range of
ns-3-simulated network conditions. The results show that OLAPS
retains MPTCP’s ability to provide higher throughput and also
significantly improves the throughput performance of MPTCP
when other in-kernel schedulers suffer a dramatic throughput
decline.

Index Terms— Multipath TCP, mobile networks, packet
scheduling, online-learning.

I. INTRODUCTION

NOWADAYS, mobile networks carry a significant fraction
of the internet traffic, and providing satisfactory trans-

mission service for users over mobile networks has become
an urgent and challenging issue. According to Cisco [1], over

Manuscript received 26 February 2022; revised 27 August 2022 and
26 December 2022; accepted 13 February 2023; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor M. Zhang. Date of publication
22 February 2023; date of current version 17 October 2023. This work was
supported in part by the National Natural Science Foundation of China under
Grant 61972371, in part by the Youth Innovation Promotion Association of
Chinese Academy of Sciences (CAS) under Grant Y202093, and in part by
the Fundamental Research Funds for the Central Universities. (Corresponding
author: Kaiping Xue.)

Yitao Xing, Kaiping Xue, Jiangping Han, and Jian Li are with the School
of Cyber Science and Technology, University of Science and Technology of
China, Hefei, Anhui 230027, China (e-mail: kpxue@ustc.edu.cn).

Yuan Zhang is with the Department of Electronic Engineering and Informa-
tion Science, University of Science and Technology of China, Hefei, Anhui
230027, China.

David S. L. Wei is with the Computer and Information Science Department,
Fordham University, Bronx, NY 10458 USA.

Digital Object Identifier 10.1109/TNET.2023.3246168

70 percent of the global population will have mobile connec-
tivity by 2023, and the number of public Wi-Fi and Wi-Fi
6 hotspots will also rapidly increase. With mobile devices
equipped with multiple network interfaces, users can now
access the Internet anytime, anywhere with various wireless
access technologies such as 4G, 5G, Wi-Fi, and Wi-Fi 6.
However, the reliability of mobile networks has been largely
overlooked. Frequent network failures [2], user mobility, net-
work congestion, random packet loss, and other issues make
the performances promised by the mobile networks unfulfilled.

To provide more stable and efficient transmission service
over mobile networks, one feasible method is to concur-
rently utilize multiple network paths (e.g., Wi-Fi and LTE)
between peers. In this way, a connection will not break
down because certain network paths fail and can reach higher
throughput by spreading data among multiple paths. Such a
design is deemed a multipath transport protocol. There have
been some transport-layer multipath protocols such as CMT-
SCTP [3], multipath QUIC (MPQUIC) [4] and multipath
TCP (MPTCP) [5]. Among them, MPTCP, as an extension
of the most commonly used TCP, is now an IETF stan-
dard [5] and has been adopted by some major smartphone
vendors such as Apple, Samsung, and Huawei [6], [7], [8].
With proper configuration, MPTCP can offer performance
enhancements such as smoother network handover, resilience
to network failures, and aggregated bandwidth of multiple
network interfaces [9], [10], [11].

To achieve the enhancements, MPTCP should be configured
properly according to network conditions and transmission
requirements. The packet scheduler is the most crucial among
the configurations. An MPTCP packet scheduler determines
the way to distribute data over multiple network paths. Thus,
different packet schedulers may lead to distinct transmission
performances and should be carefully chosen. For example,
managers may use the MinRTT scheduler (a.k.a. the “default”
scheduler in the MPTCP Linux kernel [12]) to achieve higher
throughput than single-path TCP, or they can use ReMP [13]
(a.k.a. the “redundant” scheduler in the kernel) to pursue low
transmission latency. Besides, several well-designed sched-
ulers have been proposed to make fine-grained scheduling
decisions. For example, BLEST [14] estimates and minimizes
potential head-of-line (HoL) blocking in the receive window.
ECF [15] estimates the arrival time of packets and sends
packets on the path at which they will arrive earlier.

However, one specific hard-wired scheduler can hardly
guarantee MPTCP’s performance in the ever-changing network
conditions in real-world mobile scenarios. That is because an

1558-2566 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 30,2024 at 16:43:32 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8123-0347
https://orcid.org/0000-0003-2095-7523
https://orcid.org/0000-0002-1911-7087
https://orcid.org/0000-0003-1674-8884
https://orcid.org/0000-0002-6979-4510
https://orcid.org/0000-0002-3839-5576

2298 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023

optimal scheduling strategy highly depends on the character-
istics of the paths being used [16]. Moreover, even in the
same network, a scheduler may perform distinctly when the
receivers have different buffer sizes. For instance, MinRTT
works well in homogeneous networks, but in heterogeneous
scenarios, it will cause many out-of-order (OFO) packets that
have to be stored in the receivers’ buffer. When the receivers
have large buffers, OFO packets may bring some minor effects,
such as long reorder delay and high buffer usage. But buffer-
limited mobile devices (e.g., smartphones) may suffer dramatic
throughput decline because they have to drop some packets
when their receive buffers are full. Although schedulers like
BLEST are supposed to solve this issue by design, their
performances may be unpredictable with changing network
conditions and random packet loss.

This paper aims to design an MPTCP scheduler that suits
various network scenarios and provides consistently quality-
guaranteed transmission service for mobile users. To this
end, we propose an Online Learning Assisted Packet Sched-
uler (OLAPS) for MPTCP to adaptively generate scheduling
policies. The proposed OLAPS solves the packet scheduling
problem with a lightweight online-learning algorithm in multi-
armed bandit (MAB) scenario named UCB1 [17]. In general,
the UCB1-based OLAPS can learn a scheduling policy that
maximizes the overall throughput overtime without any pre-
liminary knowledge.

Simply adopting the UCB1 algorithm in OLAPS is quite
inadequate in our work, and some important issues still need
to be addressed. Firstly, we need to design a reward function
that can help UCB1 chase high throughput in the context of
multipath data transmission. Our designed reward function is
based on the instantaneous throughput at both the subflow
level and the connection level rather than depending on some
inaccurate parameter measurements (e.g., congestion window,
round-trip time, loss rate, etc.) in dynamic networks. Secondly,
we introduce the actions of sending a certain number of
redundant packets to eliminate the negative effects of delayed
or lost packets on certain subflows. Thirdly, since UCB1 may
lose its effectiveness in dynamic mobile networks, we further
design a reward monitoring mechanism, which can precisely
detect network changes and restart the learning process to
generate a new policy.

We implement OLAPS as a module of MPTCP Linux
kernel v0.95 [12] and evaluate it in our semi-physical
simulation testbed composed of hosts with OLAPS and
ns-3 [18] networks. The results show that OLAPS can adapt
to a wide range of network scenarios swiftly and significantly
improve MPTCP’s performance in various harsh network
scenarios.

The main contributions of this paper are summarized as
follows.
• We formulate the complex packet scheduling problem and

solve it with a deployable online-learning scheme that
adaptively generates better scheduling policies. Specif-
ically, we design an intelligent scheduling agent with
a reinforcement learning method in the multi-armed
bandit (MAB) scenario. We further design a throughput-
driven reward function and introduce different “redundant
ratios” as the actions for the agent to pursue high instan-
taneous throughput.

• Then, we propose a reward monitoring mechanism to
avoid the online-learning algorithm failure in dynamic
mobile networks and speed up the learning process.
This mechanism detects network changes by monitoring
the deviation of rewards yielded by each action. When
it detects a network change, it restarts the learning
algorithm to explore a new optimal policy.

• Based on different online-learning methods, we imple-
ment different OLAPS variants as modules for an
MPTCP-enabled Linux kernel. Rich experiments are con-
ducted to evaluate OLAPS variants and existing heuris-
tic schedulers in a semi-physical simulation testbed.
This testbed combines hosts with actual Linux kernel
and controllable ns-3-simulated networks to get realistic
and statistically significant results. In the experiments,
OLAPS variants show their adaptability and significant
improvement of MPTCP’s performances to different net-
work scenarios.

The rest of this paper is organized as follows. In Section II,
we briefly introduce MPTCP’s packet scheduling problem and
the adversarial bandit problem as its solution. In Section III,
we review some state-of-art scheduling algorithms. Then we
formulate the packet scheduling problem and present a solu-
tion in Section IV. The design and implementation of OLAPS
are given in Section V. After that, we discuss some key designs
of OLAPS in Section VI. In Section VII, we present our
evaluation of OLAPS and its comparison with other in-kernel
schedulers. We discuss the limitations of our work as well as
our future work in Section VIII. Finally, a conclusion is drawn
in Section IX.

II. BACKGROUND AND MOTIVATION

In this section, we first present the overview of MPTCP’s
packet scheduling problem. Then, we introduce an online
learning approach as a solution. Finally, we discuss the moti-
vation for designing OLAPS.

A. MPTCP and the Packet Scheduling Problem
Multipath TCP (MPTCP) enables a transport-layer con-

nection to operate simultaneously across multiple network
paths (or subflows). This is a desirable feature for multi-
homed devices in mobile networks because by using multiple
subflows concurrently, MPTCP is expected to achieve higher
throughput [19], [20] and enhanced resilience to network fail-
ures [10], [11]. Besides, MPTCP, as a standardized extension
of regular TCP [5], is transparent to both upper and lower
layers, which makes it deployable in real networks. However,
inappropriate packet schedulers may prevent MPTCP from
performing as well as expected [21], [22]. An MPTCP packet
scheduler decides on which path a packet should be sent, sig-
nificantly impacting the final transmission performance [23].
As a result, the proper design of a packet scheduler and which
scheduler should be used in different scenarios are urgent
issues to be solved.

Several heuristic schedulers have been designed to achieve
different goals, such as high throughput, low latency [13],
HoL blocking elimination [14], [15], [24], [25], and so on.
However, none of these hard-wired schedulers can provide
consistent and expected performance under various scenarios

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 30,2024 at 16:43:32 UTC from IEEE Xplore. Restrictions apply.

XING et al.: ONLINE LEARNING ASSISTED PACKET SCHEDULER FOR MPTCP IN MOBILE NETWORKS 2299

Fig. 1. The packet scheduling problem of MPTCP.

in real mobile networks [26]. A typical example is Min-
RTT, which is designed to achieve higher throughput and
lower transmission latency by filling the congestion window
(CWND) of the subflow with the lowest round-trip time (RTT)
before other subflows in ascending RTT order. It works well
with symmetric network paths but has been proven suboptimal
otherwise. This is because when paths are asymmetric (e.g.,
with much different RTT), packets are likely to arrive out-
of-order [27], and the receiver needs to queue them in the
receive buffer as shown in Fig. 1. This issue is called head-
of-line (HoL) blocking, meaning that the early-arrived packets
have to wait for stalled packets with lower sequence numbers
from a subflow with higher RTT. The HoL blocking issue
causes prolonged reorder delay and even packet drop if packets
exceed the buffer size limit. In some cases, single-path TCP
may even outperform MPTCP due to such an issue, which
makes using MPTCP in the real network a risk-taking option.
Though schedulers such as BLEST [14] and ECF [15] try
to solve this issue, their performances in dynamic network
scenarios are still questionable [28].

Given this unsolved issue, MPTCP is usually used in
a conservative backup mode. For example, Apple’s devices
establish a primary subflow over Wi-Fi and a backup subflow
over cellular data. They only use the backup subflow when
the primary subflow becomes unavailable [7]. Such a stopgap
measure can not give full play to the advantages of MPTCP.
In conclusion, the packet scheduling problem has become an
obstacle to adopting MPTCP in mobile networks.

B. The Multi-Armed Bandit Problem
To tackle the challenges mentioned above, designing an

intelligent scheduler that can adaptively generate suitable
scheduling policies is a desired solution. In this article,
we formulate the packet scheduling problem as a classic
MAB problem [17], [29], [30], [31]. This well-studied problem
provides a simple model for the exploration versus exploitation
dilemma, which can be described as the search for a balance
between exploring the environment to find profitable actions
while taking the empirically best action as often as possible.
As a result, it is widely used to solve many sequential decision-
making tasks.

Generally, in a K-armed bandit problem, a gambler must
choose an arm of K-slot machines to play in a sequence of
trials. Plays of machine i in trials (t1, t2, . . .) yield rewards
(xi(t1), xi(t2), . . .), which are independent and identically
distributed according to an unknown law with unknown expec-
tation. A policy is an algorithm that chooses the next machine
to play based on the sequence of past plays and obtained
rewards. The gambler’s goal is to maximize the summarized
reward with a policy that can find a good balance between
exploiting the arm with the highest reward currently and
exploring the other arms to find a possibly better one.

Given the description, the packet scheduling problem can
perfectly suit the framework of the MAB problem. The
scheduler can be regarded as the gambler that chooses one
of the K scheduling strategies for periods repeatedly during
the lifetime of an MPTCP connection. And at the end of each
time period, the scheduler calculates the reward of the period
with a reward function. A well-designed reward function
reflects the performance of the chosen strategy, so the goal
of achieving better transmission performance is equivalent to
that of maximizing the summarized reward. To maximize the
summarized reward, the scheduler also faces the exploration
versus exploitation dilemma, just like the gambler in the
MAB problem. Therefore, leveraging the solutions for the
MAB problem is a good idea to solve the packet scheduling
task.

C. The Goals of OLAPS

In this subsection, we present two design goals of
OLAPS.

The first goal of OLAPS is to generate adaptive policies
in scheduling to achieve the highest possible instantaneous
throughput under different network scenarios. Hard-wired
scheduling algorithms can hardly perform consistently well
in real mobile networks due to dynamic network conditions
and buffer-limited mobile devices. Therefore, the ability to
generate adaptive policies is a must. On the other hand, high
instantaneous throughput guarantees that applications perform
well during a complete MPTCP connection. For example, high
overall throughput may be suitable for tasks such as file down-
load because a declined throughput over a short period of time
may only slightly affect the overall user experience. However,
applications like video streaming may suffer from low video
resolution or even pauses due to insufficient instantaneous
throughput at some point, even though the average throughput
is beyond the requirements. To achieve this goal, we formulate
the packet scheduling problem as a MAB problem and design
an intelligent scheduler based on online-learning methods.
Furthermore, we carefully construct the reward function and
the actions in such an MAB problem in the context of a
transmission process.

However, the online-learning algorithms may suffer a slow
convergence when network conditions change abruptly, which
may lead to suboptimal scheduling policies during the long
convergence time. As a result, the second goal of OLAPS is
to respond swiftly to abrupt network changes. Specifically,
in an MAB solution, the gambler exploits the highly reward-
ing arms at the moment. As a result, when the reward dis-
tribution behind the slot machine changes, the preferred arms
cannot provide high rewards as before. A gambler will ran-
domly choose other arms with a certain probability to explore
potential high rewards to avoid such a dilemma. However,
he may take a long period to replace the outdated policy with
a better one. To solve this problem, OLAPS deploys a network
monitor and detects abrupt reward variations, and starts a new
epoch of the online learning process when network changes are
detected.

We present the details of the design and implementation of
OLAPS in Section V, and our evaluation in Section VII shows
that achieving these two goals makes OLAPS a competent
MPTCP scheduler in mobile networks.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 30,2024 at 16:43:32 UTC from IEEE Xplore. Restrictions apply.

2300 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023

III. RELATED WORK

MPTCP breaks through the bandwidth limit of a single
network interface and can provide better resilience to net-
work failures by transferring data to available network paths.
However, it also brings challenges that single-path protocols
have never met [9], [10], [11]. One of the known issues
is that concurrent use of multiple heterogeneous network
paths may lead to declined performance. Specifically, packets
sent through paths with different conditions may arrive out-
of-order, leading to HoL blocking, long reorder delay, and
receive buffer occupation. In some cases (e.g., receivers are
mobile devices with limited buffer size), MPTCP may even
underperform single-path TCP.

To solve this issue, researchers have proposed some packet
scheduling algorithms for multipath transport protocols. In the
MPTCP Linux kernel [12], there have been some sim-
ple schedulers such as round-robin (RR), MinRTT, and
ReMP [13]. RR may be the simplest scheduler that evenly
sends a packet to all available subflows in turn. It works
well if subflows are symmetric but will encounter severe HoL
blocking issues otherwise. MinRTT mitigates this issue by
preferring the subflow with the lowest RTT. Still, the same
issue may happen when it starts to use some slower subflows.

Some other schedulers try to eliminate the HoL blocking
issue by making packets traveling through different sub-
flows arrive in order. A common method is to estimate
the arrival time of each packet with measurements such
as delays and capacities of subflows. For example, DAPS
(Delay-Aware Packet Scheduler [32]), a CMT-SCTP extension,
makes scheduling decisions according to the one-way-delay
and capacities of paths, but it is shown that it generates
spurious retransmissions. BLEST (Blocking Estimation [25])
is designed to reduce buffer blocking by skipping a certain cur-
rently available path and waiting for a more advantageous path
that can offer a lower risk of blocking. Besides, OTIAS (Out-
of-Order Transmission for In-Order Arrival Scheduler [24]),
ECF (Earliest Completion First [15]), DPSAF (Dynamic
Packet Scheduling and Adjusting with Feedback) [33], and
STTF (Shortest Transfer Time First [25]) try to estimate
the arrival time more precisely by taking queuing delay in
send buffer into consideration. Wei et al. [34] used another
approach for precise arrival time estimations by combin-
ing the packet scheduling strategy with a certain conges-
tion control algorithm. Despite these efforts, they can hardly
provide consistently good performances in some network
scenarios [26], [28] because it can be hard to estimate a
packet’s arrival time precisely in a dynamic network, and
unpredictable random packet loss also makes such estimations
unreliable.

There are other schedulers who pursue performance met-
rics other than throughput. RAVEN [35] is an in-kernel
MPTCP scheduler that mitigates tail latency and network
unpredictability by using redundant transmission. A recent
MPQUIC packet scheduler proposed by Zheng et al. [36] takes
the priority of contents into consideration. By leveraging the
stream multiplexing feature of MPQUIC, it uses a QoE-driven
scheduling design to speed up the loading of certain high-
priority contents.

Instead of designing a packet scheduling algorithm, Pokhrel
and Mandjes [37] designed a delay-adaptive congestion control

algorithm that controls the reordering delay at the receiver
by taking into account the loss and delay characteristics of
the network paths. Further, they [38] adopted the rent-seeking
framework to control the sending rate of each subflow in such
a way that packets are more likely to arrive in order.

Though hard-wired heuristic schemes can improve the per-
formance of transmission in some specific cases, they do
not have the adaptability to perform consistently well in a
wide range of network scenarios. Given the limitation of
heuristic methods, many machine-learning schemes are pro-
posed, empowering TCP as well as MPTCP with intelligence
to adapt to various scenarios. For example, Pokhrel et al.
[39] developed a novel multipath communication framework
for Industry 4.0 using an experience-driven Deep Q-Network
(DQN), to achieve human-level intelligence in networking
automation and orchestration. And to improve the perfor-
mance of the Internet of Vehicles, a federated learning frame-
work [40] was proposed to enhance TCP performance in
networks with unstable RTT and packet loss. Abbasloo et al.
[41] used deep reinforcement learning techniques to steer
throughput-oriented TCP algorithms and boost the perfor-
mance of various old and new TCP congestion control
algorithms. Huang et al. [42] proposed a distributed Deep
Reinforcement Learning (DRL)-based congestion control algo-
rithm to realize objective-oriented resource pooling in MPTCP.
Chung et al. [43] designed a machine learning scheme to
manage the usage of multiple network paths.

As one of the key components of transmission, machine
learning empowering multipath packet scheduling algorithms
can also largely improve MPTCP performance. Unlike the
hard-wired schedulers above, learning-based schedulers are
proposed to generate adaptive policies for various network sce-
narios. ReLeS [26] is the first learning-based MPTCP packet
scheduler. It formulates the multipath packet scheduling prob-
lem as a reinforcement learning task and solves the task with
asynchronous deep reinforcement learning techniques [44].
Specifically, ReLeS applies DQN to teach the scheduler with
data collected from each finished MPTCP connection. Though
ReLeS can achieve great performance with a well-trained
neural network, the need for training data and the overhead
of training a DQN make its wide deployment a challenge.
Wu et al. [28] presented a learning-based scheduling algorithm
named Peekaboo for MPQUIC, which tackles the scheduling
problem using an online learning method based on contextual
MAB theory [45]. Peekaboo decides to skip some available
paths and wait for a more advantageous one using LinUCB
algorithm [46]. Though ReLeS [26] and Peekaboo [28] are the
most relevant work for OLAPS, they are quite different and are
not mutually comparable. Specifically, ReLeS needs a neural
network that is well-trained offline, while OLAPS is an online-
learning method that needs no training data. And Peekaboo is
an MPQUIC scheduler that chooses the best subflow to send
a packet, while OLAPS is an MPTCP scheduler that decides
to send which kind of packets (redundant or not). Therefore,
we did not choose these two schedulers for comparison since
it does not help evaluate OLAPS.

In this paper, our design of OLAPS is based on MPTCP
because this IETF standard protocol has been adopted by many
vendors, and it is now an integral part of 5G mobile networks
as a standard feature of 3GPP Release 16 [47]. Also, since

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 30,2024 at 16:43:32 UTC from IEEE Xplore. Restrictions apply.

XING et al.: ONLINE LEARNING ASSISTED PACKET SCHEDULER FOR MPTCP IN MOBILE NETWORKS 2301

MPTCP is a Linux kernel module, OLAPS can run on any
MPTCP-enabled Linux kernel for testing.

IV. PROBLEM FORMULATION AND A SOLUTION

A. Overview

We describe the multipath packet scheduling problem in the
multi-armed bandit problem framework [29] in this section.

In this paper, a multipath packet scheduler is regarded as
a gambler, and different scheduling policies are the arms of
slot machines to pull. The scheduler gets packets from an
application and chooses one of the K scheduling strategies.
After choosing a certain strategy (just like pulling a certain
arm), the scheduler sends packets to multiple network paths
for a scheduling interval following the chosen policy and gets
acknowledgments (ACKs) from the receiver afterward. Then
the scheduler can calculate the throughput in this interval and
takes it as the reward of the chosen strategy. The goal of the
scheduler is to reach the maximum throughput possible.

B. Formulation of Multipath Packet Scheduling Problem

We divide time into a series of intervals, called scheduling
intervals (SIs), and an epoch contains several SIs. There may
be several epochs in the duration of a complete MPTCP con-
nection. In each SI, the scheduler takes one of the K possible
actions stochastically, where each action is denoted by an
integer 1 ≤ i ≤ K. Only after an action is taken, the scheduler
gets an assignment of rewards, which is an infinite sequence
x(1), x(2), . . . of vector x(t) = (x1(t), . . . , xK(t)) where
xi(t) ∈ [0, 1] denotes the reward obtained if the scheduler
takes action i at time step (or “trial”) t. We further assume
that the scheduler only knows the rewards xi1(1), . . . , xit(t)
of the previously chosen actions ii, . . . , it. The rewards of an
action i are independent and identically distributed according
to an unknown law with unknown expectation µi.

Denote A as ab algorithm that t chooses the next machine to
play based on the sequence of past plays and obtained rewards.
And let TI(n) be the number of times action i has been taken
by A. Then the regret of A after n trials is defined by

µ∗n− µj

K∑
j=1

E [Tj(n)] , (1)

where µ∗
def
= max1≤i≤K µi and E[·] is the expected value.

C. An Online Learning Solution

Given the problem we describe above, we adopt the UCB1
algorithm proposed by Auer et al. [17] as the base of our
scheduler. In this section, we introduce the UCB1 algorithm.

As shown in Algorithm 1, on each trail, UCB1 takes an
action i that maximizes the sum of two terms. The first one
is simply the average of action i so far. The second term is
related to the size (according to Chernoff-Hoeffding bounds)
of the one-sided confidence interval for the average reward
and the true expected reward of the action falls within it with
overwhelming probability. According to Auer et al. [17], for
all K > 1, if UCB1 is run on K machines having arbitrary

Algorithm 1 UCB1
Parameters: xi ∈ [0, 1], current reward of action i

x̄i ∈ [0, 1], average reward of action i
ni, the number of times of action j
n, the overall number of trials

1 Function Initialization():
2 Take each action once and set the parameters.
3 end
4 Function Main Loop():
5 Take action i that maximizes x̄i +

√
2 ln n

ni

6 Get reward xi.
7 Update the parameters.
8 end

reward distributions P1, . . . , PK with support in [0, 1], then its
expected regret after any number n of trials is at most8

∑
i:µi<µ∗

(
lnn

µ∗ − µi

) +
(

1 +
π2

3

)  K∑
j=1

(µ∗ − µj)

 ,

(2)

where µi is the expected values of PI and µ∗ is any maximal
element in the set µ1, . . . , µK .

In the next section, explain how UCB1 is actually used
in packet scheduling process, and describe our design of the
reward function and actions in the MAB problem to UCB1
work as a multipath packet scheduler.

V. ONLINE LEARNING ASSISTED PACKET SCHEDULER:
DESIGN AND IMPLEMENTATION

A. Overview

In this section, we present our design and implementation of
the Online-Learning-Assisted Packet Scheduler (OLAPS) for
MPTCP. As shown in Fig. 2, OLAPS includes a UCB1-based
online learning agent, a reward monitor, and a packet sched-
uler to achieve the goals to be discussed in Section II-C. The
UCB1-based online learning agent (or UCB1 agent for short),
as its name implies, runs the UCB1 algorithm to generate a
scheduling policy, which is about choosing a “redundant ratio”
for the current scheduling interval (SI). Then the agent collects
helpful information from the acknowledgments (ACKs) to
optimize its policy. Then the packet scheduler makes the final
scheduling decisions: It finds a subflow with the lowest RTT
and sends a duplicated or non-duplicated packet to it according
to the chosen redundant ratio. Meanwhile, the reward monitor
detects abrupt network changes and intervenes in the learning
process of the agent for faster convergence.

At the beginning of each SI t, the UCB1 agent choose a
“redundant ratio” pi among K given options (i.e., pi, . . . , pK).
The redundant ratio determines the amount of duplicated pack-
ets sent on different subflows. Generally speaking, a smaller
redundant ratio means sending fewer duplicated packets,
which is a more aggressive policy that chases high throughput
by aggregating bandwidth from multiple subflows. On the
contrary, a larger redundant ratio means more packets are sent
redundantly on all subflows, which is a more conservative

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 30,2024 at 16:43:32 UTC from IEEE Xplore. Restrictions apply.

2302 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023

Fig. 2. The framework of OLAPS.

policy to avoid throughput degradation caused by delayed or
lost packets. And at the end of this SI, the UCB1 agent receives
ACKs and calculates a reward for the chosen redundant ratio
as

xi(t) =
meta_thp(t)∑N
s=1 sub_thps(t)

, (3)

where meta_thp(t) denotes the throughput of the “meta
socket” (i.e., the overall throughput of the MPTCP connection)
in current SI t, and likewise, sub_thps(t) denotes the through-
put of subflow s of all N subflows. A higher reward indicates
the chosen action utilizes multiple subflows efficiently. Then
the UCB1 agent runs Algorithm 1 and starts the next SI t+1.
We may ignore the variable t when it is clear from the context
for easier reading.

The UCB1 agent does not directly select a subflow to send
a certain packet. Instead, it guides the packet scheduler to
make final scheduling decisions by offering a redundant ratio.
The packet scheduler prefers the subflow with the lowest RTT,
which is similar to the MinRTT algorithm. However, different
from the original MinRTT, the scheduler in OLAPS sends
a certain proportion of redundant packets according to the
redundant ratio provided by the UCB1 agent. Note that the
scheduler may run other algorithms for subflow selection, but
it should always send a certain amount of duplicated packets
following the agent’s guidance. In this paper, we choose Min-
RTT because it is simple yet efficient, according to previous
research.

Though the UCB1 agent can generate adaptive scheduling
policies, it may suffer from slow convergence because of
noisy rewards and changing networks. Therefore, we design
a reward monitoring mechanism in the OLAPS framework.
Specifically, we deploy a reward monitor that filters the
noisy reward samples and maintains the deviation between
the reward samples. When current samples deviate a lot, the
reward monitor determines that current network conditions
have changed abruptly. Then it refreshes the learned model
of the agent to learn a new policy instead of sticking to the
outdated one.

For the rest of this section, we carefully describe the design
and implementation of each component in OLAPS.

B. The UCB1-Based Online Learning Agent
This agent adopts the UCB1 algorithm to solve the MAB

problem, and we need to properly design the reward function
and the actions of the algorithm.
Reward: We expect the reward function to directly reflect
the performance of the previously chosen action, and the
throughput can be a good indicator. Since modeling MPTCP’s

throughput with measurements such as RTT, packet loss rate,
and CWND is complicated and unreliable in dynamic mobile
networks, we decide to record the actual throughput of the
MPTCP connection (meta_thp for short) in each SI and use
it as a component of the reward.

However, using meta_thp straightforwardly makes it hard
to tell if the reward is changing because of taking different
actions or experiencing different network conditions (e.g.,
link capacity decline). As a result, we divide meta_thp by
the sum of the throughput of each subflow, and thus the
reward function is in the form of Eq. 3. In this way, the
agent can get the reward reflecting how the chosen action
behaves in utilizing multiple subflows to achieve better perfor-
mance. A higher reward indicates that the chosen action can
effectively aggregate the capacities of multiple subflows and
finally achieve higher throughput. When meta_thp decreases
because of network congestion or failure that happens on
certain subflows, an optimal action can still get a high reward
because the denominator also decreases.

However, the sub_thps in Eq. 3 is still not well-defined.
We notice that when inappropriate actions are taken, the
throughput of subflows in the SI will sometimes decline due
to dropped packets in receive buffer, which will unreasonably
increase the rewards of such actions. To solve this issue,
instead of using sub_thps(t), we calculate the reward as

xi(t) =
meta_thp(t)∑N

s=1 maxτ∈[t−T,t](sub_thps(τ))
, (4)

where maxτ∈[t−T ,t](sub_thps(τ)) denotes the maximum
throughput of subflow s within a time window T .

Action: When the UCB1 agent is expected to take action,
it chooses one of the K redundant ratios, i.e., pi = i−1

K−1 ,
where integer i = 1, . . . ,K, and integer K ≥ 2. Then,
a chosen redundant ratio pi is applied in the current SI, which
means pi of all packets sent through a subflow should also be
sent on other subflows.

The ability to send redundant packets is quite useful for
MPTCP schedulers for two reasons. First, sending redun-
dant packets avoids the impact of lost or delayed packets
on subflows with poor conditions since their duplicates can
arrive at the receiver safely through other subflows. Second,
by sending packets on all available subflows, schedulers can
get enough feedback to keep their knowledge of the subflows
up-to-date. More discussions on the actions of OLAPS are
given in Section VI.

C. The Reward Monitor
The UCB1 agent itself is not very efficient when dealing

with dynamic network environments or networks with random
loss. According to Auer et al. [17], the UCB1 algorithm
assumes that the K machines have arbitrary reward distri-
butions. However, in mobile networks, the reward distribu-
tions may easily change due to the dynamic nature of the
networks. To understand why UCB1 is not suitable for mobile
networks, simply consider the average reward of action i (x̄i in
Algorithm 1). When the distribution of action i changes due to
network fluctuations, the x̄i can hardly represent the expected
reward. Then, the UCB1-based agent will consequently gen-
erate suboptimal policies.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 30,2024 at 16:43:32 UTC from IEEE Xplore. Restrictions apply.

XING et al.: ONLINE LEARNING ASSISTED PACKET SCHEDULER FOR MPTCP IN MOBILE NETWORKS 2303

Algorithm 2 Reward Monitor
Parameters : α ∈ (0, 1), mul, thr, n
Initialization: set srwd = rwd

and dev = 0.5× rwd
1 Function CheckReward(rwd, i):
2 # For each obtained reward of

action i
3 if within the first n trails then
4 dev = (1− α)× dev + α× abs(rwd− srwd)
5 return
6 end
7 if rwd > arwd + mul × dev then
8 if cnt < 0 then
9 cnt = 0

10 end
11 cnt = cnt + 1
12 end
13 if rwd < arwd−mul × dev then
14 if cnt > 0 then
15 cnt = 0
16 end
17 cnt = cnt− 1
18 end
19 dev = (1− α)× dev + α× abs(rwd− srwd)
20 if abs(cnt) > thr then
21 # Restart the UCB1 algorithm
22 Restart UCB1()
23 # Initialize the monitor again
24 Do Initialization()
25 end
26 end

To solve this issue, we design a reward monitor to inter-
vene in the UCB1 algorithm externally. The monitor follows
Algorithm 2 and is triggered by every reward for each action.
The reward monitor maintains a smoothed absolute deviation
(dev) between the current reward sample rwd and the average
reward arwd. When there are thr number of reward samples
that deviate a lot from the average reward, the monitor resets
the UCB1 agent by starting a new epoch of the UCB1 algo-
rithm, which means setting t = 1 and redoing the initialization.
Then, to learn the variation in the reward samples following
a new distribution, the monitor initials the dev based on the
first γ reward samples without triggering the reset.

D. The Overall OLAPS Implementation
Finally, we put all the components together and describe

how they assist the packet scheduler in making final scheduling
decisions. OLAPS is described in Algorithm 3. When two
hosts initiate an MPTCP connection, OLAPS also starts to
decide which subflow each packet will be sent on by following
the guidelines of the UCB1 agent. OLAPS divides the lifetime
of the MPTCP connection into many time periods, named
scheduling intervals (SIs). At the beginning of each SI, OLAPS
chooses a redundant ratio using the UCB1 algorithm, and then
in this SI, OLAPS schedules packets according to the chosen
policy and collects useful information from the packets and

Algorithm 3 OLAPS
1 Function SubflowSelection():
2 # Adopt MinRTT
3 find an available subflow with the lowest RTT
4 return subflow
5 end
6 Function PacketSelection(pi):
7 if red_quota == 0 and new_quota == 0 then
8 red_quota = pi × CWND
9 new_quota = CWND − red_quota

10 end
11 if red_quota > 0 then
12 Send a redundant packet.
13 red_quota = red_quota− 1
14 else
15 Send a normal packet.
16 new_quota = new_quota− 1
17 end
18 return the packet
19 end
20 Function GetReward():
21 Get the throughput of at connection level

(meta_thp(t)).
22 Get the throughput of each subflow s (sub_thps)
23 Get a reward (rwd). # with Eq. 4
24 CheckReward(rwd) # Algorithm 2
25 return rwd
26 end
27 Function AtSndingPkt():
28 if current SI is ended or for initialization then
29 Start a new SI.
30 Take action i following UCB1 in

Algorithm 1.
31 Redundant ratio pi = i−1

K−1 for the SI.
32 end
33 subflow = SubflowSelection()
34 packet = PacketSelection(pi)
35 Send the packet to the subflow.
36 Collect information to calculate the rewards.
37 end
38 Function AtRcvingPkt():
39 Collect information to calculate the rewards.
40 End the SI if time is up.
41 if current SI is ended then
42 rwd = GetReward()
43 Update the UCB1 parameters following

Algorithm 1.
44 end
45 end

acknowledgments as the hosts communicate with each other.
Finally, at the end of this period, OLAPS calculates the reward
of the chosen action and updates the parameters of the UCB1
algorithm. Then it starts a new time period and repeats the
above steps until the connection is closed.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 30,2024 at 16:43:32 UTC from IEEE Xplore. Restrictions apply.

2304 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023

TABLE I
PARAMETERS IN OLAPS IMPLEMENTATION AND THEIR TYPICAL VALUES

To be specific, at any moment the MPTCP connection wants
to send a packet, OLAPS runs AtSndingPkt(). OLAPS
starts an SI by choosing a redundant ratio with the UCB1
agent. During the period, OLAPS first finds the subflow with
the shortest round-trip time and an open congestion window.
Then it decides whether the next packet sent on the subflow
should be duplicated or not. To this end, OLAPS checks its
congestion window size and the redundant ratio. A redundant
ratio pi indicates that to fill the cwnds-sized congestion win-
dow of each subflow s, OLAPS should firstly fill in pi×cwnds

number of duplicated packets that have been scheduled to other
subflows, then fill the rest of the window with non-duplicated
packets. OLAPS collects information such as the sequence
number of packets and current time stamps from all subflows
as well as the MPTCP connection. Therefore, OLAPS knows
the exact time when an SI starts and how many bytes are sent
during this SI.

Similarly, when the connection receives a packet, OLAPS
runs AtRcvingPkt(). It records the acknowledged
sequence number and updates the time stamp. When the
lifetime of the current SI is up (the lifetime is three times the
maximal RTT of all subflows), OLAPS calculates the reward
for the chosen action and advances the UCB1 algorithm to
the next trail. OLAPS repeatedly runs until the connection is
closed. Specifically, to calculate the reward, the agent has to
calculate the throughput of the MPTCP connection and each
subflow (lines 21, 22 in Algorithm 3). In AtSndingPkt(),
OLAPS can record the sequence numbers of the first and
last transmitted packets and the timestamp at their sending
and acknowledgment within an SI (line 39). By dividing the
offset of the sequence numbers (i.e., the number of transmitted
bytes) by the offset of the first sending timestamp and the last
acknowledgment timestamp (i.e., the actual transmission time),
we get the throughput. Since the packet sequence spaces at the
MPTCP connection and subflow levels are separate, OLAPS
can get the throughput at both levels to calculate the reward
following Eq. 4.

Each MPTCP connection runs an individual OLAPS, and no
modification is needed on the client side. Furthermore, since it
is an online learning solution, no data is needed for training in
advance. Leveraging the pluggable architecture for the packet
scheduler [48] in the MPTCP Linux kernel [12], OLAPS is
implemented as a kernel module with over 1000 lines of C
code. The parameters and their typical values in the OLAPS
implementation are summarized in Table I.

Based on the design of OLAPS, it may sometimes perform
abnormally when the MPTCP connections use window-based
congestion control algorithms that create bursts of packets
and ACKs. OLAPS may collect inaccurate information due
to these bursts and fail to learn an optimal scheduling policy.
As a result, we choose the widely-studied BBR [49] as the

congestion control algorithm in this paper. BBR paces every
packet to match the data rate of the network bottleneck, and
thus it works perfectly with OLAPS. Also, since one of its
typical usage scenarios is with public Wi-Fi [49], BBR can be
a promising algorithm in mobile networks to work with other
existing schedulers.

VI. DISCUSSION

In this section, we discuss the key designs in OLAPS.

A. The Throughput-Driven Reward Function

In Section V-B, we present a “throughput-driven” reward
function for the online-learning agent. The reason to use
instantaneous throughput (i.e., the throughput in a short period
or SI) as the component of the reward function is that it prop-
erly reflects the performance of the chosen action. Compared
with the reward functions that are related to an extended period
(e.g., discounted throughput [28] or average throughput), our
design mainly focuses on the short-term performance of the
scheduler in order to achieve swift scheduling policy adjust-
ment in changing environments. As a result, such a design is
more suitable for mobile network scenarios.

Another type of reward function tries to model the trans-
mission performance with measurements such as RTT, packet
loss rate, receive buffer size, congestion window, and so on.
Such designs may cut down the reward when RTT and loss
rate is high in order to avoid using network paths with bad
conditions, which is a feasible approach according to previous
work [26], [50]. However, these designs are unsuitable for
OLAPS since OLAPS does not avoid using “bad” network
paths. Instead, OLAPS sends redundant packets to them.
Besides, it is hard to determine a precise relationship between
the performance of an action and the measurements because
the mobile network is a sophisticated and dynamic system.
Worse still, the measurements can be inaccurate in this kind
of dynamic environment and are unstable in a short period,
such as in an SI.

Finally, we choose a reward function in the form of Eq. 4
for OLAPS, which can yield the rewards that reflect how the
currently chosen action affects the instantaneous throughput
of the MPTCP connection without using inaccurate measure-
ments. In this way, OLAPS can generate optimal scheduling
policies adaptively based on the rewards, which are highly
affected by some specific factors, such as receive buffer size
and network conditions. For example, when dealing with
highly asymmetric network paths, the function may yield
low rewards if the receiver has a limited buffer size that
can be easily overflowed by out-of-order packets, leading
to throughput reduction. Meanwhile, in the same network
scenario, the function can also yield high rewards when the
receive buffer is large enough to store the out-of-order packets.

B. The Actions

The actions of OLAPS are different in redundant ratios,
which means sending a certain fraction of redundant packets
on all other subflows. By deciding to take lower or higher
redundant ratios, OLAPS basically chooses to act more like
MinRTT or ReMP. Choosing a scheduling policy that performs

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 30,2024 at 16:43:32 UTC from IEEE Xplore. Restrictions apply.

XING et al.: ONLINE LEARNING ASSISTED PACKET SCHEDULER FOR MPTCP IN MOBILE NETWORKS 2305

the best under current network conditions can be a great
improvement for MPTCP’s overall transmission performance.

Intuitively, sending redundant packets will waste precious
network resources and will finally cause low throughput. Thus
choosing a lower or even zero redundant ratio (i.e., acting more
like MinRTT) should be the best choice. That is true when
the network paths are symmetric, or the receiver has a large
enough buffer. However, when the subflows are asymmetric,
e.g., with different RTTs, loss rates, and bandwidths, packets
from different subflows may arrive out-of-order and occupy
the limited receive buffer, which may lead to HoL blocking
and finally cause buffer overflow for buffer-limited devices.
These issues not only affect a single subflow that suffers harsh
network conditions. What is worse is that the dropped or
delayed packets from a certain subflow may adversely affect
other well-behaved subflows, making MPTCP underperform
single-path TCP in some cases.

Sending a certain amount of redundant packets, i.e., acting
more like ReMP, can mitigate such an issue. That is because
delaying or losing redundant packets will not affect the overall
transmission performance of the MPTCP connection if they
can be recovered with their copies from other subflows. Espe-
cially when all packets are sent redundantly to all subflows,
OLAPS behaves just like ReMP. In this case, delayed or lost
packets on the subflows can be replaced with their redundant
copies from other subflows so that the subflows with high
delay and packet loss will not affect the transmission of
other subflows. As a result, the throughput of MPTCP is
determined by the highest throughput among all subflows.
Since the subflows send the same data and do not impact each
other, they behave just like single-path TCP flows. Therefore,
we can say that properly sending redundant packets avoids
the cases in which MPTCP underperforms single-path TCP
and can highly improve the overall throughput of MPTCP in
asymmetric network scenarios with packet loss.

One may argue that a scheduler should stop sending packets
on the subflows with high RTT or high loss rates instead of
sending redundant packets. It can be a good choice if the
objective is reducing energy consumption or saving mobile
data usage. However, to improve transmission performance,
sending redundant packets is a better choice. Firstly, the
redundant packets can be used to detect network changes so
that MPTCP can react to network changes in time. Specifically,
MPTCP collects information about the network paths (e.g.,
transmission delay or packet loss) by sending packets and
receiving acknowledgments. The information is crucial in
MPTCP’s congestion control and packet scheduling mecha-
nisms. If MPTCP sends no packets or not enough packets to a
subflow, there may not be enough information for MPTCP to
know about its current network conditions timely, which may
result in inappropriate utilization of the network resources.
Secondly, redundant packets can improve the robustness of
MPTCP transmission: If a packet is lost or delayed, it can be
recovered soon with its redundant copies from other subflows.
Redundant packets largely shorten the time needed to recover
a packet compared with packet retransmissions which need to
be triggered with extra communications between hosts.

C. Dealing With Dynamic Networks
In UCB1, we assume that the rewards of a certain arm

follow an unknown distribution, but such an assumption may

not always hold in dynamic scenarios. Therefore, it becomes
a limitation to use the UCB1 algorithm in wireless networks
with ever-changing conditions. A fundamental solution to this
issue is to remove the assumption of the fixed distribution
behind each arm. By doing so, we can formulate the packet
scheduling problem as a non-stochastic MAB problem (or
adversarial bandit problem).

Unlike the basic MAB problem mentioned above, the non-
stochastic MAB problem makes no statistical assumption
about the rewards of the slot machines [29]. It thus suits the
use cases where the rewards are difficult or impossible to be
modeled by an appropriate statistical assumption. Obviously,
scheduling packets over multiple dynamic network paths is
one of these sophisticated use cases. In this typical scenario,
although we can get measurements such as RTT, packet
loss rate, and congestion window size of subflows, it is still
hard to determine the right statistical assumptions for the
relationship between these measurements and the rewards (i.e.,
the throughput of an MPTCP connection).

Exp3 is an effective solution for the adversarial bandit
problem [29]. Generally speaking, Exp3 will still explore other
arms even after it has found the best arm that yields the highest
rewards currently. Such behavior makes it more suitable for
cases where the reward distributions of arms are uncertain
(typically in dynamic network scenarios) but also causes
shortcomings such as slower convergence and less exploitation
of the best arm. Although compared with UCB1, Exp3 seems
to be a better algorithm for MPTCP packet scheduling in
dynamic mobile networks, its shortcomings reduce the actual
transmission performance. Finally, we choose UCB1 instead
of Exp3 in OLAPS for two reasons: 1) It makes OLAPS take
a shorter time period to learn an optimal policy, which makes
it timely determine and fully exploit a proper action. Thus
UCB1-based OLAPS can achieve higher throughput than the
Exp3-based variant; 2) With the help of the reward monitor,
UCB1-based OLAPS can also swiftly switch to a new policy
when the network changes, which removes the limitation of the
assumption of “fixed distribution for each arm” in a stochastic
MAB problem.

We implement both the UCB1-based and Exp3-based
OLAPS for performance evaluation in Section VII, and we
thoroughly make performance comparisons about the two
algorithms in different network scenarios.

D. MPTCP Connections With More Than Two Subflows

The design and evaluations of OLAPS focus on the cases in
which each MPTCP connection includes two subflows. That
is because OLAPS is designed to be used in today’s mobile
networks, where devices are most commonly equipped with
two network interfaces (i.e., LTE and Wi-Fi).

When there are more than two subflows in a connection,
OLAPS can still function properly. However, the scheduling
policy derived by the learning agent may be inefficient. For
example, when there are two subflows with good network
conditions, and another subflow runs on an ill-conditioned
network path (e.g., with high delay or packet loss), OLAPS
may send more redundant packets to all three subflows. Such
a policy prevents the ill-conditioned subflow from hurting the
overall performance, but it is inefficient: sending redundant
packets on the two “good” subflows is a waste of the goodput.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 30,2024 at 16:43:32 UTC from IEEE Xplore. Restrictions apply.

2306 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023

In a word, ill-conditioned subflows may hurt the overall
efficiency. Such an issue can be solved easily with a “patch”
as follows:

When there are more than two subflows in an MPTCP
connection, OLAPS will exclude the ill-conditioned subflows
from the scheduling process. That means OLAPS will not
send any packet to these subflows, and the online learning
agent will not take them into consideration. This way, the
redundant packets that should have been sent to eliminate
the negative effects of delayed or lost packets on the ill-
conditioned subflows are no longer necessary. Instead, since
the subflows still included in the scheduling will be in good
network conditions, the agent will learn a policy that sends
fewer redundant packets for higher overall throughput and
efficiency.

OLAPS can identify the ill-conditioned subflows by lever-
aging the collected information (e.g., acknowledged and unac-
knowledged packets, round-trip time, lost packets, etc.). Note
that collecting the information is a part of OLAPS in itself
(for reward calculation), and the information can be easily
collected when sending packets and receiving acknowledg-
ments. Then, when the round-trip time and the packet loss rate
of a subflow exceed predefined thresholds (e.g., 150 ms and
0.2), this subflow is considered ill-conditioned. OLAPS then
excludes the ill-conditioned subflows from the online learning
process until there are no ill-conditioned subflows or only two
subflows left.

This patch improves the efficiency in scenarios of more than
two subflows without significant modifications to the design
of OLAPS.

VII. EVALUATION IN THE TESTBED

A. The Semi-Physical Simulation Testbed
In this section, we describe our semi-physical simulation

testbed consisting of real hosts and ns-3 simulated networks.
ns-3 [18] is a popular network simulator that can simulate
various kinds of networks in a bottom-up manner. One of
its features is the ability to create a simulated network that
can be driven by “real” hosts, which provides many con-
veniences in the evaluation of OLAPS. On the one hand,
since the hosts run real Linux kernels, it is much easier and
more convincing to compare our scheme with other existing
scheduling algorithms over an actual Linux network stack than
in a simulated network stack. On the other hand, we can
operate repeatable experiments in the simulated networks to
draw statistically significant conclusions and avoid the effects
of random events, which is nearly impossible to achieve in
real networks. Besides, thanks to the powerful features of
ns-3, we can create networks with different bandwidths, one-
way-delay (OWD), and packet loss rate and also simulate the
network failures in a real wireless environment, which brings
much facticity to the experiments.

A typical topology of the testbed is presented in Fig. 3.
To be specific, ns-3 can handle real network traffic using the
tap-bridge module, which connects the real Linux network
bridges to the tap devices used by ns-3 scripts. Since the
tap-bridge module only supports CSMA and Wi-Fi devices in
ns-3 modules, we add a CSMA channel to connect the two
hosts. The CSMA channel has a very high data rate and brings
no extra delay, and thus it brings little effect on the overall

Fig. 3. The topology of the testbed.

performance. Furthermore, we add a P2P channel to bring
in extra OWD or packet loss to explore the performance in
network scenarios with heterogeneous conditions and packet
loss. Finally, we use a Wi-Fi channel to connect the two hosts,
which is the actual bottleneck of the whole link, to support
our experiments in mobile scenarios. Finally, we send ssh
command from a controller to launch the server, the client,
and two ns-3 scripts simultaneously.

When launching an experiment, the ns-3 scripts build two
simulated networks and the server, and the client establishes
an MPTCP connection with two subflows with the iperf3 [51]
application. Even though two simulated networks share the
same wireless access components in ns-3, they can be totally
different if we tune the ns-3 module with different parameters.
In the following parts of this section, we leverage the ns-3
Wi-Fi module and set different one-way-delay (OWD), random
loss rate, and user distance to access point (AP) for the two
different wireless networks in Fig. 3. Furthermore, we also
limit the receiver buffer size to evaluate whether OLAPS works
well for different network devices. We give the parameter
settings of each set of experiments.

B. OLAPS Performs Consistently Well in Heterogeneous and
Lossy Networks

In this section, we compare the performance of UCB1-
based and Exp3-based OLAPS (denoted by OLAPS-UCB1
and OLAPS-Exp3 respectively), as well as other existing
schedulers in the MPTCP Linux kernel, i.e., MinRTT, ReMP,
and Round-robin (RR). The experiments include scenarios
with homogeneous and heterogeneous network paths, as well
as scenarios with or without packet loss. Specifically, we use
ns-3’s default settings for the 5 GHz Wi-Fi channel with
802.11n standard in the simulated network #1 and #2, and we
also introduce extra OWD or packet loss for the P2P channel
in the network #2. These experiments aim at exploring the
performance of OLAPS and other schedulers and showing how
OLAPS provides consistently good performance in almost all
scenarios. Collectively, OLAPS-UCB1 and OLAPS-Exp3 are
sometimes referred to as OLAPS variants in this section.

1) Paths With Different RTTs: We introduce extra OWD in
the network #2 and compare OLAPS with other schedulers.
The experiment repeats eight times under the same network
scenario, and the average throughput of the MPTCP connec-
tions per second is presented in Fig. 4. The overall average
throughput gain over ReMP is shown in Fig. 5. The throughput
gain over ReMP of a scheduler means that we divide the
throughput of the scheduler by the throughput of ReMP.

The top layer of Fig. 4 shows the instantaneous throughput
where the paths are totally symmetric (i.e., no extra OWD nor

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 30,2024 at 16:43:32 UTC from IEEE Xplore. Restrictions apply.

XING et al.: ONLINE LEARNING ASSISTED PACKET SCHEDULER FOR MPTCP IN MOBILE NETWORKS 2307

Fig. 4. The instantaneous throughput during the MPTCP connections with different schedulers and receive buffer size.

loss rate is introduced). When the receive buffer is strictly lim-
ited to 30KB (Fig. 4a), RR outperforms all other schedulers
because it evenly utilizes two subflows, and no HoL blocking
issue is encountered. Because MinRTT and OLAPS choose to
fill the CWND of one specific subflow, they create queuing
delay at that subflow’s send buffer. That means packets with
higher sequence numbers may arrive earlier from another
subflow (i.e., HoL blocking happens). The result shows that a
small buffer is vulnerable to HoL blocking.

As the receive buffer enlarges, MinRTT catches up with
RR in symmetric scenarios and shows its superiority when
the networks are asymmetric. However, both of them require
larger buffer sizes to maintain their high throughput and under-
perform ReMP when higher OWD is introduced. As shown
in Fig. 4b and Fig. 4c, 50KB receive buffer is enough for
MinRTT and RR to achieve the highest possible throughput
in symmetric networks (2 times of the throughput that ReMP
can achieve). However, in asymmetric scenarios (i.e., with an
extra 40ms OWD), MinRTT and RR suffer severe throughput
decline.

In the bottom graph of Fig. 4a and Fig. 4b, neither RR
nor MinRTT can keep the throughput improvement feature of
multipath transmission, and their throughput is even lower than
what the most conservative ReMP provides. Note that in these
cases, the performance of ReMP can be considered equivalent
to the best performance among all single-path TCP running
on the same network paths. This means MPTCP may benefit
mobile devices with large buffers or in symmetric network
conditions but may sometimes negatively affect the trans-
mission performance of buffer-limited devices in asymmetric
networks, which is not uncommon in real mobile networks.

However, both OLAPS-UCB1 and OLAPS-Exp3 can pro-
vide consistently good transmission performance no matter
how asymmetric the different network paths are and/or how
limited the receive buffer is. With the online-learning methods,
OLAPS can effectively generate different optimal schedul-
ing policies under different network conditions. Specifically,
it tries to aggregate bandwidth from multiple subflows to
provide higher throughput as much as possible. The average
throughput gains of OLAPS-UCB1 and MinRTT in homo-
geneous network scenarios in Fig. 5 are very similar, i.e.,
1.75× and 1.77×, respectively. Moreover, it will fall back to a
conservative policy to send redundant packets when it notices
that the policy of aggregating bandwidth in such a harsh
network scenario may eventually lead to a lower throughput
compared with a single TCP flow. As shown in Fig. 5, MinRTT
and RR underperform the ReMP scheduler in heterogeneous

Fig. 5. The average throughput gain over ReMP.

Fig. 6. The average throughput gain over ReMP with heterogeneous network
conditions and packet loss.

network scenarios, but OLAPS never does. In the cases where
MinRTT suffers heterogeneous network paths, OLAPS-UCB1
eliminates dramatic throughput degradation and provides up
to 1.29× the throughput of MinRTT. This result illustrates
that there is no need to worry that MPTCP with OLAPS
will underperform single-path TCP, which can be a significant
motivation for deploying MPTCP.

It is worth mentioning that, in some cases, OLAPS does
not provide the highest throughput. That is because the online-
learning agent needs sufficient time to learn the optimal policy
and will explore the actions that may lead to a suboptimal
transmission performance.

OLAPS-UCB1 outperforms OLAPS-Exp3 in having a
shorter convergence time and achieving up to 1.12× the
throughput. The reason is that the Exp3 algorithm will
always explore the suboptimal actions even when there is
one action that provides the highest throughput. Meanwhile,
UCB1 always sticks to such action after it has done enough
explorations. But when several actions yield similar rewards,
UCB1 will explore more suboptimal actions to find out the
best action finally.

2) Lossy Scenarios: We also conduct experiments to
explore different performances of OLAPS with packet loss

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 30,2024 at 16:43:32 UTC from IEEE Xplore. Restrictions apply.

2308 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023

by introducing a random packet loss rate in the P2P channel
of network #2. We repeat eight runs for each scheduler in
each scenario, and the results are shown in Fig. 6. Likewise,
we present the throughput gain over ReMP instead of the
actual value of throughput for easy reading. Specifically, the
average throughput of ReMP shown in Fig. 6a and Fig. 6b are
4.24 mbps and 4.02 mbps, respectively.

Fig. 6 illustrates that MPTCP with OLAPS is still a safe
bet when random packet loss happens. That is, when sending
non-duplicate packets on paths is an effective strategy, OLAPS
can learn such a strategy and achieve higher throughput than
ReMP. And when the lost and delayed packets on a subflow
cause a dramatic decline in the transmission performance,
OLAPS can learn a conservative policy that sends packets
redundantly on both paths. Since the losses of redundant
packets on a subflow will not affect the overall transmission,
OLAPS can still achieve the same throughput as ReMP. On the
contrary, MinRTT and RR suffer a great decline in throughput.
Though they can achieve higher throughput than OLAPS when
no extra OWD is introduced, their throughput dramatically
drops to less than 0.5 times compared with what ReMP
provides with 40ms OWD and 0.2 random loss rate.

The results show that OLAPS-UCB1 is the best choice
from a comprehensive perspective. In Fig. 6a, OLAPS-UCB1
outperforms MinRTT and RR by achieving 1.46× and 2.40×
more throughput, respectively, on average of all network sce-
narios in the evaluations. Though ReMP achieves the highest
average throughput in this case, OLAPS-UCB1 achieves a
very close 98.7% of ReMP’s average throughput. In Fig. 6b,
OLAPS-UCB1 outperforms MinRTT and RR by achieving
1.34× and 1.75× more throughput, respectively, and achieves
the highest average throughput, which is 1.11× higher than
second place ReMP.

Comparing the two variants of OLAPS, OLAPS-UCB1
outperforms OLAPS-Exp3 in most cases. When a certain
action yields a much higher average reward than others,
UCB1 can fully exploit such an action. Exp3, however, will
keep exploring other actions since it assumes the reward
distributions may change anytime. Averagely, OLAPS-UCB1
provides 1.12× and 1.13× throughput than OLAPS-Exp3 as
shown in Fig. 6a and Fig. 6b, respectively.

In general, the two OLAPS variants may not be able to
achieve the highest throughput all the time as they need to
explore the actions that may lead to suboptimal transmis-
sion performance. However, in exchange, OLAPS holds high
adaptability to various network scenarios and can take proper
actions with a high probability, which makes OLAPS the best
choice.

C. Fast Convergence in Dynamic Networks

Abrupt network change and user mobility are common in
mobile networks, and an important criterion for learning-
based methods is the convergence time to switch to a
stable new policy when the environment changes. As a
result, we conduct experiments to evaluate our OLAPS vari-
ants in changing environments. Since the reward monitor
in OLAPS is supposed to shorten the convergence time of
OLAPS, we compare the performances of OLAPS-UCB1 and
OLAPS-Exp3 with or without the reward monitor. “OLAPS-
UCB1 w/o Monitor” and “OLAPS-Exp3 w/o Monitor”

denote the related OLAPS variants without the reward
monitor.

We design two kinds of ns-3 networks to simulate the
network change and user mobility scenarios, respectively.

1) Abrupt Network Change: In this experiment, we launch
an MPTCP connection for 320 seconds and change the
network conditions after 100 seconds. All the experiments
start with no extra OWD nor random loss rate. Then after
100 seconds, we introduce an extra 30ms OWD in network #2
for the first set of experiments and 0.1 loss rate for the second
set. We run eight times and present the average throughput of
the MPTCP connections at every second in Fig. 7.

The result shows that although both OLAPS variants can
achieve high throughput in the first 100 seconds with or
without the reward monitor, their behaviors are different when
network changes lead to changes in optimal scheduling policy.

In general, OLAPS-UCB1 outperforms OLAPS-Exp3 in
that it has a shorter convergence time and further achieves
a higher throughput, as shown in Fig. 7. And further perfor-
mance evaluation results verify the necessity of introducing
the reward monitor. Fig. 7b and Fig. 7c clearly illustrate that
without the reward monitor, the UCB1 algorithm can easily
lose its ability to learn an optimal policy when the network
changes, i.e., OLAPS-UCB1 w/o Monitor can hardly learn to
send more redundant packets in lossy networks. On the one
hand, the policy of sending fewer redundant packets yields
such high rewards in the first 100 seconds, but the lower
current rewards after 100 seconds have a small impact on its
high average reward. And since UCB1 prefers policies with
higher average rewards, it still chooses to send fewer redundant
packets even after the network changes, which leads to poor
transmission performance. On the other hand, OLAPS-UCB1,
with the reward monitor, can precisely detect the network
changes and will restart the learning process to learn the
optimal policy after the network changes.

However, there is an exception in Fig. 7a. It seems that
OLAPS-UCB1 w/o Monitor magically learns the best policy
right after the network changes and immediately chooses to
use a high “redundant ratio” in the lossy network scenario.
Such behavior is a “lucky” mistake for OLAPS-UCB1 w/o
Monitor: It chooses a policy in the wrong way, but this policy
happens to be the current optimal solution. To be specific,
before the network changes, using a lower redundant ratio is
the optimal policy, but the gaps between its average reward and
that of others are not significant due to the network conditions.
After the network changes, the average rewards for using
higher redundant ratios get higher. And since these actions
are previously not optimal, they are taken less often, which
leads to their higher upper confidence bounds according to
the UCB1 algorithm. The higher average rewards and upper
confidence bounds make using higher redundant ratios the
preferred policy of the UCB1 algorithm, which luckily leads to
optimal performance. In a word, OLAPS-UCB1 w/o Monitor
still cannot learn a new policy after network changes in the
right way. It may sometimes be lucky, like in the case in
Fig. 7a, but generally, OLAPS-UCB1 with a reward monitor
is still the best choice in our work.

Based on the assumption that there is no fixed reward dis-
tribution, OLAPS-Exp3 always has the ability to learn a new
optimal policy. But OLAPS-Exp3 w/o monitor needs to spend

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 30,2024 at 16:43:32 UTC from IEEE Xplore. Restrictions apply.

XING et al.: ONLINE LEARNING ASSISTED PACKET SCHEDULER FOR MPTCP IN MOBILE NETWORKS 2309

Fig. 7. The instantaneous throughput when experiencing abrupt network changes.

Fig. 8. The instantaneous throughput in mobile scenario.

much more time to reach convergence; thus, it doesn’t perform
well enough, as shown in Fig. 7. OLAPS-Exp3 w/o Monitor
suffers a longer convergence time after the network changes,
as the Exp3 agent is unaware of the change and will still
choose to use a policy according to its outdated knowledge.
It will explore other actions randomly with a small probability
since these actions are considered “suboptimal” before the
network changes. However, with the reward monitor, OLAPS-
Exp3 is able to detect the changes in the network. Thus the
Exp3 agent will start to explore other actions with a higher
probability, which finally leads to a shorter convergence time
to learn a proper scheduling policy.

2) User Mobility: In this experiment, we use the mobility
module of ns-3 to simulate the scenario that the client moves
out of the signal range of the Wi-Fi AP (access point)
in simulated network #2. As the client moves away from
the Wi-Fi AP, the performance of the Wi-Fi channel will
decrease over time, leading to a network failure [52]. However,
this switch is not necessarily instantaneous. Specifically, the
distance between AP and the client changes from 0 meters to
150 meters at a speed of 2m/s and then stays at 150 meters.
Besides, an extra 10ms OWD is introduced in network #2,
and the receive buffer size is 100KB. We run eight times and
present the average throughput of the MPTCP connections at
every second in Fig. 8.

OLAPS variants show their adaptability to the changing
environment. They can learn an optimal policy before or after
the client moves out of the signal range. The result illustrates
that compared with heuristic schedulers (ReMP and MinRTT),
using OLAPS variants could be a better choice for MPTCP in
mobile networks. However, OLAPS-Exp3 w/o Monitor suffers
a much longer convergence time because, without the reward
monitor, the Exp3 agent will stick to a suboptimal action and
do a little exploration.

Fig. 9. Another simulated network for factor space exploration.

TABLE II
DOMAINS OF THE INFLUENCING FACTORS

In this case, OLPAS-UCB1 also outperforms OLAPS-Exp3.
Before 75 seconds, OLAPS-UCB1 spends less time learning
the optimal policy and reaches higher throughput. And after
75 seconds, with the help of the reward monitor, OLAPS-
UCB1 quickly learns a new policy, while OLAPS-Exp3 needs
more time to converge.

D. Evaluation in the Whole Factor Space
We now evaluate two variants of OLAPS in some typical

scenarios to illustrate how its components work. But in real
mobile networks, many factors can influence the performance
of an MPTCP connection, and their combinations are sophis-
ticated. As a result, in the following experiments, we conduct
experiments that run over network paths with random network
characteristics that are distributed in a factor space. Leveraging
the WSP [53] algorithm, we generate around 180 samples
spreading over the factor spaces in Table II. That means the
schedulers are evaluated under random network conditions,
which can represent the schedulers’ performances under a
wide range of network scenarios. Table II shows the range
of the specific network characteristics. For example, the link
capacity of both paths can vary from 8− 16Mbps. Especially
there are two ranges for the receive buffer size to show the
performances of the schedulers with different kinds of user
devices.

These settings are applied in the P2P channel of another
ns-3-based simulated network shown in Fig. 9. We launch
an MPTCP connection with each scheduler for 100 seconds
and present the cumulative distribution function (CDF) of the
throughput gain over ReMP in Fig. 10.

The figures in Fig. 10 illustrate that the most remarkable
enhancement of OLAPS is the throughput improvement in
those “bad” network scenarios where other schedulers suffer

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 30,2024 at 16:43:32 UTC from IEEE Xplore. Restrictions apply.

2310 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023

Fig. 10. The performance of the schedulers in different scenarios.

TABLE III
AVERAGE THROUGHPUT GAIN IN FIG. 10

dramatic declines in performance. The figures show that with
the randomly chosen network characteristics, there are always
some cases in that other schedulers fail to achieve higher
throughput than that ReMP can reach. For example, Fig. 10a
shows that in 50% of all cases, the throughput gains of all the
schedulers are less than 1. In such cases, the throughput gains
of MinRTT (RR) are sometimes less than 0.75 in around 20%
(35%) of all experiments. However, OLAPS-UCB1 can make
sure that the throughput gain is higher than 0.75 in 99% of the
experiments. Similar results can be drawn from Fig. 10b, and
in this figure, the superiority of OLAPS is magnified since,
in more cases, MinRTT and RR suffer declined throughput
due to limited buffer size.

On the other hand, Fig. 10a and Fig. 10b also illustrate
that OLAPS can not only provide stable transmission perfor-
mances with harsh network conditions but can also aggregate
bandwidth of the two paths and achieve higher throughput
than ReMP when possible. Specifically, the throughput gains
of OLAPS variants can reach up to 1.8 in both figures,
which means OLAPS reaches 1.8 times higher throughput
than ReMP in this case. Note that MinRTT and RR can reach
higher throughput when the network conditions are relatively
good, which is in line with our expectations. OLAPS, as an
online-learning-based scheduler, always needs time to learn
and explore a scheduling policy. The learning process brings
OLAPS optimal scheduling policy with high adaptability to
different networks at the cost of some throughput loss when
exploring suboptimal actions. However, Table III shows that
the throughput loss due to online learning is affordable since
the average throughput gain of OLAPS-UCB1 is higher than
that of MinRTT and RR.

In conclusion, our experiments show that OLAPS can be
an adequate packet scheduling algorithm that makes MPTCP
really feasible in mobile networks with complex scenarios.
On the one hand, when the network conditions of subflows are
good enough, OLAPS aggregates the bandwidth of different
network paths and provides higher throughput than single-
path TCP (or MPTCP with ReMP scheduler) can provide.
On the other hand, in heterogeneous network scenarios and
the scenario with packet loss, which can never be ignored
in real networks, OLAPS avoids the dramatic decline in
throughput that haunts the in-kernel schedulers and can still
provide acceptable throughput. Besides, the online-learning
agent of OLAPS can always learn a proper policy that suits

current network conditions, and OLAPS further accelerates the
learning process.

VIII. LIMITATIONS AND FUTURE WORK

OLAPS uses an online-learning process to learn a better
packet scheduling policy. Though it is a deployable lightweight
solution that needs no training data, it takes time before a
proper policy is learned. When the mobile network changes
faster than OLAPS can learn a stable policy, it can only
behave conservatively to provide a throughput similar to that
a single-path TCP can provide. Although such a performance
has already been better than other in-kernel schedulers can pro-
vide under the same circumstance, faster reaction and higher
throughput are always desirable. For future work, we consider
combining OLAPS with an offline-learning process to train
a helpful neural network. Besides, how to make an offline-
learning-based design deployable is also a challenging task to
solve.

Another part of OLAPS that needs improvement is its
ability to achieve higher throughput in heterogeneous network
scenarios with packet loss. The current design of OLAPS uses
a simple yet effective way to choose the next subflow, which
is to choose the subflow with the lowest RTT. This design
works well in a homogeneous network, but when network
paths differ a lot, it may cause HoL blocking, which drives the
online-learning agent to play a conservative policy by sending
more redundant packets. If the effectiveness of the algorithm
in choosing a subflow can be improved, higher throughput
can be achieved. However, researchers have proven that many
state-of-art schedulers actually behave unsatisfactorily in such
scenarios [25]. As a result, we are planning to design such an
algorithm to improve the overall performance of OLAPS.

Furthermore, we are interested in making OLAPS aware of
different quality-of-service (QoS) requirements from various
applications. For example, video streaming applications may
not care about the overall throughput that much. Instead, they
require low application delay. OLAPS’s pursuit of instan-
taneous throughput should benefit such applications more
than those pursuing overall throughput. However, it does not
include an explicit design to reduce transmission delay or
fulfill other QoS requirements. Since such a design needs
cross-layer communication, which means it is not transparent
to upper layers, we leave it for future work and make sure the
deployment of the current OLAPS needs no extra modification
on both the server and client sides.

IX. CONCLUSION

MPTCP is a promising protocol that enables the concurrent
use of multiple network paths for higher throughput and better
resilience to network failures. However, in complex mobile
networks, MPTCP may even underperform single-path TCP,
and one of the main reasons is that existing packet scheduling
algorithms in the MPTCP Linux kernel may work well in
some cases but perform awfully in others. A truly deployable
algorithm may not perform the best, but it should consistently
provide good performances in most cases.

With that purpose, we propose OLAPS, a multipath packet
scheduler assisted by an online-learning agent, to use adap-
tive scheduling policies to suit different network conditions.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 30,2024 at 16:43:32 UTC from IEEE Xplore. Restrictions apply.

XING et al.: ONLINE LEARNING ASSISTED PACKET SCHEDULER FOR MPTCP IN MOBILE NETWORKS 2311

OLAPS needs not only to provide high aggregated throughput
when network conditions are relatively homogeneous and loss-
free but also to improve MPTCP’s performance in harsh
network scenarios with heterogeneous paths, random packet
loss, and buffer-limited receiving devices. Our experiments
show that OLAPS achieves its goals through its well-designed
online-learning agent, whose learning process is further accel-
erated by a reward monitor. Since OLAPS is a lightweight
algorithm needing no training data and can work as a Linux
kernel module without any modification needed on the client
side, it can serve as one of the packet scheduling algorithms
and promote the deployment of MPTCP in practical use.

REFERENCES

[1] Cisco Annual Internet Report (2018–2023) White Paper. Accessed:
Feb. 2023. [Online]. Available: https://www.cisco.com/c/en/
us/solutions/collateral/executive-perspectives/annual-internet-
report/white-paper-c11-741490.html

[2] Y. Li et al., “A nationwide study on cellular reliability: Measurement,
analysis, and enhancements,” in Proc. Conf. ACM Special Interest Group
Data Commun. (SIGCOMM), 2021, pp. 597–609.

[3] J. R. Iyengar, P. D. Amer, and R. Stewart, “Concurrent multipath
transfer using SCTP multihoming over independent end-to-end paths,”
IEEE/ACM Trans. Netw., vol. 14, no. 5, pp. 951–964, Oct. 2006.

[4] Q. De Coninck and O. Bonaventure, “Multipath QUIC: Design and eval-
uation,” in Proc. 13th Int. Conf. Emerg. Netw. Exp. Technol. (CoNEXT),
2017, pp. 160–166.

[5] A. Ford, C. Raiciu, M. J. Handley, O. Bonaventure, and C. Paasch,
TCP Extensions for Multipath Operation With Multiple Addresses,
document RFC 8684, 2020. Accessed: Feb. 2023. [Online]. Available:
https://www.ietf.org/rfc/rfc8684.txt

[6] O. Bonaventure. Apple Music on iOS13 Uses Multipath TCP
Through Load-Balancers. Accessed: Feb. 2023. [Online]. Available:
http://blog.multipath-tcp.org/blog/html/2019/10/27/apple_music_on_
ios13_uses_multipath_tcp_through_load_balancers.html

[7] Apple. Use Multipath TCP to Create Backup Connections for iOS.
Accessed: Feb. 2023. [Online]. Available: https://support.apple.com/en-
us/HT201373

[8] O. Bonaventure and S. Seo, “Multipath TCP deployments,” IETF J.,
vol. 12, no. 2, pp. 24–27, Nov. 2016.

[9] C. Paasch and O. Bonaventure, “Multipath TCP,” Commun. ACM,
vol. 57, no. 4, pp. 51–57, Apr. 2014.

[10] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving datacenter performance and robustness with
multipath TCP,” in Proc. ACM SIGCOMM Conf. (SIGCOMM), 2011,
pp. 266–277.

[11] L. Li et al., “A measurement study on multi-path TCP with multiple
cellular carriers on high speed rails,” in Proc. Conf. ACM Special Interest
Group Data Commun. (SIGCOMM), 2018, pp. 161–175.

[12] C. Paasch and S. Barre. Multipath TCP in the Linux Kernel. Accessed:
Feb. 2023. [Online]. Available: https://www.multipath-tcp.org

[13] A. Frommgen, T. Erbshauser, A. Buchmann, T. Zimmermann, and
K. Wehrle, “ReMP TCP: Low latency multipath TCP,” in Proc. IEEE
Int. Conf. Commun. (ICC), May 2016, pp. 1–7.

[14] S. Ferlin, O. Alay, O. Mehani, and R. Boreli, “BLEST: Blocking
estimation-based MPTCP scheduler for heterogeneous networks,” in
Proc. IFIP Netw. Conf. (IFIP Networking) Workshops, May 2016,
pp. 431–439.

[15] Y.-S. Lim, E. M. Nahum, D. Towsley, and R. J. Gibbens, “ECF: An
MPTCP path scheduler to manage heterogeneous paths,” in Proc. 13th
Int. Conf. Emerg. Netw. Exp. Technol. (CoNEXT), 2017, pp. 147–159.

[16] B. Arzani, A. Gurney, S. Cheng, R. Guerin, and B. T. Loo, “Impact of
path characteristics and scheduling policies on MPTCP performance,”
in Proc. 28th Int. Conf. Adv. Inf. Netw. Appl. Workshops, May 2014,
pp. 743–748.

[17] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Mach. Learn., vol. 47, no. 2, pp. 235–256,
2002.

[18] A Discrete-Event Network Simulator for Internet Systems. Accessed:
Feb. 2023. [Online]. Available: https://www.nsnam.org/

[19] Y. Thomas, M. Karaliopoulos, G. Xylomenos, and G. C. Polyzos,
“Low latency friendliness for multipath TCP,” IEEE/ACM Trans. Netw.,
vol. 28, no. 1, pp. 248–261, Jan. 2020.

[20] R. Khalili, N. Gast, M. Popovic, and J.-Y. Le Boudec, “MPTCP is not
Pareto-optimal: Performance issues and a possible solution,” IEEE/ACM
Trans. Netw., vol. 21, no. 5, pp. 1651–1665, Oct. 2013.

[21] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure, “Experimental
evaluation of multipath TCP schedulers,” in Proc. ACM SIGCOMM
Workshop Capacity Sharing Workshop, Aug. 2014, pp. 27–32.

[22] B. Partov and D. J. Leith, “Experimental evaluation of multi-path sched-
ulers for LTE/Wi-Fi devices,” in Proc. 10th ACM Int. Workshop Wireless
Netw. Testbeds, Exp. Eval., Characterization, Oct. 2016, pp. 41–48.

[23] O. Bonaventure, C. Paasch, and G. Detal, Use Cases and Operational
Experience With Multipath TCP, document RFC 8041, 2020. Accessed:
Feb. 2023. [Online]. Available: https://www.ietf.org/rfc/rfc8041.txt

[24] F. Yang, Q. Wang, and P. D. Amer, “Out-of-order transmission for in-
order arrival scheduling for multipath TCP,” in Proc. 28th Int. Conf. Adv.
Inf. Netw. Appl. Workshops, May 2014, pp. 749–752.

[25] P. Hurtig, K.-J. Grinnemo, A. Brunstrom, S. Ferlin, O. Alay, and
N. Kuhn, “Low-latency scheduling in MPTCP,” IEEE/ACM Trans. Netw.,
vol. 27, no. 1, pp. 302–315, Feb. 2019.

[26] H. Zhang, W. Li, S. Gao, X. Wang, and B. Ye, “ReLeS: A neural adaptive
multipath scheduler based on deep reinforcement learning,” in Proc.
IEEE Conf. Comput. Commun. (INFOCOM), Apr. 2019, pp. 1648–1656.

[27] K. Yedugundla et al., “Is multi-path transport suitable for latency
sensitive traffic?” Comput. Netw., vol. 105, pp. 1–21, Aug. 2016.

[28] H. Wu, O. Alay, A. Brunstrom, S. Ferlin, and G. Caso, “Peekaboo:
Learning-based multipath scheduling for dynamic heterogeneous envi-
ronments,” IEEE J. Sel. Areas Commun., vol. 38, no. 10, pp. 2295–2310,
Oct. 2020.

[29] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The non-
stochastic multiarmed bandit problem,” SIAM J. Comput., vol. 32, no. 1,
pp. 48–77, 2011.

[30] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Adv. Appl. Math., vol. 6, no. 1, pp. 4–22, Mar. 1985.

[31] H. Robbins, “Some aspects of the sequential design of experiments,”
Bull. Amer. Math. Soc., vol. 58, no. 5, pp. 527–535, 1952.

[32] G. Sarwar, R. Boreli, E. Lochin, A. Mifdaoui, and G. Smith, “Mitigating
receiver’s buffer blocking by delay aware packet scheduling in multipath
data transfer,” in Proc. 27th Int. Conf. Adv. Inf. Netw. Appl. Workshops,
Mar. 2013, pp. 1119–1124.

[33] K. Xue et al., “DPSAF: Forward prediction based dynamic packet
scheduling and adjusting with feedback for multipath TCP in lossy
heterogeneous networks,” IEEE Trans. Veh. Technol., vol. 67, no. 2,
pp. 1521–1534, Feb. 2018.

[34] W. Wei, K. Xue, J. Han, Y. Xing, D. S. L. Wei, and P. Hong, “BBR-
based congestion control and packet scheduling for bottleneck fairness
considered multipath TCP in heterogeneous wireless networks,” IEEE
Trans. Veh. Technol., vol. 70, no. 1, pp. 914–927, Jan. 2021.

[35] H. Lee, J. Flinn, and B. Tonshal, “RAVEN: Improving interactive latency
for the connected car,” in Proc. 24th Annu. Int. Conf. Mobile Comput.
Netw. (MobiCom), 2018, pp. 557–572.

[36] Z. Zheng et al., “XLINK: QoE-driven multi-path QUIC transport in
large-scale video services,” in Proc. Conf. ACM Special Interest Group
Data Commun. (SIGCOMM), 2021, pp. 418–432.

[37] S. R. Pokhrel and M. Mandjes, “Improving multipath TCP performance
over WiFi and cellular networks: An analytical approach,” IEEE Trans.
Mobile Comput., vol. 18, no. 11, pp. 2562–2576, Nov. 2019.

[38] S. Raj Pokhrel and C. Williamson, “A rent-seeking framework for
multipath TCP,” ACM SIGMETRICS Perform. Eval. Rev., vol. 48, no. 3,
pp. 63–70, Mar. 2021.

[39] S. R. Pokhrel and S. Garg, “Multipath communication with deep
Q-network for industry 4.0 automation and orchestration,” IEEE Trans.
Ind. Informat., vol. 17, no. 4, pp. 2852–2859, Apr. 2021.

[40] S. R. Pokhrel and J. Choi, “Improving TCP performance over WiFi for
internet of vehicles: A federated learning approach,” IEEE Trans. Veh.
Technol., vol. 69, no. 6, pp. 6798–6802, Jun. 2020.

[41] S. Abbasloo, C.-Y. Yen, and H. J. Chao, “Wanna make your TCP scheme
great for cellular networks? Let machines do it for you!” IEEE J. Sel.
Areas Commun., vol. 39, no. 1, pp. 265–279, Jan. 2021.

[42] C. Huang, J. Zhang, and T. Huang, “Objective-oriented resource pooling
in MPTCP: A deep reinforcement learning approach,” in Proc. 3rd Int.
Conf. Hot Inf.-Centric Netw. (HotICN), Dec. 2020, pp. 175–181.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 30,2024 at 16:43:32 UTC from IEEE Xplore. Restrictions apply.

2312 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023

[43] J. Chung, D. Han, J. Kim, and C.-K. Kim, “Machine learning based
path management for mobile devices over MPTCP,” in Proc. IEEE Int.
Conf. Big Data Smart Comput. (BigComp), Feb. 2017, pp. 206–209.

[44] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learn-
ing for robotic manipulation with asynchronous off-policy updates,” in
Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2017, pp. 3389–3396.

[45] T. Lu, D. Pal, and M. Pal, “Contextual multi-armed bandits,” in Proc.
13th Int. Conf. Artif. Intell. Statist. (AISTATS), vol. 9, 2010, pp. 485–492.

[46] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit
approach to personalized news article recommendation,” in Proc. 19th
Int. Conf. World wide web, Apr. 2010, pp. 661–670.

[47] D. Chandramouli and T. Sun, System Architecture for the 5G System
(5GS), document TS 23.501, Version 17.5.0, Release 17, 3rd Generation
Partnership Project (3GPP), 2022.

[48] C. Paasch, “Improving multipath TCP,” Ph.D. dissertation, Louvain
School Eng., Université Catholique de Louvain, Ottignies-Louvain-la-
Neuve, Belgium, 2014.

[49] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-based congestion control,” Commun. ACM, vol. 60,
no. 2, pp. 58–66, 2017.

[50] M. Dong et al., “PCC vivace: Online-learning congestion control,” in
Proc. 15th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2018,
pp. 343–356.

[51] J. Dugan, S. Elliott, B. A. Mah, J. Poskanzer, and K. Prabhu. iPerf—The
Ultimate Speed Test Tool for TCP, UDP and SCTP. Accessed: Feb. 2023.
[Online]. Available: https://iperf.fr/

[52] Q. De Coninck and O. Bonaventure, “MultipathTester: Comparing
MPTCP and MPQUIC in mobile environments,” in Proc. Netw. Traffic
Meas. Anal. Conf. (TMA), Jun. 2019, pp. 221–226.

[53] J. Santiago, M. Claeys-Bruno, and M. Sergent, “Construction of space-
filling designs using WSP algorithm for high dimensional spaces,”
Chemometric Intell. Lab. Syst., vol. 113, pp. 26–31, Apr. 2012.

Yitao Xing (Graduate Student Member, IEEE)
received the B.S. degree in information security
from the School of the Gifted Young, University of
Science and Technology of China (USTC), in 2018.
He is currently pursuing the Ph.D. degree in infor-
mation Security with the School of Cyber Sci-
ence and Technology, USTC. His research interests
include future internet architecture and transmission
optimization.

Kaiping Xue (Senior Member, IEEE) received the
bachelor’s degree from the Department of Informa-
tion Security, University of Science and Technology
of China (USTC), in 2003, and the Ph.D. degree
from the Department of Electronic Engineering and
Information Science (EEIS), USTC, in 2007. From
May 2012 to May 2013, he was a Post-Doctoral
Researcher with the Department of Electrical and
Computer Engineering, University of Florida. He is
currently a Professor with the School of Cyber Sci-
ence and Technology, USTC. His research interests

include next-generation internet architecture design, transmission optimiza-
tion, and network security. He is an IET Fellow. He serves on the Editorial
Board of several journals, including the IEEE TRANSACTIONS ON DEPEND-
ABLE AND SECURE COMPUTING (TDSC), the IEEE TRANSACTIONS ON
WIRELESS COMMUNICATIONS (TWC), and the IEEE TRANSACTIONS ON
NETWORK AND SERVICE MANAGEMENT (TNSM). He has also served as
the (Lead) Guest Editor for many reputed journals/magazines, including
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS (JSAC), IEEE
Communications Magazine, and IEEE NETWORK.

Yuan Zhang received the bachelor’s and master’s
degrees from the Department of Electronic Engi-
neering and Information Science (EEIS), University
of Science and Technology of China (USTC), in
2019 and 2022, respectively. His research interests
include future internet architecture design and trans-
mission optimization.

Jiangping Han (Member, IEEE) received the bach-
elor’s and Ph.D. degrees from the Department of
Electronic Engineering and Information Science
(EEIS), University of Science and Technology of
China (USTC), in 2016 and 2021, respectively. She
was a Visiting Student at Arizona State University
from 2020 to 2021. She is currently a Post-Doctoral
Fellow with the School of Cyber Science and Tech-
nology, USTC. Her research interests include data
center networks, future internet architecture design,
and transmission optimization.

Jian Li (Member, IEEE) received the bachelor’s
degree from the Department of Electronics and
Information Engineering, Anhui University, in 2015,
and the Ph.D. degree from the Department of Elec-
tronic Engineering and Information Science (EEIS),
University of Science and Technology of China
(USTC), in 2020. From November 2019 to Novem-
ber 2020, he was a Visiting Scholar with the Depart-
ment of Electronic and Computer Engineering, Uni-
versity of Florida. From December 2020 to October
2022, he was a Post-Doctoral Researcher with the

School of Cyber Science and Technology, USTC. He is currently an Associate
Researcher with the School of Cyber Science and Technology, USTC. His
research interests include wireless networks, next-generation internet, and
quantum networks.

David S. L. Wei (Life Senior Member, IEEE)
received the Ph.D. degree in computer and informa-
tion science from the University of Pennsylvania in
1991. From May 1993 to August 1997, he was on the
Faculty of Computer Science and Engineering, The
University of Aizu, Japan, as an Associate Professor
and then a Professor. He is currently a Professor with
the Computer and Information Science Department,
Fordham University. He has authored and coau-
thored more than 140 technical papers in various
archival journals and conference proceedings. His

research interests include cloud and edge computing, cybersecurity, and
quantum computing and communications. He is a member of ACM and AAAS
and a Life Senior Member of the IEEE Computer Society and the IEEE
Communications Society. He was a recipient of the IEEE Region 1 Techno-
logical Innovation Award (Academic) in 2020, for contributions to information
security in wireless and satellite communications and cyber-physical systems.
He was a Lead Guest Editor or the Guest Editor of several special issues in
the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, the IEEE
TRANSACTIONS ON CLOUD COMPUTING, and the IEEE TRANSACTIONS ON
BIG DATA. He also served as an Associate Editor for IEEE TRANSACTIONS
ON CLOUD COMPUTING from 2014 to 2018 and Journal of Circuits, Systems
and Computers from 2013 to 2018 and an Editor for IEEE JOURNAL ON
SELECTED AREAS IN COMMUNICATIONS (JSAC) for the Series on Network
Softwarization and Enablers from 2018 to 2020.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 30,2024 at 16:43:32 UTC from IEEE Xplore. Restrictions apply.

