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Abstract— In order to be TCP-friendly, the original Multipath
TCP (MPTCP) congestion control algorithm is always restricted
to gain no better throughput than a traditional single-path
TCP on the best path. However, it is unable to maximize the
throughput over all available paths when they do not go through
a shared bottleneck. Also, bottleneck fairness based solutions
detect the bottleneck and conduct different congestion control
algorithms at different bottleneck sets to increase throughput
while remaining fair to single TCP. However, existing solutions
generally detect shared bottlenecks through delay correlation and
loss correlation between two flows, which often lead to misjudge-
ment in dynamic and complex network scenarios. Therefore,
in this paper, we first propose a new Shared Bottleneck based
Congestion Control scheme, called SB-CC, which leverages ECN
(Explicit Congestion Notification) mechanism to detect shared
bottlenecks among subflows and estimate the congestion degree of
each subflow. Then, with the congestion degree, SB-CC balances
the loads among all subflows, and smooths out congestion window
fluctuation. Also, in order to prevent throughput degradation due
to out-of-order packets, we propose a Shared Bottleneck based
Forward Prediction packet Scheduling scheme, called SB-FPS.
SB-FPS distributes data according to the window size changes of
each subflow, and thus could more accurately schedule data in
shared bottleneck scenarios. We implement our proposed scheme
in the Linux kernel and simulation platform to evaluate the
performance in different scenarios. Measurement results indicate
that our scheme can detect the bottleneck more accurately and
improve the overall network performance while still keeping
bottleneck fairness.

Index Terms— TCP-friendly, multipath TCP, shared bottle-
neck, explicit congestion notification (ECN), congestion control,
packet scheduling.

I. INTRODUCTION

NOWADAYS, it’s not unusual that an electronic device
is equipped with more than one network interface, e.g.,

a mobile phone with 3G/4G and WiFi interfaces. The concur-
rent use of multiple interfaces will bring a better Quality of
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Service (QoS) for high bandwidth consumption applications
such as multimedia streaming and real-time games [1], [2].
Unfortunately the use of multiple interfaces is not supported
by legacy TCP [3]. As an extension of TCP, MultiPath TCP
(MPTCP) [4] has already attracted much attention due to
its capability of using multiple interfaces concurrently and
compatibility with TCP. MPTCP splits data and transmits them
simultaneously through multiple interfaces. Each path over
one pair of interfaces of two MPTCP terminals is defined as
a subflow. The implementation of MPTCP only requires the
modification of the transport layer, which is transparent to both
application layer and network layer.

Congestion control is a key component of TCP, which con-
trols the amount of traffic transmitted over a connection and
avoids congestion. The basic principles of MPTCP congestion
control are “improve throughput” and “do no harm” [5]. This
means: 1) When there is no congestion, an MPTCP con-
nection should achieve higher throughput than a single TCP
connection; 2) When the congestion occurs, MPTCP should be
friendly to single-path TCP, which means that the throughput
achieved are nearly the same. Various congestion control
mechanisms, such as LIA [6], OLIA [7], wVegas [8], BALIA
[9], and Couple+ [10], have been proposed under these
principles. However, all these schemes are designed to achieve
network fairness, which means the overall throughput of an
MPTCP connection should be no higher than that of a single
TCP on the best end-to-end path no matter whether MPTCP
subflows share a bottleneck or not. Although network fairness
makes all connections achieve the same throughput to ensure
fairness, it actually is unfair to MPTCP users. Besides, network
fairness based coupled congestion control algorithm limits
subflows’ performance at non-shared-bottleneck links (i.e.,
the links other than the shared bottleneck), and it only achieves
the same transmission performance as legacy TCP users.

Considering the unfairness to MPTCP users in network
fairness based schemes, Dynamic Window Coupling (DWC)
[11], a bottleneck fairness based approach, was proposed.
DWC restricts the total throughput of the subflows sharing
a bottleneck to be no higher than that of a single-path TCP at
this bottleneck, while other subflows passing through different
bottlenecks act as individual TCPs. Bottleneck fairness is
friendly with traditional TCP connections, and can improve
the throughput of the subflows on the disjoint paths if the
congestion control schemes can accurately detect the bot-
tlenecks. However, in DWC [11], the proposed schemes of
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delay correlation and loss correlation sometimes fail to reveal
real shared bottleneck situations and thus cause MPTCP to
have poor transmission performance. For example, random
packet loss often occurs in lossy networks and the increase of
path delay is usually caused by load increase on non-shared
bottleneck links.

Instead of utilizing packet loss and delay signals, some
explicit network feedback based schemes, such as [12] and
[13], have been proposed to obtain the real-time network situa-
tion to further improve the network performance. In this paper,
based on ECN (Explicit Congestion Notification) signal [14]
which can accurately reflect the network congestion situa-
tion, we propose a newly designed Shared Bottleneck based
Congestion Control scheme, called SB-CC. SB-CC consists
of a new shared bottleneck detection algorithm and a newly
designed bottleneck fairness based congestion control algo-
rithm. The shared bottleneck detection scheme utilizes ECN
signal to detect shared bottlenecks for subflows belonging to
a MPTCP connection. ECN-enabled devices have existed in
Ubuntu Linux since 12.04 and in Windows Server since 2012
[15]. Proportion of the most popular websites that support
for ECN has increased from 8.5% in 2012 to over 70% in
May 2017 [15]. Cisco IOS routers perform ECN marking if
configured with the WRED queuing discipline since version
12.2(8)T, and more and more newly manufactured Cisco
routers support ECN mechanisms [16]. In the ECN mecha-
nism, when the queue length exceeds the marking threshold
at a specific intermediate router, forwarded packets will be
marked at a certain probability. Then, subflows receiving
marked ACKs in the same time period can be judged to share a
bottleneck. Meanwhile, the sender implements the judgement
process twice to make sure that two judgment decisions are
consistent so as to avoid causing mis-judgement and to ensure
the detection accuracy. Compared to delay signal and loss
signal, ECN signal can explicitly reflect the actual congestion
status in network more accurately. Based on the proposed
shared bottleneck detection scheme, subflows in a MPTCP
connection passing a shared bottleneck are grouped into a set
to implement coupled congestion control. Therefore, this set
of MPTCP subflows can be treated as a whole and should
be friendly with the concurrent regular TCP flows sharing
the same bottleneck. Our proposed coupled congestion control
algorithm is based on the defined subflow congestion degree,
which can be used to balance the load among the different
MPTCP subflows by considering bottleneck fairness. In the
proposed coupled congestion control mechanism, we modify
the “half window” operation of the legacy MPTCP, and
elastically control the window increment and decrement degree
according to the subflow congestion degree.

Obviously, the proposed SB-CC algorithm can detect shared
bottlenecks more accurately and improve the performance of
MPTCP while providing bottleneck fairness. However, with
the original scheduling algorithm for MPTCP, the throughput
will decrease in heterogeneous network scenarios, since the
asymmetry of delay and bandwidth in different subflows will
result in a large number of out-of-order packets and further
cause receive buffer blocking [17]. The maximum blocking
time will increase as the diversity of link delay and bandwidth

increases among different subflows [18]. Some intelligent
scheduling algorithms, such as BLEST [19], F2P-DPS [20]
and DSPAF [21], have been proposed to reduce the possibility
of out-of-order packets from different aspects. However, all
these scheduling algorithms only treat each subflow as a
single TCP and did not consider that all subflows’ congestion
windows should be coupled in the congestion avoidance phase
to ensure fairness. As a result, they do not perform well in
shared bottleneck scenarios. To solve this problem, we fur-
ther develop a fine-grained Shared Bottleneck based Forward
Prediction packet Scheduling scheme, named SB-FPS, for
MPTCP. SB-FPS takes detected shared-bottleneck sets into
consideration, model each subflow’s future behavior and pre-
schedule data transmission in fine-grained control.

Furthermore, we realize the proposed scheme in Linux
kernel and construct realistic experiment scenarios to verify
the performance improvement of of our proposed scheme over
the existing schemes.

The main contributions of our work can be summarized as
follows:

• We propose a new Shared Bottleneck based coupled
Congestion Control scheme, called SB-CC. SB-CC con-
sists of a newly designed shared bottleneck detection
algorithm and a newly designed bottleneck fairness based
coupled congestion control algorithm by taking conges-
tion degree into consideration. We leverage the ECN
mechanism to explicitly expose subflows sharing one or
more bottlenecks in an MPTCP connection. The judge-
ment process should be implemented twice to make sure
the consistence of the two judgement decisions so as to
ensure the detection accuracy. Further, for providing load
balance while keeping bottleneck fairness, the proposed
coupled congestion control algorithm estimates the con-
gestion degree of each subflow and utilize it to elastically
control window increase and decrease.

• We further develop a fine-grained Shared Bottleneck
based Forward Prediction packet Scheduling scheme
(SB-FPS) for MPTCP. For each subflow, by taking
the detected shared bottleneck sets into consideration,
we model each subflow’s future behavior and pre-
schedule data transmission in fine-grained control in
shared bottleneck scenarios.

• By implementing the proposed scheme and some existing
schemes to be compared in Linux kernel and simulation
platform, we conduct realistic experiments in different
scenarios. The evaluation results show that our scheme
can detect the shared bottleneck more accurately and
quickly, and the algorithms of coupled congestion con-
trol and pre-scheduling can further improve the overall
throughput while keeping bottleneck fairness.

The rest of this paper is organized as follows. In Section II,
we introduce the existing congestion control algorithms,
shared bottleneck detection scheme, and packet scheduling
algorithms in MPTCP. A detailed description of our proposed
scheme is provided in Section III. In Section IV, we give the
experiment results and performance analysis. Finally, the con-
clusion is given in Section V.
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II. RELATED WORK

In this section, we introduce the related works on congestion
control, shared Bottleneck detection, and packet scheduling in
TCP/MPTCP.

A. Congestion Control in MPTCP

The most common congestion control mechanism in TCP,
is TCP NewReno [3], which is based on AIMD (Additive
Increase Multiplicative Decrease) [22]. The default TCP Cubic
in current Linux kernel also inherits this basic mechanism.
In MPTCP, if each subflow in a MPTCP connection runs
TCP NewReno independently, the MPTCP connection will
take much more resources than a single-path TCP flow sharing
a bottleneck, which is not friendly for traditional TCP connec-
tions. In order to be TCP-friendly, some MPTCP congestion
control algorithms, such as EWTCP [23], LIA [6], OLIA [7],
wVegas [8], and BALIA [9], adopt semi-coupled approach
to dynamically adjust the congestion window size. However,
they are all based on TCP NewReno and only modify the
congestion avoidance phase to perform coupled congestion
control for all subflows. The increase rate of aggregate con-
gestion window for a MPTCP connection is the same as that
of a single-path TCP to ensure that the MPTCP connection
consumes no more resources than a single-path TCP, which
achieves network fairness.

All these schemes simply couple all subflows to achieve
network fairness, which do not rely on shared bottleneck
detection mechanisms. If shared bottleneck sets of subflows
can be detected, MPTCP can control subflows sharing the
same bottleneck to gain aggregate throughput no higher than a
regular TCP flow, while imposing no restrictions to subflows
in non-shared-bottleneck paths, and different shared bottleneck
sets can act like single-path TCP flows from the respective
shared bottlenecks. Therefore, such a scheme can satisfy the
principles of “do no harm” and “improve throughput” at the
same time, provided the shared bottleneck sets need to be
timely and successfully detected first.

B. Shared Bottleneck Detection

TCP is an end-to-end transmission protocol, which is trans-
parent to intermediate routers. Based on this principle, it is
difficult to detect the shared bottlenecks. DWC [11] is the first
scheme for MPTCP to achieve bottleneck fairness, where the
subflows which encounter delay increase or packet loss during
the same time period will be considered to share the same
bottleneck. In our previous work [24], presented and realized
a shared bottleneck detection scheme based on congestion
interval variance measurement, which is robust and effective to
the path lag problem. Ferlin et al. [25] used three key statistics
of one way delay to detect shared bottleneck sets. However,
this scheme needs a long time to obtain the detection result.
Meanwhile, it must modify the MPTCP Time Stamp option
to feed back the bottleneck congestion information on each
subflow, which requires some changes to the existing network
architecture and protocol stack. Besides, the background traffic
on non-bottleneck links usually leads to the decrease of the
bottleneck detection accuracy.

There are also some efforts devoted to detect the exis-
tence of a bottleneck shared between two legacy TCP flows.
Zhang et al. [26] leveraged loss correlation to predict TCP
flows that traverse through a shared bottleneck. Kim et al. [27]
proposed a wavelet-based technique that uses a signal process-
ing method, named wavelet denoising, to detect whether TCP
flows share a bottleneck. Yousaf and Welzl [28] used path
delay correlation on two TCP flows to detect whether they
share a bottleneck.

Since random packet loss often occurs in lossy networks
and the path delay increase is usually caused by load increase
on non-shared bottleneck links, the shared bottleneck sets will
likely be misjudged in the above mentioned schemes.

C. Packet Scheduling in MPTCP

MPTCP establishes a connection with multiple subflows
on different paths. In MPTCP layer, data, in the form of
packets, are scheduled to parallel subflows for transmission.
Round-Robin is the simplest scheduling algorithm for MPTCP,
in which all subflows have the same priority and the sender
just schedules data from the sending buffer in sequence to
the available sending windows of all subflows in the order
of polling. It is unable to alleviate the effects caused by
heterogeneous path characteristics, leading to serious problem
of out-of-order packets, where packets with larger sequence
number may arrive at receiver earlier than packets with smaller
sequence number, and have to wait until the arriving of the
packets with smaller sequence numbers. In current MPTCP
specification [4], Lowest RTT First (LowRTT) is used as the
default scheduling algorithm, which relies on the round-trip
time (RTT) measured on each subflow and sends segments
over the subflow having the lowest round-trip time first.
However, LowRTT also fails to guarantee packets’ arriving at
the receiver in order. In-order delivery among different paths
remains a main challenge for multipath transmission, where
out-of-order packets will cause the head-of-line blocking prob-
lem at receiver [29]. Moreover, this problem will become more
serious in asymmetric scenarios, where multiple paths have
significantly different end-to-end delay. Therefore, usually,
MPTCP scheduling algorithms introduce a large receive buffer
shared by all subflows to hold more out-of-order packets at
receiver so as to reduce the impact of out-of-order packets.
However, using large receive buffer is not able to provide
performance improvement for real-time data transmission.

Furthermore, some intelligent scheduling algorithms have
been proposed to make arriving packets in order as much
as possible. Linux-MPTCP scheduler [30] is the first prac-
tical scheduler implemented in Linux MPTCP kernel [31],
which frequently allocates data to all subflows in proportion
according to the current congestion window size and path
delay on each path. Mirani et al. [32] proposed Forward
Prediction Packet Scheduling (FPS) to reduce the number
of out-of-order packets due to asymmetric path delay on
different paths. This introduces fine-grained prediction about
data transmission duration and congestion window adjustment
of several rounds on the faster subflows. Different from FPS,
our proposed scheme [21] is a newly designed fine-grained
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Fig. 1. Framework of the proposed scheme. ① SB-CC groups the subflows into different bottleneck set according to the state of each subflow. The subflows
in the same bottleneck are coupled controlled. ②Based on the information provided by SB-CC, SB-FPS models each subflow’s behavior and estimates the
number of packets scheduled to each subflow.

forward prediction based dynamic packet scheduling scheme,
in which both of the random packet loss and time offset are
considered. Therefore, compared to FPS, our scheme does
better in lossy network scenarios.

D. Summary

The above schemes about packet scheduling all treat a
subflow as a single TCP and did not consider implementing
coupled congestion control, so in congestion avoidance phase,
the congestion window (CWND) in each subflow grows by
one for every RTT. However, the evolution of CWND on
different subflows in one shared bottleneck set should be
correlated with each other, which means that the CWND
will not simply grow by one for every RTT. In our scheme,
we introduce the detection of shared bottleneck sets, based on
the consideration of bottleneck fairness for MPTCP. We further
model the increase and decrease of each subflow’s CWND,
and design a reasonable coupled congestion control algorithm
and a fine-grained scheduling algorithm. In order to more
accurately estimate the number of packets supposed to be
scheduled to each subflow, our scheme integrately considers
both the congestion control and the packet scheduling.

III. SHARED BOTTLENECK BASED CONGESTION

CONTROL AND PACKET SCHEDULING

FOR MULTIPATH TCP

In this section, we describe our proposed scheme that
combines congestion control and packet scheduling to improve
the performance of MPTCP, while keeping bottleneck fairness.
As shown in Fig. 1, the proposed scheme consists of two
main parts, namely SB-CC and SB-FPS. SB-CC first leverages
ECN mechanism to divide different subflows into different
bottleneck sets. The different subflows that receive ECE-
marked ACKs at the same time period will be judged as
sharing the same bottleneck. Meanwhile, the sender imple-
ments the judgement with two stages and makes sure that
two judgement decisions are consistent so as to ensure a high

detection accuracy. Then, SB-CC groups subflows in the same
shared bottleneck set to implement subflow congestion degree
based coupled congestion control. SB-FPS is a new intelligent
bottleneck fairness based packet scheduling algorithm that
models each subflow’s CWND according to its congestion
degree and the relationship among subflows whether they are
in the same shared bottleneck set. Therefore, the number of
packets to be transmitted on each subflow can be estimated
and scheduled more effectively.

A. Shared Bottleneck Based Congestion Control

1) Our Proposed Shared Bottleneck Detection Scheme: We
utilize the ECN mechanism in the design of shared bottleneck
detection for MPTCP to get more accurate detection results.
According to [33] and other configuration values, we set a
threshold K in ECN-enabled routers where passing packets
are marked “11” in ECN field when the average queue length
in an intermediate router exceeds the threshold. Then, when
receiving ECN marked TCP segment, the receiver sets the
ECE (ECN-Echo flag) with the value “1” in its responsed
ACK to notify the sender. The sender will then know the
congestion state in the corresponding subflow. Furthermore,
the congestion degree of each subflow can be obtained from
the statistical analysis on the proportion of marked TCP
segments within a sending window, which can be updated
at the end of each sending window. Our proposed shared
bottleneck detection scheme involves two stages of judgement.

We introduce a function module of shared bottleneck detec-
tion to monitor all subflows for a MPTCP connection. At the
very beginning, when there are one or more ECE-marked
ACKs detected in a subflow (e.g., subflow1), our scheme will
trigger first for this subflow and launch the detection of ECE
marked ACKs and packet loss signals in all other subflows
within the predefined observation window. The observation
window, as shown in Fig. 2, consists of the past and the future
observation window, and the size of both windows is wr/2
[11], where wr is the congestion window size of subflow r.
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Fig. 2. When subflow1 receives an ECE-marked ACK, subflow2 checks the
past and future observation window for packet loss and ECE-marked ACK.

If the ECE-marked ACKs or packet loss signals are detected
on one subflow (e.g., subflow2) during the observation window,
subflow1 and subflow2 will be grouped into the “Preliminary
Shared Bottleneck Set” and the second stage are launched
to verify this judgement result. Meanwhile, other subflows
that do not belong to any sets still stay in the Monitoring
state and repeat the above process. To be noted, the priority
we consider is ECN signal, but we also consider packet loss
signal. If there’s no returned ACK for a transmitted TCP
segment in a specific subflow until the set re-transmission
timer is time-out, it indicates that a congestion event in this
subflow has happened in the observation window.

The second stage is conducted to verify whether the prelim-
inary shared bottleneck set is a correct one. The sender will
monitor all the subflows in this preliminary shared bottleneck
set to firstly detect one or more ECE-marked ACKs in a
subflow. Then, the sender will judge whether congestion
events within the observation window also occurs in all other
subflows in this preliminary shared bottleneck set but not in
other subflows that are still in monitoring state outside this
preliminary shared bottleneck set. If so, preliminary shared
bottleneck set is verified and move this set to the Final
Judgement state. If not, move all the subflows in this set back
to the Monitoring state.

Pseudo-code of our proposed shared bottleneck detection
algorithm is given in Algorithm 1. For subflows in a set in
the Final Judgement state, the sender always observe all these
subflows and implement the above verification process. If the
shared bottleneck set is still correct, keep it and stay in the
Final Judgement state. If it’s not correct, move all the subflows
in the set back to the Monitoring state.

For clarity, the state-transition diagram of shared bottleneck
detection for all subflows in a MPTCP connection is shown
in Fig. 3.

2) Bottleneck Fairness Based Coupled Congestion Control:
In SB-CC, for window reduction part, we define congestion
degree, the concept similar to that in DCTCP, and use fine-
grained window reduction similar to that in DCTCP for each
MPTCP subflow. Then, to achieve bottleneck fairness and
keeping stable, we also make use of the defined congestion
degree in constrained additive increase so as to provide cou-
pled fine-grained bottleneck-fairness congestion control. Fur-
thermore, to be noted, our scheme refers to RTT-Compensator,
which is still a network-fairness-based congestion control

Algorithm 1 Shared Bottleneck Detection Algorithm
Input: Denote R as the set of subflows in a MPTCP

connection and each subflow r ∈ R, observation
window of sublow r, wr, state of subflow r,
state[r] ∈ {monitor, judgment};

Output: Shared bottleneck set bsi, i represents the ith
shared bottleneck set;

1 Initialization: state[r]=monitor, i = 0;
2 foreach subflow in a MPTCP connection do
3 /∗ monitor all subflows’ state and

congestion events∗/
4 if subflow r∗ ∈ R receive ECE then
5 if state[r∗]=monitor then
6 foreach subflow r ∈ R\r∗ do
7 if subflow r receive ECE or packet loss

within the observation window wr

8 then
9 state[r∗]=judgement;

10 state[r]=judgement;
11 subflow r∗∈ bsi;
12 subflow r∈ bsi;

13 /∗ verify the Preliminary Shared
Bottleneck Set ∗/

14 if subflow r′∈bsi receive ECE then
15 if (each subflow r ∈ bsi\r′ receive ECE or

packet loss within wr) && (any subflow r /∈
bsi do not receive ECE or packet loss within
wr)

16 then
17 Return bsi;
18 i++;
19 else
20 foreach subflow r∈bsi do
21 state[r]=monitor;

22 Return bsi;

scheme. However, our proposed SB-CC is a bottleneck-
fairness-based coupled congestion control scheme that can
provide higher throughput performance than existing MPTCP
congestion control algorithms while still keeping bottleneck
fairness. From the perspective of data distribution, dynamic
adjustment and load balance can be made between different
MPTCP subflows. The details of our proposed coupled con-
gestion control are described as follows.

Dynamically Multiplicative Decrease: Different from legacy
TCP and DWC, SB-CC takes the subflow congestion degree
βr into consideration to dynamically decrease the congestion
window. We refer to the decrease phase in DCTCP [12],
which introduces the concept of congestion degree. Referring
to DCTCP [12], we define the proportion of packets that
are marked by ECN mechanism within each window as the
congestion degree of subflowr, and it should be updated for
each sending windows as:

βr = g · Tr + (1− g) · βr, (1)
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Fig. 3. State-transition diagram of the shared bottleneck detection process.

where Tr is the proportion of packets that were marked in the
last sending window of packets, g is the weight given to Tr,
and we set g = 1/8 (It’s an empirical value, which refers to
the smoothed value used for the average RTT measurement.).
When a subflow (e.g., subflowr) receives an ECE marked ACK
or detects the event that the set re-transmission timer is time-
out, it can indicate that a congestion event in this subflow has
occured, and the window size should be changed to:

wr = (1− βr

2
) · wr, (2)

where wr is the congestion window size of subflowr. When
βr is close to 1, it means subflowr suffers severe congestion
and the situation degrades to legacy TCP. On the contrary,
when βr is close to 0, it means that there is less congestion in
subflowr, and the congestion window only needs to decrease
slightly.

Constrained Additive Increase: For bottleneck fairness
based coupled congestion control, when the congestion win-
dow decrease strategy is changed, the increase strategy should
be updated accordingly. According to the features of bottle-
neck fairness, the subflows grouped into a shared bottleneck
set should achieve as nearly equal throughput as that of a
single-path TCP that shares the same bottleneck [34], which
can be represented as:

∑
r∈S

ŵr

RTTr
= max

r∈S

ŵr
TCP

RTTr
, (3)

where ŵr is the equilibrium congestion window size of
subflow r, and ŵr

TCP is the equilibrium window that would
be obtained by a single-path TCP at the same bottleneck.
In our algorithm, subflow r ∈ S increases its window size wr

by min(a/wbs, 1/wr), where wbs is the aggregate congestion
window of bottleneck set S and the parameter a is the
aggressiveness factor that controls the increment of subflow
r’s window. Therefore, finding an appropriate a is the key to
achieving bottleneck fairness. For each subflow, the increase
and decrease of the congestion window must be balanced out
[35], [36], which can be arithmetically expressed in Eq. (4).

min
(

a

ŵbs
,

1
ŵr

)
(1− λr) =

βr

2
ŵrλr, (4)

Algorithm 2 SB-CC Algorithm
Input: RTTr, subflow congestion degree βr;
Output: Congestion window size wr for each subflow r;

1 Initialization: g = 1/8, βr = 1;
2 foreach ack on subflow r do
3 Find the shared bottleneck set bsi that subflow r

belongs to by executing Algorithm 1.
4 if subflow r∈bsi then
5 βr ← g · Tr + (1 − g) · βr;

6 a← βr ˆwbsi

maxrŵr/RTT 2
r

(
�

r ŵr/RTTr)2
;

wr ← wr + min( a
wbsi

, 1
wr

);

7 if subflow r does not belong to any bs then
8 wr ← wr + 1

wr
;

9 foreach loss or ECE on subflow r do
10 wr ← wr − βr

2 · wr;

11 return congestion window size wr;

where λr is the congestion loss rate on subflow r. Furthermore,
we can compute a from Eq. (4). Since λr is usually very small,
i.e., 1−λr ≈ 1. From Eq. (3), Eq. (4), and ŵr

TCP =
√

2/λr,
subflow r increases the window size wr , and the corresponding
aggressiveness factor a can be computed as:

wr = wr + min(
a

wbs
,

1
wr

),

a = βrŵbs
maxrŵr/RTT 2

r

(
∑

r ŵr/RTTr)
2 . (5)

Algorithm SB-CC is shown in Algorithm 2. By jointly
considering subflows in one bottleneck set, our proposed
SB-CC can achieve the goal of “do no harm” to other
TCP connections sharing the same bottleneck and meanwhile
improve the overall network performance. To be noted, our
proposed SB-CC can detect and maintain multiple bottleneck
sets for one MPTCP connections, and it also adapts to the
dynamic changing scenarios of shared bottlenecks.

B. Shared Bottleneck Based Forward
Prediction Packet Scheduling

To mitigate the problems associated with the oversimpli-
fied packet transmission scheduling in MPTCP with default
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Fig. 4. Packet transmission process of SB-FPS.

LowRTT, the scheduling mechanism should reasonably allo-
cate each packet on a specific path so as to ensure that packets
arrive at the receiver in order. In this section, based on the
detected shared bottleneck sets with SB-CC, we introduce
a new shared bottleneck based forward prediction packet
scheduling algorithm, called SB-FPS, to address the prob-
lem of out-of-order packets and unnecessary retransmissions
caused by this. This type of scheduling can provide per-
formance improvement, especially the real-time throughput,
in heterogeneous networks.

For a subflow that is being scheduled, SB-FPS predicts
the data amount that sent on other faster subflows with
consideration of the detection result of shared bottleneck sets
and further predicts the different growth rate of each subflow’s
CWND in different shared bottleneck sets. Then, the slower
subflow gaps this data to send, so as to make all the data arrive
at the receiver in order.

Assuming that an MPTCP connection has n subflows, which
are arranged by RTT from small to large, i.e., RTT1 ≤ · · · ≤
RTTj ≤ · · · ≤ RTTn. When subflow j is ready to send new
data and it is under-scheduling, SB-FPS predicts the number of
packets M that can be transmitted by all the subflows whose
RTT is less than RTTj during RTTj

2 . As shown in Fig. 4,
the sequence number scheduled on the faster subflows starts
from SEQ1, then subflow j gaps M packets in the sending
buffer and transmits from the sequence number SEQ2 =
SEQ1 + M in the buffer to send until its congestion window
is full. By following this method, the receiver can complete
the reception of scheduled packets almost simultaneously on
all subflows.

Let Mr be the number of packets that can be transmitted
by each subflow r during RTTj

2 , the overall gap packets M

can be: M =
∑j−1

1 Mr. To be noted, if j = 1, which means
subflow j is the fastest subflow, then M = 0. So the most
important thing is to estimate Mr of each subflow r.

As the CWND changes according to SB-CC, the growth
rates of subflows in different shared bottleneck sets are differ-
ent. Within the shared bottleneck set, the growth of windows
is coupled together, the growth of each subflow r during each
RTT is wr ∗min( a

wbs
, 1

wr
) and less than one unit. Therefore,

CWND of the subflow inside the shared bottleneck set needs
serveral RTTs to grow by one unit, while the independent
subflow only needs one RTT. SB-FPS accurately calculates

Fig. 5. The congestion avoidance phase in coupled congestion control.

the amount of packets M based on the SB-CC algorithm to
make all of these packets arrive at the receiver in order. This is
the main idea of packet allocation for SB-FPS. According to
[36], as given in Algorithm 3, we calculate Mr in the case of
subflow r in and outside of the bottleneck set, when subflow
j is under-scheduling.

1) Subflow r is in the Bottleneck Set bs: When the sender
receives an ACK on subflow r, the increase of CWND during
the congestion avoidance phase is shown in Eq. (5). Thus, the
increase of subflow r′s CWND after one RTT without packet
loss will be

wr ∗min(
a

wbs
,

1
wr

) = min(
a ∗ wr

wbs
, 1). (6)

Since the growth of the subflow inside the bottleneck set
during one RTT is smaller than one unit, the subflow requires
a certain number of RTTs to increase its CWND by one
unit. Fig. 5 shows the packet transmission process in the
congestion avoidance phase on subflow r. A column represents
the packets sent during one RTT. mr RTTs are needed for
subflow r′s CWND to be increased by one unit and mr can
be calculated by Eq. (7):

mr = max(
wbs

a ∗ wr
, 1), a = βrŵbs

maxrŵr/RTT 2
r

(
∑

r ŵr/RTTr)
2 . (7)

During RTTj

2 , subflow r transmits λ = RTTj/2
RTTr

rounds of
data and its CWND increases by one unit every mr RTTs.
So we can calculate the number of packets Mr that subflow
r can transmit during RTTj

2 as:

Mr =
λ/mr

2
∗ (2wr + λ/mr − 1) ∗mr

=
λ

2
∗ (2wr + λ/mr − 1). (8)

2) Subflow r is an Independent Subflow: When subflow r
does not belong to any bottleneck set, it will act as a regular
TCP flow. Then, its CWND during the congestion avoidance
phase smoothly increases by one for each RTT. So mr = 1.
As a result, the number of packets Mr allocated to subflow r
during the RTTj

2 is:

Mr =
λ

2
∗ (2wr + λ− 1). (9)
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Algorithm 3 SB-FPS Algorithm
Input: RTTr, the aggressiveness factor a, congestion

window size wr;
Output: The data amount M allocated to the faster

subflows;
1 Initialization: sorts all the subflows according to their

estimated RTT values in non-decreasing order,
RTT1 ≤ · · · ≤ RTTj ≤ · · · ≤ RTTn;

2 foreach subflow j under-scheduling do
3 foreach subflow r � j do
4 Find the shared bottleneck set bs that subflow r

belongs to by executing Algorithm 1.
5 if subflow r∈bsi then
6 E [mr] = wbsi

a∗wr
;

7 Mr ← λ
2 ∗ (2wr + λ/E [mr]− 1);

8 if subflow r does not belong to any bs then
9 Mr ← λ

2 ∗ (2wr + λ− 1);

10 M ←∑j−1
1 Mr;

11 return M

IV. PERFORMANCE ANALYSIS

A. Performance Analysis of SB-CC

It is difficult to verify our technique directly on a real
network, e.g., Internet, because we could not know whether the
two flows share a bottleneck or not to confirm the correctness
of our technique. Through the constructed experimental sce-
narios are with 14 Linux hosts, we evaluate the performance of
our SB-CC compared with DWC [11], SBD [25], BALIA [9]
and OLIA [7] for scenarios as shown in Fig. 6. Besides, we add
background traffic to create a more realistic environment.
The majority of traffic (> 90%) traverses the bottlenecks
as the background traffic, which consists of both TCP and
UDP flows with varied lengths generated by D-ITG [37].
We use both symmetric (both subflows’ path delay are 60ms)
and asymmetric (subflows’ path delay are 60ms and 120ms,
respectively) scenarios to verify whether SB-CC performs
better and steadier than the compared algorithms. We have
conducted 20 independent tests in each scenario and every
test runs for 300 seconds. We take the average of multiple
measurements as the final results.

1) Window Fluctuation Performance: In section III-A,
we have shown that SB-CC modifies the congestion con-
trol algorithm with subflow congestion degree. Therefore,
SB-CC can dynamically adjust the congestion window accord-
ing to the path quality and smooth out the window fluc-
tuation. Now we use a simple simulation experiment to
verify it. The experiment scenario is shown in Fig. 6(a).
We run DWC, SBD, and SB-CC, respectively, with no
background flows and monitor the congestion window size
of two subflows and their aggregate window size. Fig. 7
shows the contrasts of congestion window fluctuation per-
formance of DWC, SBD, and SB-CC, respectively. We can
see that both congestion windows of DWC and SBD fluctuate
more significantly than SB-CC. For multimedia applications,

Fig. 6. Basic topologies for SB-CC evaluation.

the highly fluctuating sending rate is undesirable. Compared
with DWC and SBD, the range of window size variation
in our scheme is less, and the overall average CWND size
in SB-CC is larger than that in DWC, and our scheme is
more suitable to support applications that require a steady
throughput.

2) Fairness Analysis: In Scenario 1, as shown in Fig. 6(a),
SF1 and SF2 share the same bottleneck with the TCP flow.
We add background traffic through Router 1 to construct the
situation that Router1 is a congested bottleneck point. In order
to achieve fairness with TCP, both bottleneck fairness and
network fairness principles will limit MPTCP’s aggregated
throughput similar to a single-path TCP through the same
bottleneck. Thus, these MPTCP algorithms should make the
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Fig. 7. Congestion window fluctuation of DWC, SBD and SB-CC.

aggregated throughput of all the MPTCP subflows equal to
that with TCP. In Scenario 1 of Fig. 6 (Fig. 6(a)), there is
a single shared bottleneck between the two MPTCP subflows
(SF1 and SF2) and a single-path TCP flow is also involved
through the shared bottleneck. We conduct the throughput
evaluation of SB-CC, DWC, SBD, BALIA, and OLIA, and
set TCP’s average throughput as measurement baseline. In this
scenario, we conduct the tests in two cases: symmetric case
and asymmetric case.

Fig. 8 shows the ratios of TTCP , TSB−CC , TDWC , TSBD,
TBALIA, and TOLIA to TTCP , i.e., 1, TSB−CC/TTCP ,
TDWC/TTCP , TSBD/TTCP , TBALIA/TTCP , and
TOLIA/TTCP . We can see that no matter whether the
RTTs in different paths are symmetric or asymmetric, all
these algorithms can guarantee that the MPTCP connection
gain nearly the same throughput as the TCP flow. Therefore,
bottleneck fairness can be achieved, as all MPTCP subflows
and TCP flows go through the same bottleneck, and in
this scenario, bottleneck fairness is consistent with network
fairness. Moreover, as shown in Fig. 8(a), both TDWC and
TSB−CC are close to TTCP , which indicates that SBD and
SB-CC can detect shared bottleneck more accurately than
other compared schemes, and achieve a better bottleneck
fairness. Then, we further increase background flows of the
links other than the shared bottleneck and observe its impact
on the shared bottleneck detection accuracy. Fig. 8(b) shows
the detection accuracy respectively with SB-CC, DWC, and
SBD in the symmetric scenario. As shown in this figure,
different background flows of the links other than the shared
bottleneck, in all aspects, affect the OWD measurement
result and its variation trend, which easily results in shared
bottleneck detection errors in SBD. As shown in Fig. 8(c),
in the asymmetric scenario, we can draw a similar conclusion
as that in Fig. 8(b).

3) Throughput Analysis: In Scenario 2 of Fig. 6 (Fig. 6(b)),
two disjoint paths have different bottlenecks and there is no
shared bottleneck between the two subflows in the MPTCP
connection. Two single-path TCP connections are introduced
to compete with MPTCP in each path. In this scenario, each
MPTCP subflow should behave like a single-path TCP to
achieve bottleneck fairness, and the aggregated throughput
of SB-CC, SBD, and DWC should be similar to TTCP1 +
TTCP2 theoretically. Meanwhile, with a network fairness based

Fig. 8. Throughput ratio and detection accuracy for Scenario1.

coupled congestion control algorithm, like BALIA and OLIA,
the aggregated throughput should be close to the best one of
TCP1 and TCP2.

As shown in Fig. 9(a), the aggregated throughput of BALIA
and OLIA are nearly 50% of that of TCP1 + TCP2, while
SB-CC, DWC, and SBD are much better than BALIA and
OLIA in terms of throughput. Especially, the throughput of
SB-CC and SBD are close to that of TCP1 +TCP2. It means
that SB-CC and SBD achieve bottleneck fairness through
correctly freeing SF1 and SF2 to behave like two single-path
TCP connections. Furthermore, from Fig. 9(a), we can see that
SB-CC and SBD always outperform DWC no matter whether
it’s in a symmetric scenario or in an asymmetric scenario.
Especially, in the symmetric scenario with similar background
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Fig. 9. Throughput ratio and detection accuracy for Scenario2.

traffic overhead, the advantages of SB-CC and SBD are more
obvious. Then, we further increase the background flows of
the links other than the two bottlenecks and observe its impact
on the shared bottleneck detection accuracy. Fig. 9(b) shows
the detection accuracy of SB-CC, DWC, and SBD in the
symmetric scenario. For DWC, in an observation window,
subflows with packet loss or increased delay may not pass
through a shared bottleneck. Therefore, as shown in Fig. 9(b),
DWC’s shared bottleneck detection accuracy is much lower
than the two other schemes in this scenario. Our solution is
based on ECN mechanism, which can accurately represent the
bottleneck queue length, so it is less affected by background
flows, and the detection accuracy is improved. In the case
of background flows with light traffic, the performance of
our proposed SB-CC is very good and SBD is equally good.
As the traffic of background flows increases, the detection
errors in SB-CC and SBD also increase, but the detection
accuracy of these two schemes is still much higher than
that in DWC. As shown in Fig. 9(c), in the asymmetric
scenario, we can also draw a similar conclusion as that
in Fig. 9(b).

Fig. 10 shows the throughput performance with respect
to the increase of packet loss rate on both subflows in
the symmetric scenario where RTT on both paths is 60ms.
As shown in Fig. 10, the throughputs of SB-CC, DWC, and
SBD all are close to that of TCP1 + TCP2 when the loss
rate is very small. However, the throughput of DWC reduces
to nearly 50% of that of TCP1 + TCP2 when the loss rate
increases to 4%, while the throughputs of SB-CC and SBD
still remain nearly equal to that of TCP1+TCP2. We observe

Fig. 10. Comparison of average throughput with varying loss rate.

that SB-CC and SBD obviously outperform DWC and the gap
becomes larger as the loss rate increases. In the lossy network,
for DWC, random packet loss will increase the probability of
mis-detection, and moreover, the higher the packet loss rate
is, the higher the probability of mis-detection will be. The
detection accuracy in SB-CC is not affected by the presence
of packet loss rate, as ECN marking is conducted based on the
observation of the queue length at intermediate routers, which
is not affected by the random packet loss.

The experiments in Scenario 2 shows that TSB−CC is closer
to TTCP1 + TTCP2 , which means that each of the disjoint
subflows can reach the throughput of single-path TCP and a
good bottleneck fairness can be achieved.

4) Performance Analysis in Mixed Scenario: Scenario 3 in
Fig. 6 (Fig. 6(c)) is the mixture of Scenario 1 and Scenario 2.
Besides, we also add a random packet loss rate of 0.5% in
this scenario. SF2 and SF3 share a bottleneck with TCP2, and
meanwhile SF1 runs independently. Based on the bottleneck
fairness principle, SF2 and SF3 should be grouped together
and achieve equal aggregate throughput as a regular TCP,
while SF1 could get throughput similar to that of a single
path TCP. Thus, bottleneck-fairness based coupled congestion
control algorithms in this scenario should theoretically achieve
aggregated throughput equal to that of TCP1 + TCP2.

Fig. 11(a) and Fig. 11(b) show the throughput performance
of SB-CC, DWC, SBD, BALIA, and OLIA with respect to
the ratios of TMPTCP (denoted as the total throughput over
SF1, SF2, and SF3), TSF1, and TSF2+SF3 to TTCP1+TCP2,
respectively. We can see that SBD and our proposed SB-CC
perform almost as well as the combination of TCP1 and
TCP2, achieving better throughput performance than BALIA
which is limited by network fairness. This is because SB-CC
and SBD can correctly distinguish the bottleneck set and
disjoint subflows, thereby further providing the corresponding
congestion control toward these subflows. Furthermore,
SB-CC outperforms SBD in terms of throughput as SB-CC
can timely adjust the congestion window according to
the actual congestion degree by using ECN mechanism.
Meanwhile, in SBD, the random packet loss will cause the
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Fig. 11. Throughput ratio and detection accuracy for Scenario3.

performance degradation. Fig. 11(c) and Fig. 11(d) further
show the impact of the background traffic of the links other
than the two bottlenecks and observe its impact on the shared
bottleneck detection accuracy in Scenario 3. For DWC, in an
observation window, subflows with packet loss or increased
delay may not pass through the same bottleneck, but may
pass through different bottlenecks. The presence of random
packet loss further increase the probability of mis-detection.
Therefore, as shown in Fig. 11(c) and Fig. 11(d), DWC’s
detection accuracy is much lower than that in other compared
schemes in this scenario. Meanwhile, although we make SF2

and SF3 share the same bottleneck, different and continuously
changed background flows on non-bottleneck links may also
affect the variation tendency of the OWD measurment result,
which will lead to shared bottleneck detection errors in
SBD. SB-CC relies on the ECN mechanism to reflect the
congestion level of the bottlenecks, which will not be affected
by background traffic on non-bottleneck links, and the mis-
detection probability can be further reduced by the two-stage
detection.

5) Shifting Bottleneck Analysis: Moreover, we further con-
duct the test for Scenario 4 in Fig. 6 (Fig. 6(d)) to verify

the effectiveness of our proposed SB-CC in shared bottleneck
detection. In this scenario, we design a case with bottleneck
shifting. Before bottleneck shifting at t = 30s, background
traffic traverses Router1, and SF1 and SF2 share a bottleneck
with TCP1. At t = 30s, we move background traffic from
traversing Router 1 to traversing Router 5, and then SF2 and
SF3 share a bottleneck with TCP2. For this scenario, Fig. 12
shows the shared bottleneck detection accuracy in SB-CC and
SBD. As SBD’s detection cycle is longer, when bottleneck
shifting happens, we can observe in Fig. 12 that SBD achieves
very low detection accuracy at the beginning, and needs about
30s to get close to that of our proposed SB-CC. Therefore,
SB-CC has stronger timeliness than SBD, and in the current
Internet scenarios with time-varying traffic, this feature is
important.

B. Performance Analysis of SB-FPS

In this section, we evaluate our proposed scheduling mech-
anism on NS3 simulator [38]. The MPTCP NS3 code is pro-
vided by google MPTCP group [39]. Another two scheduling
mechanisms, LowRTT and FPS are implemented as com-
parisons. The main difference between FPS and SB-FPS is
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Fig. 12. Detection accuracy of SBD and SB-CC before and after the
bottleneck shift at t = 30s.

Fig. 13. Simulation setup.

the algorithm to estimate scheduling value. Besides, we use
SB-CC as the congestion control mechanism since we only
want to compare the performance of each scheduling mecha-
nism in this section.

1) Simulation Setup: The simulation scenario is shown
in Fig. 13. Three subflows are established between the MPTCP
client (C0) and the server (S0) in such a way that SF2 and SF3

share a bottleneck, while SF1 runs independently. SF1 has
2Mbps bandwidth and 20ms latency, while the delay of SF2

and SF3 are 10ms and 50ms, respectively. A synthetic mix
of TCP and UDP are generated between client (C1, C2) and
server (S1, S2) as background traffic creating a more realistic
emulation environment. The background traffic compete with
MPTCP flow at bottleneck. SF2 and SF3 share the bottleneck
with 2Mbps bandwidth and 30ms latency. The total delay of
the two subflows are 40ms and 80ms, respectively.

2) SB-FPS Performance Analysis: Fig. 14 shows the
throughput performance with respect to the transmitted file
size changing by using different schedulers in MPTCP in the
given asymmetric scenario. As shown in Fig. 14, LowRTT
performs the worst regardless of the data volume. The reason
is that all packets transmitted through the fast path have to
wait for the packets transmitted from the slow path. Then,
the throughput of the subflow on the fast path is dragged down
to the same level as that of the subflow on the slow path. FPS
schedules packets according to the ratio of estimated RTTs
and the current window size such that it can make more use
of the fast path, so FPS consistently outperforms LowRTT in
terms of throughput. As SB-FPS provides a more fine-grained

Fig. 14. The contrast of throughput with the file size change.

Fig. 15. The contrast global throughput with the packet receiving buffer size
change.

scheduling mechanism, which can estimate the scheduling
value N more accurately, SB-FPS further performs much
better than FPS. From the results of these two experiments,
we observe that

• SB-FPS has the highest transmission throughput, com-
pared to other scheduling algorithms.

• Throughput is significantly affected by out-of-order
receptions. We can expect an even lower throughput with
a smaller size buffer.

Fig. 15 shows the throughput performance with respect to
the receive buffer size changing by using different sched-
ulers in MPTCP in the given asymmetric scenario. When
the receive buffer size is small, MPTCP’s throughput will
be severely affected. With the increase of the receive buffer
size, the throughput of MPTCP grows quickly in the very
beginning. As the receive buffer size continues to increase,
the increase in throughput will be slower and slower. And
when the receive buffer is large enough to accommodate all
the received packets, the throughput will not increase any more
since buffer-blocking-caused retransmissions will be greatly
reduced.

Furthermore, Fig. 16 shows the number of out-of-order
packets varying with the receive buffer size changing by
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Fig. 16. The contrast of out of ordered packets with respect to packet
receiving buffer size.

using different schedulers in MPTCP in the given asymmetric
scenario. From the figure, we can see that the number of out-
of-order packets when using SB-FPS is much less than that
when using LowRTT or FPS regardless of the receive buffer
size. Furthermore, SB-FPS outperforms FPS as it schedules
packets according to the state of each subflow and estimates
the scheduling value in more fine-grained control.

V. CONCLUSION

In this paper, we consider both congestion control and
scheduling algorithm to further improve the performance
of MPTCP. We first proposed SB-CC, a new Bottleneck
Fairness based congestion control mechanism for MPTCP.
It provides an explicit bottleneck detection mechanism by
using ECN. Meanwhile, with the subflow congestion degree,
SB-CC dynamically adjusts the congestion window to make
better use of bottleneck resources and smooth out the window
fluctuation. We further put forward a fine-grained Forward
Prediction packet Scheduling scheme based on Shared Bot-
tleneck detection, called SB-FPS. Our experimental results
prove that the SB-CC provides higher throughput performance
than existing MPTCP congestion control algorithms while still
maintains fairness with TCP at shared bottleneck. Besides,
simulation results verify that SB-FPS plays an important role
in mitigating the head-of-line blocking problem.
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