
FFRD: Fragment Forwarding and Reassembly
Decoupling based Chunk Transmission in NDN

Chengbao Cao1, Kaiping Xue1∗, Hao Yue2, Junjie Xu1
1 Department of EEIS, University of Science and Technology of China, Hefei, Anhui 230027 China
2 Department of Computer Science, San Francisco State University, San Francisco, CA 94132, USA

∗kpxue@ustc.edu.cn

Abstract—In-network caching is an inherent feature of Named
Data Networking (NDN), and the basic data unit of naming and
caching in NDN is called “chunk”. However, a chunk needs to be
further fragmented into fragments when its size is larger than the
link layer’s Maximum Transmission Unit (MTU). Furthermore,
fragments also need to be reassembled into the original chunk
at intermediate routers so that subsequent requests can be
satisfied by the cached copy. The current NDN design adopts
a coupled hop-by-hop reassembly mechanism where fragments
can be forwarded to the next hop only if the chunk has been
fully reassembled, which leads to a significant end-to-end delay
when large chunks are transmitted due to the processing delay
at intermediate routers. In this paper, we propose a reliable and
fast chunk transmission protocol based on Fragment Forwarding
and Reassembly Decoupling (FFRD) at intermediate routers in
NDN. In FFRD, fragments are forwarded to the next hop upon
being received and reassembly occurs after all fragments are
received. Meanwhile, FFRD can timely detect and recover packet
losses at intermediate routers to minimize the transmission delay.
The simulation results show that FFRD can significantly reduce
chunk retrieval delay and decrease end-to-end Interest packet
retransmission times, especially over lossy networks with non-
negligible packet losses.
Index Terms—Named Data Networking (NDN), chunk trans-

mission, reassembly, reliability, bitmap

I. INTRODUCTION

Traditional TCP/IP architecture was originally designed to

enable communications between end hosts. However, due to

the rapid growth of mobile data traffic, TCP/IP architecture is

facing serious challenges in mobility and content distribution.

In this situation, Named Data Networking (NDN) [1] has been

considered to be applied to wireless environment in many

research works [2] [3].

In the NDN model, the content objects are split into small

chunks and each chunk is uniquely identified by a name (e.g.,
/provider/video-name/chunk-id). Consumers generate a request
by sending out Interest packets, which contain the names

of the desired chunks. Each intermediate router in the path

forwards the Interest packet by looking up the Forwarding
Information Base (FIB) and maintains a Pending Interest Table
(PIT) to keep track of the current unsatisfied Interest packets

and the corresponding ingress faces. Matched chunks will be

sent back through the reverse direction of the request path

to the consumer according to the PIT entries. One of the

most significant features is that as the chunk is transmitted

backwards to the consumer, intermediate nodes can insert the

copy of each chunk into the Content Store (CS), so that routers

can directly reply to the subsequent Interest packets for the

same chunks.

Since chunk is the basic data unit of naming and caching in

NDN, one issue that has to be handled is fragmentation and

reassembly of large chunks due to the limitation of the link

layer’s Maximum Transfer Unit (MTU) size. NDNx prototype

[4] recommends the chunk size to be smaller than 8800 bytes,

and many research works [5] [6] use a chunk size smaller

than the MTU (e.g., 1024bytes) simply to avoid fragmentation.
However, the small chunk size is inefficient for high-quality

delay-sensitive video streaming or large file delivery, since

data consumers have to send plenty of Interest packets at each

time point to achieve real-time playing. For example, a data

consumer of VoCCN (Voice Over CCN) has to send more than

50 Interest packets per second to guarantee user experience

[7] [8]. Such high-rate Interest packets may cause network

congestion and result in Interest packet and Data packet loss,

especially in the wireless network. To address these issues,

we need to increase the chunk size for large files or real-time

high-quality video delivery.

Till now, only a few research works have investigated on

how to fragment a chunk into fragments and reassemble

them at intermediate routers when chunk size is larger than

the MTU size. NDN Link Protocol (NDNLP) [9] is an

optional mechanism currently running on NDNx prototype,

which fragments each chunk into multiple MTU-compliant

link layer packets after reassembled at each router hop-by-

hop. In other words, each router forwards a chunk to the

next hop unless all fragments of the chunk are received. In

[10], Satyanarayana et al. present a Best Effort hop-by-hop

Link layer Reliability Protocol (BELRP), which can detect

and recover packet losses between routers. However, both

methods in [9] and [10] rely on hop-by-hop reassembly, where

fragments cannot be forwarded individually until they are

reassembled into a complete chunk. Hence, additional time

consumption for processing chunk reassembly at intermediate

routers is unavoidable. Besides, Mosko et al. [11] introduced

an end-to-end fragmentation protocol for CCNx [12] to avoid

the transmission delay stated above. However, in [11], interme-

diate routers cache not chunks themselves but their fragments.

In this paper, we propose to fragment each large chunk

into multiple data packets, where each data packet contains

a sequence number and a complete chunk name. Intermediate

routers will forward every fragment to the next hop immediate-

978-1-5386-2062-5/17/$31.00 ©2017 IEEE

ly upon receiving it. Meanwhile, a bitmap field is introduced

to record the state of the chunk. When timeout occurs and

the chunk is incomplete, the intermediate router will send a

NACK packet with an additional bitmap field for selective

retransmission between routers. Each router inserts the chunk

into the CS after it is successfully reassembled. The main

contributions of this paper are summarized as follows:

• We propose a chunk transmission mechanism for Named

Data Networking which decouples fragments forwarding

and reassembly (FFRD). In FFRD, reassembly happens

at both intermediate routers and end hosts but have no

effects on the end-to-end delay compared with no inter-

mediate router’s reassembly. Hence, FFRD is suitable for

large chunk transmission or time-sensitive high-quality

video streaming.

• A reliable transmission mechanism to reduce end-to-end

Interest packet retransmission when packet loss happens

is also proposed. In FFRD, packet loss detection and

recovery are implemented at both intermediate routers

and end hosts, where a bitmap field is introduced to assist

chunk reassembly.

• We implement the FFRD in ndnSIM and conduct exper-

iments to evaluate performance with the default NDNLP.

The simulation results show that the proposed protocol

can achieve its design goals.

The remainder of this paper is organized as follows. Section

II presents the background and motivations of this paper. Then

we illustrate the design of FFRD in Section III. Performance

evaluation results are shown in Section IV. Finally, section V

concludes this paper.

II. BACKGROUND

Packet fragmentation is necessary for NDN architecture due

to the link layer’s limitation on MTU. In traditional TCP/IP

architecture, TCP will segment a byte stream into IP packets

and IP needs to further fragment a packet into multiple smaller

packets if it is larger than the link layer MTU limitation. More

specifically: 1) IPv4 [13] chooses hop-by-hop fragmentation

with end-host reassembly mechanism. Each hop fragments

the packet to fit MTU size if needed, but fragments are

not immediately reassembled by the routers, only the final

destination reassemble the packet. 2) IPv6 [14] chooses end-to-

end fragmentation and reassembly mechanism. The packets are

fragmented according to the path MTU size at the source but

not supposed to be further re-fragmented at the intermediate

routers and will only be reassembled at the destination.

However, both these schemes in IPv4/IPv6 cannot be di-

rectly applied to NDN architecture because there are some

differences between NDN architecture and the traditional

TCP/IP architecture:

• Caching at routers: Only fully reassembled chunk will be
cached for the subsequent request. If fragments are not

reassembled at intermediate routers, requesting or naming

must be applied to the fragments, which is unrealistic.

• Symmetric routing: As shown in Fig. 1, fragments of the
same IP packet might be transmitted along different paths

IP
NDN

A

B

C

D

Fig. 1: IP fragments might be transmitted along different path(e.g., A → B or A →
C), router D can not receive all fragments. While in NDN, all fragments are transmitted
along the same path (e.g., A → B → D) according to the PIT entry

int the traditional TCP/IP architecture. However, in NDN

architecture, fragments of the same NDN chunk will fol-

low the same sequence of NDN routers, through retracing

PIT state set up by a preceding interest. Therefore, each

chunk can be successfully reassembled even though hop-

by-hop reassembly is not applied.

Due to the above differences, NDNLP [9] is proposed,

which adopts an hop-by-hop fragmentation and reassembly

mechanism. In [9], routers have to receive all data fragments

before transmitting the chunk to the next hop. Moreover, due

to the lack of reliability assurance, one chunk’s fragment loss

will cause Interest retransmission by the application and hence

increase time delay. It is obvious that when fragmentation

is enabled, the delay caused by hop-by-hop reassembly is

intolerable and a detailed delay evaluation will be shown in

section IV.

Thus, in order to provide a better performance for time-

sensitive applications, it is critical to propose a feasible chunk

fragmentation and reassembly protocol for NDN architecture.

III. PROTOCOL DESIGN

In this section, we present the design of FFRD, a protocol

handling chunk fragmentation and reassembly with reliability

assurance in NDN. We first describe our design goals and then

elaborate on the procedure of the FFRD. In this paper, we use

“chunk” to refers to the basic data unit that one Interest packet

brings back to the consumer, and “data packets” to refer to the

fragments when a chunk is fragmented into multiple MTU-

compliant packets. Data packets with the same chunk name but

different sequence numbers can be forwarded individually and

reassembled later. The router that receives all data packets with

the same chunk name can reassemble them into a complete

chunk and insert it into the content store.

A. Design Goals

Due to the NDNLP’s drawbacks, the main goals of FFRD

are described as follows:

Reliability: NDN applications that require reliable chunk

transmission should deploy an end-to-end reliability mecha-

nism and retransmit an Interest packet for the chunk if nec-

essary. We aim to minimize the application’s Interest packet

retransmission times.

Name

MetaInfo
(content type,freshness period,...)

Content

Signature
(signature type, key locator,

signature bits,...)

Payload

Name

Sequence Count

PacketChunk

Content file

Payload

Fig. 2: Chunk and Data packet

Delay: Current hop-by-hop reassembly is a time-consuming
task for the real-time applications or delay-sensitive applica-

tions. We aim to minimize the data retrieval time.

Chunk size: Small chunk size is not suitable for high-

quality delay sensitive video delivery. We propose to increase

the chunk size to reduce Interest packet send rate.

B. Protocol Overview

A content file requested by the consumer will be split into

a number of chunks. Each chunk is composed of the payload

and a header containing a unique chunk name and some utility

information, such as the signature. As shown in Fig. 2, we

fragment the original chunk into multiple data packets with the

sequence number, total number of the chunk and chunk name

in its header due to the MTU constraint. Sequence number

denotes the relative position in the chunk and is also used for

selective retransmission. To discover the minimum MTU size

in the path (the path MTU), we use the method similar to [12]
in CCNx 1.0 that each interest packet records the minimum

MTU of links on which it has been forwarded in its header.

In order to record the receipt status of the chunk, we extend

the original Pending Interest Table (PIT) entry with a bitmap

field, where a bit 0 in position k means that packet k is

missing, and the bit in the bitmap are initialized to zero.

PIT entry will be deleted when all bits are set to 1. All data

packets with same chunk name are forwarded according to

the ingress face recorded in the PIT. Besides, in order to

avoid redundant data packet delivery if a chunk is fragmented

into multiple data packets. We propose to create a new type

of NACK packet which contains the bitmap field used for

selective retransmission only between two routers.

C. Protocol Detail

The detailed protocol operations when a router receives a

data packet from its upstream node and a NACK packet with

bitmap from its downstream node are explained below and

summarized in Algorithm 1 and Fig. 3.

a) After sending an interest: Consumers send out an In-

terest packet for the desired chunk. Once content hit happens at

intermediate router or server, following the procedure at Line

1-8, the producer fragments the chunk into multiple packets

according to the minimum MTU size which is recorded in the

Interest packet header.

...

...

No cache
Drop

Cache

Chunk name Face Bitmap

/a.com/video/1 face0 110...00

...

PIT

UpstreamDownstream A

DATA(N,1)

DATA(N,1)

INTEREST

DATA(N,n)

NACK(N,BITMAP)

NACK(N,BITMAP)DATA(N,k)

DATA(N,n)

DATA(N,n)

NACK(N,BITMAP)

Timeout

Fig. 3: Protocol Description

Meanwhile, if the related chunk is not received in a given

time, the same Interest is retransmitted by the consumer.

Interest packet timer is set by dynamic RTT computation. RTT

is updated according to the Exponential Weighted Moving

Average (EWMA) formulation when the consumer receives

a complete chunk:

RTT i = βRTT i−1 + (1− β)RTT i

where RTT i−1 is the average RTT estimate at the previous

step, and β is a constant between 0 and 1. Like [15], β = 0.85
is proved to be good to filter out transient effects.

b) After receiving a data packet: Upon receiving a data

packet (at Line 9-27), as described in Fig. 3, an NDN router A
inserts the packet D(N,1) (N,1 represent the chunk name and

sequence number respectively) that has not been reassembled

into a temporary buffer. Then it finds the matching PIT entry,

sets the corresponding bit in the bitmap to 1 according to the

sequence number in data packet’s header and forwards the

data packet to all downstream interfaces listed in PIT entry

immediately. Meanwhile, the router A also checks the bitmap

field and then removes the corresponding PIT entry and the

temporary buffer when all bit are set to 1. Otherwise, the

router updates the NACK timer and inserts the data packet

into a temporary buffer space. When NACK timer expires but

intermediate node A doesn’t receive a complete chunk due

to data packet D(N,n) loss, node A sends a NACK packet

D(N,BITMAP) to its upstream router for packet retransmission.

Besides, in order to minimize unnecessary retransmissions due

to the NACK packet loss, each NACK packet are sent twice,

which increases reliability with a slight overhead increase.

A NACK timer will start when a router receives a data

packet with a new chunk name, upon receiving the next

packet, router calculate the ITTname which represents the av-

erage inter-arrival time between two consecutive data packets.

ITTname is update at each data packet reception as:

Tname,i = βITTname,i−1 + (1− β)ITTname,i (1)

Then the NACK timer is set as:

Ti = ITTi−1 ∗N (2)

Where N is the data packet number that the router has not

been received to reassemble into a chunk. Notice that when a

router receives a duplicated data packet, the NACK timer is not

updated. Before the timeout, the intermediate node receives all

data packets and then reassembles them into the chunk. In this

case, node A cleans the corresponding PIT entry and inserts

it into the content store.

c) After receiving a NACK packet: At this time, the

router retransmits the lost data packets if the content store

has the corresponding cache. Otherwise, the router drops the

NACK packet simply since router A has already sent NACK

packet and will forward all data packets to its downstream

node once router A receives the missing data packet.

To avoid endless timeout due to link interrupt, the maximum

attempts to recovery packet loss at intermediate routers (at

Line 21) is set to be a configurable number. To fully understand

the trade-off of how hard FFRD should try to restore a lost

packet by the intermediate routers, we performed experiments

with varying numbers of maximum retransmission times as

discussed in Section IV.

D. Protocol Analysis

To support reliable chunk transmission at intermediate

routers, the main cost introduced in FFRD is the timer and

temporary buffer. Each sender and receiver use a temporary

buffer space to store each packet which has not be reassem-

bled. However, since each data packet can be forwarded inde-

pendently, to reduce the average cost of the intermediate router

in the network, it is possible to select partial routers other than

all intermediate routers to perform the restore operation. More

specifically, we observe that there exist many studies about

caching strategy that cares about caching locations in NDN.

Hence, the default caching strategy Leave Content Everywhere

(LCE) considered to be replaceable. Based on this, we suggest

to select the caching node that takes the responsibility for

packet loss recovery. In other words, node caches content

should store the data packets into a temporary buffer and

maintains the corresponding timer.

Another feasible way is that the producer sends back data

packets with a hop field and decreases hop-by-hop. When

hop value decreases to zero, the corresponding router should

store the corresponding packets in buffer space and reset hop

Algorithm 1: FFRD Protocol Detail

// Interest procedure
1 if contentHit()==true then
2 MTU = getMTUsize(Interest)

3 fragment(chunk,MTU)

4 for each fragments do
5 packets = addHeader(name,sequence,totalNum)

6 sendToDownstream()

7 end
8 end
// Data packets procedure

9 name, sequence, totalNum = getHeader(packet)

10 sendToDownstream()

11 insertTemporaryBuffer(packet)

12 updateBitmap(sequence)

13 if all bit==1 then
14 insertCs(chunk)

15 removeFromTempBuffer(packets,name)

16 end
17 else
18 updateTimer(name)

19 end
20 if Timeout(name)==true then

// MAXRT : maximum retransmission
times at intermediate routes

21 if retransmission time < MAXRT then
22 sendNACK(name,bitmap)

23 end
24 else
25 removefromBuffer(packets,name)

26 end
27 end
// NACK packet procedure

28 recvBitmap ← GetBitmap(NACK)

29 if havePacketsToSend(recvBitmap) then
30 sendPacketsToNextHop(packets)

31 end
32 drop NACK

value. The initial hop value can be determined according to

hop value that interest packet carries in its head field. If the

interest packet’s hop value is larger than a threshold, it would

be essential to set data packet’s initial hop value smaller to

avoid end-to-end retransmission. If intermediate routers are not

selected, the router simply forwards the data packet without

integrity assurance.

Without loss of generality, the node described in Fig. 3 can

be treated as the node discussed above.

IV. PERFORMANCE EVALUATION

In this section, to evaluate the transmission efficiency

improvement including reliability and end-to-end delay, we
implement our FFRD in ndnSIM [4], an NS-3 based NDN

simulator. We compare the performance of the proposed

protocol with the default NDNLP [9].

Firstly, we use a linear topology with max 5 hop to examine

the effect of hop length, chunk size and intermediate router’s

maximum retransmission times influences on reliability and

end-to-end delay. The parameters used in this simulation are

shown in Table I.

TABLE I: Simulation Parameters

Simulation parameters value
Link capacity 10Mbps
Propagation 10ms
Interest number 2000
File size 4MB

To calculate the average chunk retrieval time, in this s-

cenario, we use the following request model: an application

sends one Interest packet and waits for the desired chunk, the

application sends next Interest packet only if it has received a

complete chunk.

A. Data retrieval time

10

9

7

3 6

4 1

5

2 8

11

/prefix/set1

/prefix/set2

/prefix/set3

Producer:/prefix/set1

Producer:/prefix/set2

Producer:/prefix/set3

Fig. 4: Abilene topology

Firstly, we evaluate the average chunk delay when hop

length is 5 and no packet loss over each link, the result is

described in Fig. 5. When chunk size increase, the differ-

ence of average chunk delay between NDNLP and FFRD

is obvious. Considering that a large chunk has to split into

multiple fragments and reassembled hop-by-hop in NDNLP,

however, FFRD decoupling the fragments forwarding and

reassembling at the intermediate router. Hence, the difference

between NDNLP and FFRD is mainly due to the hop-by-

hop reassembly. Besides, the chunk size is an important factor

when calculating the data retrieval time. As show in Fig. 6,

with different loss rate over each link, large chunk retrieval

time is longer especially with high packet loss rate, the average

chunk delay is two times when packets loss rate at 0.05

compared with no packet loss. Hence, we recommend using

small chunk size especially for the real-time application which

cares more about average one chunk delay but not total time

downloading a file.

Furthermore, Fig. 7 describes the file download time with d-

ifferent chunk size and hop length at loss rate 0.01. The results

show that both NDNLP and FFRD decrease file retrieval time

when chunk size increase. However, increasing the hop length,

the gap between NDNLP-4KB, FFRD-4KB and NDNLP-8KB,

FFRD-8KB is gradually increased. Such a behaviour is due to

the fact that NDNLP is a hop-by-hop reassembly mechanism,

along with hop increase, the time spends on the reassembly

at intermediate routers is increasing. Secondly, large chunk

size has to split into fragments, and one fragments loss will

cause entire chunk drop in NDNLP. However, because of

the retransmissions at intermediate routers, the time cost is

increased slightly.

B. End-to-end retransmissions

End-to-end retransmissions are triggered when interest

packet is lost or the corresponding chunk packet is lost. Fig.

8 shows the comparison of application retransmissions times

between NDNLP and FFRD with various packet loss rate over

each link. Fig. 8 shows that NDNLP is sensitive with loss

rate, when loss rate increase, the end-to-end retransmissions

increase rapidly. For example, If loss rate at each link is

0.03, NDNLP’s retransmission times is nearly 700 and FFRD’s

retransmission times is nearly 200, which decrease nearly

70% retransmissions. The reason is obvious: one fragments

loss will cause entire chunk drop in NDNLP and end-to-end

retransmission is unavoidable. On the contrary, FFRD utilizes

intermediate routers restore the lost packet, hence significantly

reduce end-to-end retransmission times.

For the second scenario, we use the Abilene topology as

depicted in Fig. 4 to study the impact of chunk size in the

real scenario on reliability for the proposed protocol. Three

consumers, at node 10, 11, 5 respectively, request for a 2MB

size file(e.g.,/prefix/set1, /prefix/set2, /prefix/set3). Each link

propagation delay is 5ms, and the max queue size at each

node is set to 80.

C. Intermediate routers retransmissions

Below we examine the effect of intermediate routers’ max

retransmission times on end-to-end reliability. Given the same

chunk size, with different recovery attempt times at interme-

diate routers, we calculate the total time of downloading a

4M file, the results are shown in Fig. 9. It is obvious that

both NDNLP and FFRD retrieval time increase, but due to

the router’s attempt to recover from the loss, time increased

slightly in FFRD. We also observe that compared with no

intermediate route’s recovery, nearly 33% time decrease can

be achieved when loss rate over each link is set to 0.05 and

max retransmission times are set to 1. However, slightly time

decrease when max retransmission times are set to 2 or 3

compared with max retransmission time set to 1. In other

words, intermediate routers send back one NACK packet with

bitmap can nearly restore all the lost data packets.

Meanwhile, as shown in Fig. 10, large chunks can decrease

file download time to a certain degree, however, it is important

to note that the chunk size is not the larger the better. In

this scenario, when chunk is larger than 32KB, node 11’s

download time is slightly increase. The reason is: large chunk

size will set longer Interest retransmission time, and if not

being reassembled before the timeout, the interest needs to be

retransmitted, hence increase file download time.

1 2 3 4 5 6 7

120

140

160

180

200

De
la

y(
m

s)

Chunk size(KB)

NDNLP
FFRD

Fig. 5: Average chunk delay between NDNLP and FFRD

0.00 0.01 0.02 0.03 0.04 0.05

100

150

200

250

300

350

de
la

y(
m

s)

loss rate

4KB
8KB
16KB
32KB
64KB

Fig. 6: Average chunk delay with different chunk size

1 2 3 4 5
0

20

40

60

80

100

120

140

160

180

Ti
m

e(
s)

hop length

NDNLP-4K
NDNLP-8K
FFRD-4K
FFRD-8K

Fig. 7: File download time with variable hop length

0.00 0.01 0.02 0.03 0.04 0.05
0

200

400

600

800

1000

1200

En
d-

to
-e

nd
re

tra
ns

m
iss

io
n

tim
es

loss rate

NDNLP
FFRD

Fig. 8: End-to-end-retransmission times

0.00 0.01 0.02 0.03 0.04 0.05

100

150

200

250

300

350

400

450
Ti

m
e(

s)

loss rate

NDNLP
FFRD=0
FFRD=1
FFRD=2
FFRD=3

Fig. 9: Max retransmissions at intermediate routers

15 20 25 30 35 40

4

5

6

7

8

9

10

11

Ti
m

e(
s)

Chunk size(KB)

Node10
Node11
Node5

Fig. 10: File download time with different chunk size

V. CONCLUSION

In this paper, the issue of reliable large chunk transmit

has been considered. The proposed protocol FFRD realizes

larger chunk delivery compared with the default NDNLP

protocol for the delay-sensitive high-quality video streaming.

Because there is no necessity for routers to perform hop-by-

hop reassembly, the end-to-end delay decreases significantly.

Simultaneously, our simulation results demonstrate that one

attempt for packets restore at intermediate routers can lead to

notable performance gains for applications and decrease end-

to-end interest retransmissions. Besides, with different packet

loss rate, we evaluate the influence of different chunk size on

end-to-end delay, the result shows that time increase faster

with larger chunk size when packet loss rate increase.

ACKNOWLEDGEMENT

This work is supported in part by the National Key R&D

Program of China under Grant No. 2016YFB0800301, the

National Natural Science Foundation of China under Grant

No. 61379129 and No. 61671420, Youth Innovation Promotion

Association CAS, and the Fundamental Research Funds for the

Central Universities.

REFERENCES

[1] L. Zhang, A. Afanasyev, J. Burke et al., “Named data networking,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 66–73,
2014.

[2] M. Amadeo, C. Campolo, and A. Molinaro, “Forwarding strategies in
named data wireless ad hoc networks: Design and evaluation,” Journal
of Network and Computer Applications, vol. 50, pp. 148–158, 2015.

[3] B. Han, X. Wang, N. Choi, T. Kwon, and Y. Choi, “AMVS-NDN:
Adaptive mobile video streaming and sharing in wireless named da-
ta networking,” in Computer Communications Workshops (INFOCOM
WKSHPS), 2013 IEEE Conference on. IEEE, 2013, pp. 375–380.

[4] S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM 2.0:
A new version of the NDN simulator for NS-3,” NDN, Technical Report
NDN-0028, 2015.

[5] J. Zhou, Q. Wu, Z. Li et al., “A proactive transport mechanism with
explicit congestion notification for ndn,” in Proceedings of 2015 IEEE
International Conference on Communications (ICC 2015). IEEE, 2015,
pp. 5242–5247.

[6] N. Rozhnova and S. Fdida, “An extended hop-by-hop interest shaping
mechanism for content-centric networking,” in Proceedings of 2014
IEEE Global Communications Conference (GLOBECOM 2014). IEEE,
2014, pp. 1–7.

[7] V. Jacobson, D. K. Smetters, N. H. Briggs et al., “VoCCN: voice-over
content-centric networks,” in Proceedings of the 2009 Workshop on Re-
architecting the Internet (ReArch ’09). ACM, 2009, pp. 1–6.

[8] X. Jiang and J. Bi, “Interest set mechanism to improve the transport of
named data networking,” in ACM SIGCOMM Computer Communication
Review, vol. 43, no. 4. ACM, 2013, pp. 515–516.

[9] J. Shi and B. Zhang, “NNDLP: A link protocol for NDN,” The University
of Arizona, Tucson, AZ, NDN Technical Report NDN-0006, 2012.

[10] V. Satyanarayana, A. A. Mastorakis Spyridon, and L. Zhang, “Hop-
by-hop best effort link layer reliability in named data networking,”
University of California, Los Angeles, NDN Technical Report NDN-
0041, 2016.

[11] M. Mosko and C. A. Wood, “Secure fragmentation for content centric
networking,” in Mobile Ad Hoc and Sensor Systems (MASS), 2015 IEEE
12th International Conference on. IEEE, 2015, pp. 506–512.

[12] M. Mosko, I. Solis, E. Uzun, and C. Wood, “CCNx 1.0 protocol
architecture,” Technical Report, 2015.

[13] J. Postel, “Internet protocol,” IETF RFC 791, 1981.
[14] S. E. Deering, “Internet protocol, version 6 (IPv6) specification,” IETF

RFC 2460, 1998.
[15] M. Amadeo, C. Campolo, and A. Molinaro, “Design and analysis of

a transport-level solution for content-centric vanets,” in Proceedings
of 2013 IEEE International Conference on Communications (ICC)
Workshop on Emerging Vehicular Networks: V2V/V2I and Railroad
Communications. IEEE, 2013, pp. 532–537.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

