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Abstract—Nowadays, more and more massive cyber-attacks
have been launched over social networks. Using compromised or
fake accounts, criminals can exploit the inherent trust between
connected users to effectively spread malicious content and
perform scams against users. Detecting those malicious accounts
on social networks like Twitter has received increasing attention
from government, industry, and academia. Traditional methods
on malicious account detection often leverage features that are
created and selected based on domain knowledge of user data,
which is inefficient, time-consuming, and possibly biased due
to different understanding and observations of the data. In
this paper, we propose a new framework, called MADAFE,
for accurate and efficient malicious account detection on social
networks like Twitter. To overcome the limitation of existing work
on manual feature extraction, MADAFE utilizes an autoencoder
to automate feature extraction and selection from unlabeled
user data. A softmax regression model is also established and
trained with the extracted features for classification of benign
and malicious accounts. We test MADAFE on different datasets,
and extensive simulation results show that MADAFE is effective
in detecting malicious accounts, which outperforms state-of-the-
art detection methods.

Index Terms—malicious account detection, social networks,
feature extraction, autoencoder

I. INTRODUCTION

Online social networks have become one of the most
popular communication tools for Internet users to interact with
each other, which allows them to broadcast breaking news,
share ideas or moments, comment on friends’ posts, etc. As of
June 2019, there are on average 1.59 billion daily active users
on Facebook and more than 130 million daily active users
on Twitter. The convenience and popularity of online social
networks, however, also attract cybercriminals, which launch
massive cyber-attacks through creation and dissemination of
faked or harmful messages to users for malicious purposes [2].
It was estimated that 7% of Twitter accounts were faked in
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2013. This number increased to 15% in 2017, which means
nearly 48 million users on Twitter were fake accounts.

Detecting malicious accounts on social networks has re-
ceived increasing attention from government, industry, and
academia. Most of recent solutions [9]–[12] address this prob-
lem with machine learning. These solutions collect data from
user accounts and extract statistical features, such as the num-
ber of followers, the number of tweet messages, the number of
times a tweet message has been retweeted, etc., to characterize
their behaviors and differentiate malicious accounts from be-
nign accounts. Then, a machine learning model is trained with
those extracted features to detect unknown malicious accounts
on social networks. There are several drawbacks of the existing
solutions. First, the features for malicious account detection
are extracted and selected based on the domain knowledge
of researchers on the user account data that are collected,
which might easily induce bias to the extracted features due
to different understanding and observations of the data. There
is no universal standard on feature extraction for malicious
account detection, and hence it is common that a set of features
work well on one dataset, but fail on another one. Second, to
achieve high detection accuracy, current solutions often need
vast amount of user account data with labels to train machine
learning classifiers. However, it is extremely time-consuming
and labor-intensive to collect and label large number of user
accounts, since the labeling cannot be automated as yet, which
significantly restricts the implementation of machine learning
based solutions in practice.

In this paper, we propose a new framework, called
MADAFE, to accurately and efficiently detect malicious ac-
counts on social networks like Twitter. To overcome the limita-
tions of manual feature extraction in existing work, MADAFE
utilizes an autoencoder to automate feature extraction and
selection with unlabeled user data. A softmax regression model
is also established and trained with the extracted features for
classification of benign and malicious accounts. The main
contributions of this work is summarized as follows:



• We develop a new framework for malicious account
detection on social networks like Twitter.

• We utilize an autoencoder to automatically extract and
select salient features from unlabeled user account data,
which eliminates the need of labeling vast amount of user
account data for training machine learning based classi-
fiers and reduces the cost of manual feature extraction
and selection in traditional detection methods.

• Extensive evaluation results demonstrate that the pro-
posed framework is effective in detecting malicious ac-
counts in terms of accuracy and cost, and it also outper-
forms other existing machine learning based solutions.

The rest of this paper is organized as follows. The related
work is reviewed in Section II. In Section III, we elaborate the
design of the new framework for malicious account detection.
We conduct experiments and evaluate the performance of
the proposed scheme in Section IV. Finally, we draw the
concluding remarks in Section V.

II. RELATED WORK

A. Malicious Message Detection

Malicious message detection, also known as spam detection,
screens individual tweet messages for harmful or spam content
or URLs, which has been extensively studied in the literature.
Many earlier detection methods [3]–[5] focus on URLs and
shortened URLs in tweet messages. For instance, Thomas et
al. [4] collect and extract features such as initial URL, final
URL, frame URLs, and source URLs from tweet messages via
web browser to differentiate malicious and benign messages.
In [5], Lee and Kim derive features from URLs and the
correlation of URL redirected chains and train a statistical
classifier to detect malicious messages in the Twitter stream
in real time. Some recent work also take social behavior of
user accounts into consideration [6]. Gao et al. extract features
on the social degree of the sender of a tweet message and his
interaction history for online filtering of malicious messages.
In [7], Wu et al. build a word2vec model to learn text-based
features from each tweet message. Readers are referred to
the survey [8] for more related work on malicious message
detection on social networks.

B. Malicious Account Detection

Different from malicious message detection, malicious ac-
count detection examines individual accounts for harmful or
abusive behavior, such as spreading spam, scam, or phishing
tweets. In [9], Benevenuto et al. identified a number of charac-
teristics related to tweet content and user social behavior, and
used them as features to train supervised learning models to
detect malicious accounts. Lee et al. [13] deployed honeypots
on social networks to harvest malicious accounts, extracted
behavior-based features from accounts as well as content-
based features from messages, and established machine learn-
ing based classifier to identify spammer. Yang et al. [16] intro-
duced new features including graph-based features, neighbor-
based features, timing-based features, and automation-based
features to machine learning based detection methods. Wang

considered both graph-based features and content-based fea-
tures for the classification of malicious users and benign
users [14]. Egele et al. [10] built behavioral profiles for users
based on features extracted from their historical activities to
characterize their normal behavior, and screened new messages
for sudden changes in behavior to detect compromised ac-
counts. Stringhini et al. [12] observed the activities of collected
malicious accounts on social networks and created statistical
features, including the number of friends, the number of
tweets, friend choice, and URL ratio, to differentiate malicious
and legitimate users. In [15], Hu et al. introduced a unified
mathematical framework on malicious account detection that
considers both content information and network information,
and applied online learning to incrementally update the model
for efficient large-scale online detection.

III. MALICIOUS ACCOUNT DETECTION WITH AUTOMATED
FEATURE EXTRACTION

In this section, we describe the design of a new framework,
called MADAFE, for malicious account detection and elab-
orate the methods used in MADAFE to achieve automated
feature extraction and accurate classification of benign and
malicious accounts.

A. Overview

The overview of the new framework MADAFE is shown in
Fig. 1. We assume that two datasets are collected: one is an
unlabeled dataset, which is denoted as X = {X1, X2, ..., Xm},
where each sample Xi contains the data of a user account;
the other one is a labeled dataset, which is denoted as
T = {(Y1, z1), (Y2, z2), ..., (Yn, zn)}, where Yj contains the
data of a user account and zj ∈ {0, 1} is the label of that
user. Here, zj = 1 indicates that the user is a spammer, and
zj = 0 indicates that the user is benign. As shown in Fig. 1, the
framework consists of offline training and online classification.
In offline training, we create an autoencoder and train it
with the unlabeled dataset X to enable automated feature
extraction from user data. Then, we extract features from
the labeled dataset T with the trained autoencoder and use
the features to train a machine learning model for malicious
account detection. In online classification, when there is a user
account to be examined, we feed his data into the autoencoder
and the machine learning classifier, which will return a result
on whether the user is malicious or not.

B. Feature Extraction with Autoencoder

As we discussed in Sec. I, most of existing machine learning
based solutions on malicious account detection create and
select features based on domain knowledge or observations
of user data, which is time-consuming and probably biased.
Different from those methods with manual feature extraction,
in this subsection, we utilize an autoencoder to automate
feature extraction for the classification of benign and malicious
users. An autoencoder is a neural network that can learn
efficient compressed knowledge representation of the original
data in an unsupervised manner. Fig. 2 shows the architecture



Fig. 1. Framework overview

Fig. 2. Autoencoder

of the autoencoder. It consists of three layers: the input layer,
the hidden layer and the output layer, which are denoted as
L1, L2, and L3, respectively. Each of them is comprised of a
number of computational units, called neurons. We denote the
number of neurons in the input layer, the hidden layer, and the
output layer as n1, n2, and n3, respectively. There is also a
unit labeled “+1” in the input layer and the hidden layer, which
is called bias unit and takes the value of +1. As illustrated in
Fig. 2, each neuron in the input layer takes a value in the input
sample. Each neuron in the hidden layer is connected with all
the neurons and the bias unit in the input layer, which takes
their values as inputs and computes an output as follows:

a2
j = f(

n1∑
i=1

w1
ijxi + u1

j ), (1)

where a2
j denotes the output of the jth neuron in the hidden

layer, w1
ij denotes the weight associated with the connection

between the ith neuron in the input layer and the jth neuron in
the hidden layer, and u1

j denotes the weight associated with the
connection between the bias unit in the input layer and the ith
neuron in the hidden layer. Here, f : R→ R is the activation
function. There are different kinds of activation functions we
can choose. In this work, we use the sigmoid function as the
activation function, which is defined as follows:

f(x) =
1

1 + exp(−x)
.

Similarly, each neuron in the output layer connects with all
the neurons and the bias unit in the hidden layer, and takes
their values as inputs to calculate an output. Let a3

k denote
the output of the kth neuron in the output layer, w2

jk denote
the weight of the connection between the jth neuron in the
hidden layer and the kth neuron in the output layer, and u2

k

denote the weight of the connection between the bias unit in
the hidden layer and the kth neuron in the output layer. Then,
the output of the kth neuron in the output layer can be written
as

a3
k = f(

n2∑
j=1

w2
jka

2
j + u2

k). (2)

Substituting a2
j in (2) with (1), the output of the kth neuron

in the output layer of the autoencoder can be rewritten as

a3
k = f

[ n2∑
j=1

w2
jk · f(

n1∑
i=1

w1
ijxi + u1

j ) + u2
k

]
. (3)

Let W denote the set of all the weights associated with
the connections between neurons in the autoencoder. Let U
denote the set of weights associated with the connections
from bias units to neurons in the autoencoder. Given an input
sample X = (x1, x2, ..., xn1) to the autoencoder, according



to (3), it can be observed that the final output of the au-
toencoder is a function of W and U . We define hW,U (X)
as the output vector of the output layer of the autoencoder,
i.e., hW,U (X) = (a3

1(X), a3
2(X), ..., a3

n3
(X)), where a3

k(X)
(1 ≤ k ≤ n3) denotes the value of the kth neuron in the
output layer when the input to the autoencoder is X . The
autoencoder aims to find the optimal parametersW and U such
that the output of the autoencoder is approximately equal to
the value of the input sample, i.e., hW,U (X) ≈ X . When this
condition is satisfied and the number of neurons in the hidden
layer is small, the autoencoder is able to learn a compressed
representation of input data at the hidden layer, which can then
be used as features for machine learning based classification.

The optimal values for the weight parameters W and B of
the autoencoder can be calculated using the back-propagation
algorithm [18]. Considering an unlabeled training set X =
{X1, X2, ..., Xm} of m training samples, we define a cost
function as follows:

J(W,U) =

[
1

m

m∑
i=1

(
1

2
‖hW,U (Xi)−Xi‖2

)]

+
λ

2

[ n1∑
i=1

n2∑
j=1

(
w1

ij

)2
+

n2∑
j=1

n3∑
k=1

(
w2

jk

)2 ]
.

(4)

Here, the first term in the cost function J(W,U) calculates
the average sum of squared errors between the output of the
autoencoder and the input samples. and the second term is the
regularization term to avoid overfitting. λ is a parameter that
determines the relative weights of these two terms in the cost
function.

In an autoencoder, the number of neurons in the hidden
layer must be smaller than that in the input layer to ensure
that the hidden layer can learn compressed representation (i.e.,
features) from the input data. One method to achieve this is to
test all the values that are smaller than the number of neurons
in the input layer as the size of the hidden layer, and find
the one that brings the best performance. In this work, we
take an alternative method which enables the hidden layer to
learn latent features with a small number of activated neurons,
rather than reducing the total number of neurons in the hidden
layer. Here, a neuron is called active when its output value is
close to 1, and it is called inactive when its output value is
close to 0. Given the training set X = {X1, X2, ..., Xm}, the
average output value of the jth neuron in the hidden layer of
the autoencoder over all the training samples in X , which is
denoted as ρj , can be calculated as

ρj =
1

m

m∑
i=1

[
a2
j (Xi)

]
.

We introduce a sparsity parameter ρ, which is a small value
close to 0, and enforce the sparsity constraint ρj = ρ on all
the neurons in the hidden layer to ensure that the average
activation of each neuron in the hidden layer is close to 0. To
achieve this, we add an extra term to the cost function of the

autoencoder J(W,U) to penalize the derivation of the average
output of a neuron ρj from the sparsity parameter ρ. In this
work, we use Kullback-Leibler (KL) divergence to measure
the difference between ρj and ρ, which is defined as follows:

KL(ρ||ρj) = ρ log
ρ

ρj
+ (1− ρ) log

1− ρ
1− ρj

.

It is observed that the divergence function KL(ρ||ρj) will in-
crease as the difference between ρj and ρ increases. Therefore,
by minimizing the divergence function KL(ρ||ρj), we can
enforce ρj to be close to 0, and make sure most of neurons
in the hidden layer are inactive.

After adding the above KL divergence term into the cost
function J(W,U), we obtain the cost function for the sparse
autoencoder, which is shown as follows

Ĵ(W,B) =

[
1

m

m∑
i=1

(
1

2
‖hW,U (Xi)−Xi‖2

)]

+
λ

2

[ n1∑
i=1

n2∑
j=1

(
w1

ij

)2
+

n2∑
j=1

n3∑
k=1

(
w2

jk

)2 ]
+ β

n2∑
j=1

KL(ρ||ρj).

(5)

where β is the weight of the Kullback-Leibler divergence
term in the cost function. Based on this cost function, the
parameters W and B can be computed with the iterative
gradient descent algorithm. After we determine W and B for
the autoencoder, the output vector of the hidden layer, denoted
as (a2

1, a
2
2, ..., a

2
n2), contains the features of user data, which

can be used to train machine learning models for classification.

C. Softmax Regression based Classification

Next, we create a softmax regression model and train it as
a classifier with the features extracted from the above autoen-
coder to differentiate malicious and benign accounts. Softmax
regression [17] is a generalization of logistic regression model,
which is often used together with an autoencoder to solve
classification problems. Considering a sample X and a set of
classes, the softmax regression model aims to estimate the
probabilities that X falls into each class. Since there are two
classes in spammer detection: malicious and benign, the output
of the softmax regression model in our framework, which is
denoted as hΘ0,Θ1

(X), can be written as

hΘ0,Θ1
(X) =

[
Prob(z = 0|X; Θ0,Θ1)
Prob(z = 1|X; Θ0,Θ1)

]

=


exp
(

Θ>
0 X
)

exp
(

Θ>
0 X
)

+exp
(

Θ>
1 X
)

exp
(

Θ>
1 X
)

exp
(

Θ>
0 X
)

+exp
(

Θ>
1 X
)
 .

where z = 0 indicates that the data sample X comes from a
malicious user, and z = 0 indicates that the user is benign. Θ0

and Θ1 are two vectors of weight parameters for the softmax
regression model, and > denotes the transpose of a matrix.



As we described in Sec. III-A, we use the labeled dataset
T = {(Y1, z1), (Y2, z2), ..., (Yn, zn)} to train the above
softmax regression model. For each labeled sample (Yi, zi)
1 ≤ i ≤ n, we feed it to the trained autoencoder and
obtain a set of features, which is denoted as A2(Yi) =
(a2

1(Yi), a
2
2(Yi), ..., a

2
n2

(Yi)). Then, we train the softmax re-
gression model with the features A2(Yi) and the labels zi to
find optimal parameters Θ0 and Θ1 such that the output of
the softmax regression model hΘ0,Θ1(Yi) matches the label
zi. We define a cost function to measure the average error
between the actual labels and the prediction from the softmax
regression model over the labeled dataset T , which is shown
as follows:

J(Θ0,Θ1) = − 1

n

[ n∑
i=1

1∑
k=0

1 {zi = k} log
exp

(
Θ>k A

2(Yi)
)

exp
(
Θ>0 A

2(Yi)
)

+ exp
(
Θ>1 A

2(Yi)
)]

+
β

2

1∑
k=0

||Θk||,

where the first term measures the average error between the
actual labels and the hypothesis, and the second term is
the regularization term to avoid overfitting. β controls the
weight of the regularization term in the cost function. 1{·}
is an indicator function where 1{false statement} = 0 and
1{true statement} = 1. By minimizing the cost function
with gradient descent algorithm, we can determine the weight
parameters Θ0 and Θ1 for the softmax regression model and
use it as a classifier to detect malicious accounts.

IV. EVALUATION

A. Dataset

We use the dataset collected in [9] to evaluate the effective-
ness and cost of MADAFE in malicious account detection.
This dataset has been used in the literature as the benchmark
dataset to test new methods for malicious account detection on
social networks. There are 1065 labeled Twitter accounts in
this dataset and each account is associated with 62 attributes.
The attributes can be classified into two categories: content
attributes and user behavior attributes. Content attributes refer
to the properties of the tweets posted by users, such as the
fraction of tweets with spam words, the fraction of tweets
with URLs, etc. User behavior attributes are the properties that
reflect user behavior patterns, such as the number of followers
and followees, the fraction of tweets replied, etc. 355 out of the
1065 user accounts are labeled as malicious, and the other 710
user accounts are labeled as benign. In our experiments, we
consider all 62 attributes as features, and divide the dataset
into three subsets: one training set with 600 user accounts
for training the autoencoder, one training set with 365 user
accounts for training the softmax regression model, and the
testing set with 100 user accounts.

B. Performance Metrics

We consider four metrics when evaluating the performance
of MADAFE, which are Accuracy, Precision, Recall, and F1
score. The definition of those four metrics are introduced as
follows:
• Accuracy: the ratio of the number of correctly classified

instances to the total number of instances.
• Precision: the ratio of the number of correctly classified

malicious instances to the total number of instances that
are classified as malicious.

• Recall: the ratio of the number of malicious instances that
are correctly classified to the total number of malicious
instances.

• F1 score: the weighted average of Precision and Recall,
which measures the balance between them for a machine
learning based classification model.

C. Results

We first evaluate the performance of MADAFE with differ-
ent number of neurons in the hidden lyaer of the autoencoder.
The detection accuracy is shown in Fig 3. It can be observed
that MADAFE can always achieve high detection accuracy
when the number of hidden neurons increases from 15 to
55. The reason is that we use the sparsity parameter ρ to
control the number of active neurons and ensure it is small,
and therefore the performance of MADAFE is stable under
different sizes of the hidden layer.
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Fig. 3. Performance under different sizes of hidden layer

We also compare the performance of MADAFE with two
classic machine learning models: Random Forest model and
Naive Bayes model for malicious account detection on social
networks. The results are shown in Fig. 4. It can be observed
that MADAFE achieves better performance in terms of accu-
racy, precision, recall, and F1 score than those two machine
learning models.

Next, we compare MADAFE with one state-of-the-art so-
lution on malicious account detection that utilizes the Support
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Fig. 4. Performance comparison with classic machine learning based solutions

Vector Machine (SVM) model to classify malicious and benign
accounts [9]. The top 5, 10, and 20 features are identified
with feature selection algorithm, which are used to train the
SVM model. The evaluation results are illustrated in Fig. 5.
As shown in Fig. 5, as the number of features increases, the
accuracy, precision, recall, and F1 score measurements of the
SVM-based solution also increases. Our framework MADAFE
outperforms the SVM-based solution when 5, 10, and 20
features are considered.
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Fig. 5. Performance compasion with different number of features

V. CONCLUSION

In this paper, we present a new framework for achieving
efficient and accurate malicious account detection on Twitter.
In this framework, we establish and train an autoencoder to
automatically extract and select salient features from unlabeled
user account data, which eliminates the need of collecting vast
amount of labeled account data for training machine learning

based classifiers and reduces the cost of manual feature extrac-
tion and selection in traditional detection methods. Evaluation
results demonstrate that the proposed framework is effective
in detecting malicious accounts in terms of accuracy and cost,
and it also outperforms other existing machine learning based
solutions.
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