
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 11, NOVEMBER 2019 2927

An Attribute-Based Controlled Collaborative Access
Control Scheme for Public Cloud Storage

Yingjie Xue, Kaiping Xue , Senior Member, IEEE, Na Gai, Jianan Hong,

David S. L. Wei, Senior Member, IEEE, and Peilin Hong

Abstract— In public cloud storage services, data are outsourced
to semi-trusted cloud servers which are outside of data owners’
trusted domain. To prevent untrustworthy service providers from
accessing data owners’ sensitive data, outsourced data are often
encrypted. In this scenario, conducting access control over these
data becomes a challenging issue. Attribute-based encryption
(ABE) has been proved to be a powerful cryptographic tool
to express access policies over attributes, which can provide a
fine-grained, flexible, and secure access control over outsourced
data. However, the existing ABE-based access control schemes
do not support users to gain access permission by collaboration.
In this paper, we explore a special attribute-based access control
scenario where multiple users having different attribute sets can
collaborate to gain access permission if the data owner allows
their collaboration in the access policy. Meanwhile, the collab-
oration that is not designated in the access policy should be
regarded as a collusion and the access request will be denied.
We propose an attribute-based controlled collaborative access
control scheme through designating translation nodes in the
access structure. Security analysis shows that our proposed
scheme can guarantee data confidentiality and has many other
critical security properties. Extensive performance analysis shows
that our proposed scheme is efficient in terms of storage and
computation overhead.

Index Terms— Public cloud storage, access control, CP-ABE,
collaboration.

I. INTRODUCTION

CLOUD computing has emerged as the natural evolution
and integration of advances in several fields, including

utility computing, distributed computing, grid computing, and
service oriented architecture [1]–[3]. It promotes the concept
of leasing remote resources rather than buying hardwares,
which frees cloud customers (such as enterprises and individ-
uals) from maintenance expenses. Cloud customers can utilize
cloud services on a pay-as-you-use basis, where the price is
relatively low. What’s more, since services are provided via the

Manuscript received June 21, 2018; revised December 4, 2018 and
February 15, 2019; accepted March 21, 2019. Date of publication April 15,
2019; date of current version June 27, 2019. This work was supported in part
by the National Key R&D Plan of China under Grant 2017YFB0801702 and
Grant 2016YFB0800301, in part by the National Natural Science Foundation
of China under Grant 61671420, and in part by the Youth Innovation
Promotion Association CAS under Grant 2016394. The associate editor
coordinating the review of this manuscript and approving it for publication was
Dr. Marina Blanton. (Corresponding author: Kaiping Xue.)

Y. Xue, K. Xue, N. Gai, J. Hong, and P. Hong are with the Department of
Electronic Engineering and Information Science, University of Science and
Technology of China, Hefei 230027, China (e-mail: kpxue@ustc.edu.cn).

D. S. L. Wei is with the Computer and Information Science Department,
Fordham University, New York City, NY 10458 USA.

Digital Object Identifier 10.1109/TIFS.2019.2911166

Internet, customers can access applications and data anywhere
and anytime. To benefit from the above advantages, but not
limited to, an increasing number of enterprises and individuals
are willing to outsource their data and applications to cloud
platforms.

Despite many advantages of cloud computing, there remain
various challenging issues that impede cloud computing from
being widely adopted, among which, privacy and security of
users’ data have been the major issues. Traditionally, a data
owner stores his/her data in trusted servers which are generally
controlled by a fully trusted administrator. However, in public
cloud storage, which is a popular service model in cloud
computing, data are usually stored and managed on remote
cloud servers which are administrated by a semi-trusted third
party, i.e. the cloud service provider. Data are no longer in data
owners’ trusted domains and they cannot trust cloud servers
to conduct secure data access control. Therefore, the secure
access control has become a challenging issue in public cloud
storage, in which traditional security technologies cannot be
directly applied.

In recent years, many researches have been devoted on
data access control in public cloud storage, such as [4]–[10].
Among those literatures, Ciphertext-policy Attribute-based
Encryption (CP-ABE) is regarded as one of the most suitable
schemes due to the fact that it can guarantee data owners’
direct control over their data and provide a fine-grained access
control service. In CP-ABE schemes, each user is associated
with a set of attributes and every ciphertext is embedded
with an access structure over some chosen attributes. The
access structure is used to express the specific access policy
that should be satisfied to access data contents. Only if a
user’s attribute set satisfies the access structure embedded in
the ciphertext can he/she decrypt the ciphertext. Therefore,
by using access structures over attributes to express access
policies, CP-ABE is a promising tool to provide fine-grained,
flexible, and secure data access control in public cloud storage.

Nevertheless, the existing CP-ABE schemes can merely
assign access permission to individuals who own attribute
sets satisfying the access policy. However, in many scenarios,
the secret information cannot be obtained individually by a
single user alone. For example, in enterprises and organi-
zations, some important files/documents are shared among
multiple users who have distinct responsibilities according
to their positions, but have the same goal to protect data
confidentiality. A data access request may be permitted only

1556-6013 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2095-7523
https://orcid.org/0000-0002-3027-1990

2928 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 11, NOVEMBER 2019

Fig. 1. An example of an access policy.

when multiple users with different responsibilities collaborate.
Such requirement of collaboration to access secret data has
been widely studied in secret sharing schemes [11], [12],
where data can only be accessed by a number of participants
together and the number is no less than a given threshold.
Unfortunately, existing secret sharing schemes cannot express
access policies in a fine-grained and flexible way. For a fine-
grained access control, we can label each user by an attribute
set where his/her responsibility/role can be expressed as a
single attribute or a set of attributes. To design a general access
control system, we let data be accessed on one of the following
two conditions: 1) (Non-collaboration scenario) As the existing
CP-ABE schemes do, an individual who has a sufficiently
powerful attribute set satisfying the access structure can access
data individually; 2) (Collaboration scenario) For a user whose
attribute set does not have sufficient authority to gain access
individually, he/she can collaborate with other users who have
some different attributes such that their integrated attribute
set has sufficient authority to access data. Here, we take an
example to illustrate the scenario. In a company, the data
owner requires a financial document to be accessed on the
following circumstances, as shown in Fig. 1: The left side
with two boxes shows that two policies can be utilized to
access data. The word “OR” between the two boxes means
that the data users can access the data if they can satisfy either
sub-policy A or sub-policy B. Sub-policy A denotes the case
that the policy tree must be satisfied by an independent user,
and sub-policy B denotes the case that the ciphertext can be
accessed by collaboration on the condition that one user has
an attribute set that can satisfy the tree on the left side (in the
box denoting sub-policy B) and the other user has the attribute
‘Auditor’. The word “AND” means the mentioned two users
can collaborate to satisfy sub-policy B. We observe that it
is usually impossible for a user to have both attribute sets
{‘Manager’/‘Accountant’} and {‘Auditor’}. Therefore, sub-
policy A and sub-policy B can be expressed in a more efficient
way by a compound policy tree as shown on the right side
in Fig.1. The node denoting ‘Auditor’ has two circular edges
to indicate that it is a special node that allows collaboration
to be performed on it.

It is not straightforward to design a suitable mechanism to
allow collaboration embedded in the access policy. To tackle
the above problem, Li et al. [13] firstly addressed the collab-
oration problem among users with different attribute sets, and
they proposed a Group-Oriented Attribute-Based Encryption
(GO-ABE) scheme. Constructed on CP-ABE, GO-ABE fur-
ther divides users into groups and allows users from the same
group to collaborate to access data. Allowing users within the
same group to collaborate is reasonable, since users responsi-
ble for the same project may have more motivations to protect
their data. However, their scheme allows all attributes to be
collaborated within the same group, even if the data owner
disallows such data access. That is to say, in the example of
Fig. 1, a user with the attribute set {‘Junior’, ‘Accountant’,
‘Manager’} can also collaborate with a user with the attribute
set {‘Senior’, ‘Programmer’} to gain the permission to access
data, by collaborating on the attribute ‘Senior’. However,
this should be considered as a malicious behavior from the
viewpoint of data owners. Therefore, it is a challenging issue
to design such mechanism that allows expected collaboration
among honest users and also simultaneously resists unwanted
collusion among curious users. As the access policy specified
in Fig. 1, only a user with the attribute set {‘Senior’, ‘Accoun-
tant’} or {‘Senior’, ‘Manager’} collaborating with a user
with the attribute ‘Auditor’ is regarded as valid collaboration
to access data. Any other kind of collaboration should be
considered as malicious and the access is not permitted.

In this paper, we address the collaboration issue in practi-
cal scenarios and propose an attribute-based controlled col-
laborative access control scheme for public cloud storage.
Specifically, like GO-ABE [13], we restrict user collaboration
in the same group that corresponds to the same project for
which the involved people are responsible. Thus, in our work,
in order to provide both data confidentiality and collaborative
access control, only people who are in charge of the same
project are allowed to collaborate. Technically, data owners
allow expected collaboration by designating translation nodes
in the access structure. In this way, unwanted collusion can be
resisted if the attribute sets by which users are collaborating
are not corresponded to translation nodes. For each translation
node, an additional translation value is generated. Using this
translation value and special translation keys embedded in
users’ secret keys, users within the same group can collaborate
to satisfy the access structure and gain data access permission.
For colluding users across groups, their access is not permitted
as their secret keys do not correspond to the same group.
The main contributions of this work can be summarized as
follows.

1) We address the problem of data access control in collabo-
ration scenarios and propose an attribute-based controlled
collaborative access control scheme. Data owners can
specify expected collaboration among users when they
define access policies. Meanwhile, unwanted collusion
can be denied to access data.

2) In order to achieve our goal, we design a mechanism
by designating translation nodes in policy trees and
modifying secret keys and ciphertexts. More specifically,
our approach embeds a translation key inside the secret

XUE et al.: ATTRIBUTE-BASED CONTROLLED COLLABORATIVE ACCESS CONTROL SCHEME FOR PUBLIC CLOUD STORAGE 2929

key of BSW scheme [14] and adds a translation value in
the ciphertext for each translation node. The combination
of translation keys and translation values enables users to
collaborate to satisfy a policy tree.

3) Users are divided into groups in a way such that the
collaboration is restricted and secure. That is to say,
only users responsible for the same project are allowed
to collaborate in case that malicious users who are not
responsible for the project collude. Extensive security
analysis is given to show the security properties of our
proposed scheme.

The rest of this paper is organized as follows. In Section II,
we introduce some related works about access control schemes
in public cloud storage, along with the researches on the
topic of collaborative access control. Technical preliminaries
are presented in Section III, and the definition of the system
model and security assumptions are presented in Section IV.
We introduce our proposed attribute-based controlled collab-
orative access control scheme for public cloud storage in
Section V. In Sections VI and VII, we analyze our proposed
scheme in terms of security and performance, respectively.
Finally, the conclusion is given in Section VIII.

II. RELATED WORK

The motivation of our work can be dated back to the
access control of data stored in untrusted servers and col-
laborative access control. To address access control for
data stored in untrusted servers, many works using cryp-
tographic technologies have been proposed, such as the
literatures [15], [16]. However, they are either coarse-grained
or short of scalability as the number of users increases.
Ciphertext-policy Attribute-based Encryption (CP-ABE) is
regarded as a promising technique to provide fine-grained,
flexible, and secure access control of outsourced data in public
cloud storage. The first CP-ABE scheme was designed by
Bethencourt et al. in [14], and subsequently some literatures
were proposed to improve its functionality [7], [17], secu-
rity [10], [18], [19] and efficiency [20]–[23]. To improve its
expressiveness, the work of [24] has been proposed, and then
the work of [25] further improves the scalability of [24].
Considering that users may hold attributes from multiple
authorities, some multi-authority schemes, such as the works
in [4], [26], have been proposed. Recently, in [27], the authors
pointed out that ABE schemes cannot express access control
rules like role hierarchy and object hierarchy. Consequently,
they proposed a secure role-based access control scheme to
address the problem.

Another research area related to our work is collabo-
rative access control. However, in most of the existing
works [28], [29], the word “collaborative” denotes that multi-
ple authorized users are able to work on the same document
and edit the document collaboratively. Their main goal is to
assign different privileges (such as read, write, and grant) to
different users. A user can obtain privilege independently.
The works that have the concept of collaboration that are
most similar to ours are found in the research area of online
social networks. In [30], [31], a user is allowed to access
data only when he/she get permission from multiple users,

suggesting that multiple users need to collaborate to satisfy
the policy. Unfortunately, their schemes cannot support fine-
grained access control since they mainly label users by trust
levels.

Secret sharing scheme is a feasible solution to support user
collaboration and it has been adopted in collaborative access
control [32]. It specifies that a secret can only be obtained if
the number of valid participants is no less than a threshold.
In 1979, Shamir [11] and Blackly [33] proposed (t,n) threshold
secret sharing schemes which are based on Lagrange interpola-
tion and multi-dimensional space mapping, respectively. Such
schemes are referred to as threshold secret sharing schemes,
in which each of the participants has equal right. Weighted
threshold secret sharing schemes, such as [34], are natural
generalizations of threshold secret sharing schemes, where
each participant is assigned a weight depending on his/her
importance in the group of all participants. For example, in a
bank, the tellers and directors have different weights as to
the rights to reconstruct the key of bank vault. The secret
can be reconstructed if and only if the sum of the weights
assigned to a set of participants is greater than or equal to
a fixed threshold. A variant of weighted secret sharing is
multi-level secret sharing schemes, such as the work in [12],
where participants are partitioned into levels. Generally speak-
ing, those schemes distinguish a user by only one factor
(e.g. importance, role, or level). Our scheme is more expres-
sive, as we label a user by a set of attributes.

The works presented in the literatures [13] and [24] are the
most related to our work. However, our work is different from
theirs in several aspects. Compared with the work in [13],
we give data owners the privilege to specify inside the policy
tree whether a collaboration is allowed and on which nodes
a collaboration is allowed. Although we use the concept of
translation nodes proposed in [24], we consider a different
problem from that in [24] and our approach is also different.
We consider the collaboration between different users to
decrypt a ciphertext, whereas the work in [24] focuses on
restricting the combination of an independent user’s attributes
inside his/her attribute set to satisfy a policy tree. Technically,
the scheme in [24] organizes a user’s attributes into a recursive
set based structure. According to the structure, only the
attributes inside the same set can be combined to satisfy a
policy tree. Attributes from different sets can be combined
to satisfy a policy tree only if there exist corresponding
translation nodes. Different from the work in [24], in our
scheme, users’ attributes do not have any recursive structures.
In addition, in our scheme, collaboration is allowed only
among the users from the same group.

III. PRELIMINARIES AND DEFINITIONS

In this section, we first give a brief review of background
information on bilinear maps. Then we describe CP-ABE on
which our scheme is based.

A. Bilinear Maps

We briefly review the facts about groups with efficiently
computable bilinear maps. We refer readers to the litera-
ture [35] for more details.

2930 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 11, NOVEMBER 2019

Let G, GT be two multiplicative cyclic groups of the same
prime order p and g be a generator of G. A bilinear map e :
G×G → GT defined on G has the following three properties:

1) Bilinearity: ∀a, b ∈ Zp and g1, g2 ∈ G, we have
e(ga

1 , gb
2) = e(g1, g2)

ab.
2) Non-degeneracy: ∀g1, g2 ∈ G, e(g1, g2) �= 1, which

means that the map does not send any pair in G × G

to the identity in GT .
3) Computability: There is an efficient algorithm to compute

e(g1, g2) for all g1, g2 ∈ G.

B. Ciphertext-Policy Attribute-Based Encryption (CP-ABE)

Although the definitions and constructions of different
CP-ABE schemes are not always consistent, the uses of the
access structure in Encrypt and Decrypt algorithms are nearly
the same. Here we adopt the definition and construction of
the first CP-ABE scheme [14] to illustrate the construction
of CP-ABE, as most of the state-of-the-art literatures adopting
CP-ABE for data access control are based on this construction.

A CP-ABE scheme consists of four algorithms: Setup,
Encrypt, KeyGen (Key Generation), and Decrypt.
Setup(λ, U) → (P K , M SK). The setup algorithm takes the
security parameter λ and the attribute universe description U
as the input. It outputs the public parameters P K and a master
secret key M SK .
Encrypt(P K , M, A) → CT . The encryption algorithm takes
the public parameters P K , a message M , and an access
structure A over the universe of attributes as the input. The
algorithm will encrypt M and produce a ciphertext CT such
that only a user whose attribute set satisfies the access structure
will be able to decrypt the message. We will assume that the
ciphertext implicitly contains A.
KeyGen(M SK , S) → SK . The key generation algorithm
takes the master secret key M SK and a set of attributes S
as the input. It outputs a secret key SK .
Decrypt(P K , CT, SK) → M . The decryption algorithm takes
the public parameters P K , a ciphertext CT which contains an
access structure A, and a secret key SK as the input, where
SK is a secret key for a set S of attributes. If the set S of
attributes satisfies the access structure A, the algorithm will
decrypt the ciphertext and return a message M .

Please refer to [14] for more details about CP-ABE. Fur-
thermore, the literatures, such as [4], [20], have introduced
CP-ABE to construct fine-grained access control frameworks
in public cloud storage.

IV. SYSTEM MODEL AND SECURITY ASSUMPTIONS

In this section, we give the definitions of the system model,
the security assumptions and requirements for our proposed
data access control scheme.

A. System Model

The system model of our design is defined in Fig. 2, which
consists of four entities: a central authority (CA), many data
owners (Owners), many data consumers (Users), and a cloud
service provider with multiple cloud servers (called cloud
servers from here on).

Fig. 2. System model.

• The central authority (CA) is the administrator of the
whole system. It sets up the system parameters for the
access control implementation and distributes secret keys
for users.

• The data owner (Owner) is the entity who outsources
his/her data to cloud servers. To share his/her data with
other intended entities, he/she defines access policies
for data. The access policy is represented by an access
structure over attributes. Data contents are encrypted
under access structures before being uploaded to cloud
servers.

• The data consumer (User) is the entity who is interested
in data contents. In our controlled collaborative access
control scheme, each user is assigned to a group related
to the project for which he/she is responsible. He/She
possesses a set of attributes and is equipped with a secret
key associated with his/her attribute set. The user can
freely get any encrypted data that he/she is interested
in from cloud servers. Then, he/she can decrypt the
encrypted data on either conditions: (1) His/Her attribute
set independently satisfies the access structure embedded
inside the encrypted data; (2) If the policy allows/specifies
some kinds of collaboration, he/she can collaborate with
other valid users to decrypt the data.

• Cloud servers provide a public platform for owners to
store and share their encrypted data. They do not conduct
data access control for owners. The encrypted data stored
in cloud servers can be downloaded freely by any data
consumer.

B. Security Assumptions and Requirements

In our proposed scheme, the security assumptions of the
four roles can be defined as follows. Cloud servers are always
online and are managed by the cloud provider who is assumed
to be “honest-but-curious”. It means that cloud servers will
correctly execute the tasks assigned to them for profits, but
they would try to obtain as much secret information as possible
based on data owners’ inputs and outsourced data. CA is
assumed to be fully trusted, which will not collude with any
entity to peep data contents. Owners have access control over
their own outsourced data which are protected by specific
policies. We assume that owners will not do harm to their data

XUE et al.: ATTRIBUTE-BASED CONTROLLED COLLABORATIVE ACCESS CONTROL SCHEME FOR PUBLIC CLOUD STORAGE 2931

confidentiality. Users are assumed to be dishonest and curious,
who may collude with each other to gain unauthorized access.
What’s more, although data owners may allow some kind of
collaboration among users by combining their attribute sets
to satisfy the access structure, it’s not that any combination
of attribute sets can be authorized. Only the collaboration
specified in the access policy/structure is valid for accessing
data. Any other kind of collaboration is treated as illegal and
cannot succeed to get data contents.

Towards controlled collaborative access control in public
cloud storage, we have at least six basic security requirements
as follows:

• Data confidentiality. Data contents must be kept con-
fidential to unauthorized individuals and collaborating
users, including the curious cloud servers.

• User collusion resistance. For users within the same
group, collaboration is allowed only upon translation
nodes. Collaboration on non-translation nodes is resisted.

• Controlled collaboration within the same group. Users
from different groups cannot decrypt the ciphertext by
collaboration.

• Secret key privacy. All users’ secret keys that are related
to attributes are kept secret from other users in the
collaboration.

• Secure revocation of the collaboration. The collabora-
tion privilege can be revoked by data owners or users.

• Non-reusability of intermediate results. Each collabora-
tion is only useful to decrypt one ciphertext.

V. AN ATTRIBUTE-BASED CONTROLLED COLLABORATIVE

ACCESS CONTROL SCHEME

This section first gives an overview of our proposed scheme,
then describes the scheme in details, which mainly con-
sists of four phases: System Initialization, Key Generation,
Encryption, and Decryption.

A. Overview

The main goal of this work is to allow expected user
collaboration for data access. For example, in Fig. 1, to access
a financial record, a user with the attribute set {‘Senior’,
‘Accountant’, ‘Manager’ } can access the data independently.
However, with the data owner’s specification of collaboration,
if a user only has the attribute set {‘Senior’, ‘Accountant’},
he/she can also access with the help of a user possessing
the attribute ‘Auditor’. On this circumstance, the attribute
‘Auditor’ can be treated as a “high-level” attribute that has
the power of supervision to protect confidential data.

Our work is challenging in that while we allow authorized
user collaboration, we also have to prevent unauthorized user
collusion. The authorized collaboration should conform to
both of the following two rules: 1) The collaborating users
must be from the same group; 2) Their combined attribute
set should satisfy the access structure and the collaboration
should be specified within the access policy. Users in the
same group are responsible for the same project. The first rule
means that only users responsible for the same project can
gain data access permission by collaboration. A user cannot

be permitted to access data when he/she colludes with the
users from a different group. The second rule indicates that
the access policy will designate the condition on which users’
attribute sets can collaborate. Any other ways of collaboration
should be considered as collusion and be prohibited.

According to the left part in Fig. 1, we illustrate a trivial
solution in a simple case where all users are in the same group.
Data are encrypted under sub-policy A and sub-policy B
separately. The generated ciphertext will contain two pieces
of ciphertext according to each sub-policy. For an independent
user whose attribute set satisfies sub-policy A, he/she can
decrypt individually without collaboration with other users.
The encryption and decryption are just the same as the phases
of CP-ABE schemes such as that of [14]. Collaborating users
can decrypt by satisfying sub-policy B. In sub-policy B, for
simplicity, we assume that the left tree in sub-policy B can
be satisfied by user U1 and the right tree (a tree containing
only one node ‘Auditor’ is also considered as a tree) can be
satisfied by user U2. In the encryption phase, for sub-policy B,
s is randomly chosen, and s1 and s2 are assigned to the root
node of the right tree and the left tree, respectively, such that
s = s1 + s2. The parameters s1 and s2 are encrypted in the
way as in CP-ABE schemes, e.g., [14]. The ciphertext can be
decrypted if and only if the left tree and right tree are satisfied
independently by U1 and U2, respectively. The total ciphertext
size nearly doubles since each ciphertext associated with its
policy will contain components corresponding to nearly all
attributes. If we define more complex collaboration, there will
be more ciphertexts and the total ciphertext size will grow
rapidly.

Therefore, to allow collaboration as well as to avoid the
rapid growth of the ciphertext size, we refer to the basic
idea of [24] and define translation nodes in the policy tree
(such as Fig. 1) to allow authorized collaboration and forbid
unauthorized collusion. A translation node can be either a
leaf node or a non-leaf node, and users can collaborate on
those nodes. For each translation node, a translation value
is generated for it. Furthermore, to restrict collaboration to
be within the same group, a random group secret key is
embedded in each user’s secret key to assign a user to a
certain group. In addition, a translation key is also added to
each user’s secret key. For the users in the same group, with
the translation value and the translation key, one user can
translate the secret share of his/her attribute set in a policy
tree to another one’s. In this way, collaborating users can
be viewed as an individual who has all required attributes
satisfying the policy tree, and thus he/she can further decrypt
the ciphertext. Since translation values are only appended on
translation nodes, the collaboration can only happen on those
nodes.

B. Access Structure

We build our scheme on the access structure used in the
literature [14], which is a policy tree of several nodes. Let
T be a policy tree with the root node r and Let Tx denote a
subtree of T rooted at the node x . Each leaf node y of the
tree is associated with an attribute which is denoted as att (y).

2932 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 11, NOVEMBER 2019

Each non-leaf node of the tree is a threshold gate, which can
be defined by its children and a threshold value. Take the node
x as an example, we describe the features of T . Let ncx and kx

respectively denote the number of children and the threshold
value of the node x , where 0 < kx ≤ ncx . The node x is
denoted as (kx , ncx). When kx = 1, the threshold gate is an
“OR” gate and when kx = ncx , it is an “AND” gate. The
parent of the node x in the tree is denoted as parent (x). The
policy tree T also defines an ordering between the children of
every non-leaf node, that is, the children of a non-leaf node x
are numbered from 1 to ncx in an arbitrary manner. For each
of x’s child nodes (y), this number is denoted as index(y).

Let Tx() denote the tree satisfaction algorithm, where the
input is the individual/combined attribute set and x denotes
the root node of the sub-tree Tx of T . First, we define the
condition under which a user’s attribute set is said to satisfy a
given policy tree. The definition is modified a little from the
basic one of [14]. We assign each user an identifier (e.g. ui for
the user Ui) for ease of description. For a user Ui , we denote
his/her attribute set Si satisfies the policy tree Tx if and only if
Tx (Si) = ui . We compute Tx (Si) as follows. If x is a non-leaf
node, evaluate Tx �(Si) for all children x � of the node x . Tx(Si)
returns ui if and only if at least kx children return ui . If x is
a leaf node, then Tx (Si) returns ui if and only if att (x) ∈ Si .

Here, we further extend the definition to consider the
introduction of translation nodes in order to provide controlled
collaboration. If there are designated translation nodes in the
policy tree, Tx () can be further modified as follows. Firstly,
assume that the users come from the same group. We define
γ as a collection of multiple users’ attribute sets:

γ = {S1, . . . , Sk} = {{att1,1, . . . , att1,n1}u1,

. . . , {attk,1, . . . , attk,nk }uk }, (1)

where u1, . . . , uk denotes the unique identifiers of k different
users, Si denotes the attribute set of the user with the identifier
ui , and ni is the total number of attributes in Si . If x is a leaf
node, Tx (γ) returns a set Ux of users’ identifers. ui ∈ Ux if
att (x) ∈ Si . When x is a non-leaf node, we evaluate Tx �(γ) for
all children x � of x . Tx (γ) returns a set Ux of users’ identifers,
where for each ui ∈ Ux there exist no less than kx children
that satisfy the following requirement: For each one of these
children x �, Ux � either contains the identifier ui or x � is a
translation node and Ux � �= �.

Thus, if the node x is a designated translation node (Note
that translation nodes can be set upon leaf nodes and non-leaf
nodes.), even though the attributes used to satisfy the predicate
represented by x comes from Si , and the attributes used to
satisfy the predicate represented by x’s siblings comes from
Sj where i �= j , they can collaborate to satisfy the predicate
represented by their common parent node. Accordingly, a col-
lection of attribute sets γ is said to satisfy the policy tree T
if and only if Tr (γ) returns a non-empty set Ur .

C. Details of Our Proposed Scheme

1) System Initialization: Firstly, CA chooses two multiplica-
tive cyclic groups G (the parameter g is a generator of G) and
GT with the same prime order p, and defines a binary map

e : G × G → GT on G. Let H : {0, 1}∗ → G be a hash
function that maps any arbitrary string to a random group
element. This function is used to map attributes described
as arbitrary strings to group elements. CA randomly chooses
α, β1, β2 ∈ Zp as the master secret key. Besides, in our
work, we assume that there are n projects and each of which
associates with a different group. For every group m, a unique
master secret key γm ∈ Zp is chosen to implicitly indicate to
which group a specific user belongs to. The published public
key P K is:

GT , G, H, g, h1 = gβ1, f1 = g1/β1,

h2 = gβ2, f2 = g1/β2, e(g, g)α,

and the master secret key M SK is:

gα, β1, β2, gγ1, . . . , gγn ,

which implicitly exists in the system, but doesn’t need to be
obtained by any other entity. In addition, CA issues a unique
identifier ui to each user. For ease of description, we denote
the user with the identifier ui as Ui .

2) Key Generation: Let Si = {ai,1, . . . , ai,ni } be the
attribute set of the user Ui , where ai, j denotes the j th attribute
appearing in the set Si , and ni denotes the number of attributes
in Si . CA generates a secret key for the user Ui as follows.
Firstly, CA checks which group he/she belongs to and finds
out the corresponding group secret key γm . Then CA randomly
chooses ri ∈ Zp for the user Ui , and ri, j ∈ Zp, 1 ≤ j ≤ ni

for each attribute ai, j . Then the secret key is issued to the user
Ui as:

SKi = {Di = g
α+γm

β1 ,

∀ j ∈ [1, ni] : Di, j = gri H (ai, j)
ri, j , D�

i, j = gri, j ,

Ei = g
γm+ri

β2 },
where Ei is a translation key used for collaboration.

3) Encryption: Let M denote the plaintext of the data file.
To improve the system’s performance, the owner first chooses
a random number κ ∈ Zp as the symmetric key and uses it to
encrypt the plaintext with a symmetric encryption algorithm,
such as AES. The encrypted data can be denoted as Eκ(M),
then the owner encrypts the symmetric key κ under the access
policy using the following algorithm. Here, a policy tree T is
defined by the data owner to express the access policy. The
data owner sets some nodes on the policy tree as translation
nodes, based on which he/she can allow multiple users to
collaborate to satisfy the policy tree.

The algorithm first chooses a polynomial qx for each node x
in the policy tree T . These polynomials are chosen in the
following way in a top-down manner, starting from the root
node r . For each non-leaf node x in the tree, the degree dx is
set to be one less than the threshold value kx , i.e. dx = kx −1.
Starting with the root node of the policy tree T , the algorithm
randomly chooses s ∈ Zp and sets qr (0) = s. Then, it ran-
domly chooses dr other points of the polynomial qr to define
it completely. For any other node x (including both leaf nodes
and non-leaf nodes), it sets qx(0) = qparent (x)(index(x)) and

XUE et al.: ATTRIBUTE-BASED CONTROLLED COLLABORATIVE ACCESS CONTROL SCHEME FOR PUBLIC CLOUD STORAGE 2933

randomly chooses dx other points to completely define qx . The
degree of leaf nodes is set to be 0.

Let Y denote the set of leaf nodes in T , and X denote the set
of the defined translation nodes in T . Then ciphertext CT is
constructed with T and computed as:

CT = {T , C̃ = κ · e(g, g)αs, C = hs
1, C̄ = hs

2,

∀y ∈ Y : Cy = gqy(0), C �
y = H (att (y))qy(0),

∀x ∈ X : Ĉx = hqx (0)
2 },

where Ĉx is denoted as the translation value.
4) Decryption: Generally speaking, in real scenarios, a user

(denoted as the data requestor) has the intention to access
data and he/she asks other users (denoted as collaborators) to
collaborate if he/she is not allowed to decrypt the data indepen-
dently. We assume there are n ≥ 1 users and they are within
the same group. In this setting, the input of the algorithm
is actually a combined attribute set γ (as defined in Eq. 1)
which contains the attribute set of those users. Specifically,
only the whole attribute set of the data requester and partial
attribute subsets of collaborators are included in γ . That is to
say, collaborators only input the necessary attribute subset of
theirs which are related to the collaboration (translation nodes)
into set γ (e.g. as shown in Fig. 1, a senior auditor will only
contribute the attribute ‘Auditor’ to collaborate, while his/her
attribute ‘Senior’ will not appear in the decryption.).

Let Si ∈ γ denote the attribute subset of the user Ui . The
decryption algorithm first runs the tree satisfaction algorithm
T (γ) on the policy tree with the collection (γ) of attribute
subsets (as defined in Eq. 1), and stores the results of each
recursive call in policy tree T . That is, each node x in
the tree is associated with a set (Ux) of identifiers returned
by Tx (γ). If ui ∈ Ux , we denote that ui is associated with the
node x . An identifier ui ∈ Ux means that the user Ui can be
selected as a representative to successfully decrypt the node x .
If the combined attribute set γ can satisfy the policy tree T ,
the identifier of the data requester (e.g. ui) will be included
in Ur by Tr (γ). Then, the data requester will call a recursive
function Decrypt Node(CT, γ , x, ui) on root node r of the
tree. Here, x is a node in T and ui denotes the identifier of
a user who acts as a representative to decrypt the node x .
If the combined attribute set γ does not satisfy policy tree T ,
Ur = � and the decryption algorithm will return ⊥.

When x ∈ Y is a leaf node, the recursive function
Decrypt Node(CT, γ , x, ui) is defined as follows. If ui /∈ Ux ,
i.e. att (x) /∈ Si , Decrypt Node(CT, γ , x, ui) = ⊥. Oth-
erwise, the algorithm gets att (x) = ai, j ∈ Si . Then,
Decrypt Node(CT, γ , x, ui) is computed as:

Decrypt Node(CT, γ , x, ui)

= e(Di, j , Cx)

e(D�
i, j , C �

x)

= e(gri H (ai, j)
ri, j , gqx (0))

e(gri, j , H (ai, j)qx (0))
= e(g, g)ri qx (0).

Note that the set from which the satisfying attribute ai, j

is picked is implicitly in the result e(g, g)ri qx (0) (indicated
by ri).

Then, when x /∈ Y, i.e., the node x is a non-leaf node, then
Decrypt Node(CT, γ , x, ui) runs recursively as follows:

i) The algorithm first computes kx sized child nodes z
of x , and stores them in a set Bx . Those child nodes z
are selected by the following restrictions. If it is not
a translation node, node z must be associated with ui .
If it is a translation node, node z must be associated
with some ui � where i �= i �. The computation of
Bx intuitively means the selection of satisfying child
nodes to satisfy the predicate represented by the node x .
If there are no such kx sized child nodes z, the algorithm
returns ⊥.

ii) For each node z ∈ Bx which is not a transla-
tion node, i.e. ui ∈ Uz , the algorithm further calls
Decrypt Node(CT, γ , z, ui) and stores output in Fz . This
means that the representative (the user Ui) will decrypt
the secret of those child nodes z.

iii) For each node z ∈ Bx which is a translation node,
i.e. ui � ∈ Uz and i � �= i , the algorithm further calls
Decrypt Node(CT, γ , z, ui �) and stores the output in F �

z .
This means that another user Ui � (a collaborator) is
selected as a new representative to decrypt the node z.
Then, the user Ui � translates the output (denoted as F �

z)
to Fz as follows:

Fz = e(Ĉz, Ei/Ei �) · F �
z

= e(gβ2qz(0), g
γm+ri −(γm+ri�)

β2) · e(g, g)ri� qz(0)

= e(g, g)ri ·qz(0).

We let the user Ui broadcast its translation key Ei

implicitly. Then Fz is transmitted to the user Ui so that
the user Ui can gather the secret of kx child nodes z of
x to act as a representative to decrypt the node x . In this
way, it is equivalent to the fact that the user Ui owns all
attributes that satisfy the predicate represented by x and
he/she is able to decrypt the node x . Now Fz is related
to the random number ri of the user Ui .

iv) Then, the user Ui computes Fx using exponential poly-
nomial interpolation as follows:

Fx = �z∈Bx F
	k,B�

z
(0)

z = e(g, g)ri qx (0),

where k = index(z), B �
z = {index(z) : z ∈ Bx}

and Lagrange coefficient 	i,S(x) = � j∈S, j �=i
x− j
i− j .

In this way, by running the algorithm recursively,
one user with identifier ui who is associated with
the root node r can decrypt the root node and get
Fr = Decrypt Node(CT, γ , r, ui) = e(g, g)ri ·qr (0) =
e(g, g)ri ·s . The decryption proceeds and outputs F as

F = e(C̄, Ei)

Fr
= e(gβ2·qr (0), g

γm+ri
β2)

e(g, g)ri ·qr (0)
= e(g, g)γm ·s .

Finally, the decryption algorithm performs following
computation to obtain κ :

κ = C̃ · F

e(C, Di)
= κ · e(g, g)α·s · e(g, g)γm ·s

e(gs·β1, g
γm+α

β1)
. (2)

2934 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 11, NOVEMBER 2019

Then, κ is used to decrypt Eκ(M) by symmetric encryption
algorithms and the user/users finally get M .

As shown in the above process, with translation keys Ei

and Ei � in users’ secret keys and the translation value Ĉx

at the translation node x , one can translate the secret with
ri � to ri such that the collaboration is allowed. Note that
only translation keys are exposed to help translate the output
associated with the identifier ui � to the user Ui . The secret key
components that are related to attributes are not disclosed.
In the decryption of every non-leaf node x , one user with
identifier ui (ui ∈ Ux) is selected to decrypt that node. The
user exposes his/her translation key Ei to other participants
who decrypt child nodes of x . Then, each participant Ui �
decrypts translation nodes according to his/her attribute subset
and then helps translate the computed output to the user Ui .
Each output e(g, g)ri� qx (0) is translated into e(g, g)ri qx (0) and
is transferred to the user Ui . Finally, the user Ui (ui ∈ Ur)
gathers output from every collaborators and gets the secret of
root node r .

It is also possible that there is not an explicit data requester
in the collaboration scenario but multiple users simultaneously
have the intention to get access to the data. In that case,
the combined attribute set γ includes all their attributes so that
some attributes may appear in multiple attribute subsets Si .
However, by running the tree satisfaction algorithm Tr (γ),
the results of each recursive call in the policy tree T imply
which attribute subset Si can be used to satisfy the predicate
represented by each node. Thus, even if Ux returned by
the node x may contain multiple identifiers, as long as the
identifier (e.g. ui) is associated with the node x , it can be
selected to decrypt the node x . The algorithm randomly selects
a user with identifier ui (ui ∈ Ur) and starts the decryption
algorithm from the root node r . The role of the chosen user
with identifier ui is the same as that of the data requester, as we
have mentioned. The remaining recursive call procedure is also
the same as the procedure we described above. The person who
is chosen as a representative to decrypt the node is chosen
in the top-down manner implicitly in the process of calling
Decrypt Node(CT, γ , x, ui) with the information returned by
tree satisfaction algorithm. Thus, it is not necessary for users
to worry about whom to be selected to decrypt.

D. A Summary of Our Proposed Approach

Fig. 3 illustrates the overall procedure of our scheme. A set
of n users from the same group (e.g. group k) with different
attribute sets firstly share their own attribute sets Si to form
a combined attribute set γ = {S1, S2, · · · , Sn}, which is then
inputted into the tree satisfaction algorithm Tr (γ). Tr (γ) labels
each node of the policy tree with one or more specific users’
identifiers, which denotes that the node can be satisfied by
the specific user with the labelled identifier. We denote the
labelled policy tree as an expanded policy tree. With this
expanded policy tree, user Ui can try to decrypt the nodes
labelled with ui recursively, starting from the root node.
If the function Decrypt Node(CT, x, γ , ui) to decrypt the
secret of the node x needs to call Decrypt Node(CT, z, γ , u j)
where i �= j and z is the child of x , then user U j is

Fig. 3. A summary of our proposed approach.

responsible to run Decrypt Node(CT, z, γ , u j). Furthermore,
user U j translates the output e(g, g)r j qz(0), which is computed
by Decrypt Node(CT, z, γ , u j), to e(g, g)ri qz(0), and then
transmits the translated result to user Ui . When user Ui gathers
all the secrets to construct the secret of the root node, he/she
can construct Fr = e(g, g)ri s by using Lagrange interpolation
equation in the same way as that in a traditional CP-ABE
scheme. Lastly, the user translates Fr to the one that is related
to the group as F = e(g, g)γks , and gets the encrypted
symmetric key κ by Eq. 2.

VI. SECURITY ANALYSIS

In this section, we analyze some security properties, namely
data confidentiality, user collusion resistance, controlled col-
laboration within the same group, secret key privacy, secure
revocation of the collaboration, and non-reusability of inter-
mediate results.

A. Data Confidentiality

By data confidentiality, we mean that an adversary cannot
distinguish two messages in our security game. The adver-
sary will choose to be challenged on an encryption with an
access structure A∗ and can ask for secret keys associated
with any attribute set, as long as the attribute set does not
satisfy A∗. The security proof of our approach is similar to
that in [25]. We will prove that if there is any vulnerability
in our proposed approach, the vulnerabilities can be used to
break CP-ABE [14]. The security model of our scheme is
similar to that of CP-ABE schemes. Thus, we first introduce
the security model of CP-ABE, and then show how to use the
vulnerabilities to break CP-ABE.

Security Model: The security model of CP-ABE schemes,
such as BSW scheme in the literature [14], is as follows.

• Setup. The challenger runs the Setup algorithm and gives
public parameters P K to the adversary A.

• Phase 1. The adversary A makes repeated queries for
secret keys corresponding to attribute sets S1, . . . , Sq1 .

• Challenge. The adversary A submits two equal length
messages M0 and M1, and a challenge access structure
A∗ such that none of the attribute sets S1, . . . , Sq1 satisfy
the access structure. The challenger flips a random coin b,

XUE et al.: ATTRIBUTE-BASED CONTROLLED COLLABORATIVE ACCESS CONTROL SCHEME FOR PUBLIC CLOUD STORAGE 2935

and encrypts Mb under A∗. The resulting ciphertext CT
is given to the adversary.

• Phase 2. Phase 1 is repeated with the restriction that
none of the attribute sets Sq1+1, . . . , Sq satisfy the access
structure A∗ corresponding to the challenge.

• Guess. The adversary A outputs a guess b� of b.
The advantage of an adversary A in this game is defined as
|Pr [b� = b] − 1/2|.

Definition 1: A CP-ABE scheme is secure if all polynomial
time adversaries have at most a negligible advantage in the
above game.

To prove data confidentiality, we first define two threat
models. One is that the adversary is a set of users who are
from the same group, referred to as Model A. The other is that
the adversary is a set of users who are from different groups
(none of the users belongs to the same group), referred to as
Model B. Then, we prove data confidentiality in these models.
For the adversary in Model A, we give a detailed proof. For the
adversary in Model B, we describe the proof by concentrating
on the difference compared to the former proof. Then, we show
how data confidentiality is guaranteed in real scenarios where
two threat models are combined.

1) Data Confidentiality in Model A: In Model A, the adver-
sary is a group of users who come from the same group and
their combined attribute set does not satisfy the access struc-
ture A

∗. Without loss of generality, we suppose users are in the
group k. We denote S(i) = {S1, S2, · · · , Si }, where Sj , (j ∈
[1, i]) represents the queried attribute set until Si is queried.
For users in group k, a value g(α+γk)/β1 is fixed in their
secret keys. When the adversary queries a secret key associated
with Si , it means that the group is absorbing new collaborators
possessing attribute set Si , and the group will have attribute set
γ = {Si } ⋃

S(i−1) = {S1, S2, · · · , Si−1, Si } = S(i). Therefore,
after querying about q1 sets, the attribute set of the adversary
is γ = S(q1) = {S1, · · · , Sq1}. Accordingly, in the security
game, neither S(q1) nor S(q) can satisfy the challenge access
structure A∗.

Theorem 1: Suppose there is no polynomial time adversary
who can break the security of CP-ABE with non-negligible
advantage; then there is no polynomial time adversary who
can break our system with non-negligible advantage.

Proof: Suppose we have an adversary A with non-
negligible advantage against our proposed scheme. Using A,
we show how to build an adversary B that breaks the CP-ABE
scheme [14] with non-negligible advantage. The adversary B
plays a similar game with the CP-ABE scheme.

• Initialization. The adversary B takes the public key of
CP-ABE, P K � = {G, g, h = gβ, f = g1/β, e(g, g)α},
and the corresponding master secret key (β, gα) is
unknown to the adversary.

• Setup. The adversary B selects a random number t ∈ Zp ,
and computes the parameters of our approach from P K �
as P K = {G, g, h1 = gβ, f1 = g1/β, h2 = gtβ, f2 =
g1/tβ, e(g, g)α}. That is, the adversary B sets β1 = β,
and β2 = t · β. Then the public key P K is given to the
adversary A.

• Phase 1. In this phase, B answers secret key queries of A.
Suppose the adversary B is given a secret key query for a

set Si , 1 ≤ i ≤ q1. In the first query related to S1, in order
to answer the query, B makes a secret key query to
CP-ABE challenger with S1 twice. As a result, B obtains
two different secret keys (SK (0)

1 and SK1) corresponding
to S1. In each subsequent query, the adversary B only
queries CP-ABE challenger once. Thus, the responses of
CP-ABE challengers are:

SK (0)
1 = (D = g(α+r)/β,

∀a1, j ∈ S1 : D j = gr H (a1, j)
r1, j , D�

j = gr1, j),

and

SKi = (D = g(α+ri)/β,

∀ai, j ∈ Si : Di, j = gri H (ai, j)
r �

i, j , D�
i, j = gr �

i, j),

for all i ∈ [1, q1], where SK (0)
1 denotes one of the secret

keys for S1, and SKi denotes the secret key for every
queried set Si (including S1), i ∈ [1, q1]. {ai, j } are the
attributes in Si , and r, ri , r1, j , r �

i, j are random numbers

in Zp . From SK (0)
1 and SKi , B can obtain g(r−ri)/β by

dividing D in SK (0)
1 by D in SKi . B selects random

numbers ti , ti, j ∈ Zp , where i denotes that the secret
key query is associated with Si , and j denotes the j -th
attribute in Si . Let r∗ = ti −ri and r �� = ti, j −r �

i, j , B can
derive the secret key as

SK ∗
i = (D = g(α+r)/β,

∀ai, j ∈ Si : Di, j = gr∗
H (ai, j)

r ��
, D�

i, j = gr ��
,

Ei = g(r+r∗)/tβ),

for 1 ≤ i ≤ q1, 1 ≤ j ≤ ni , where ni is the number of
attributes in Si . r + r∗ = r − ri + ti , thus Ei = g(r+r∗)/tβ

can be computed by (g(r−ri)/β)t−1 · gti/tβ . Intuitively,
we can regard each query of the set Si as the participation
of a new collaborator in the collaborating team to decrypt
the ciphertext. The parameter r can act the role of γk .
Thus, for each key query corresponding to Si , a secret key
is returned as SK ∗

i . After returning SKi to A, the attribute
set of the adversary A is the sum of all queried attribute
sets γ = {S1, S2, · · · , Si }.

• Challenge. When Phase 1 is finished, it outputs an
access structure A∗ and two messages M0, M1 ∈ G

in which A wishes to be challenged. To be noted,
the combination of A’s queried attribute sets, i.e. S(q1) =
{S1, S2, · · · , Sq1}, should not satisfy A∗. B gives the two
messages M0, M1 ∈ G to the CP-ABE challenger, and
the challenger generates the ciphertext:

CT = (A∗, C̃ = Mb · e(g, g)αs, C = hs ,

∀y ∈ Y : Cy = gqy(0), C �
y = H (att (y))qy(0)).

Then B computes the ciphertext for A from CT as :

CT ∗ = (A∗, C̃ = Mb · e(g, g)αs, C = hs
1, C̄ = hs

2,

∀y ∈ Y : Cy = gqy(0), C �
y = H (att (y))qy(0),

∀x ∈ X : Ĉx = hqx (0)
2),

where C̃ , C , Cy and C �
y can be easily obtained from CT .

As is pointed out in the literature [25], hqx (0)
2 can be

2936 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 11, NOVEMBER 2019

computed from hs
2 and other known values. Finally, B

returns the ciphertext CT ∗ to the adversary A.
• Phase 2. A issues queries which are not issued in Phase 1.

The combination of A’s queried attribute sets, i.e. S(q) =
{S1, S2, · · · , Sq1 , Sq1+1, · · · , Sq } should not satisfy the
access structure A∗. B responds by the same process
as he/she does in Phase 1, returning SK ∗

i to each query
corresponding to Si , i ∈ [q1 + 1, q].

• Guess. Finally, A outputs a guess b� ∈ {0, 1}, and then
B concludes its own game by outputting b�. According
to the security model, the advantage of the adversary B
against our approach is:

AdvB = |Pr [b = b�] − 1/2| = AdvA,

which means B has non-negligible advantage against the
CP-ABE scheme, which completes the proof of the
theorem.

2) Data Confidentiality in Model B: When considering
users in different groups in the threat model, the proof is
similar to that of users in the same group. Since most of the
parts are similar, we just concentrate on the difference in the
process of proof. For simplicity, we prove the security of our
approach against adversaries from the different group where
there are only 2 users. The case can be expanded to n ≥ 2
easily. We suppose users are Ua and Ub, and they are in groups
l and m, respectively.

When we prove data confidentiality against users from the
same group, in Phase 1, for each key query corresponding to
Si , a secret key is returned as SK ∗

i .

SK ∗
i = (D = g(α+r)/β,

∀ai, j ∈ Si : Di, j = gr∗
H (ai, j)

r ��
, D�

i, j = gr ��
,

Ei = g(r+r∗)/tβ),

where the parameter r can act the role of γk . Since we assume
the adversary asks for queries with regard to the same group, r
is fixed for all sets. After B returning {SK ∗

1 , · · · , SK ∗
q1

} to A,
the attribute set of the adversary A is the sum of all queried
attribute sets γ = {S1, S2, · · · , Sq1}.

However, when the adversary is a set of users from different
groups where each user belongs to a different group and
neither user belongs to the same group, it is equivalent that
the adversary keeps querying keys with regard to different
sets associated with different groups each time, as long as
each single set does not satisfy the access tree. Phase 1 in this
threat model will be:

• Phase 1. In this phase, B answers secret key queries
of A. Suppose the adversary B is given a secret key
query for a set Sa . In the first query related to Sa ,
in order to answer the query, B makes a secret key query
to CP-ABE challenger with Sa twice. As a result,
B obtains two different secret keys (SK (0)

a and SK (1)
a)

corresponding to Sa . Thus, the responses of CP-ABE

challengers are:

SK (0)
a = (D = g(α+r0

a)/β,

∀aa, j ∈ Sa : D j = gr0
a H (aa, j)

ra, j , D�
j = gra, j),

SK (1)
a = (D = g(α+r1

a)/β,

∀aa, j ∈ Sa : Da, j = gr1
a H (aa, j)

r �
a, j , D�

a, j = gr �
a, j),

where {aa, j } are the attributes in Sa , and r1
a , r0

a , ra, j , r �
a, j

are random numbers in Zp . From SK (0)
a and SK (1)

a , B can
obtain g(r0

a −r1
a)/β by dividing D in SK (0)

a by D in SK (1)
a .

B selects random numbers ta, ta, j ∈ Zp , where a denotes
that the secret key query is associated with Sa , and
j denotes the j -th attribute in Sa . Let r∗ = ta − r1

a and
r �� = ta, j − r �

a, j . Then B can derive the secret key as

SK ∗
a = (D = g(α+r0

a)/β,

∀aa, j ∈ Sa : Da, j = gr∗
H (aa, j)

r ��
, D�

a, j = gr ��
,

Ea = g(r0
a +r∗)/tβ),

where na is the number of attributes in Sa . r0
a + r∗ =

r0
a + ta − r1

a , thus Ea = g(r0
a +r∗)/tβ can be computed by

(g(r0
a −r1

a)/β)t−1 · gta/tβ . Intuitively, the parameter r0
a can

act the role of γl .
For the query made by Ub with regard to Sb, the simulator
B repeats the above procedure and generates

SK ∗
b = (D = g(α+r0

b)/β,

∀ab, j ∈ Sb : Db, j = gr∗
H (ab, j)

r ��
, D�

b, j = gr ��
,

Eb = g(r0
b +r∗)/tβ),

where r∗ = tb − r1
b and r �� = tb, j − r �

b, j . The simulator
B returns SK ∗

a and SK ∗
b to the adversary A.

Phase 1 is repeated for q1/2 times, which denotes the
adversary A gets q1 secret keys, we denote them as
{S1, S2, · · · , Sq1}.

The following procedures of the proof is the same as the
procedures in threat models where users are in the same group.

To conclude, the difference of proofs between the two threat
models is the D component. For users in the same group,
the same D = g(α+r)/β is returned in all secret key queries,
which means group secret γk (the parameter r) is fixed. For
users from different groups, different D = g(α+r0

a)/β , D =
g(α+r0

b)/β is returned for every key query, meaning the group
secret is changing each time.

3) Data Confidentiality in the Combined Model: In reality,
the threat model is a combination of the two threat models.
That is, the adversary is a group of users where some of
them are from the same group, and the rest are from different
groups. In this case, we can firstly group the users from the
same group, and regard them as a single user (e.g. Ua) in the
latter threat model. Then, using the security property in two
models, we can prove the data confidentiality.

B. User Collusion Resistance

The property of data confidentiality in Model A implic-
itly implies the property of user collusion resistance. User

XUE et al.: ATTRIBUTE-BASED CONTROLLED COLLABORATIVE ACCESS CONTROL SCHEME FOR PUBLIC CLOUD STORAGE 2937

collusion resistance means that collaboration is only allowed
upon translation nodes for users from the same group. In our
proof, given the combined attribute set γ = {S1, · · · , Sn}
where there are n collaborating users from the same group
(in other words, n queries are made to the challenger), and
γ does not satisfy the access structure A∗ by the tree sat-
isfaction algorithm T (γ), the adversary cannot decrypt the
ciphertext. We give an example to help readers understand
this property.

We consider the collusion attack launched by malicious
users within the same group m. Each attribute set of those
users cannot individually satisfy the policy tree. For users in
the group m, their attribute sets make up a new combined
attribute set γ . Taking the policy tree of Fig. 1 in which
only the leaf node denoting the attribute ‘Auditor’ is set as
a translation node. Assume that Alice has the attribute set
{‘Senior’, ‘Manager’}, and Bob has the attribute set {‘Junior’,
‘Accountant’}. Their combined attribute set seems to have
sufficient attributes to satisfy the policy tree. However, since
the leaf node denoting the attribute ‘Accountant’ is not a
translation node, they cannot collude to decrypt the ciphertext
without the necessary translation value.

C. Controlled Collaboration Within the Same Group

Users are able to collaborate if and only if they satisfy
all of the following requirements: 1) They are from the
same group; 2) Their combined attribute set γ has sufficient
attributes that satisfy the policy tree; 3) The collaboration
happens only on translation nodes on which data owner allows
the collaboration. The collaborating users who satisfy the
requirements 1) and 2), except 3) is considered as colluding
users, which will be denied to access by the definition of user
collusion resistance. The property of data confidentiality in
Model B in Section VI-A.2 explicitly guarantees that users
from different groups cannot collaborate.

D. Secret Key Privacy

It is worth noting that in the decryption process, users do not
directly expose their secret keys that are related to attributes.
Instead, each user (e.g. the user U j) takes his/her secret key
as input in his/her own decryption device and outputs the
secret share e(g, g)r j qx (0). With the translation value, they
then translate the output to e(g, g)ri qx (0) for a representative
user with identifier ui by receiving Ei . They only transmit
e(g, g)ri qx (0) to the representative. The disclosure of Ei and
e(g, g)ri qx (0) does not harm the privacy of secret keys that are
related to attributes.

E. Secure Revocation of the Collaboration

From the perspective of the data owner, if he/she wants
to revoke the collaboration between users to preserve the
privilege, our scheme can support this procedure by simply
removing the translation value, since the collaboration can
only be achieved when there exists a corresponding translation
value. The data owner can ask the cloud server to delete the
component with respect to the translation value, and thereafter
the policy tree associated with the ciphertext is updated and

collaboration is not allowed anymore. For users who intend to
access the updated ciphertext, due to lack of translation values,
the collaboration is denied.

From the perspective of users, if one or more users want to
leave the collaboration team, they can simply refuse to process
the attributes for which they are responsible in the decryption.
If there are no any other collaborators who are still in the team
and can also process these attributes to satisfy the policy tree,
the access privilege will not be obtained.

F. Non-Reusability of Intermediate Results

The property of non-reusability of intermediate results can
guarantee that each collaboration is only useful to decrypt one
ciphertext. Thus, the collaboration to decrypt one ciphertext
will not harm the security of other ciphertexts. If a user gets
access once, he/she cannot use the same intermediate results
thereafter to access other objects. The rationality is given in
what follows.

As shown in Fig. 3, in the collaborative decryption, a user
whose identifier ui labels the root node can be selected as the
representative to decrypt the ciphertext. Other users, such as
user U j and user Uk , are responsible to decrypt some nodes
that are labelled with their identifiers, and they translate the
decrypted secrets (such as e(g, g)r j q2(0)) to those that are
related to identifier ui , such as e(g, g)ri q2(0). The translated
output can be viewed as if it was computed by user Ui .
The representative user Ui gathers all the translated output
computed by other users. Together with the output computed
by himself/herself, user Ui can get e(g, g)ri s and further obtain
the symmetric key κ . Then, he/she can distribute κ to other
users who also want to obtain the plaintext.

From the above process, the intermediate results
in the collaboration are the translated output Fz of
function F �

z = Decryt Node(CT, z, γ , u j /uk), such as
e(g, g)ri q2(0), e(g, g)ri q3(0), and only Ei is exposed to
collaborators. These intermediate results are only related
to one specific ciphertext that they want to decrypt in the
collaboration process, where the purpose is to construct
e(g, g)ri s . Here, s is the secret of the root node of the policy
tree. For any other ciphertexts, even if the policy tree is the
same as the decrypted ciphertext, since the secret of the
root node is generated randomly, such as s� for a specific
ciphertext, the intermediate results in the last collaboration
will not be helpful to construct e(g, g)ri s �

. In other words,
if the collaborators have collaborated once, the exposition of
the intermediate results such as Fz and translation key Ei

will not give any advantage to collaborators (such as user Ui)
to gain the attributes belonging to other collaborators. After
the collaboration, any collaborator still possesses the original
attribute set assigned to him/her. To decrypt a ciphertext
whose policy tree cannot be satisfied by himself/herself,
he/she should find collaborators again.

VII. PERFORMANCE ANALYSIS

Since our scheme is built on BSW scheme [14], we make
a comparison with it to show our performance. For discussion
convenience, let nu denote the average number of attributes of
a user, nc denote the average number of attributes associated

2938 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 11, NOVEMBER 2019

TABLE I

COMPUTATION OVERHEAD

with the policy tree of ciphertext, |tr | be the average number
of translation nodes in a ciphertext, and |trγ | be the average
necessary translation nodes for a set γ to decrypt ciphertexts,
where γ is a combined attribute set which contains attribute
sets from multiple users within the same group.

A. Computation Overhead

In terms of the computation overhead, the main operations
include exponentiation and pairing, since the cost of addition
and multiplication operation can be neglected compared with
pairing and exponentiation operation. Let Tp denote the cost
of pairing operation on group G and Te denote the cost of
exponentiation operation. Also, let nc,u be the average number
of attributes for a user to decrypt ciphertexts, nc,γ be the
average number of attributes used to decrypt ciphertext by
a set of users with attribute set γ , and |nl| be the average
number of non-leaf nodes when computing the secret of the
root node from leaf nodes in access policies. Assume that
there are n groups. From Table I, we can observe that the two
schemes share similar computation overhead that is not related
to translation nodes except that there are n exponentiation
operations in terms of the master secret key of n groups.
The introduced overhead of translation nodes is linear to the
number of translation nodes, which is caused by the additional
pairing operation and exponentiation operation at translation
nodes. When the number of translation nodes is not very
large, which is practical in real world, the added computation
overhead is acceptable.

B. Storage and Communication Overhead

We analyze secret key size, ciphertext size and communi-
cation overhead in collaboration to show the efficiency of our
proposed scheme. Let |p| be the size of element in the groups
with the prime order p. The results are shown in Table II. As is
shown, secret key size and ciphertext size are similar between
two schemes, where the ciphertext size grows linearly as the
number of translation nodes increases. In terms of communi-
cation cost, only one user Ui , needs to receive |trγ | translation
values and broadcast his/her translation key Ei for a successful
decryption. Other users just need to receive Ei , translate their
computed output of their attribute sets and transmit them to
the user Ui . The main communication overhead lies on only
one user. As we mentioned above, |trγ | will not be very large,
thus the communication overhead is affordable.

TABLE II

STORAGE AND COMMUNICATION OVERHEAD

Fig. 4. An example.

C. Comparison With the Trivial Solution

We compare our scheme with the trivial solution (named as
TrSo in the figures). The trivial solution is further formulated
as follows. As illustrated in Fig. 4, we assume that an access
policy expressed as “(t of {A1, A2, . . . , An}) AND B ”
and the collaboration is allowed at the node denoted as An ,
implying that the sub-policy rooted at An can be satisfied by
a collaborator.

We use an access policy shown in Fig. 4 to show how the
trivial solution works. By the trivial solution, the policy tree
shown in Fig. 4 expressed by our approach is now divided into
two sub-policies, as shown in Fig. 5. Sub-policy A denotes the
scenario where an independent user should satisfy the policy
tree in sub-policy A independently to access data, while sub-
policy B denotes how collaborating users should access the
data. In the example, one of the users should satisfy the left-
side policy tree in sub-policy B, and the other user should
satisfy node ‘A3’. The symbol ‘AND’ means the behavior of
collaboration. The two users whose attribute sets satisfy each
tree (A3 can be seen as a tree with only one node) of sub-
policy B can collaborate to combine their decrypted results
to access data. We depict the two policies, sub-policy A and
sub-policy B, by connecting them to an OR gate, and the dot
line means the two policies can be seen as sub-policies of a
unified tree. Users can access data by either policy.

As we can see from Fig. 5, almost each node appears
twice in the description of the access policies by the trivial
solution. Intuitively, sub-policy A means that, in this case,
the collaboration is not needed, and sub-policy B means that,
in this case, the collaboration is required. In the worst case,
all the translation nodes are rooted at different parent nodes.
By the trivial solution, each translation node will divide the
original tree into two sub-policies, each of which corresponds
to the scenario where the collaboration is needed or not
upon that node. For example, in Fig. 5, one translation node
(i.e. A3) will divide the ‘compound policy tree’ into
two sub-policies, such as sub-policy A and sub-policy B.

XUE et al.: ATTRIBUTE-BASED CONTROLLED COLLABORATIVE ACCESS CONTROL SCHEME FOR PUBLIC CLOUD STORAGE 2939

Fig. 5. Two sub-policies by the trivial solution.

The divided sub-polices will further be divided due to transla-
tion nodes inside the sub-policies. For instance, if B is a parent
node of leaf nodes denoting attributes and one of these leaf
nodes is set as a translation node, sub-policy A will further
be divided into two sub-policies, and so does sub-policy B.
Therefore, the expansion of ciphertext will grow exponentially
with the increase of the number of translation nodes in the
worst case.

We further describe the details how the trivial solution
works by the example in Fig. 4. Similar to the description in
Section V-A, data will be encrypted under sub-policy A and
sub-policy B separately. The generated ciphertext will contain
two pieces of ciphertext according to each sub-policy. Sub-
policy A is designed for independent users who do not need
collaboration and sub-policy B is designed for collaborating
users. For sub-policy A, the encryption and decryption are
just the same as the phases of CP-ABE schemes such as
that of [14]. For sub-policy B, in the encryption phase, s is
randomly chosen. s1 and s2 are assigned to the root node of
the right tree and the left tree, respectively, with the restriction
that s1 = qr (index(1)) and s2 = qr (index(2)). qr is a
polynomial with degree d = 1, and qr (0) = s. Then, s can
be constructed by using Lagrange polynomial interpolation
with s1 and s2. For simplicity, we assume that s = s1 + s2.
Then, s1 and s2 are distributed to their child nodes as a
normal CP-ABE scheme does, taking place of the role of
s in a traditional CP-ABE scheme. In the decryption phase,
the user U1 is expected to get the results e(g, g)αs1 and the
user U2 is expected to get e(g, g)αs2 . Then, e(g, g)αs can
be obtained by multiplying e(g, g)αs1 and e(g, g)αs2. Then,
by dividing the component e(g, g)αs, the encrypted symmetric
key κ is exposed to users. Aiming at dividing users into
groups and only allowing collaboration between users from
the same group, some modifications on the master secret key
α are necessary. If there exists k groups, then the master secret
key is replaced by {α + γi , i ∈ [1, k]} and the public key is
replaced by {e(g, g)α+γi , i ∈ [1, k]}. To encrypt a ciphertext κ ,
the component C = κ · e(g, g)αs will be replaced by C̃(i) =
κ · e(g, g)(α+γi)s, i ∈ [1, k]}. C̃ will expand k times for every
possible collaborating group. Accordingly, if a user is assigned
in the group j , the user’s secret key component D of SK will
be replaced by D = g(α+γ j+r)/β . The decrypted results will

Fig. 6. An example for analysis.

be e(g, g)(α+γ j)s1 and e(g, g)(α+γ j)s2 . Thus, e(g, g)(α+γ j)s is
obtained and κ is computed with the corresponding C̃(j) of
CT : C̃(j) = κ · e(g, g)(α+γ j)s (j ∈ [1, k]).

We analyze how the encryption time, decryption time and
ciphertext size changes as the number of translation nodes
grows. For illustration purpose, we use a policy tree as shown
in Fig. 6. The policy tree contains non-leaf nodes representing
threshold gate and leaf nodes representing attributes, which
is a normal policy tree. Thus, there is no loss of generality
by analyzing the property of the example. The only point to
be noted is that we set each translation node to be rooted at
different parent nodes. If there are more than one translation
nodes rooted at the same parent node, the performance is
similar to the scenario where there is only one translation node
rooted at that parent node. Therefore, we analyze the following
three different cases by changing the number of translation
nodes in the policy tree. Case 1: There is only one translation
node at node A3. Case 2: There are two translation nodes
lying upon A3 and B3 respectively. Case 3: There are three
translation nodes lying at A3, B3 and A23, respectively.

We conduct the simulation on Ubuntu 14.04 with Intel(R)
Core(TM) i7-3610QM CPU @2.30GHz and 8.00 GB RAM.
The code uses the Pairing-Based Cryptography library ver-
sion 0.5.14. We use type A pairing parameters contained in
param/a.param. We test the time of one multiplication, one
pairing operation and one exponentiation operation, respec-
tively. The time of multiplication is only 1/500 times of the
other two operations, and we thus ignore it in our analysis.
The time of one pairing operation is about 1.0ms and that
of one exponentiation operation is about 1.5ms. To show
the superiority of our scheme, we let every ciphertext be
associated with only one group to reduce the complexity of the
trivial solution. When ciphertexts are related to more groups,
our scheme is even far superior.

1) Encryption Time: The comparison of encryption time
between the trivial solution and our proposed scheme is shown
in Fig.7. Our proposed scheme has an evident advantage.
In the encryption phase, the main operation is exponentiation
operation of which we count the times. As we have predicted,
the encryption time by the trivial solution will cause expansion
exponentially, as shown in Fig. 7. When the number of
translation nodes increases from one to three, the encryption
time of the trivial solution is almost 2 times (51 ms), 3 times

2940 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 11, NOVEMBER 2019

Fig. 7. Encryption time.

Fig. 8. Decryption time.

(97.5 ms) and 6 times (187.5 ms) of that of our proposed
scheme (about 30ms). What’s more, we only assume that
there is only one group related to the ciphertext. If there are
more groups, the encryption of the trivial solution will be
even much slower. On the contrast, in our proposed scheme,
the encryption time remains steady at about 30ms, where only
one additional exponentiation operation is added for every
translation node. No additional cost will be added if there are
more potential groups related to the ciphertext. In other words,
the ciphertext size is independent of the number of potential
groups of data consumers in our proposed scheme.

2) Decryption Time: We calculate the decryption time in
the worst case where all translation nodes are involved and
the collaborating users have to possess maximum number of
attributes to satisfy the access policy. We count the decryption
time of all participants in the collaborating team. As shown
in Fig. 8, the decryption time of both schemes is very close,
and our scheme spends a slight less time (0.5 ms) than the

Fig. 9. Ciphertext size.

trivial solution. We take the example of Fig. 4 to give the
reason of the results. In both schemes, for every leaf node
that is not a translation node, the operations are the same
which include two pairing operations and the same number of
times of exponentiation operations. Regarding the translation
node (Node A3), our proposed scheme requires one pairing
operation to translate the value associated with ri � to ri and
one exponentiation operation to pass the value to its parent
node. Finally, two more pairing operations are needed at
the root node to decrypt the ciphertext. The trivial solution
requires two pairing operations to remove the random number
ri and ri � of the two collaborating users (with identifier ui and
identifier ui � , respectively), which are embedded in the root
secrets of two policy trees in Fig. 5. Finally two exponentiation
operations are needed to reconstruct the final secret to decrypt
the ciphertext, using exponential polynomial interpolation.
Therefore, the decryption time of both schemes are very close.

3) Ciphertext Size: The growth of ciphertext size versus the
increase of the number of translation nodes shares the same
tendency with that of encryption time, as is given in Fig. 9.
In the trivial solution, the ciphertext size grows rapidly from
34|p| to 125|p| because of the expanded policies, while that
of our scheme grows only a little bit (from 20|p| to 22|p|) for
an additional translation value for each translation node.

VIII. CONCLUSION

In this paper, we proposed an attribute-based controlled
collaborative access control scheme, in which data owners
can designate selected users to collaborate for accessing their
data at their will. Considering practical scenarios, we let users
within the same group to collaborate for data access. More
importantly, the data owner can devise the way for chosen
users to combine their attribute sets to satisfy the access policy,
and at the same time also resist the collusion attack when
curious users try to combine their attribute sets in other ways.
Technically, we embed translation keys in the secret keys of
CP-ABE schemes and modify the secret keys to associate
groups to users. The data owner can designate collaboration

XUE et al.: ATTRIBUTE-BASED CONTROLLED COLLABORATIVE ACCESS CONTROL SCHEME FOR PUBLIC CLOUD STORAGE 2941

by setting translation nodes in the policy tree. Our security
analysis shows that our proposed scheme effectively supports
data confidentiality, user collusion resistance, controlled col-
laboration within the same group, secret key privacy, secure
revocation of the collaboration and non-reusability of interme-
diate results. The performance is very satisfactory. Thus, our
proposed scheme is highly promising to provide fine-grained
access control in collaborative settings where data need to be
accessed by multiple users.

ACKNOWLEDGEMENTS

The authors sincerely thank the anonymous reviewers for
their valuable suggestions that have led to the present improved
version.

REFERENCES

[1] M. Armbrust et al., “A view of cloud computing,” Commun. ACM,
vol. 53, no. 4, pp. 50–58, 2010.

[2] M. Du, Q. Wang, M. He, and J. Weng, “Privacy-preserving index-
ing and query processing for secure dynamic cloud storage,” IEEE
Trans. Inf. Forensics Security, vol. 13, no. 9, pp. 2320–2332,
Sep. 2018.

[3] K. Xue and P. Hong, “A dynamic secure group sharing framework in
public cloud computing,” IEEE Trans. Cloud Comput., vol. 2, no. 4,
pp. 459–470, Dec. 2014.

[4] K. Yang, X. Jia, K. Ren, and B. Zhang, “DAC-MACS: Effective data
access control for multi-authority cloud storage systems,” in Proc. IEEE
INFOCOM. Apr. 2013, pp. 2895–2903.

[5] M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou, “Scalable and secure
sharing of personal health records in cloud computing using attribute-
based encryption,” IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 1,
pp. 131–143, Jan. 2013.

[6] Y. Wu, Z. Wei, and R. H. Deng, “Attribute-based access to scalable
media in cloud-assisted content sharing networks,” IEEE Trans. Multi-
media, vol. 15, no. 4, pp. 778–788, Jun. 2013.

[7] J. Hong et al., “TAFC: Time and attribute factors combined access
control for time-sensitive data in public cloud,” IEEE Trans. Serv.
Comput., to be published. doi: 10.1109/TSC.2017.2682090.

[8] K. Xue et al., “RAAC: Robust and auditable access control with multiple
attribute authorities for public cloud storage,” IEEE Trans. Inf. Forensics
Security, vol. 12, no. 4, pp. 953–967, Apr. 2017.

[9] W. Li, K. Xue, Y. Xue, and J. Hong, “TMACS: A robust and verifiable
threshold multi-authority access control system in public cloud storage,”
IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 5, pp. 1484–1496,
May 2016.

[10] K. Xue, W. Chen, W. Li, J. Hong, and P. Hong, “Combining data owner-
side and cloud-side access control for encrypted cloud storage,” IEEE
Trans. Inf. Forensics Security, vol. 13, no. 8, pp. 2062–2074, Aug. 2018.

[11] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, 1979.

[12] T. Tassa, “Hierarchical threshold secret sharing,” J. Cryptol., vol. 20,
no. 2, pp. 237–264, 2007.

[13] M. Li, X. Huang, J. K. Liu, and L. Xu, “GO-ABE: Group-oriented
attribute-based encryption,” in Proc. Int. Conf. Netw. Syst. Secur.,
Springer, Cham, Nov. 2015, pp. 260–270.

[14] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in Proc. IEEE Symp. Secur. Privacy., May 2007,
pp. 321–334.

[15] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu, “Plutus:
Scalable secure file sharing on untrusted storage,” in Proc. 2nd USENIX
Conf. File Storage Technol., vol. 3, Mar. 2003, pp. 29–42.

[16] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh, “SiRiUS: Securing
remote untrusted storage,” in Proc. Internet Soc. (ISOC) Net Distrib.
Syst. Secur. (NDSS), vol. 3, 2003, pp. 131–145.

[17] K. Xue, J. Hong, Y. Xue, D. S. Wei, N. Yu, and P. Hong, “CABE: A new
comparable attribute-based encryption construction with 0-encoding and
1-encoding,” IEEE Trans. Comput., vol. 66, no. 9, pp. 1491–1503,
Sep. 2017.

[18] B. Waters, “Ciphertext-policy attribute-based encryption: An expressive,
efficient, and provably secure realization,” in Proc. Int. Workshop Public
Key Cryptography. Springer, Mar. 2011, pp. 53–70.

[19] J. Hur and D. K. Noh, “Attribute-based access control with efficient
revocation in data outsourcing systems,” IEEE Trans. Parallel Distrib.
Syst., vol. 22, no. 7, pp. 1214–1221, Jul. 2011.

[20] M. Green, S. Hohenberger, and B. Waters, “Outsourcing the decryption
of ABE ciphertexts,” in Proc. USENIX Secur. Symp., vol. 3, Aug. 2011,
pp. 1–16.

[21] J. Shao, R. Lu, and X. Lin, “Fine-grained data sharing in cloud
computing for mobile devices,” in Proc. IEEE Conf. Comput. Com-
mun. (INFOCOM). May 2015, pp. 2677–2685.

[22] J. Li, X. Huang, J. Li, X. Chen, and Y. Xiang, “Securely outsourc-
ing attribute-based encryption with checkability,” IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 8, pp. 2201–2210, Aug. 2014.

[23] S. Hohenberger and B. Waters, “Online/offline attribute-based encryp-
tion,” in Proc. Int. Workshop Public Key Cryptography. Buenos Aires,
Argentina: Springer, 2014, pp. 293–310.

[24] R. Bobba, H. Khurana, and M. Prabhakaran, “Attribute-sets: A prac-
tically motivated enhancement to attribute-based encryption,” in Proc.
Eur. Symp. Res. Comput. Secur. Oakland, CA, USA: Springer, 2009,
pp. 587–604.

[25] Z. Wan, J. Liu, and R. H. Deng, “HASBE: A hierarchical attribute-
based solution for flexible and scalable access control in cloud comput-
ing,” IEEE Trans. Inf. Forensics Security, vol. 7, no. 2, pp. 743–754,
Apr. 2012.

[26] A. Lewko and B. Waters, “Decentralizing attribute-based encryption,”
in Proc. Annu. Int. Conf. Theory Appl. Cryptographic Techn., Springer,
2011, pp. 568–588.

[27] J. M. M. Pérez, G. M. Pérez, and A. F. Skarmeta Gomez, “SecRBAC:
Secure data in the clouds,” IEEE Trans. Serv. Comput., vol. 10, no. 5,
pp. 726–740, Sep. 2017.

[28] S.-C. Yeh, M.-Y. Su, H.-H. Chen, and C.-Y. Lin, “An efficient and secure
approach for a cloud collaborative editing,” J. Netw. Comput. Appl.,
vol. 36, no. 6, pp. 1632–1641, 2013.

[29] R. K. Thomas, “Team-based access control (TMAC): A primitive for
applying role-based access controls in collaborative environments,” in
Proc. 2nd ACM Workshop Role-Based Access Control. New York, NY,
USA: ACM, Nov. 1997, pp. 13–19.

[30] P. Ilia, B. Carminati, E. Ferrari, P. Fragopoulou, and S. Ioannidis,
“SAMPAC: Socially-aware collaborative multi-party access control,” in
Proc. 7th ACM Conf. Data Appl. Secur. Privacy (CODASPY). New York,
NY, USA: ACM, Mar. 2017, pp. 71–82.

[31] B. Carminati and E. Ferrari, “Privacy-aware collaborative access control
in Web-based social networks,” in Proc. IFIP Annu. Conf. Data Appl.
Secur. Privacy, vol. 5094. London, U.K.: Springer, 2008, pp. 81–96.

[32] C. Hu, W. Li, X. Cheng, J. Yu, S. Wang, and R. Bie, “A secure and
verifiable access control scheme for big data storage in clouds,” IEEE
Trans. Big Data, vol. 3, no. 4, pp. 341–355, Sep. 2018.

[33] G. R. Blakley, “Safeguarding cryptographic keys,” in Proc. AFIPS Nat.
Comput. Conf., vol. 48, 1979, pp. 313–317.

[34] L. Harn and F. Miao, “Weighted secret sharing based on the chinese
remainder theorem,” Int. J. Netw. Secur., vol. 16, no. 6, pp. 420–426,
Nov. 2014.

[35] D. Boneh and M. Franklin, “Identity-based encryption from the Weil
pairing,” in Proc. Annu. Int. Cryptol. Conf. Santa Barbara, CA, USA:
Springer, 2001, pp. 213–229.

Yingjie Xue received the B.S. degree from the
Department of Information Security, University of
Science and Technology of China (USTC), in 2015,
and the master’s degree in communication and
information system from the Department of Elec-
tronic Engineering and Information Science (EEIS),
USTC, in 2018. She is currently pursuing the Ph.D.
degree with the Department of Computer Science,
Brown University. Her research interests include
network security and cryptography.

Kaiping Xue (M’09–SM’15) received the B.S.
degree from the Department of Information Security,
University of Science and Technology of China
(USTC), in 2003 and the Ph.D. degree from the
Department of Electronic Engineering and Informa-
tion Science (EEIS), USTC, in 2007. He is currently
an Associate Professor with the Department of Infor-
mation Security and Department of EEIS, USTC.
His research interests include next-generation Inter-
net, distributed networks, and network security.

http://dx.doi.org/10.1109/TSC.2017.2682090

2942 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 11, NOVEMBER 2019

Na Gai received the B.S. degree from the Depart-
ment of Information Security, University of Science
and Technology of China (USTC), in 2018. She is
currently pursuing the master’s degree in information
security with the Department of Electronic Engi-
neering and Information Science (EEIS), USTC. Her
research interests include network security protocol
design and analysis.

Jianan Hong received the B.S. degree from the
Department of Information Security, University of
Science and Technology of China (USTC), in 2012
and the Ph.D. degree from the Department of Elec-
tronic Engineering and Information Science (EEIS),
USTC, in 2018. He is currently a Research Engi-
neer with the Huawei Shanghai Research Institute,
Shanghai. His research interests include secure cloud
computing and mobile network security.

David S. L. Wei (SM’07) received the Ph.D.
degree in computer and information science from the
University of Pennsylvania in 1991. From 1993 to
1997, he was on the Faculty of Computer Science
and Engineering, University of Aizu, Japan, as an
Associate Professor and then as a Professor. He is
currently a Professor of the Computer and Infor-
mation Science Department, Fordham University.
He has authored and coauthored over 100 technical
papers in various archival journals and conference
proceedings. His research interests include cloud

computing, big data, IoT, and cognitive radio networks. He was a (Lead) Guest
Editor of several special issues in the IEEE JOURNAL ON SELECTED AREAS

IN COMMUNICATIONS, IEEE TRANSACTIONS ON CLOUD COMPUTING, and
IEEE TRANSACTIONS ON BIG DATA. He has also served as an Associate
Editor for the IEEE TRANSACTIONS ON CLOUD COMPUTING (2014–2018)
and an Associate Editor for the Journal of Circuits, Systems and Computers
(2013–2018).

Peilin Hong received the B.S. and M.S. degrees
from the Department of Electronic Engineering and
Information Science (EEIS), University of Science
and Technology of China (USTC), in 1983 and
1986, respectively. She is currently a Professor and
Advisor for the Ph.D. candidates at the Depart-
ment of EEIS, USTC. She has published two books
and over 150 academic papers in several journals
and conference proceedings. Her research interests
include next-generation Internet, policy control, IP
QoS, and information security.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

