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In cellular networks, energy provision contributes up a significant fraction of the total
operational cost. To address this problem, service providers have started considering the
deployment of renewable energy sources. Due to the variability of renewable energy
source, conventional grid energy sources is still required to provide steady service for
users. In this paper, Base Stations (BSs) equipped with hybrid energy sources and limited
energy storages are considered. We investigate a joint power allocation and battery man-
agement scheme to cut down electricity cost under electricity markets, which is ignored by
previous studies. Considering the random data arrival, link quality, renewable energy and
electricity price, a stochastic program which minimizes the time-average expected elec-
tricity cost while stabilizing the network is formulated. Based on the Lyapunov optimiza-
tion technique, we design an online algorithm to approximately obtain the optimal
solution. Especially, our algorithm can guarantee the worst delay through introducing vir-
tual queues. Furthermore, theoretical analysis shows that our algorithm offers an explicit
tradeoff between cost saving and delay performance. Numerical simulation results demon-
strate the effectiveness of our algorithm.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

The upsurge in mobile data traffic as a result of explo-
sive growth in data demand and the popularity of smart
phones, has presented cellular network operators with sev-
eral challenges. One of the challenges is economic chal-
lenge caused by the energy consumption increase, which
presents operators with high operational expenditures
(OPEX) through increased electricity bills. It is estimated
that energy consumption rises at 15–20% per year and
double every five years in the field of Information and
Communication Technology (ICT). The direct result is a col-
lective cellular network OPEX of $22 billion in 2013 [1].
Thus, reining back the spiraling OPEX is crucial to the
continuing success of operators.

One natural solution to cut down OPEX is to improve
energy-efficiency in all components of cellular networks,
especially Base Stations (BSs) which consume a significant
portion of energy, reported to amount to about 60–80% [2].
Power allocation is one traditional way to achieve huge
green gain by reducing the transmission power intelli-
gently while maintaining the system performance [3–5].
The authors of [3] try to minimize a weighted sum of the
expenditure power and the average delay. Hasan et al.
[4] maximizes the energy efficiency for downlink orthogo-
nal frequency division multiple access networks through
power allocation. Meshkati et al. [5] studies the Quality
of Service (QoS) constrained power and rate control in
multiple-access networks using a game theoretic frame-
work. In recent years, the deployment of renewable energy
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Fig. 1. System model.
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sources, such as solar panels and wind turbines, has started
being considered as another effective solution [6,7]. Due to
the variability of renewable energy sources, conventional
energy sources such as power grid is still required to guar-
antee User Equipments’ (UEs’) QoS. What’s more, energy
storages such as battery can be introduced to avoid energy
waste when the energy harvested is more than the
energy needed. Therefore, BSs equipped with hybrid
energy sources (conventional grid and renewable energy
sources) and finite energy storages will be common in
the near future and have gotten a lot of researchers’ atten-
tion [8–13]. In this trend, Zheng et al. investigate the OPEX
saving problem from the perspective of network planning
framework in [8]. Chia et al. [9] and Han and Ansari [10]
minimize average grid energy consumption via battery
management and BS cell size adaptation, respectively.
Gong et al. [11] minimizes average grid energy consump-
tion while satisfying UEs’ outage probability requirement
through resource allocation. Gong et al. propose a multi-
stage water filling policy to achieve the optimal power
allocation of a single-link wireless communication in
[12]. Xu and Zhang [13] studies the throughput-optimal
transmission policies for energy harvesting wireless trans-
mitters with the non-ideal circuit power.

Obviously, all the above works [3–5,8–13] have not
considered the influence of electricity markets. A grid
operator may charge different prices for conventional grid
energy at different times of a day, especially when the
smart grid is applied. One typical example is the widely
used peak-valley electricity price. The data set obtained
from the publicly available government sources [14] also
shows that electricity price may change every several min-
utes unpredictably. If the real-time electricity market is
considered, the traditional minimization of electricity con-
sumption may not be equivalent to that of the electricity
cost. Based on the above analysis, Guo and Fang [15] and
Guo et al. [16] adopt energy storages to overcome the var-
iability of real-time electricity price under electricity mar-
kets and minimize the average electricity cost at data
centers and in the smart grid, respectively.

Motivated by Guo and Fang [15] and Guo et al. [16], in
this paper, we discuss the problem of minimizing the elec-
tricity cost of BSs, equipped with hybrid energy sources
and finite battery energy storages, under electricity mar-
kets. Different from [15,16] which just consider energy
supplement control through battery management, we
additionally control the energy requirement through
power allocation in cellular networks. On the one hand,
we can allocate less power and delay some data to be
transmitted when the electricity price is low or the avail-
able harvested energy is much enough. On the other hand,
due to the time-varying link quality, we can reduce the
power consumption through delaying data to be transmit-
ted when link quality is good enough. Therefore, with joint
battery management and power allocation, we can further
achieve OPEX saving gain by sacrificing delay performance.
However, it is challenging to stabilize the system and
ensure the delay performance, especially when we con-
sider the variability and unpredictability of renewable
energy, electricity price, business data and link quality.
Facing such random processes with possibly unknown
statistics, we formulate the problem as a stochastic pro-
gram. Based on the Lyapunov optimization technique
which is extremely useful in the development of stable
queue control algorithms [17–19], we design an online
algorithm to approximately obtain the optimal solution.
Our contributions are summarized as follows:

� From the perspective of service provider, we take the
first step to investigate the problem of minimizing
the electricity cost under electricity markets by joint
power allocation and battery management for BS
equipped with hybrid energy sources and finite
energy storages. When electricity price is constant,
our problem can be degenerated into the conven-
tional grid energy minimization problem.

� We formulate the problem as a stochastic program
which minimizes the time-average expected elec-
tricity cost while stabilizing the system. Besides,
we propose an online algorithm based on the Lyapu-
nov optimization technique to approximately obtain
the optimal solution without the knowledge of
future information. Especially, our algorithm can
guarantee the worst delay experienced by UEs
through introducing virtual queues.

� Through theoretical analysis, we show that our
algorithm can offer an explicit tradeoff between the
cost saving and worst delay performance. Besides,
numerical simulation results demonstrate the
effectiveness of our proposed algorithm.

The rest of the paper is organized as follows: We pres-
ent the system model and formulate our problem in Sec-
tion 2. In Section 3, we propose an online algorithm to
approximately solve our problem. Theoretical analysis
and discussions on the performance of our algorithm are
given in Section 4. Numerical simulation results are pre-
sented and discussed in Section 5. Finally, we conclude
our work in Section 6.
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2. System model and problem formulation

2.1. System model and assumptions

As shown in Fig. 1, we consider a single-cell time-slot-
ted system where K UEs are served by a BS. Without loss
of generality, BS allocates specific channel whose band-
width is W to each UE. The time-varying channel is consid-
ered and we denote HkðtÞ as the Channel State Information
(CSI) acquired through the uplink dedicated pilots from UE
k at the beginning of time slot t.

Energy model. To reduce the grid energy consumption
and provide reliable service, the BS is equipped with hybrid
energy sources and finite energy storages (take battery as
an example). Let EðtÞ denote the amount of renewable
energy harvested in slot t. This energy is first stored in
the battery before it can be used in the next time slots.
There is a maximum value constraint for practical condi-
tion, that is 0 6 EðtÞ 6 Emax. In order to prevent battery
overflow, we need a controller to regulate the portion
cðtÞ of the energy harvested stored into battery for each
slot t. The other portion 1� cðtÞ is spilled. Obviously, we
have

0 6 cðtÞ 6 1: ð1Þ

With battery equipment, we can manage the battery,
i.e., control the charge or discharge behavior, to utilize
the time diversity of electricity prices. For example, in
the intuition, when the battery is not overflow and the
electricity price is low, we can recharge the battery, vice
versa. Let QðtÞ denote the power charged to (QðtÞ > 0) or
discharged from (QðtÞ < 0) the battery during period t.
The battery usually has an upper bound on the charge
and discharge rate. Therefore, we have the following con-
straint on QðtÞ:

�Q min 6 QðtÞ 6 Q max: ð2Þ

Combining the renewable energy stored into battery
cðtÞEðtÞ and the charging or discharging action QðtÞ, we
can model the dynamics of the battery as:

Bðt þ 1Þ ¼ BðtÞ þ QðtÞ þ cðtÞEðtÞ; ð3Þ

where BðtÞ is the battery energy level at slot t. It should be
always nonnegative and cannot exceed the battery capac-
ity Bmax. Thus,

0 6 BðtÞ 6 Bmax: ð4Þ

From constraints (2)–(4), we get the following equivalent
constraint for QðtÞ:

minfQ max;Bmax � BðtÞgP QðtÞP �minfQ min;BðtÞg: ð5Þ

Traffic model. The data of each UE arrives at the end of
each slot into an infinite data queue. Let XkðtÞ denote the
queue length of UE k at slot t. We model the dynamics of
the data queue length as:

Xkðt þ 1Þ ¼ ½XkðtÞ � lðPkðtÞ;HkðtÞÞ�þ þ kkðtÞ; ð6Þ

where ½x�þ ¼ x if x > 0 or 0 otherwise, kkðtÞ and
lðPkðtÞ;HkðtÞÞ are the newly arrived data and transmitted
data during period t. In practical system, 0 6 kkðtÞ 6 kmax

and 0 6 lðPkðtÞ;HkðtÞÞ 6 lmax. The transmitted data
lðPkðtÞ;HkðtÞÞ is dependent on the channel state HkðtÞ
and power allocated to the UE PkðtÞ. One typical relation
can be expressed as:

lðPkðtÞ;HkðtÞÞ ¼W logð1þ PkðtÞHkðtÞÞ: ð7Þ

The power allocated to each UE usually should be always
nonnegative and cannot exceed an upper Pmax, that is:

0 6 PkðtÞ 6 Pmax: ð8Þ

We consider the delay-tolerant traffic and let d be the
delay constraint for UE. Using Little’s Law, we can write
the average delay in terms of mean queue-length, that is,
the time-average data queue �Xk should satisfy the follow-
ing condition:

�Xk ¼ lim
T!1

1
T

XT�1

t¼0

EfXkðtÞg < dEfkkðtÞg: ð9Þ

Electricity cost model. The system electricity cost is
dependent on the total power consumption and the elec-
tricity price. We build the power consumption model of
BS as PBSðtÞ ¼ a

PK
k¼1PkðtÞ þ b, where a stands for power

consumption that scales with the average radiated power
and the term b models the static power consumed by sig-
nal processing, battery backup and cooling. Due to the
introduction of energy storage, the total amount of energy
GðtÞ drawn from the conventional grid during time period t
is given by:

GðtÞ ¼ QðtÞ þ PBSðtÞ ¼ QðtÞ þ a
XK

k¼1

PkðtÞ þ b: ð10Þ

Obviously, the following constraint should always be
satisfied:

QðtÞ þ a
XK

k¼1

PkðtÞ þ b P 0: ð11Þ

We assume a time-varying electricity price CðtÞ with
the maximum value Cmax and the minimum value Cmin. It
can be a constant value, double values in peak-valley elec-
tricity markets and unpredictable values in wholesale elec-
tricity markets as shown in [14]. When it is a constant
value, the electricity cost problem discussed in this paper
can be degenerated into the conventional grid energy con-
sumption minimization problem in [9–11].

It should be mentioned that we do not consider the bat-
tery leakage. In practical system, the battery leakage is
usually far smaller than the static power consumed by
the BS, which makes the battery leakage negligible. Con-
sider a worst case where the battery energy leakage c
always exists no matter whether BðtÞ is larger than c or
not. We can treat the battery leakage as one part of BS’s
static power. Then the influence of battery leakage can be
ignored comparing with the original static power b.

2.2. Problem formulation

In this paper, we are interested in minimizing the time-
average expected electricity cost while stabilizing the sys-
tem through choosing the following two control decisions:
(1) control the energy requirement through power alloca-
tion, i.e., ~PðtÞ; (2) control the energy supplement through
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battery management, i.e., cðtÞ and QðtÞ. Thus, our problem
can be formulated as the following stochastic program,
called P1:

minimize
QðtÞ;~PðtÞ;cðtÞ

lim
T!1

1
T

XT�1

t¼0

EfCðtÞGðtÞg;

subject to constraints (1), (3), (5), (6), (8), (9), (11). It
should be noted that only if d in (9) is finite, the system
can be stable [17].

One challenge to solve the above stochastic optimiza-
tion problem is the unawareness of future data arrival
~kðtÞ, link quality ~HðtÞ, energy harvested EðtÞ and electricity
price CðtÞ. Fortunately, Lyapunov theory which combines
stability and optimization techniques has been extremely
useful in the development of stable queue control algo-
rithms [18,19]. Through minimizing a drift-plus-penalty
function, an algorithm can be developed to stabilize the
system and drive the object to an optimal value without
knowledge of future information. Based on this point, we
develop a robust algorithm in next section. Especially, we
will show that our algorithm can guarantee the worst delay
experienced by UEs through introducing virtual queues.

3. Proposed solution

3.1. Relaxed problem

The constraint (5) on BðtÞ brings the time-coupling
property to our problem. Thus, we firstly relax P1 by elim-
inating this constraint on BðtÞ, which can help us design
our control policy.

Define the time-average expected values of utilized
renewable energy and charging/discharging rate under
any feasible control policy of P1 as follows:

cE ¼ lim
T!1

1
T

XT�1

t¼0

EfcðtÞEðtÞg; Q ¼ lim
T!1

1
T

XT�1

t¼0

EfQðtÞg:

Summing (4) over all t 2 f0;1;2; . . . ; T � 1g, taking expec-
tation on both sides, dividing both sides with T and taking
T !1, we have Q þ cE ¼ 0. Hence, we obtain the follow-
ing relaxed problem, called P2:

minimize
QðtÞ;~PðtÞ;cðtÞ

limT!1
1
T

XT�1

t¼0

EfCðtÞGðtÞg

subject to constraints (1), (2), (8), (9), (11) and

Q þ cE ¼ 0:

Denote the optimal objective values of P1 and P2 as R�ori

and R�rel, respectively. From the discussion above, we
observe that any feasible solution to P1 is also a feasible
solution to P2. Thus, R�rel 6 R�ori. As given by the following
Lemma, it is easier to find the optimal solution to P2
because of the removal of the constraints on BðtÞ.

Lemma 1. If ~kðtÞ; ~HðtÞ; EðtÞ and CðtÞ are i.i.d. over slots,
then there exists a stationary, randomized policy that takes
control decisions Q̂statðtÞ; ~̂PstatðtÞ; ĉstatðtÞ every period t
purely as a function (possibly randomized) of current system
state~kðtÞ; ~HðtÞ; EðtÞ and CðtÞ while satisfying the constraints
of P2 and providing the following guarantees:
EfCðtÞĜstatðtÞg ¼ R�rel;

EfQ̂ statðtÞ þ ĉstatðtÞEðtÞg ¼ 0;

EflðP̂stat
k ðtÞ;HkðtÞÞgP EfkkðtÞg; 80 6 k 6 K;

ð12Þ

where the expectations are w.r.t. the stationary distribution of
~kðtÞ; ~HðtÞ; EðtÞ and CðtÞ and the control decisions.

The proof is similar to that in [16] and follows the
framework of Lyapunov optimization in [17], which is
omitted here for brevity. With Lemma 1, we can use the
existence of such a stationary, randomized policy to help
us design our control policy and derive the performance
results for our algorithm.

3.2. Key queues

As mentioned before, we will propose an online algo-
rithm based on the Lyapunov optimization technique to
approximately obtain the optimal solution. Lyapunov
optimization technique can stabilize all network queues
while optimizing some performance objectives. The
queues are cores of Lyapunov theory. Through designing
different queues to be stabilized, we can achieve differ-
ent performance assurances in different application sce-
narios. In this subsection, we introduce three kinds of
problem-specific key queues for different purposes,
which will help us design our algorithm in next
subsection.

Firstly, we modify the data queue (6) with a and define
a new modified data queue as follows:

Dkðt þ 1Þ ¼ DkðtÞ �
lðPkðtÞ;HkðtÞÞ

a

� �þ
þ kkðtÞ

a
; ð13Þ

where a is a key control parameter which builds the rela-
tionship between the cost saving and delay performance as
discussed later. The purpose of introducing a is to build a
bridge between the transmitted data and energy
consumption.

Secondly, we use the n�persistent queue technique and
additionally define the following virtual queue ZkðtÞ to
guarantee the worst case delay for any buffered data in
the queue:

Zkðt þ 1Þ ¼ ZkðtÞ �
lðPkðtÞ;HkðtÞÞ

a
þ n1fDkðtÞ>0g

� �þ
; ð14Þ

where 1fDkðtÞ>0g is an indicator function that is 1 if DkðtÞ > 0
or 0 otherwise. n is a fixed positive parameter to be speci-
fied later. Obviously, ZkðtÞ has the same service process as
DkðtÞ, but has an arrival process that adds n whenever the
actual backlog is nonempty, which can ensure that ZkðtÞ
grows if there is remaining data. The following Lemma
reveals that if we can control the system to ensure that
the queues DkðtÞ and ZkðtÞ have finite upper bounds, then
any data of UE k can be transmitted within the worst case
delay.

Lemma 2. Suppose we can control the system to ensure that
ZkðtÞ 6 Zmax and DkðtÞ 6 Dmax for all slots t, where Zmax and
Dmax are some positive constants, then the worst case delay
for all buffered data is upper bounded by dmax where
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dmax,
Dmax þ Zmax

n

� �
: ð15Þ
Proof. The proof follows directly from the framework of
Lyapunov optimization [17]. Consider any slot t for which
kkðtÞ
a > 0. We will prove that the data is transmitted on or

before time t þ dmax by contradiction.

Suppose the data kkðtÞ
a > 0 is not served on or before time

t þ dmax, then during slots s 2 ft þ 1; . . . ; t þ dmaxg, it must
be that DkðsÞ > 0. Thus, we have 1fDkðtÞg ¼ 1 for all
s 2 ft þ 1; . . . ; t þ dmaxg. With the update (14) of ZkðtÞ, for
all s 2 ft þ 1; . . . ; t þ dmaxg, we have:
Zkðsþ 1ÞP ZkðsÞ �
lðPkðsÞ;HkðsÞÞ

a
þ n:

Summing the above inequality over s 2 ft þ 1; . . . ;

t þ dmaxg yields

Zkðt þ dmax þ 1Þ � Zkðt þ 1ÞP �
Xtþdmax

s¼tþ1

lðPkðsÞ;HkðsÞÞ
a

þ ndmax:

Rearranging the terms and using the facts that 0 6 Zk

ðt þ 1Þ and Zkðt þ dmax þ 1Þ < Zmax yields

Xtþdmax

s¼tþ1

lðPkðsÞ;HkðsÞÞ
a

P ndmax � Zmax:

Since the kkðtÞ
a are queued in FIFO manner and DkðtÞ 6 Dmax,

it must be that
Ptþdmax

s¼tþ1
lðPkðsÞ;HkðsÞÞ

a 6 Dmax as we have

assumed that the data kkðtÞ
a are not served by time

t þ dmax. Therefore, we have

ndmax � Zmax < Dmax;

which implies that dmax <
DmaxþZmax

n , contradicting the defini-
tion of dmax in (15). h

Finally, we define another variable YðtÞ as a shifted ver-
sion of battery level BðtÞ as follows to ensure that the con-
straints (4) and (5) on BðtÞ, which are ignored in P2, are still
satisfied in our algorithm:

YðtÞ ¼ BðtÞ � VCmax � Q min; ð16Þ

where V is another control parameter. The intuition behind
YðtÞ is to construct the algorithm based on a quadratic
Lyapunov function, but carefully perturb the weights used
for decision making, so as to push the battery level toward
certain nonzero values to avoid underflow. According to
(3), we have the same update equation for YðtÞ as follows:

Yðt þ 1Þ ¼ YðtÞ þ QðtÞ þ cðtÞEðtÞ: ð17Þ
3.3. Optimal control policy

With the above modified data queues ~DðtÞ, virtual
queues ~ZðtÞ and shifted version of battery level YðtÞ in
the previous subsection, our proposed algorithm is shown
in Algorithm 1. The algorithm is designed based on the
Lyapunov optimization technique developed in [17]. The
idea of the algorithm is to greedily minimize a upper
bound of the drift-plus-penalty function in (B.5).

Algorithm 1. Proposed algorithm based on the Lyapunov
theory.

1: for each time period t do
2: Measure the system states

YðtÞ; ~DðtÞ; ~ZðtÞ; ~HðtÞ; EðtÞ; ~kðtÞ, and CðtÞ;
3: Choose control decisions QPAðtÞ; cPAðtÞ and ~PPAðtÞ

as the solution to the following optimization
problem, called P3:

minimize
QðtÞ;~PðtÞ;cðtÞ

f ðtÞ, ¼ ðYðtÞ þ VCðtÞÞQðtÞ þ YðtÞcðtÞEðtÞ

�
XK

k¼1

ðDkðtÞ þ ZkðtÞÞ
lðPkðtÞ;HkðtÞÞ

a
þ aVCðtÞPkðtÞ

� �

subject to constraints (1), (2), (8), (11);
4: Update the system states as (13), (14) and (17).
5: end for

As shown in Algorithm 1, we just need to measure the
system states YðtÞ; ~DðtÞ; ~ZðtÞ; ~HðtÞ; EðtÞ; ~kðtÞ, and CðtÞ,
without knowledge of future information. YðtÞ; ~DðtÞ and
~ZðtÞ are the queues managed by the BS, thus they are
known and identified for the BS. EðtÞ and CðtÞ are the cur-
rent harvested energy and opened price information, thus
they also can be known by the BS. ~HðtÞ and ~kðtÞ are the
channel condition and arrived data, which can be achieved
with the beacon signal. In this paper, we assume that ~HðtÞ
and ~kðtÞ are error-free. If ~HðtÞ and ~kðtÞ are not error-free,
Algorithm 1 can be still applied through replacing them
with estimated values, which may affect the performance
to some extent.

We can find that all the constraints of P3 are affine
functions. Besides, the object function is convex function.
Thus, for each time slot t, P3 is a convex optimization prob-
lem, which can be solved easily by some standard convex
optimization techniques with low complexity [20]. Here,
we give out some important features of the optimal solu-
tion in the following Lemma, which will be used in the per-
formance analysis in next section.

Lemma 3. The solution to P3 has the following features:

(1) When YðtÞ > 0, the solution always chooses
cPAðtÞ ¼ 0; cPAðtÞ ¼ 1 otherwise;

(2) When YðtÞ > �VCmin, the solution always chooses

QPAðtÞ 6 0; When YðtÞ < �VCmax, the optimal solution

always choose QPAðtÞP 0;
(3) When WðDkðtÞþZkðtÞÞ

aaVCðtÞ � 1
HkðtÞ

P Pmax, the solution always

chooses PPA
k ðtÞ ¼ Pmax.
Proof. (1) It is straightforward from the object function of
P3 and the constraint 0 6 cðtÞ 6 1.
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(2) When YðtÞ > �VCmin, suppose the solution is
~PPAðtÞ; cðtÞ, and QPAðtÞ, where Q PAðtÞ > 0. This solu-
tion satisfies the constraints of P3. We can keep the

same ~PPAðtÞ; cPAðtÞ and set Q PA0 ðtÞ ¼ 0 which also
satisfy the constraints of P3 and achieve a smaller
objective because YðtÞ þ VCðtÞ > 0. Hence, when

YðtÞ > �VCmin, we have QPAðtÞ 6 0. Similarly, we
can prove that when YðtÞ < �VCmax, we have
QPAðtÞP 0.

(3) The Lagrangian of P3 is
L ¼ f ðtÞ þu1ð�Q min � QðtÞÞ þu2ðQðtÞ

� Q maxÞ �
XK

k¼1

u3;kPkðtÞ þ
XK

k¼1

u4;kðPkðtÞ

� PmaxÞ þu5 �a
XK

k¼1

PkðtÞ � b� QðtÞ
 !

; ð18Þ
where u1; u2; ~u3; ~u4 and u5 are Lagrangian multipliers
and greater than or equal 0. We obtain part of Karush–
Kuhn–Tucker (KKT) conditions as:

@L
@PkðtÞ

¼ �WHkðtÞðDkðtÞ þ ZkðtÞÞ
a � ð1þ PkðtÞHkðtÞÞ

þ aVCðtÞ �u3;k

þu4;k �u5a ¼ 0; ð19Þ
u4;kðPkðtÞ � PmaxÞ ¼ 0: ð20Þ

From (19), we have

PkðtÞ ¼
WðDkðtÞ þ ZkðtÞÞ

a � ðaVCðtÞ �u3;k þu4;k �u5aÞ �
1

HkðtÞ
: ð21Þ

When WðDkðtÞþZkðtÞÞ
aaVCðtÞ � 1

HkðtÞ
P Pmax, we should set u4;k > 0 to

ensure PkðtÞ in (21) satisfy the constraint PkðtÞ 6 Pmax. With

u4;k > 0 and (20), we have PkðtÞ ¼ Pmax. �

From (21), we find that PkðtÞ is monotonically increas-
ing in DkðtÞ; ZkðtÞ and HkðtÞ, and monotonically decreasing
in CðtÞ. It is intuitive because we should increase the trans-
mission power when the queue length increases, the chan-
nel quality becomes better or the electricity price is low.

4. Performance analysis and discussions

In this section, we analyze the delay, feasibility and cost
saving performance of our algorithm, which are given by
Theorem 1–3, respectively. Besides, the impacts of three
control parameters a; n and V on the performance are
discussed.

4.1. Performance analysis

Theorem 1. (Worst delay performance). Denote Hmin as the
minimum value of all the acquired channel state and assume
that lðPmax;HminÞP kmax is satisfied to provide steady
service. If Dkð0Þ ¼ Zkð0Þ ¼ 0, then for any fixed parameter
0 < n 6 kmax

a , our control algorithm can make sure that:
(1) The queues DkðtÞ and ZkðtÞ are deterministically upper
bounded by the following expressions at each slot:
DkðtÞ 6 Dmax,
a
W

aVCmaxPmax
2kmax=W

2kmax=W � 1
þ kmax

a
;

ZkðtÞ 6 Zmax,
a
W

aVCmaxPmax
2kmax=W

2kmax=W � 1
þ n:

ð22Þ

(2) The worst case delay for any data in queue is
given by

dmax,
2 a

W aVCmaxPmax
2kmax=W

2kmax=W�1
þ kmax

a þ n

n

& ’
: ð23Þ
Proof. Based on (1) and Lemma 2, (2) is straightforward.
Now, we prove (1) with induction method.

We first prove that DkðtÞ 6 a
W aVCmax Pmax þ 1

Hmin

� 	
þ kmax

a
for all time slot t. Obviously, Dkð0Þ ¼ 0 6 a

W aVCmax

Pmax þ 1
Hmin

� 	
þ kmax

a . Suppose it holds at time slot t, we

need to show that it also holds at time slot t þ 1. According

to (13), if DkðtÞ 6 a
W aVCmax Pmax þ 1

Hmin

� 	
, then we have

Dkðt þ 1Þ 6 a
W aVCmax Pmax þ 1

Hmin

� 	
þ kmax

a because the maxi-

mum amount of data arrival is kmax
a ; if

a
W aVCmax Pmax þ 1

Hmin

� 	
6 DkðtÞ 6 a

W aVC max Pmax þ 1
Hmin

� 	
þ kmax

a , then WDkðtÞ
aaVCðtÞ � 1

HkðtÞ P Pmax. Due to ZkðtÞP 0, we have
WðDkðtÞþZkðtÞÞ

aaVCðtÞ � 1
HkðtÞ P Pmax. From (3) in Lemma 3, we have

PPA
k ðtÞ ¼ Pmax, thus,

l PPA
k ðtÞ;HkðtÞð Þ

a ¼ W logð1þPmaxHkðtÞÞ
a P kmax

a .
According to (13), we have
Dkðt þ 1Þ 6 DkðtÞ 6 a

W aVCmaxðPmax þ 1
Hmin
Þ þ kmax

a .

Then combining the assumption
W logð1þ PmaxHminÞP kmax, we have DkðtÞ 6 Dmax.

Similarly, we can prove the second part of (22). �.

The above Theorem shows that our algorithm can make
sure worst case delay is controlled within acceptable limits
through setting fit control parameters. It should be noted
that, the assumption lðPmax;HminÞP kmax is usually satis-
fied in practical deployed system. Otherwise, the system
may not be stable with any scheme.

Theorem 2. (Feasibility). For any

0 < V 6 Vmax

,min
Bmax � Q min � Qmax � Emax

Cmax � Cmin
;
Bmax � Q min � Emax

Cmax

� �
;

our algorithm can make sure:

(1) Bmax � VCmax � Qmin P YðtÞP �VCmax � Q min, that is,
Bmax P BðtÞP 0 for all time slot t.

(2) All control decisions can be feasible with a fit n.

The proof is given in Appendix A.
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Fig. 2. Daily electricity price and renewable energy profile in scenario 2.
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Theorem 3. (Cost saving performance). If ~kðtÞ; ~HðtÞ; EðtÞ
and CðtÞ are i.i.d. over slots, then for any fixed parameter

0 6 n 6 E
minkfkkðtÞg

a

n o
, the time-average expected electricity

cost under our algorithm is within bound of the optimal value,
i.e.,
lim
T!1

1
T

XT�1

t¼0

EfCðtÞGPAðtÞg 6 R�ori þ A=V ; ð24Þ

where V is control parameter and

A ¼ 1
2

max ðQmax þ EmaxÞ2;Q 2
min

h i
þ K

2
max

lmax

a

� 	2
; n2

� �

þ K
2

kmax

a


 �2

þ lmax

a

� 	2
 !

: ð25Þ

The proof is given in Appendix B.
4.2. Discussions on the impact of control parameters

There are three control parameters in our algorithm:
a; n and V, all of which are important in the system
performance.

From Theorem 3, it reveals that with larger V, the elec-
tricity cost is closer to the optimal value. However, as
(a) Scenario 1

Fig. 3. Total cost performance of different algorithm
shown in Theorem 2, V has a maximum value to make sure
our solution is feasible. Thus, we suggest V ¼ Vmax.

From Theorem 1, it reveals that with larger n, our pro-
posed algorithm will suffer smaller worst delay. However,
as shown in Theorem 3, larger n may bring a higher elec-
tricity cost. Thus, n has an influence on the tradeoff
between the worst delay and cost saving performance.
Besides, as indicated in Theorem 2 and Theorem 3, we
should ensure

0 6 n 6 min E
min

k
fkkðtÞg

a

( )
;
kmax

a

( )
: ð26Þ

Similarly to n; a also affects the tradeoff between worst
delay and cost saving performance as shown in (23) and
(25). What’s more, we can find that A in (25) consists of
two part: energy part and data part. Therefore, a builds
the bridge between energy and data. To make sure the
two parts have the same order of magnitude, we propose
that a uses the following order of magnitude:

a0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wkmax

aPmaxPmax

s
: ð27Þ

Finally, we can ensure the average or worst delay con-
straint dmax 6 d is satisfied via setting fit a and n.
5. Simulations

In this section, we evaluate our proposed algorithm
(denoted as PA) by comparing it with the following exist-
ing work: (1) The online adaptive water filling algorithm
in [12], denoted as AWFA; (2) The throughput optimal
algorithm in [13], denoted as TOA; (3) The traditional
schemes without consideration of variable cost [9–11],
denoted as TA.

5.1. Simulation setup

We consider a multiuser system with 1 BS and 20 UEs.
All the UEs are uniformly distributed in a
1200 m � 1200 m region centered at the BS. The parame-

ters of channel are configured as: HkðtÞ ¼
hkðtÞl

�b
k

d2 , where
(b) Scenario 2

s with different battery capacity Bmax settings.



(a) Cost performance in scenario 1 (b) Cost performance in scenario 2

(c) Delay performance in scenario 1 (d) Delay performance in scenario 2

Fig. 4. Performance results of different algorithms with different control parameter V settings. (a ¼ a0).
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the random variable hkðtÞ follows an exponential distribu-
tion with mean 1, b ¼ 4 is the pathloss exponent, lk is the
distance between UE k and BS, and d2 ¼ �100 dBm is the
additive noise power. The BS is configured with 5 MHz car-
rier bandwidth which is evenly divided into 20 subchan-
nels, to serve UEs. The parameters related to power
consumption are a ¼ 2:66; b ¼ 118:7 W, and Pmax ¼ 1:6
W [21]. We fix the parameters Qmin ¼ Qmax ¼ 240 W-slot.
In our simulations, the data arrival of each UE during each
time slot t is uniformly distributed in the interval
½0;1080� Kb=s. We consider two scenarios where different
price functions CðtÞ and energy profile functions EðtÞ are
used: (1) Scenario 1: The random functions are applied,
i.e., we assume the electricity price CðtÞ and energy profile
EðtÞ during each time slot t are uniformly distributed in the
interval ½5;10� Unit/(slot*W) and ½0;240�W, respectively.
(2) Scenario 2: As shown in Fig. 2, the common peak-valley
electricity price is used where CðtÞ can take three possible
values in fClow ¼ 5; Cmid ¼ 8; Chigh ¼ 10g Unit/(slot*W).
Besides, we model EðtÞ with the practical energy profile
in Fig. 2, similarly to [16]. The simulation time is set to
3 days, i.e., 12960 slots.

5.2. Results and analysis

First, we study the impact of storage capacity Bmax on
cost saving performance by varying Bmax from 3500 to
8000 W-slot. In this part, we set a ¼ a0; n ¼ E
minkfkkðtÞg

a

n o
and V ¼ Vmax. The results in two scenarios are illustrated
in Fig. 3. From the figure, it is clear that the performance
of PA is superior to that of TA, AWFA and TOA in both sce-
nario 1 and scenario 2. The gain comes from two aspects:
(1) PA stores excessive renewable energy harvested in cur-
rent time slot for use at later time when renewable energy
generation is insufficient, charges the battery when the
price is low while discharges it when the price is high;
(2) PA saves the BS’s transmission energy by sacrificing
some delay performance, i.e., delaying data to be transmit-
ted when the link quality is good enough, the electricity
price is low or the available harvested energy is much
enough. As a comparison, TA, AWFA and TOA do not con-
sider the price factor. Besides, TOA just maximizes the
throughput instead of delaying the data to be transmitted
when the link quality is good enough. What’s more, we
can find that the larger Bmax is, the less cost PA needs.
The reason is that with larger Bmax, we can store more
renewable energy harvested for use at later time when
renewable energy generation is insufficient or the price is
high.

Next, we investigate the effects of control parameters
V and a on the system cost and average delay perfor-
mance. In this part, we set Bmax ¼ 5000 W-slot and

n ¼ E
minkfkkðtÞg

a

n o
. The effects of V and a are shown in



(a) Cost performance in scenario 1 (b) Cost performance in scenario 2

(c) Delay performance in scenario 1 (d) Delay performance in scenario 2

Fig. 5. Performance results of different algorithms with different control parameter a settings. (V ¼ Vmax).

(a) Cost vs. Max. delay (b) Ave. Delay vs. Max. delay

Fig. 6. The trade-off between delay performance and energy cost (scenario 1).
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Figs. 4 and 5, respectively. It is obvious that the larger a
and V are, the more cost saving PA and TA can obtain
and the larger delay PA and TA suffer. It demonstrates
that a and V play an important role in the tradeoff
between the delay and cost saving performance which
corroborates the accuracy of our theoretical analysis.
Besides, we can find that only if a and V are not too
small, PA has the best cost performance. For the delay
performance, TOA performs best because it always tries
to maximize the throughput which also brings a high
cost. Furthermore, Fig. 5 shows that through adjusting
a and V to some fit values, we can achieve a low cost
while suffering the acceptable delay. For example, when
V ¼ Vmax and a ¼ 22;500, the delay of PA are 2.19 and
2.72 slot in scenario 1 and scenario 2, respectively,
while the cost are 1� 105 and 8:37� 106 Unit in sce-
nario 1 and scenario 2, respectively, which are much
lower than TA, AWFA and TOA.
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Last, we study the trade-off between delay performance
and energy cost through varying the maximum delay con-
straints. The results are illustrated in Fig. 6. The results
show that with a more relaxed constraint, we can sacrifice
more delay performance to achieve a lower cost perfor-
mance. What’s more, the curves in Fig. 6a shows that with
the increase of maximum delay, the cost gain PA and TA
achieved by sacrificing delay decreases. For example, when
we adjust the maximum delay from 10 to 20 slots, the cost
of PA is decreased from 3:15� 106 to 1:09� 106 Unit.
However, when we adjust the maximum delay from 60
to 70 slots, the cost of PA is decreased from 3� 105 to
2:4� 105 Unit. Besides, all the curves show that PA is
always superior to TA since it considers the price factor.

It should be mentioned that although Lemma 1 and
Theorem 3 holds with the i.i.d. assumption (i.e., scenario
1), all the results in scenario 2 (which does not have i.i.d.
assumption and thus is more practical), i.e., Figs. 3–5, show
that PA still works well in practical system.

6. Conclusions

In this paper, we have studied the joint power allocation
and battery management approach to reducing the electric-
ity cost for cellular networks with hybrid energy sources.
Based on the Lyapunov optimization techniques, we design
an online algorithm to approximately obtain the optimal
cost. Theoretical analysis shows that our algorithm can
achieve the cost deviated no more than Oð1=VÞ from the
optimal cost where V is a control parameter determined
by the battery capacity. Furthermore, our algorithm can
guarantee the worst case delay for any UE’s data by using
the virtual queue technique. Numerical simulation results
confirm that (1) our algorithm is superior to some existing
work in terms of electricity cost; (2) the larger delay can be
tolerated, the more cost can be saved by our algorithm.

Although this paper just considers the single-cell system,
our proposed algorithm and results can be directly applied
in the noise-limited multi-cell system. As future work, we
will focus on the multi-cell system with the consideration
of inter-cell interference and energy cooperation.
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Appendix A. Proof of Theorem 2

Proof. (1) We prove this result by induction. When
t ¼ 0; Yð0Þ ¼ Bð0Þ � VCmax � Qmin and 0 6 Bð0Þ 6 Bmax,
thus we have Bmax � VCmax � Qmin P Yð0ÞP �VCmax

�Qmin. Now suppose that Bmax � VCmax � Qmin

P YðtÞP �VCmax � Qmin is satisfied for time slot t. We
need to show that it also holds for time slot t þ 1:
If �VCmax � Qmin 6 YðtÞ < �VCmax, from (2) in Lemma 3

we know that QPAðtÞP 0. According to (17), we have
Yðt þ 1ÞP YðtÞP �VCmax � Q min; Besides, we have
Yðt þ 1Þ 6 YðtÞ þ Q max þ E max 6 �VCmax þ Q max þ Emax

6 �VCmin þ Q max þ Emax. With V 6 Vmax, we have Yðt þ 1Þ
6 �VCmin þ Q max þ Emax 6 Bmax � VCmax � Qmin.

If �VCmax 6 YðtÞ 6 �VCmin, according to (17), we have
Yðt þ 1ÞP YðtÞ � Qmin P �VCmax � Q min; Besides, we have
Yðt þ 1Þ 6 YðtÞ þ Q max þ Emax 6 �VCmin þ Q max þ Emax.
With V 6 Vmax, we have
Yðt þ 1Þ 6 �VCmin þ Qmax þ Emax 6 Bmax � VCmax � Q min.

If �VCmin < YðtÞ 6 0, according to (17), we have
Yðt þ 1ÞP YðtÞ � Qmin P �VCmin � Qmin P �VCmax � Q min;
Besides, from (2) in Lemma 3 we know that Q PAðtÞ 6 0,
thus we have Yðt þ 1Þ 6 Emax 6 Bmax � VCmax � Q min. With
V 6 Vmax, we have Yðt þ 1Þ 6 Emax 6 Bmax � VCmax � Q min.

If 0 < YðtÞ 6 Bmax � VCmax � Qmin, from (1) and (2) in

Lemma 3 we know that cPAðtÞ ¼ 0 and Q PAðtÞ 6 0. Accord-
ing to (17), we have Yðt þ 1Þ ¼ YðtÞ þ Q PAðtÞ 6 YðtÞ
6 Bmax � VCmax � Qmin and Yðt þ 1Þ ¼ YðtÞ þ QðtÞP �Q min

P �VCmax � Q min.
(2) From (1), the constraints on BðtÞ are satisfied.

Besides, from Theorem 1, we can make sure the delay
constraint with the fit control parameter n and a. Further,
we choose our control policy to satisfy all constraints in
P3. Combining them together, all constraints of P1 can be
satisfied. Therefore, our control decisions are feasible to
the original problem. �
Appendix B. Proof of Theorem 3

Proof. We make use of Lyapunov optimization techniques
to derive this result. Denote the system queue states

K
!
ðtÞ,ð~DðtÞ;~ZðtÞ; YðtÞÞ. Define the Lyapunov function as

LðK
!
ðtÞÞ, 1

2

PK
k¼1D2

kðtÞ þ
PK

k¼1Z2
kðtÞ þ Y2ðtÞ

� 	
and the condi-

tional 1-slot Lyapunov drift as follows:

DðK
!
ðtÞÞ ¼ EfLðK

!
ðt þ 1ÞÞ � LðK

!
ðtÞÞjK

!
ðtÞg:

From the update (17), we obtain the following results by
squaring both sides:

Y2ðt þ 1Þ � Y2ðtÞ
2

¼ ðQðtÞ þ cðtÞEðtÞÞ2

2
þ YðtÞðQðtÞ

þ cðtÞEðtÞÞ

As �Q min 6 QðtÞ 6 Qmax and 0 6 cðtÞEðtÞ 6 Emax, we have

ðQðtÞ þ cðtÞEðtÞÞ2

2
6

1
2

max ðQ max þ EmaxÞ2;Q 2
min

h i
:

Thus, we can get the following upper bound for the Lyapu-
nov drift YðtÞ:

Y2ðt þ 1Þ � Y2ðtÞ
2

6
1
2

max ðQ max þ EmaxÞ2;Q 2
min

h i
þ YðtÞðQðtÞ þ cðtÞEðtÞÞ: ðB:1Þ
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Similarly, from the update (14) and (13), we can obtain the
following inequalities:

Z2
kðt þ 1Þ � Z2

kðtÞ
2

6
1
2

max
lmax

a

� 	2
; n2

� �

þ ZkðtÞ n� lðPkðtÞ;HkðtÞÞ
a


 �
; ðB:2Þ

D2
kðt þ 1Þ � D2

kðtÞ
2

6

kmax
a


 �2 þ lmax
a


 �2

2

þ DkðtÞ
kðtÞ
a
� lðPkðtÞ;HkðtÞÞ

a


 �
: ðB:3Þ

Combining these three bounds (B.1)–(B.3) together and
taking the expectation w.r.t. on both sides, we have

DðK
!
ðtÞÞ 6 Aþ EfYðtÞðQðtÞ þ cðtÞEðtÞÞjK

!
ðtÞg

þ
XK

k¼1

EfZkðtÞ n� lðPkðtÞ;HkðtÞÞ
a


 �
jK
!
ðtÞg

þ
XK

k¼1

EfDkðtÞ
kkðtÞ
a
� lðPkðtÞ;HkðtÞÞ

a


 �
jK
!
ðtÞg;

ðB:4Þ

where A is expressed as (25).
Adding penalty term VEfCðtÞGðtÞ j K

!
ðtÞg to both sides of

(B.4), we obtain the following inequality:

DðK
!
ðtÞÞ þ VEfCðtÞGðtÞjK

!
ðtÞg

6 Aþ YðtÞEfQðtÞ þ cðtÞEðtÞjK
!
ðtÞg

þ
XK

k¼1

ZkðtÞE n� lðPkðtÞ;HkðtÞÞ
a

jK
!
ðtÞ

� �

þ
XK

k¼1

DkðtÞE
kkðtÞ
a
� lðPkðtÞ;HkðtÞÞ

a
jK
!
ðtÞ

� �

þ VEfCðtÞGðtÞjK
!
ðtÞg: ðB:5Þ

Plugging GðtÞ ¼ a
PK

k¼1PkðtÞ þ bþ QðtÞ into (B.5) and
comparing with objective of P3, it is obvious that our algo-
rithm always attempts to greedily minimize the right hand
side of the above inequality for each time slot t over all
possible feasible control policies including the optimal,
stationary policy given in Lemma 1. Therefore,

DðK
!
ðtÞÞ þ VEfCðtÞGPAðtÞjK

!
ðtÞg

6 Aþ YðtÞEfQ̂ statðtÞ þ ĉstatðtÞEðtÞjK
!
ðtÞg

þ
XK

k¼1

ZkðtÞE n� lðP̂stat
k ðtÞ;HkðtÞÞ

a
jK
!
ðtÞ

( )

þ
XK

k¼1

DkðtÞE
kkðtÞ
a
� lðP̂stat

k ðtÞ;HkðtÞÞ
a

jK
!
ðtÞ

( )

þ VEfCðtÞQ̂ statðtÞjK
!
ðtÞg

6 Aþ VR�rel 6 Aþ VR�ori; ðB:6Þ

where the following facts have been used:
EfCðtÞĜstatðtÞjK
!
ðtÞg ¼ R�rel; EfQ̂ statðtÞ þ ĉstatðtÞEðtÞjK

!
ðtÞg ¼ 0;

E kkðtÞ � l P̂stat
k ðtÞ;HkðtÞ

� 	
jK
!
ðtÞ

� �
6 0;

E n�
l P̂stat

k ðtÞ;HkðtÞ
� 	

a
jK
!
ðtÞ

8<
:

9=
; 6 0: ðB:7Þ

The first three equations follow from Lemma 1 and the last

one follows from the third equations and n 6 E
minkfkkðtÞg

a

n o
.

Taking the expectation on both sides, using the law of iter-
ative expectation and summing over t 2 f0;1;2; . . . ; T � 1g,
we obtain

V
XT�1

t¼0

EfCðtÞGPAðtÞg 6 AT þ VR�ori � EfLðK
!
ðTÞÞg

þ EfLðK
!
ð0ÞÞg: ðB:8Þ

Dividing both sides by T and letting T !1, we arrive at
the following result for our proposed algorithm because
EfLðK

!
ð0ÞÞg are finite and EfLðK

!
ðTÞÞg are nonnegative:

limT!1
1
T

XT�1

t¼0

EfCðtÞGPAðtÞg 6 R�ori þ A=V ;

where R�ori is the optimal objective value of original prob-
lem P1, A is a constant given by (25) and V is a control
parameter which has a maximum value given in Theorem
2. �
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