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Abstract—Smart grid achieves reliable, efficient and flexible 
grid data processing by integrating traditional power grid with 
information and communication technology. The control center 
can evaluate the supply and demand of the power grid through 
aggregated data of users, and then dynamically adjust the power 
supply, price of the power, etc. However, since the grid data 
collected from users may disclose the user’s electricity using 
habits and daily activities, the privacy concern has become 
a critical issue. Most of the existing privacy-preserving data 
collection schemes for smart grid adopt homomorphic encryption 
or randomization techniques which are either impractical 
because of the high computation overhead or unrealistic for 
requiring the trusted third party. In this paper, we propose a 
privacy-preserving smart grid data aggregation scheme satisfying 
local differential privacy (LDP) based on randomized response. 
Our scheme can achieve efficient and practical estimation of 
the statistics of power supply and demand while preserving 
any individual participant’s privacy. The performance analysis 
shows that our scheme is efficient in terms of computation and 
communication overhead.

Index Terms—Local Differential Privacy, Data Aggregation, 
Smart Grid, Privacy Preserving

I. In t r o d u c t i o n

Smart grid is considered to be the next generation power 

grid which provides more intelligent services, such as 

end-to-end communication and real-time data management, 

by combining advanced information and communication 

technology (ICT) [1]. In smart grid, the smart meter 

installed in each house reports the electricity consumption 

data to the control center periodically [2, 3]. The control 

center gathers all the data submitted from smart meters, 

performs statistical analysis, and then manages the electricity 

generation, transmission and distribution in the smart grid. 

Through smart grid, the control center is able to estimate the 

power consumption of the grid and formulate dynamic pricing 

strategy.

Despite the promise of smart grid, the reported data from 

smart meters always contain private information from users. 

Through these data, it is possible to analyze a user’s electricity 

usage pattern, which causes great threat to his/her privacy [4,

5]. For example, a user’s daily routine can be easily inferred 

from the electricity usage pattern, and adversaries can analyze 

whether he/she is at home or not.

Many privacy-preserving data aggregation schemes in smart 

grid have been proposed. Homomorphic encryption [3, 6-

9] is widely used in data aggregation for preserving data 

privacy. Homomorphic encryption enables entities to transform 

operations on plaintext into operations on corresponding 

ciphertext. Using the homomorphic encryption, especially 

the semi-homomorphic encryption such as the Paillier 

cryptosystem which supports addition operation on the 

ciphertext, the smart meters encrypt the data and send the 

ciphertext to the aggregator. Then the aggregator integrates 

the ciphertext gathered from smart meters and decrypts the 

aggregation result. Homomorphic encryption-based schemes 

make it possible to preserve single user’s data privacy. 

However, a general problem is that homomorphic encryption 

brings heavy computation burden to the smart meters, which 

usually do not have sufficient computing resources. Moreover, 

given the fact that smart meters submit data periodically and 

frequently, the homomorphic encryption is not a practical 

solution for privacy preservation.

Another technique for preserving data privacy in smart grid 

is to use data masking [10-12]. In these schemes, submitted 

power data is protected by masking values. Usually there exists 

an entity distributing a series of masking values to the smart 

meters and aggregator. Each smart meter obfuscates the data 

with the masking value. Then the aggregator can obtain the 

true result by eliminating the masking values. An exemplary 

realization of this technique is through differential privacy 

(DP) [13, 14]. Differential privacy [15] has been considered 

a mathematically rigorous framework for privacy protection 

and has been adopted in many massive data aggregation and 

processing scenarios with privacy protection requirements. In 

the schemes based on DP, data submitted is usually masked 

by random noise such as Laplacian noise. A common problem 

in these schemes is that a trusted third party (i.e., a curator) 

is usually needed for distributing the noise value, but this 

assumption is not always practical. Although some schemes 

do not need trusted third party, these distributed approaches 

usually bring more communication overhead between users.

Recently, local differential privacy (LDP) [16-21] has 

obtained much attention in both academia and industry. The 

main idea for LDP is that users perform random perturbations 

on their data locally. Thus, local differential privacy enables

978-1-7281-9916-0/20/$31.00 ©2020 IEEE 
DOI 10.1109/MSN50589.2020.00027

73

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 01,2021 at 00:08:45 UTC from IEEE Xplore.  Restrictions apply. 



privacy-preserving data collection and aggregation without 

relying on a trusted third party. Besides, the computation 

overhead is much lighter compared to the schemes that 

adopt homomorphic cryptosystem. A typical example of LDP 

implementation is the RAPPOR [19] developed by Google. 

RAPPOR enables the Google browser to collect statistical 

information from end-users while providing strong privacy 

protection. However, most of LDP schemes focus on the 

frequency estimation and distribution estimation, and mainly 

deal with discrete category data.

Considering the needs of data privacy protection and the 

limited computation resources of smart meters in smart grid, 

we propose a practical and efficient privacy-preserving data 

aggregation scheme for demand estimation (in numerical 

values). By introducing LDP into the data aggregation, the 

data privacy can be protected without a trusted third party. 

The computation overhead for each smart meter is acceptable 

compared to the schemes based on cryptography algorithm. 

Besides, our scheme has natural support for users’ dynamic 

joining and exiting, the extra cost of which is quite small. The 

major contributions of our scheme are as follows:

« We propose a lightweight privacy-preserving data 

aggregation scheme in smart grid based on LDP, in 

which smart meters can perturb their generated data by 

randomized response locally without a trusted third party. 

Meanwhile, our scheme can effectively support users’ 

dynamically joining and exiting without involving much 

extra overhead.

« To ensure the utility of aggregated data, we design a 

simple but effective data discretization algorithm based 

on conditional probability, which can reduce deviation 

between the aggregation result and the actual data 

aggregation results. In such a way, our scheme largely 

increases statistical accuracy of data aggregation results.

. We implement our proposed scheme on a typical 

processor, and perform performance and security anal-

ysis, which shows that the proposed solution has less 

computation and communication overhead while ensuring 

utility and privacy protection.

The rest of this paper is organized as follows. The related 

work of privacy-preserving data aggregation schemes in smart 

grid and LDP is given in section II. Then we describe 

the problem model including network model and security 

assumption of our work in the section III. Preliminaries related 

to our scheme is given in section IV. And details of our LDP- 

based data aggregation scheme is shown in section V. Then 

we give the numerical analysis in section VII. Finally, we 

conclude our work in section VIII.

II. RELATED WORK

A. Privacy-Preserving Data Aggregation in Smart Grid
Data aggregation is a basic service in smart grid, and the 

privacy protection is one of its primary considerations. To 

this end, many privacy-preserving data aggregation schemes 

have been proposed. Homomorphic encryption is one of

the most popular methods adopted in privacy-preserving 

data aggregation schemes, which allows computation on the 

ciphertext. In [6], Paillier cryptosystem [22] is introduced to 

construct a privacy-preserving aggregation scheme for secure 

smart grid. In what follows, many other works [8, 23] based 

on Paillier cryptosystem have been proposed to protect data 

privacy under various conditions in smart grid. Some schemes 

are based on other public-key homomorphic encryption 

schemes such as Boneh-Goh-Nissim (BGN) homomorphic 

encryption algorithm [24, 25] and lattice algorithm [2]. Despite 

its effectiveness in preserving privacy, a practical concern is 

that the public key based homomorphic encryption brings 

too much computation overhead to the smart meters. The 

smart meter installed in a user’s house has limited computing 

resources, which is costly to conduct encryption functions. 

Moreover, data acquisition in the smart grid is quite frequent, 

which means that the smart meter must run encryptions 

frequently. Therefore, it is unpractical to utilize homomorphic 

encryption to protect data privacy in the smart grid scenario.

To protect the privacy of the data from single user, 

researchers also proposed some schemes based on data 

masking [10, 12, 14, 26, 27]. In these schemes, the data 

submitted by users are masked by a masking value, thus the 

other entities can not access the real value without knowing 

the masking value. In [12, 27], schemes satisfying differential 

privacy were proposed. These schemes reduce the computation 

overhead on smart meters while achieving privacy protection. 

However, in some of these masking schemes such as [12], a 

trusted third party is needed for generating and distributing the 

masking value. This brings in a new problem that it is hard to 

find such a trusted party in the real-world. There are also some 

distributed schemes [11] that do not depend on the trusted third 

party. The masking value is generated by negotiation between 

users, but it increases the communication cost between users. 

Besides, existing DP-based schemes are inefficient when it 

comes to the changing set of users. That is to say, when a 

user joins or leaves the system, new values should be generated 

and distributed, which once again increases the communication 

overhead.

B. Local Differential Privacy
Local differential privacy [16] has been proposed to provide 

privacy protection for distributed scenarios where users perturb 

their data locally and upload without any trusted third party. 

At present, most of the schemes satisfying LDP are realized by 

randomized response (RR) [28]. There are also other schemes 

based on information compression [29] and other disturbance 

mechanisms to achieve local differential privacy. RR is initially 

designed to sensitive questions with binary answer “yes” or 

“no”. Users decide to upload the original answer or reverse 

the answer depending on coin flipping. RR is then easily 

extended to make statistics on categorical data for frequency 

estimation. RAPPOR [19] developed by Google encodes data 

as a Bloom filter and does the randomized response on each 

bit of the Bloom filter. Wang et al. [20] proposed a protocol 
for finding frequent items in the set-valued LDP setting. Ren
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Fig. 1. System Model

et al. [30] focused on the high-dimensional crowdsourced 

data publication with guarantee of LDP. In [18], discrete 

distribution estimation based on k-subset mechanism satisfying 

LDP has been proposed. Most of the works on LDP focus 

on the frequency estimation and distribution estimation for 

discrete categorical data. In this paper, we propose a demand 

estimation scheme for the LDP-perturbed numerical data that 

is aggregated in smart grid.

III. PROBLEM MODEL

A. Network Model

gateways, meanwhile they are concerned about their data 

privacy.

C. Security and Design Goals
Based on the above assumption of each entity, our scheme 

are proposed to achieve following goals:

• Data privacy. The data collected by aggregator may 

disclose users’ privacy. Therefore, during the data 

aggregation, the privacy of users’ data should be 

preserved. The aggregator should know nothing about any 

particular user’s data but the final aggregation result.

• Practicability. Data submission in smart grid is periodic 

and frequent. Therefore, efficiency for the data processing 

and submission becomes important. Since the smart meter 

does not have plenty of computation capabilities, the 

computation overhead of each smart meter should be 

bearable. Also, the communication overhead between 

users should be as small as possible.

• No need for trusted third party. Users tend to be skeptical 

that the entities who have access to their data will threaten 

their data privacy, and in the real world, it is impossible 

to assume a trusted third party. Therefore, our proposed 

scheme should not rely on a trusted third party.

• Support dynamic changes of users. In smart grid, users 

may join or quit the system, so the aggregation scheme 

should accommodate the dynamic change of users. More 

specifically, when some users join or leave, the other users 

in the system do not need to renegotiate new parameters.

The network model consists of three kinds of entities, Smart 

Meter (SM), Gateway (AG) and Control Center (CC). The 

whole organization of the model is shown in Fig. 1. What 

follows are their functions and roles.

• Smart Meter (SM): SM is an intelligent device which is 

installed in user’s house. It has limited computing power, 

thus the computation burden on the meter side should be 

as small as possible. The smart meter collects and submits 

power consumption data of a single user. For clarity, we 

treat the “smart meter” and “user” the same and may use 

them interchangeably.

• Gateway (AG): AG acts as an aggregator in the smart 

grid system. It collects and aggregates data submitted 

from smart meters. After aggregation, it sends the 

aggregated result to the control center.

• Control Center (CC): CC connects with all AGs, and 

collects the data of total power consumption from AGs. 

Then, CC formulates power dispatching strategy and 

adjusts electricity price.

B. Security Assumption
In the smart grid, The CC and gateway are managed by 

electric supply companies, so it can be considered that the 

CC and AG are honest but curious. They will process the 

data according to the protocol, but they are also interested 

in the privacy of users’ data. We regard the users as honest 

participant who submit their power consumption data to the

IV. Pr e l i m i n a r i e s

A. Local Differential Privacy (LDP)
The formal definition of local differential privacy is as 

follow:

Definition 1. For any user i, an algorithm M  satisfies e-local 
differential privacy (e-LDP) if for any two data records X i, 
X j , and for any possible outputs X  e Range(M ),

P r [ M{ X i) = X] < ee x P r [ M ( X j ) =  XX], 

where value e is called the privacy budget.

It can be seen that LDP ensures that algorithm M  satisfies 

e-LDP by controlling the similarity of the output results of 

any two records. In a nutshell, the adversary seeing X  cannot 

determine whether the input is X i or X j .

B. k-Randomized Response (k-RR)
The k-Randomized Response (k-RR) is a randomized 

response scheme for aggregating and analyzing discrete 

categorical data. The perturbation function is defined as: For 

any input R  e X  and its corresponding output R  e X , there 

exists

P  (R \ R )
P

q

ef-
k — T + ë  ’

k -  1 +  ee ’

R  = R , 

R  = R,
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where e is the privacy budget and k = |X|. To estimate the 

frequency of R  £ X , the aggregator counts how many times 

R  is submitted as C (R), and then computes

*(R)
C (R) -  nq 

P -  q
where n  is the total number of the users. References [28, 31] 

provide more details about k-Randomized Response (k-RR).

V. Sc h e m e  De s c r i p t i o n

Before we describe our scheme in details, we first present 

an overview, which shows the core techniques and functional 

features.

A. Overview

To estimate the power consumption of the smart grid, 

the CC needs to get the statistical information of power 

consumption over a period of time. Therefore, our goal is to 

design an efficient and practical smart grid data aggregation 

scheme. The main idea is to discretize data and estimate 

the total or average power consumption by analyzing data 

frequency through RR. However, straightforward combination 

of data discretization and RR will make the scheme lose great 

data precision. To increase aggregation accuracy, we propose 

a special data discretization scheme to reduce the accuracy 

loss. By combining it with randomized response, we design 

an aggregation protocol satisfying LDP for numerical data.

In our scheme, the smart grid first transforms the generated 

data according to a specific probability, which is dependent 

on the generated data, before the operation of randomized 

response. Specifically, the actual data are first converted 

into the discrete value. Then RR is then performed on the 

transformed discrete data. Then, the aggregator collects and 

analyzes the data submitted from users, and estimates the 

frequency of each discrete value. Finally, the aggregator gets 

the statistical results and completes the demand estimation of 

the smart grid.

It is noteworthy that the discrete interval division in our 

scheme needs not to be the same, and it can be decided by 

the aggregator according to the data analysis demand.

B. System Initialization Phase
In the initialization phase, the gateway first determines

the range of data. Since power consumption data that is

generated by smart meters are always in a certain range, it

is reasonable to assume that the raw data submit by honest

users are within the interval [0, m]. Then the gateway divides
the interval into [0, s), [s, 2 s),..., [(d — 1)s, ds], assuming that m
d = \—]. For the sake of presentation clarity, here the interval 

is split evenly into several subintervals. While in practice, 

the gateway can divide the intervals into arbitary lengths 

according to the demand. It is noted that ds will be larger 

than m  when m  cannot be divisible by s , but it will not 

influence the correctness of our scheme. We record the set 

of boundary values of all subintervals as X  , and the number

of natural number elements in a subinterval as \X |. In this 

case, X  = {0, s, 2 s ,..., ds} and \X\ = d + 1.

Then, the gateway broadcasts the interval [0, m], the 

subintervals [0,s), [s, 2s),..., [(d — 1)s, ds] and the privacy 

budget e to all of the smart meters.

C. Data Submission Phase
For a user ui with power consumption data x i which

belongs to the subinterval [I — \ ■ s, (I — \ + 1) ■ s), user ui
s s

generates the data to be submitted to the gateway according 

to the following steps. For convenience, here we express this 

subinterval as [u,v).
1) First, user ui discretizes the real number data xi that 

smart meter generated to a natural number xi with 

the conditional probability p(x'i \xi ), which is computed 

according to the value xi as follows:

p (x'i \xi)
v -  Xi
v — u ’ 
x i — u
v u

u,

v.

We can see that x^ is discretized to the boundary value 

of the interval which xi belongs to.

2) Then, user ui uses the discretized value xi to generate 

the submitted data by RR with a certain probability. We 

consider the final result calculated by ui as yi £ X , of 

which the corresponding probability is as follows:

P(Vi\X'i) =j ) = )  P \X  \ - 1  +  ee,
1

q =

Vi = x ^

Vi = X'i£Vi € X .\X \ — 1 +  e£

3) Finally, user ui (smart meter) submits the result yi to 

the gateway.

e

D. Data Aggregation and Analysis
After receiving yi from all the users in its administrative 

region, the gateway aggregates and analyzes these data. Since 

each yi e X , the gateway can get the total power consumption 

by counting the frequency of each element in X . Here we 

denote the frequency of each element X j e X , 0 < j  < \ X  \ 
as C (X j). And the gateway computes

$ (X  ) =  C (X j)( !X  ! — 1 +  R) — n 

( j) ee — 1 .
Then the gateway can estimate the total power consumption 

as
j  = \X\

R  = Y I  Vj • $ (Vj) .
j=1

After this, the gateways in the system send the total power 

consumption data to the CC, which can then get statistical 
information by analyzing them, such as the average and peak 

of the power consumption.
In addition to aggregating power consumption data, CC 

can also require gateways to perform other statistical analysis 

of the power consumption in the smart grid, such as mode 

analysis, etc. In such a way, CC can get a wealth of power 

consumption information for improving its services.
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VI. Pr i v a c y  a n d  Ut i l i t y  An a l y s i s  

In this section, we analyze and evaluate the privacy and 

utility of our scheme, and prove that our scheme meets the 

proposed design goals. We first consider the privacy protection 

and accuracy of our scheme. Then we analyze how our scheme 

supports the dynamic changing of users. Finally we give the 

discussion for situation of uneven distributed interval.

A. Privacy Analysis
Theorem 1. The proposed smart meter data processing 

scheme satisfies e-local differential privacy.
Proof. In our scheme, the process of generating yj from x'i 
satisfies the k-Randomized Response that given in the section 
IV. Assuming that any two elements x i , xj  in X , we can have

Pr(xj\x) ^  \X\ — 1 + ee 
Pr(xj\x) "

\X\ -  1 + eE

In our scheme, the final submitted data yi satisfies

v — u
P(Vi\xi)=* xi -  u

v — xi xi — u
— • p +-----------q, Vi = u,v u  v — xi

p +---------- q, Vi = v,
Vi = u, v.

e

=e

v u
q

We assume that xi — u < v — xi ,

v — xi ee
P(yi\xf) < v — u \X\ — 1 +  ee
P(yi\x i) < ___

and there is

xi u 1
+  —----- • -----------------

v — u \X \ — 1 +  ee
1

\X \ — 1 +  ee
v — x i e x i — u
-------- ■ ee +----------
v u v u

< ee.

. , p  (yi \ xi)
It is easy to prove that when v — x i < x i — u, ,,—- < ef-

P  (yi \ x i)
also establishes. Therefore, the proposed scheme satisfies e- 

local differential privacy. □

We can see that the data collected by the control center 

are perturbed locally and satisfy LDP. Therefore, CC can only 

aggregate and analyze the data submitted by all smart meters 

to get the statistical results of the data, but cannot know the 

original data content of a single user. Overall, data privacy can 

be guaranteed in our scheme.

B. Accuracy Analysis
Theorem 2. The data discretization in our scheme does not 
reduce the statistical accuracy of data.

Proof. When user ui discretizes the raw data x i e
v x i[u, v) ,u , v  e X , he gets u with probability-------- and gets v
v — u

x i u
with probability —----- , therefore, the expectation of x - isv u

E (x'f) = u + v
v — u v — u

It can be seen that, the expectation of x - is equal to x i, thus 

there is no accuracy loss in the process of discretization. □

v x x u
= x

When the users’ data is not uniformly distributed, the 

expectation of x - is not equal to x i if the data is simply 

discretized instead of adopting our proposed algorithm, which 

increases deviation between the data aggregation result and 

the actual aggregation result.

C. Support for User Dynamics

In smart grid, there may be the join and exit of smart meters 

that participate in data aggregation. For each smart meter in the 

system, it can conduct discretization and perturbation locally 

with the input: data range, the division of subintervals and the 

privacy budget, which makes it very convenient for new users 

to join in the system.

When there exists users exiting the system or failing to 

submit data, as long as CC collects enough amount of data 

from other smart meters in the smart grid, it can still aggregate 

and analyze the data normally to obtain the estimation of 

power supply and demand of the smart grid. Therefore, our 

scheme has good support for users’ joining and exiting in the 

smart grid.

D. Situation of Uneven Distributed Interval

In section V, we divide the interval of submitted data 

equally in order to explain the content of the scheme more 

clearly. While in practice, the interval can be distributed into 

unevenly subintervals. The AG can reduce the interval near 

the average power consumption of users according to the 

experience. This will not threat users’ data privacy, and at the 

same time, CC can analyze the general power consumption 

habits of users in the region to a certain extent.

VII. Pe r f o r m a n c e  Ev a l u a t i o n

This section will analyze our scheme’s accuracy and 

efficiency through comprehensive measurements. We first 

analyze the accuracy performance with different privacy 

budgets e and numbers of subintervals s . Then we compare 

our scheme with two typical data aggregation schemes [10, 

14] in smart grid in terms of computation overhead and 

communication overhead. In [10], the smart meters add noise 

to the raw data and uploads it to the gateway through 

homomorphic encryption, and then the gateway obtains the 

final result through calculation on ciphertext. In [14], the 

privacy protection of smart meters’ data is realized by 

generating and distributing random numbers for each smart 

meter in advance.

All the experiments below are implemented on a standard 

64-bit Windows 10 system with a 3.00 GHz Intel Core 

i5 processor. Our scheme is implemented by Python (with 

version 3.7). The homomorphic encryption we use is paillier 

encryption from the phe library 1 of python. In the 

experiments, if there is no additional statements, the number of 

users we set is 1,000 in an aggregation task, and the submitted 

data range from 0 to 100 divided into 10 subintervals.

1https://pypi.org/project/phe/1.0/
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A. Utility Analysis

We consider different privacy budgets e and numbers of 

subintervals s to observe the utility of statistical results of our 

scheme. We randomly generate 1,000 numbers in [0,100] to 

simulate one thousand user data in data aggregation tasks, of 

which the correct aggregation result is 48,155. As shown in 

Fig. 2 and Fig. 3, the circle dotted line represents the actual 

value of the data aggregation task.

e

Fig. 2. Statistical result with the relationship of privacy budget and data 
accuracy

We first evaluate the impact of privacy budgets on the 

statistical analysis, and Fig. 2 shows the results under different 

privacy budgets. We can see that with the same number of 

subintervals s, the larger privacy budgets e is, the closer 

the statistical results is to the real value. This result is in 

line with the expectation of theoretical analysis. When the 

privacy budgets e are small, the probability of the submitted 

data falling into other intervals is much greater than that 

of the original interval, which makes the estimated value 

largely deviate from the real value. Nevertheless when the 

privacy budget is larger than 1.5, the error of the statistical 

results obtained by our scheme is relatively small, and the 

data accuracy is guaranteed. In the real world, the gateway 

can choose different privacy budgets according to different 

situations, so as to ensure the privacy of users’ data in different 

degrees under the condition of data utility.

Then we test the relationship between subinterval number 

and data utility, and Fig. 3 shows the results with different 

subinterval numbers s. When e = 1, the results fluctuate 

as the subinterval number grows. While when the value 

of privacy budget is reasonable (larger than 1.5 according 

to aforementioned experiment), the results keep steady with 

acceptable errors. Thus subinterval number is not the main 

factor that influence the utility performance.

B. Computation Overhead

In this section, we analyse and compare our scheme with 

Gope’s scheme [10] and Bao’s scheme [14].

Fig. 3. Statistical result with the relationship of subinterval number and data 
accuracy

TABLE I
Co m pu t a t io n  Ov e r h e a d  Co m pa r is o n

Scheme
Operations

Smart Meter Aggregator
Gope’s Scheme [10] H n(SE + H)
Bao’s Scheme [14] 2 * Ce + Cm (n -  1)Cm
Our Scheme 3ADD + 1MUL \X |(4ADD + 3MUL)

* We denote hash, symmetric encryption, exponentiation over a cyclic 
group G, multiplication over G, number of user, real number addition 
and real number multiplication as H, SE, Ce, Cm, n, ADD, MUL 
respectively.

TABLE I shows the comparison result of computation 

overhead of smart meters and aggregators (gateways in our 

scheme). We can see that smart meters and aggregators only 

need to conduct several times of real number addition and 

multiplication, which bring little computation overhead. To 

keep privacy preserved, in Gope’s Scheme, smart meters will 

conduct one hash operation, and aggregators need to conduct 

n  hash operations and symmetric encryptions. And Bao’s 

scheme includes several exponentiation and multiplication 

over a cyclic group G.

Fig. 4 shows experimental results. Since the overhead of 

exponentiation and multiplication over G is much larger 

than other operations, Bao’s scheme consumes longest time 

during aggregation process. On the contrary, benefit from 

the lightweight real number addition and multiplication, our 

scheme has the best performance, with 0.0225 ms  time cost 

at smart meters and 0.0454 ms  time cost at aggregators.

Fig. 5 shows the total computation overhead of the aggre-

gators with varying numbers of smart meters participating in 

the data aggregation task. When the number of smart meters 

participating in the task is not large, the computation cost 

of the three schemes are all acceptable. However, when the 

number of participating meters increases, the computation 

overhead of Gope’s scheme and Bao’s scheme will grow 

approximately linearly. While in our scheme, the computation

78

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 01,2021 at 00:08:45 UTC from IEEE Xplore.  Restrictions apply. 



Smart Meter Aggregator

Fig. 4. Computation overhead of different entities

#  o f smart meters

Fig. 5. Computation overhead of the aggregators with varying numbers of 
smart meters

overhead of the aggregators remains stable, of which the 

reason is that the aggregators only has to count the number 

of each discrete value and calculate the final result. Therefore, 

the computation overhead is much more smaller than schemes 

based on cryptography algorithm.

In the real-world smart grid system, the number of smart 

meters participating in data aggregation tasks is often very 

large. In addition, the tasks of data aggregation is often 

very frequent in smart grid, which requires the computation 

overhead of every single data aggregation task to be as small 

as possible. Through the analysis of computing overhead, we 

can conclude that our scheme is more efficient and practical 

than other schemes in the real-world smart grid system.

C. Communication Overhead

In this section, we analyse communication overhead of our 

scheme and compared two schemes. The total communication 

overhead of a single aggregation task with different numbers 

of participating smart meters is shown in Fig. 6. Due to the

# of smart meters

Fig. 6. Communication overhead with varying numbers of smart meters

large range of communication overhead, we use logarithmic 

coordinates to show the experimental results.

For fairness consideration, in Gope’s scheme, we only 

consider the communication cost in the data aggregation part 

of the scheme for comparison. As shown in Fig. 6, the 

communication overhead of these three schemes increases 

with the growing number of smart meters. Since there is no 
encryption in our scheme, only the division of the interval, 

the privacy budget, perturbed data and aggregation results 

are needed to be transmitted during the aggregation process. 

Considering the large volume of ciphertext, our scheme has 

the least communication overhead. While in Gope’s scheme, 

besides necessary perturbed data and aggregation results, it 

needs to transmit extra 2 hash values and one ciphertext. Thus 

communication overhead of Gope’s scheme is larger than ours. 

Besides, Bao’s scheme introduces encryption based on a cyclic 

group G, of which the overall communication overhead is 

(2n +  2) • Lg , leading to the largest communication overhead. 

Here L g  is the output of the modular operation in G assumed 

to be 1024 bit.

VIII. Co n c l u s i o n

In this paper, we proposed a privacy-preserving data 

aggregation scheme for the smart grid. Considering the 

limited computation ability of smart meters, we reduced the 

computation burden of smart meters that participate in data 

aggregation tasks. By designing a special data discretization 

algorithm and randomized response mechanism, the scheme 

achieves the privacy-preserving smart grid data aggregation 

which satisfies the LDP. Unlike existing schemes based on 

masking values, our scheme is able to run normally without 

a trusted third party. Since users need not to negotiate with 

each other for the masking values, our scheme can also deal 

with users joining and exiting in the smart grid. Through 

the comprehensive analysis, our scheme is shown to be 

privacy-preserving with less computation and communication 

overhead, compared with other available literatures.
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