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Abstract—Industries and individuals outsource database to
realize convenient and low-cost applications and services. In
order to provide sufficient functionality for SQL queries, many
secure database schemes have been proposed. However, such
schemes are vulnerable to privacy leakage to cloud server. The
main reason is that database is hosted and processed in cloud
server, which is beyond the control of data owners. For the
numerical range query (“>”, “<”, etc.), those schemes cannot
provide sufficient privacy protection against practical challenges,
e.g., privacy leakage of statistical properties, access pattern.
Furthermore, increased number of queries will inevitably leak
more information to the cloud server. In this paper, we propose
a two-cloud architecture for secure database, with a series
of intersection protocols that provide privacy preservation to
various numeric-related range queries. Security analysis shows
that privacy of numerical information is strongly protected
against cloud providers in our proposed scheme.

Index Terms—database, range query, privacy preserving, cloud
computing

I. INTRODUCTION

THE growing industry of cloud has provide a service
paradigm of storage/computation outsourcing helps to

reduce users’ burden of IT infrastructure maintenance, and
reduce the cost for both the enterprises and individual users
[1], [2], [3]. However, due to the privacy concerns that the
cloud service provider is assumed semi-trust (honest-but-
curious.), it becomes a critical issue to put sensitive service
into the cloud, so encryption or obfuscation are needed before
outsoucing sensitive data - such as database system - to cloud
[4], [5], [6].

The typical scenario for outsouced database is described in
Fig. 1 as that in CryptDB[7]: A cloud client, such as an IT
enterprise, wants to outsource its database to the cloud, which
contains valuable and sensitive information (e.g. transaction
records, account information, disease information), and then
access to the database (e.g. SELECT, UPDATE, etc.) [8], [9],
[10], [11], [12]. Due to the assumption that cloud provider is
honest-but-curious [13], [14], the cloud might try his/her best
to obtain private information for his/her own benefits. Even
worse, the cloud could forward such sensitive information to
the business competitors for profit, which is an unacceptable
operating risk.

The privacy challenge of outsouced database is two-hold.
1) Sensitive data is stored in cloud, the corresponding private
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information may be exposed to cloud servers; 2) Besides data
privacy, clients’ frequent queries will inevitably and gradually
reveal some private information on data statistic properties.
Thus, data and queries of the outsouced database should be
protected against the cloud service provider.

One straightforward approach to mitigate the security risk
of privacy leakage is to encrypt the private data and hide the
query/access patterns. Unfortunately, as far as we know, few
academia researches satisfy both properties so far. CryptDB
[7] is the first attempt to provide a secure remote database
application, which guarantees the basic confidentiality and
privacy requirement, and provides diverse SQL queries over
encrypted data as well. CryptDB uses a series of cryptographic
tools to achieve these security functionality. Especially, order-
preserving encryption [15] is utilized to realize numeric-
related range query processes. From the perspective of query
functionality, CryptDB supports most kinds of numerical SQL
queries with such cryptology. However, such privacy leakage
hasn’t been well addressed thoroughly, since OPE is relatively
weak to provide sufficient privacy assurance.

Some specific purpose cryptology like order preserving
encryption(OPE) will expose some private information to the
cloud service provider naturally: As it is designed to preserve
the order on ciphertexts so that it can be used to conduct
range queries, the order information of the data, the statistical
properties derived therefrom, such as the data distribution,
and the access pattern will be leaked. Can we design a
new database system to provide range queries with stronger
privacy guaranty?

From the work in [16], the privacy can be preserved against
the cloud, if the sensitive knowledge is partitioned into two
parts, and distributed to two non-colluding clouds. In the
literature [17], the authors also introduce a two-party system
to design a secure knn query scheme, which enables the client
to query k most similar records from the cloud securely.
This divide-and-conquer mechanism can know any private
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information from one singe isolated part of the knowledge,
and each of both clouds only knows its own part. In this paper,
we introduce a secure two-cloud database service architecture,
where the two clouds are non-colluding and both of them
knows only part of knowledge. Based on this architecture,
we further propose a series of interaction protocols for a
client to conduct numeric-related query over encrypted data
from remote cloud servers. The numeric-related query includes
common query statements, such as greater than, less than,
between, etc..

The main contribution of this paper can be summarized as
follows: 1) We propose a two non-colluding cloud architecture
to conduct a secure database service, in which the data is
stored in one cloud, while the knowledge of query pattern is
well partitioned into two parts, and knowing only one cannot
reveal any private information; 2) We then present a series of
intersection protocols to provide numeric-related SQL range
query with privacy preservation, and especially, such protocols
will not expose order-related information to any of the two
non-colluding clouds.

The rest of this paper is organized as follows: Section
II discusses the related work. In Section III, the two-cloud
architecture is presented, following with security assumption
and security requirements. In Section IV, some definitions are
given, including the preliminaries of cryptographic techniques.
We provide the detailed scheme in Section V, and discuss the
privacy and performance properties of the proposed scheme
in Section VI and Section VII, respectively. Section VIII
concludes this paper.

II. RELATED WORK

Fuzzy query over encrypted data is becoming a popular
topic, since in practical scenarios, some query requests usu-
ally want to retrieve data with similar, rather than exactly
same indexes[18], [19]. Fuzzy searchable encryption has been
introduced for cloud computing in many literatures, such as
[20], [21], [22], [23], [24], [25]. These schemes deal with the
issue that search keywords allows small-scaled distinction in
character/numeric level. Specifically for numerical keywords,
the query predicate can get numerical records within a range.
Some schemes targeted at spatial query, especially knn [17],
[26], [27], [28], [29], which focus on the distance between
the query vector and the data. They usually inquire about
certain spatial objects (or several numerical attributes) related
to the others within a certain distance. Range query [30],
[31], [32] has been proposed for that purpose. However, such
existing range query schemes are not suitable for practical
secure database due to high storage overhead to maintain the
corresponding ciphertext.

Subsequently, order preserving encryption (OPE) [15], [33],
[34], [35], [36] has been introduced to provide numeric-related
range query in structured database, such as CryptDB [7]. OPE
preserves the order of values in encryption field, while hiding
the actual values. Until now, OPE has been developed to
increase both efficiency and security[15], [34], [36]. Popa et
al. [15] proposed an ideal-security OPE scheme, in which,
an adversary - even having the access privilege to a set of

ciphertexts - still cannot learn the knowledge of data with
non-negligible advantage. Although in Boldyreva et al. [34]’s
definitions, such property has achieved the security boundary
of OPE (IND-OCPA), that ideal-secure OPE still cannot satisfy
the privacy requirement of secure database. OPE inherently
exposes the order of data, that can be utilized to reveal an
amount of critical knowledge, although it is always expected
to be private.

Bohli et al. [16] proposed a multi-cloud architecture, which
can protect the private information of many outsourced ser-
vices, including database. The main contribution is the intro-
duction of four knowledge partition patterns among multiple
cloud service providers: (1) Replication of applications, (2)
Partition of application system into tiers, (3) Partition of ap-
plication logic into fragments, and (4) Partition of application
data into fragments. The knowledge is partitioned into two
fragments, respectively stored in one cloud, who is assumed
to be non-colluding to another cloud. Therefore, no cloud can
get any private information in such multi-cloud architecture.
However, Bohli et al. [16] have not provided a detailed scheme
or realization for database.

In this paper, with the multi-cloud prototype in [16], [37],
[38], we introduce a two non-colluding cloud database service
architecture and propose a series of practical interaction proto-
cols to conduct database range queries. In addition to securing
the data contents, our scheme also well preserves the privacy
of logical relationship among data contents, such as data order,
the privacy of the statistical properties and query pattern.

III. SYSTEM ARCHITECTURE, SECURITY ASSUMPTION
AND SECURITY REQUIREMENTS

A. System Architecture

Our proposed secure database system includes a database
administrator, and two non-colluding clouds. In this model,
the database administrator can be implemented on a client’s
side from the perspective of cloud service. The two clouds
(refer to Cloud A and Cloud B), as the server’s side, provide
the storage and the computation service. Fig. 2 briefly depicts
the architecture of our outsourced secure database system in
our scheme.

The two clouds work together to respond each query request
from the client/authorized users (availability). For privacy
concerns, these two clouds are assumed to be non-colluding
with each other, and they will follow the intersection protocols
to preserve privacy of data and queries (privacy).

In our scheme, the knowledge of stored database and queries
is partitioned into two parts, respectively stored in one cloud.
The mechanism guarantees that knowing either of these two
parts cannot obtain any useful privacy information. As shown
in Fig. 2(a), to conduct a secure database, data are encrypted
and outsourced to be stored in one cloud (Cloud A), and the
private keys are stored in the other one (Cloud B). For each
query, the corresponding knowledge includes the data contents
and the relative processing logic. We utilize a prototype
of knowledge partition, dividing application logic into two
parts, which is firstly proposed by Bohli et al. in [16]. The
application logic, as a secret knowledge, is partitioned into
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Fig. 2. Two-Cloud Database Architecture and Knowledge Partition Prototype

two parts, each of which is only known to one cloud. This
prototype is shown in Fig. 2(b). Intuitively, this two-cloud
architecture increases some complexity to some extent, and
we will analyze and point out that this overhead is acceptable
in Section VII-A.

B. Security Assumption

Following the general assumption of many related works in
public cloud, we assume the clouds to be honest-but-curious:

On one hand, both of the two clouds will respond with
correct information in the interactions of our proposed scheme
(honest); on the other hand, the clouds try their best to obtain
private information from the data that they process (curious).
From the perspective of privacy assurance, here the data not
only include permanently stored information (i.e., database),
but also each temporary query request (i.e., queries).

Additionally and importantly, as the assumption in some
existing works [16], [38], we assume that the two clouds A
and B are non-colluding: Cloud A follows the protocol to
add required obfuscation to protect privacy against cloud B,
so that cloud B cannot obtain additional private information
in the interactions with Cloud A. No private information is
delivered beyond the scopes of protocols.

C. Potential Threats and Privacy Requirements

This section describes the potential threats and the privacy
requirements when the database is outsourced to public cloud.
The stored data contents and the query processes. Although
there are many data encryption schemes, some fail to pro-
vide sufficient privacy preservation after statistical analysis:
Repeated and large-amount query processes not only leak the
access patterns, but also disclose the stored encrypted data
progressively.

The privacy issues we consider in this paper mainly include
data contents, statistical properties, and query pattern as
follows:

Query1.   > A1

Query2.   < A2

Query Processes Guessed OrderColumn iT

(1)iT

(2)iT

(3)iT

iT

iT

(1)iT (3)iT
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Fig. 3. Repeated Query Discloses Statistical Properties ( For example, after
two simple queries over one same column, the order relationship of some data
in certain column can be determined.)

◦ Data contents. The privacy of data contents includes (1) the
definition and description of each column (column name)
in the table of the stored database, and (2) the values of
each record in the table. Some related works have mainly
focused on this issue, in which the column names are
blinded (such as CryptDB [7]) and meanwhile the values
are encrypted with some other encryption techniques (such
as Order Preserving Encryption[33]) and some deterministic
encryption schemes[7], so that the adversaries cannot easily
and directly guess the meaning of the column, or the values
of the data. However, in an outsourced database, utilizing
encryption alone, without other mechanisms, is far from
being enough to preserve the privacy of the data contents.
With the development of data analysis, by extracting fea-
tures from data and queries, classification technique can help
understand the definition of columns, and then breach of
confidentiality of data contents. [39], [40].
◦ Statistical properties. Besides the static properties can dis-

close the private information of data contents, such prop-
erties themselves are already sensitive and private for the
client. Order Preserving Encryption(OPE), which is widely
used in constructing the secure database, with support of
range queries, directly exposes the statistical information
in the encryption field. Furthermore, the leakage of statistic
properties is part of the nature of outsourced cloud database
service: the cloud can learn the statistical properties (like
order) by repeated query requests. As an example, Fig. 3
describes such an attack: After two simple queries over one
same column, the order relationship of some data in certain
column can be determined. There are also some other direct
and indirect scenarios to leak statistical properties. In this
way, even though the order property is not exposed to the
semi-trusted cloud at the beginning, the cloud can gradually
find out the order information after many query requests.
◦ Query pattern. The query pattern also contains privacy

information, as they can reveal the client’s purpose of the
query. Even worse, such pattern can leak some statistical
properties, as discussed above.

Based on the above discussion, we assert that an outsourced
secure database providing numeric-related queries should pre-
vent the following private information from being obtained by
the honest-but-curious clouds:

◦ Data contents. The data contents includes item values and
column names, which are the raw data that should be
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protected against any potential adversaries.
◦ Statistical properties. It includes the order of data and their

probability distributions, some of which include “>”, “<”,
“=”, “BETWEEN”, etc.

◦ Query pattern. Each query should be kept private against
the honest-but-curious clouds and any unauthorized parties.
The secrecy of such pattern should be well preserved even
after many query processes.

IV. PRELIMINARIES AND SOME DEFINITIONS

A. Paillier Cryptographic Algorithm

There are various cryptographic techniques to support
numeric-related operations (e.g. addition, multiplication, X-
OR) upon the encryption field. Paillier cryptosystem [41] is
one of the most popular techniques that provides addition
homomorphic, which means: if two integers a and b are
encrypted with a same key k into two ciphertexts (be denoted
as Ek(a) and Ek(b)), there exists an operation (refer to as
“⊗”), such that

Ek(a)⊗ Ek(b) = Ek(a+ b).

Paillier cryptographic algorithm is composed of the follow-
ing phases: key generation, encryption and decryption.
◦ Key generation. Two large and independent prime numbers
p and q are randomly selected. Then we compute n = p · q
and µ = λ−1 mod n, where λ is the least common multiple
of p and q, and commonly λ = lcm(p−1, q−1). The public
key (PK) is n, and the private key (SK) is (λ, µ).

◦ Encryption. Let m be the integer to be encrypted. Firstly,
we select a random number r ∈ Z∗n2 , and then the ciphertext
of m can be computed as follows:

E(m; r) = (n+ 1)m · rn mod n2. (1)

◦ Decryption. Let the ciphertext c = E(m; r). The plaintext
m can be recovered as follows:

m =
( (cλ mod n2) − 1

n

)
· µ mod n. (2)

Paillier cryptosystem holds additive homomorphic in group
Z+
n , which corresponds to the multiplication operation in the

encryption field in Zn2 . The following equation illustrates the
homomorphic property of Paillier cryptosystem.

E(m1; r1) · E(m2; r2) =(n+ 1)m1rn1 · (n+ 1)m2rn2

=(n+ 1)m1+m2(r1 · r2)n

=E(m1 +m2; r1 · r2)
(3)

Another property can be be summarized as follows:

Em2(m1; r1) =((n+ 1)m1rn1 )
m2

=(n+ 1)m1·m2(r1
m2)n

=E(m1 ·m2; r
m2
1 ).

(4)

As the random number r does not affect the result of
decryption in Paillier encryption, Eq. (4) can be seen as the
product of m1 and m2 in the encryption field.

In the rest of this paper, we use E(m,PK) to denote the
encryption result of the plaintext m with PK, and D(X,SK)
to denote the decryption result. We use capital letters like “X”

to denote encrypted results (ciphertext), and lowercase letters
like “x” to denote unencrypted results (plaintext). The random
number r ∈ Z∗n is omitted in the discussion of our scheme.

For number comparison, the sign of an plaintext number in
Paillier cryptosystem is defined as follows: each participated
plaintext integer x is assumed to be x < n/2. Then for clarity,
the sign of x is defined to be positive if 0 < x < n/2, and
the sign is defined to be negative if x > n/2. As a result, the
arithmetic subtraction of arbitrary two integers (xi − xj) will
not exceed the threshold n/2 if xi > xj , and the subtraction
will exceed n/2 if xi < xj .

B. Numeric-Related SQL Queries

The Structured Query Language (SQL) is a specified-
purpose programming language, which is used to manage data
in a relational database system, which has became a standard
of the ANSI and ISO in 1986[42] and 1987[43] respectively.

A query operation can request arbitrary data with a state-
ment to describe the desired data. The requested data can
be several columns of one or more tables in the database,
and it can also be aggregated results from the original data
(such as sum, average, count of the data.). To obtain the
desired data, the query contains some statements to describe
the requirement, e.g. some numeric-related (“>”, “<”, “=”,
“BETWEEN”, etc.). For clarity, we refer to those query re-
quests as numeric-related SQL queries in the rest of the paper.

Based on the introduced two-cloud architecture, we further
propose a series of interaction protocols between the client
and the two clouds, which can realize numeric-related SQL
queries, and satisfy privacy requirements. It should be noted
that, apart from the query operation, there are other SQL
operations (e.g. update, insert) which modify the data. The
privacy issue for such cases can be relolved with other existing
approaches, such as ORAM (Oblivious RAM) [38], [44], [45],
which is beyond the scope of our paper. In this paper, we focus
on implementing query operation with privacy preserving.

V. OUR PROPOSED TWO-CLOUD SCHEME

In this section, we firstly give an overview of our proposed
two-cloud scheme, and then present the detailed interaction
protocols to realize range query with privacy preservation on
outsourced encrypted database.

A. Overview

In our scheme, two clouds (refer to Cloud A and Cloud B,
respectively) have been assigned distinct tasks in the database
system: Cloud A provides the main storage service and stores
the encrypted database. Meanwhile, Cloud B executes the
main computation task, to figure out whether each numerical
record satisfies the client’s query request with its own security
key. With the assumption of no collusion between two clouds,
the knowledge of application logic can be partitioned into two
parts in our proposed scheme, where each one part is only
known to one cloud. As we will analyze in this paper, one
single part of knowledge cannot reveal privacy of the data
and the query.
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Based on the two-cloud architecture, our scheme provides
an approach to query numeric-related data with privacy p-
reservation. The client can retrieve the desired data from
the cloud, when the query predicates contain operators like
“>”, “<” and “BETWEEN” for one column, or even di-
verse condition combinations over one or more columns. For
example, the client wants to retrieve items from the table,
whose column Ti should be greater than a constant a (i.e.,
SELECT ∗ FROM table WHERE Ti > a). In our scheme, it
is resolved by figuring out the sign of each value of (Ti(j)−a),
in which j traverses all rows of the whole table. If the result is
greater than 0, the relevant item satisfies the query predicate.
These procedures are executed in the encryption field, so that
the privacy is strongly preserved. Meanwhile, each column
name Ti must be encrypted.

Accordingly, if the operator is reversed, i.e., the predicate
becomes “Ti < a”, the corresponding operation is (a−Ti(j)).
The remaining phases are similar as the above mentioned case.
Meanwhile, if the predicate is “BETWEEN a and b”(SELECT
* FROM table WHERE Ti BETWEEN a AND b), the result is
the intersection of Ti > a and Ti < b. For the predicate “=a”,
it is treated as a special case of the operator “BETWEEN”,
where the retrieved items are intersection set Ti > a− 1 and
Ti < a + 1. Additionally, the operator of COMBINATION is
another one that combines predicates with boolean expression
with ∨ and ∧.

In Section V-B, we first present the intersection procedure
of the first case(“>”). Then in Section V-C we give some
necessary introductions about “<”, “BETWEEN”, “=” and
COMBINATION.

The proposed mechanism can preserve the privacy of data
and query requests against each of the two clouds. Specifically,
Cloud A only knows the query request type and the final
indexes, but due to dummy items appending, Cloud A cannot
accurately understand the finally satisfied index set for each
single request. Meanwhile, in order to prevent Cloud A from
launching multiple specific-purpose query requests to deliber-
ately to seek more knowledge about the data, we introduce a
token based scheme, which can restrict the number of items
and the range of columns that Cloud A can only process.
For Cloud B, it knows the satisfied indexes of each single
request, but after the proposed operations, it does not know
the relationship of the corresponding items. Moreover, Cloud
B can hardly distinguish whether two received columns are
generated from one or more columns in the original database.

B. The Basic Scheme for Operator “>”

As mentioned above, in our scheme, Cloud A permanently
stores the client’s encrypted database, and it also keeps the
public keys related to the encrypted items in the database.
Cloud B keeps the relevant private keys and undertakes the
main task of computation.

Our proposed scheme is composed of Table Creation and
Query Protocol. The intersection procedure of Query Proto-
col consists of four parts: Query Request, Item Send, Index
Send, and Query Response, along with necessary computation
operations as depicted in Fig. 4.

1) Table Creation: After the client rents the cloud service,
he/she will outsource the database application to the cloud.
To protect the private information, the following procedure is
implemented before uploading to the cloud:

� For each column of the table (column in the table), the
client randomly selects a symmetric key K, and then use
it to encrypt each column name Ti (1 ≤ i ≤ m, where
m is the total column number of the table). The encrypted
name is denoted as E(Ti), assumed with equal length. The
symmetric key K should be securely kept by the client.
� For each item (row in the table), its values in multiple

columns should also be encrypted. In this paper we only
take into consideration the numeric-related data. The client
generates a public/private key pair for Pallier cryptosystem,
denoted as PK and SK. For each numeric-related value x,
the client uses PK to encrypt it as follows:

X = E(x, PK),

and the client should record the total item number of the
table N .

Then, the encrypted table is uploaded to Cloud A, as well
as the public key PK. Meanwhile, the private key SK will be
securely sent to Cloud B. Without loss of generality, we take
only one table for example in this paper. For multiple tables
in a database, table names can be encrypted in the same way
that column names are encrypted.

2) Query Request: When the client wants to retrieve some
data from the outsourced database, he/she firstly generates a
SQL query (e.g. “SELECT ∗ FROM table WHERE Ti >
a”). After the plaintext query request is generated, it will be
modified to an encrypted query following these steps:

� Encrypt the column name. The client computes the column
name E(Ti) with the symmetric key K.
� Encrypt the range boundary value. The client encrypts the

range boundary value a with the public key PK in Pallier
cryptosystem. The encrypted boundary value is denoted as
“A”, as shown in Fig. 4.
� Generate the token. The client analyzes the query

request and figures out how many columns are in-
volved. Then, the client generates the corresponding token
Sign(TNO||CN||N ||T ), where TNO is the token serial
number, and CN is the number of involved columns, N
is the total item number in the table, and T is the current
timestamp. All these data are signed by the client’s private
key SK.
� Send the query request.Then the client sends the encrypted

query request to Cloud A as follows:

SELECT ∗ FROM table WHERE E(Ti) > A,

together with the signed token. Here, for the above SQL
query, the specific column number CN is “1”.

3) Item Send: Cloud A finds the column named E(Ti).
Before sending the items to Cloud B, it implements the
following three phases:
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Fig. 4. The Query Protocol. The actions are performed in our designate orderd, which is marked up with circled number, like 1©, 2©,..., 9©.

� Number Comparison ( 2© in Fig. 4). For each item Xj = Tij
in the column, Cloud A selects a random positive integer rj
and εj individually, where 0 ≤ εj < rj , and then computes:

X ′j =
(Xj

A

)rj · E(−εj , PK). (5)

With the additive homomorphic property of Paillier cryp-
tosystem, the decryption result of Eq. (5) is equal to
(xj − a) · rj − εj . As the integer rj is positive and not
too large, the values of (xj − a) · rj − εj and xj − a have
the same sign. All X ′j (j ∈ indexes of items in the column.)
are stored in another temporary column (named L).
� Items shuffling ( 3© in Fig. 4). Cloud A further makes a

random item shuffling in the column L to generate a new
column L′. To be noted, Cloud A should securely store the
mapping of the items between the shuffled column L′ and
the original column L in a new column M.
Finally, Cloud A removes the column name E(Ti) from the

column L′, and sends it to Cloud B together with the token
received from the client.

4) Index Send: After receiving the column and the token
from Cloud A, Cloud B firstly verifies the legitimacy of the
received token to make sure it hasn’t expired and hasn’t re-
used in a specific time interval. Then Cloud B checks the
column from A to make sure that the column number and the
item number are consistent with these corresponding values in
the token. If the request is authorized, then Cloud B decrypts
each item as follows:

x′j′ = D(X ′j′ , SK), (6)

where j belongs to the item indexes in the column. For each
decrypted item x′j′ , if x′j′ > 0, the index j′ is inserted
into a new index array L′′. Additionally, from the aspect of
privacy preservation, then Cloud B appends a certain number
of dummy indexes and inserts them to the random positions
of the new index array L′′. Finally, Cloud B returns the final
index array L′′ to Cloud A.

5) Query Response: For each item j′ in the received index
column L′′, Cloud A looks up the index mapping information
column M, and gets its corresponding index j in the original
column. According to the mapped index j, Cloud A sends the
corresponding rows in the table, as the query response, to the
client.

After receiving the response, the client can decrypt the items
with SK to obtain the required data, and removes dummy
items that does not satisfy the query predicate.

C. Variant Schemes for Operator “<”, “BETWEEN”, “=”
and COMBINATION

In Section V-B, we have introduced the query procedure for
operator “>”. Here we extend that procedure to other operators
“<”, “BETWEEN”, “=” and COMBINATION.

1) Operator “<”: When the operator in the query is “<”,
the operation of query request and item send are slightly
modified based on the scheme for the operator “>”.

In the operation of query request, the form of the encrypted
query is modified as follows:

SELECT ∗ FROM table WHERE E(Ti) < A.

In the operation of item send, the difference lies in the phase
of Number Comparison. In order to implement the subtraction
(a−Ti(j)), the corresponding operation in the encryption field
is:

X ′j =
( A
Xj

)rj · E(−εj , PK). (7)

It should be noted that Cloud B cannot learn whether the
operator in the query request is “>” or “<”, since in the
operation of index send, Cloud B only needs to filter the items
greater than 0 in the operated column, where it is the same
for “>” and “<”.

2) Operator “BETWEEN” and “=”: When the operator
in the query is “BETWEEN” (SELECT * FROM table WHERE
Ti BETWEEN a AND b), it is equivalent to an “AND” logic
as follows:

(Ti > a) ∧ (Ti < b). (8)

The operator “=” can be treated as a special case of
“BETWEEN”: the predicate “Ti = a” can be translated to:
“Ti BETWEEN a− 1 AND a+ 1”, so it is also equivalent to
an AND logic:

(Ti > a− 1) ∧ (Ti < a+ 1). (9)

Therefore, the operator “BETWEEN” and “=” can be treated
as the combination of operator “>” and operator “<” over
one column. However, it should be noted that, from the view
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of Cloud B, it is still one combined query request over two
independent columns originating from the same values but
with different processing.

Cloud A generates two new columns based on the same
original column in the operation of item send. There are some
key points to be worthy mentioned: 1) The random positive
integers to generate the two items of these two different
columns with the same index j are chosen randomly and
independently; 2) The specific column number (CN ) in the
token is set to “2”; 2) These two new generated columns
should be shuffled with the same mapping, which will result
in only one mapping information column both for these two
columns.

These two restrictions are introduced to keep the priva-
cy protection beyond each cloud’s knowledge. The detailed
scheme can be treated as a special case of that in operator
COMBINATION, which will be discussed in Section V-C3.

3) Operator COMBINATION: More complex numeric-
related query requests can be regarded as a combination of
multiple simple requests, where the predicate is over multiple
columns. For this scenario, the predicate can be concatenation
of several simple conditions with logic gates, “∨” and/or “∧”,
e.g., “((Ti1 > a1) ∧ (Ti2 > a2)) ∨ (Ti3 < a3)”.

The basic idea to realize this type of complex query request
is intuitive: Firstly, we run separately and independently the
procedures in Section V-B and Section V-C1 to generate a
index set for each simple condition(e.g. Ti1 > a1 or Ti2 < a2).
Then, if the logic gate is “∨”, we can compute the union
of two index sets; Otherwise, for “∧”, we can compute the
intersection of them. For instance, if S1, S2 and S3 are the
index sets respectively for three simple conditions Ti1 > a1,
Ti2 > a2, and Ti3 < a3. Then the final index S of the
combination query request above is as follows:

S = (S1

⋂
S2)

⋃
S3 (10)

To realize that in our two-cloud architecture with privacy
preservation, there are some modifications from our schemes
for operator “>” and operator “<”. The modified procedures
for operator COMBINATION is as follows:
◦ Query Request. The request with operator COMBINATION

can be transformed to the combination of several simple
condition requests. For the query predicate “((Ti1 > a1) ∧
(Ti2 > a2)) ∨ (Ti3 < a3)”, the corresponding predicate
uploaded to Cloud A is as follows:

((E(Ti1) > A1)∧ (E(Ti2) > A2))∨ (E(Ti3) < A3), (11)

where A1, A2 and A3 are the ciphertexts of a1, a2, and a3,
respectively encrypted with the public key PK. Therefore,
the complex query request can be split into 3 simple query
requests (with only one condition) as follows:

SELECT ∗ FROM table WHERE E(Ti1) > A1,

SELECT ∗ FROM table WHERE E(Ti2) > A2,

SELECT ∗ FROM table WHERE E(Ti3) < A3.

◦ Item Send. Following the operations in Section V-B and
Section V-C1, Cloud A independently deals with each
simple request, and stores the corresponding new generated

columns. Here the involved column number equals to the
number of the simple requests. To be noted, the random
item shuffling from L to L′ is identical for different new
generated columns in one operator COMBINATION. Finally,
Cloud A sends the shuffled item columns without column
names, as well as the logic relationship (composed of Union
and/or Intersection) and the client’s signed token to Cloud
B.
◦ Index Send. After the token verification, for each received

column, Cloud B goes through each decrypted items to
obtain the individual satisfied indexes as the operation in
Section V-B4. Then Cloud B computes the final index array
following the received logic relationships, like the instance
shown in Eq. (10). In addition, from the aspect of privacy
preservation, Cloud B appends a certain number of dummy
indexes into the final index array. The final index array is
sent back to Cloud A.

◦ Query Response. It is the same as that in the basic scheme
for operator “>” with no additional processing needed.

VI. SECURITY ANALYSIS

In this section, we will focus on the privacy preservation in
the outsourced query processes against two honest-but-curious
clouds. We first prove two theorems to illustrate the privacy-
preserving of Cloud A and B. And we further analyze the
order privacy of item values in CloudA and possible security
issues due to repeated queries.

A. Security Proof

Theorem 1. Cloud A cannot obtain any information from
the user’s query and the stored encrypted database as long
as Paillier cryptosystem is semantically secure, and Cloud A
and B are non-colluding.

Proof. We can prove this theorem using the composition
theorem [46] under the semi-honest model by analyzing the
security of step 1)-3). Note that, in these steps, since all the
data received by Cloud A is encrypted and the computation
steps are all performed in the ciphertext domain, and because
of the semantic security of Paillier cryptosystem [41], Cloud A
cannot deduce any private information from these three steps
unless Cloud B colludes with it.

Theorem 2. Cloud B cannot infer any private information
from Cloud A’s input as long as blinding factors are properly
generated, and Cloud A and B are non-colluding.

Proof. Similarly, this theorem can be proved using the compo-
sition theorem [46] under the semi-honest model by analyzing
the security of step 4). After receiving the Cloud A’s input,
Cloud B will decrypt it with private key and obtain the
plaintext of L′. Since L′ is generated from the original column
Ti, as long as knowing L′ gives Cloud B negligible advantage
in distinguishing Ti compared with random guesses [47], the
privacy of Ti will be well-preserved. Blinding factors rj and
εj obfuscate the true value of xi − a, so this requirement can
be fulfilled by generating them properly. Literature [48] gives
a security proof of such blinding factors in Appendix 1, we
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now briefly prove it. Our goal is to let Cloud B not be able to
derive xi from ri · (xi − a)− εi. In the following, we assume
a equals to 0, xi > 0 and yi = ri · xi − εi. This goal can
be achieved if given that one knows yi, the corresponding
xi that satisfied yi = ri · xi − εi has ρ different uniformly
distributed values, and ρ is large enough. Let us define S(yi)
be the set of possible xi values, where |S(yi)| = ρ, and prove
the following theorem. If theorem 3 holds, we can express
|S(yi)| as follows:

|S(yi)| =

{
2a− 1 if a(a− 1) + 1 ≤ yi ≤ a2

2a if a2 + 1 ≤ yi ≤ a(a+ 1)
(12)

So, as long as a is large enough, which is equivalent to
rj is large enough, the possibility of guessing correct xi is
negligible.

Theorem 3. If yi = a2 or yi = a2±a, for some a ≥ 2, a ∈ Z,
|S(yi)|+ 1 = |S(yi + 1)|. Otherwise, |S(yi)| = |S(yi + 1)|.

To prove the theorem, 1) we first consider such a case:
εi 6= 0. As yi = ri · xi− εi, we get yi+1 = ri · xi− (εi− 1),
since ri > εi − 1 ≥ 0, so xi ∈ S(yi + 1). 2) When ε = 0 and
xi−ri < −1, yi = ri ·xi = xi ·ri, it is obvious that ri ∈ S(yi).
Rearrange yi = ri ·xi as yi+1 = (ri+1) ·xi−(xi−1). Since
ri + 1 > xi − 1, so xi ∈ S(yi + 1). Since xi > xi − 1, so
ri + 1 ∈ S(yi + 1). We can further prove ri /∈ S(yi + 1) and
ri + 1 /∈ S(yi + 1) based on contradiction, to illustrate that
xi ∈ S(yi) and ri ∈ S(yi) uniquely maps to xi ∈ S(yi + 1)
and ri + 1 ∈ S(y1 + 1). 3) Using similar proof technique,
we can prove that when εi = 0 and xi − ri > 1, xi ∈ S(yi)
and ri ∈ S(yi) uniquely maps to xi + 1 ∈ S(yi + 1) and
ri ∈ S(y1 + 1). When εi = 0 and |xi − ri| ≤ 1, which
means yi = x2i or yi = x8 · (xi − 1), it can be proved that
xi ∈ S(yi) and ri ∈ S(yi) uniquely maps to xi ∈ S(yi + 1),
xi + 1 ∈ S(yi + 1) and ri ∈ S(y1 + 1). Thus, the theorem
holds. The detailed proof can be found in [48].

B. Order Privacy of Item Values

An ideal scheme is required to make nothing of the sta-
tistical properties be leaked to the curious clouds. However,
the privacy leakage of statistical properties in a practical
outsourced database system is inevitable, as returning subset
of data rather than universe requires knowledge for filtering.
For instance, if the client wants to retrieve Ti > a from the
outsourced database, a cloud server without any knowledge
of the order can only return all items of the database to the
client, which is not usable.

Therefore, there should be a trade-off between the order
privacy and availability of range queries. In the outsourced
range query application, there is a range boundary value (e.g.,
the parameters a and b in the description of our scheme). We
consider order privacy from two aspects: 1) the preservation of
data order privacy in the same direction with the operator “>”
or “<”; 2) the preservation of data order privacy in opposite
directions to the boundary value. The following paragraphs
discuss these two aspects, respectively.

1) Order privacy preservation of data in the same direction
to the boundary value: Data in the same direction is all greater
or all less than some given boundary value (e.g., for query
“SELECT ∗ FROM table WHERE Ti > 100”, “100” is the
boundary value, and data “102, 114” or “40, 65” are in the
same direction to it). For Cloud A, the order privacy of data
items can be guaranteed, since the data is stored in Cloud A in
the encrypted form, and Cloud A cannot get any knowledge
of the order information, unless it has the private key SK
following Paillier cryptosystem’s security properties, while in
our proposed system, only the client and Cloud B have the
private key.

In our proposed two non-colluding cloud scheme, Cloud B
has the private key SK for data filtering as shown in Fig.
2(a). To minimize the privacy leakage against Cloud B, we
make an obfuscation in the encryption field, as described in
Section V-B3. As a result, the order information presented to
Cloud B is strongly confused. In this paper we quantifies the
obfuscation of the order privacy with the concept of Order
Correlation Coefficient (OCC) as follows:

Definition 1. Order Correlation Coefficient (OCC). Given an
n-item integer sequence F , for each item fi ∈ F , its original
order is denoted as si, and s′i is its order after implementing
random multiplication for all items. Then OCC of the two
orders is defined as the following formulation:

OCC =

2 ·
∑
fi∈F

si · s′i − (max+min)

max−min
, (13)

where max =
n∑
i=1

i2 and min =
n∑
i=1

i · (n− i+ 1).

The parameter OCC of two orders of any sequence lies in
the range from −1 to 1, based on Eq. (13). If the order privacy
is not preserved (e.g., adopting order preserving encryption),
we can get si = s′i for each item, then OCC will return
“1”. OCC equals to “-1” if the obfuscated order is exactly
the inverse of the original one. A perfect privacy preservation
mechanism will make OCC be close to “0”, which means that
the new order is entirely independent to the original one.

We measure OCC of our scheme in an experiment scenario.
In this measurement, each data item (after homomorphic
subtraction) is independently, identically and uniformly dis-
tributed in the range of (1, 104). We measure OCC with
different data scale and different range size of selected random
integers (ri in 2© for obfuscation in Fig. 4). In our experiment,
each case is measured 1000 times, and the average value in
Fig. 5 shows the measured result of OCC.

From Fig. 5, it can be figured out that a larger data scale
brings about a bigger OCC, closer to 1, which shows the
order privacy preservation is easier for smaller data scale, and
requires smaller random integer ri. On the other hand, if the
data scale increases to 10000, OCC decreases slowly with the
larger range of random integer selection for multiplication. The
curves for data scale larger than 10000 are not given because
the experimental results are similar to that for the scale of
10000, shows that OCC remains stable for data scale that is
large enough.
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Fig. 5. Order Correlation Coefficient Analysis

As random integers for multiplication are from 1 to 10, OCC
decreases rapidly with increasing range. Then, the decrease
rate slows down as the range further increases. For the range
larger than 20, the variation of OCC for different range values
(even changes from 20 to 105) is quite slight.

From the measurement, we can assert that the order privacy
leaked to Cloud B can be reduced to a specific level when
OCC reaches to be less than the threshold, such as 0.7, by a
practical and not-too-large random integer range. In addition,
Cloud B cannot increase the accuracy of the order guess after
numerous processing, as we will analyze in Section VI-C2.

2) Order privacy preservation of data in opposite directions
to the boundary value: Data in opposite directions are not all
greater or all less than some given boundary value (e.g., for
query “SELECT ∗ FROM table WHERE Ti > 100”, “100”
is the boundary value, data “40” and “155” are in opposite
directions to it). In order to correctly respond to the query
request, the order information that two different data set belong
to opposite directions to the boundary value is inevitable
known to Cloud B, i.e., only if Cloud B can distinguish the
items less than the boundary value a from those greater than it,
as well as Cloud B must know which direction the data item is
in, can it make an accurate response of query request such as
“SELECT ∗ FROM table WHERE Ti > a”. Our scheme can
mislead Cloud A and Cloud B into learning a wrong order
as shown in Section V-B. The data privacy preservation in
opposite directions to the boundary value against the two non-
colluding clouds is as follows:

• For Cloud A, more complex query operation combination
generally exposes less order information of one column,
as Cloud B only sends the final combined result, which
has much less information than processing individually.
Section VI-C1 will analyze this type of privacy preserva-
tion in details. Also, Cloud B appends a certain number
of dummy indexes and respectively inserts them to ran-
domly chosen positions of the index array. This further
obfuscates Cloud A and preserves the order privacy of
data in opposite directions to the boundary value;

• It seems that Cloud B has certain privacy information for
executing the query predicate. However, in our proposed
scheme, each column name is encrypted and unknown
to Cloud B. Different columns generated and shuffled by
Cloud A makes Cloud B difficult to distinguish whether
they are from a same original column. Therefore previous
query requests will not help Cloud B to learn the privacy
information. Moreover, our scheme makes the directional
query operators (“>” and “<”) be indistinguishable to
Cloud B (see in Section V-C1), which makes Cloud B
obfuscated on whether order relationship is inverse or
not.

C. Privacy Preservation in repeated queries

The clouds could collect more and more statistical infor-
mation after receiving repeated query requests and generating
the corresponding responses towards the database (e.g. Fig. 3).
However, we will demonstrate that our scheme can reduce the
privacy leakage greatly in this scenario.

1) For Cloud A: Repeated query requests will make Cloud
A learn more and more about the privacy information, while
in our scheme, this ability is restricted as follows.

On one hand, many query requests are crossing over mul-
tiple columns, and simple query requests are just a part of
usual database query requests. In such a situation, Cloud A
only receives the final index result (with dummies, optionally)
from Cloud B filtered with multiple conditions, it cannot get
the original comparison result of each one column.

On the other hand, Cloud B responds Cloud A based
on the token obtained from the client, and there have two
ways to guarantee the security. 1) Each token contains the
specific column number (CN ) and the total item number
in the table(N ), which Cloud A must operate on exactly.
Cloud A must send the result to Cloud B exactly with these
two numbers without modification: If Cloud A increases or
decreases CN or N , Cloud B will find that unmatched with
the token, and if Cloud A replaces any item in these CN
columns, it will take the risk of responding wrong result to
client, which can be assumed not happening based on the
assumption that semi-trusted clouds are honest. 2) Each token
has been signed with SK by client, Cloud A cannot modify
any tokens or generate a new one, and every token contains
a different serial number and timestamp, so Cloud A cannot
conduct the replay attack.

2) For Cloud B: The name of each involved column is
removed before sending to Cloud B, and meanwhile, different
random integers are selected for each item in each query
request by Cloud A. As a result, Cloud B cannot distinguish
whether two previous query requests are on the same column,
hence repeated queries cannot be utilized to increasing the
accuracy of order guessing. Moreover, based on item shuffled,
Cloud B cannot distinguish one same item from two previous
queries, even though the plaintext SQL queries are identical.

VII. PERFORMANCE ANALYSIS

In this section, we will first analyze the complexity of
our proposed scheme, and then evaluate the computation and
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communication overhead within our constructed experiment
platform.

The experiment platform is implemented by C based on
GMP library, with 1024-bit length public key n for Paillier
homomorphic cryptosystem. All data are stored in the MySQL
database. For comparison, we utilize AVL tree[49] to simulate
Popa’s order preserving encryption (OPE)[15], and embed it
into CryptDB[7]. We will refer this comparison scheme as
CryptDB with OPE in the rest of this paper.

We provide evaluations measured in a computer with Intel
i3-4130 CPU @ 3.40GHz and 16G memory. According to the
simulation assumption in [38], unless otherwise specialized,
we simulate a 50ms (round-trip) latency between the client and
each cloud by asynchronously delaying the client’s requests
and responses. Although our two clouds are practically two
different ones, they are commonly connected with high-speed
network, we do not simulate additional latency between them,
which is assumed to be 0.

A. Complexity of Our Proposed Scheme

In our proposed scheme, both stored data and query logic
are partitioned into two parts. This improves the privacy
preservation of range query, while the complexity increases,
too. In fact, the complexity of client is no significant increase
compared with common OPE schemes, such as [33], [34],
[35]. For a query, the client in these schemes needs to send a
query request, and then receive and decrypt the response to get
the results. The client in our scenario also only needs a round-
trip communication to perform a query. As for the clouds, the
communication overhead between two clouds does not exist in
single cloud schemes. However, as mentioned in Section 5.1
in [38], the two clouds are in fact two different clouds (e.g.
Amazon and Azure), the communication latency between the
clouds is relative low. What is more, during a query, only
one interaction is required for both clouds in our scheme. In
total, our system does increase complexity to some extent, but
it is acceptable, as the increase in overhead is small and the
security has been greatly improved.

B. Efficiency of Item Insert

We first evaluate the efficiency of item insert with only one
column, as it can be easy to expand one column to multiple

ones. The cost for multiple columns is linear to the number
of columns for both the proposed scheme and the compared
one (CryptDB with OPE). Fig. 6 shows the average rate of
item insert with the increase of inserted items number. From
Fig. 6, due to the cost of initializing database table, the first
point of our scheme is not as better as the other points in the
curve. But overall, our scheme’s insertion rate remains stable
by the number of inserted items. On the contrary, the average
insertion rate of CryptDB with OPE decreases as the number
of inserted items goes up.

The cost of inserting items to the database are different
between these two schemes: In our scheme, Paillier’s ho-
momorphic encryption makes up a large proportion of the
cost. While in CryptDB with OPE, the encryption cost with
strong symmetric cryptographic algorithms, such as AES-128,
is negligible. However, in CryptDB with OPE, inserting one
item requires a number of round-trip communications between
the client and the cloud, where the number of communications
is equal to the depth of the tree in average - approximately
the logarithm of the total number of inserted items.

Simulation result shown in Fig. 6 depicts the average inser-
tion time of two schemes. Although Paillier’s homomorphic
encryption of our scheme is relatively inefficient than the
symmetric cryptographic algorithm used in CryptDB with
OPE, our scheme requires only one round trip communication.
Therefore, the insertion rate is stable and the efficiency will
not decrease when the item number becomes large in our
scheme. By contrast, the depth of tree in CryptDB with OPE
increases obviously with a larger number of data records. As a
result, the efficiency decreases when the data scale increases.
As shown in Fig. 6, when the inserted items increase to 104,
the communication cost of item insertion is unbearable, which
brings in about 13 to 14 (as 213 < 104 < 214) round trip
communications to insert one item.

C. Efficiency of Range Query

This section evaluates the efficiency in executing the range
query condition. Fig. 7 and Fig. 8 show the delay of a query
and the corresponding response. Especially, Fig. 7 shows the
result when the query is executed in one single process, and
Fig. 8 shows the result when implementing the procedure in
parallel computing with multi-process.
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When only one single process conducts the query response
on the cloud side, CryptDB with OPE shows a great advantage
over our proposed scheme, as shown in Fig. 7, the delay of
CryptDB with OPE increases slowly, while our scheme’s delay
is almost linear to the number of items. The reason is as
follows:

In CryptDB with OPE, the cloud should find several middle
nodes in the tree according to the boundary value of the range.
This procedure will go through the tree from the root to the
leaf node until reaching a node associated with the boundary
value. After that, as a result, the cloud can pick up all the
required items in that subtree without additional cost. As the
depth of the tree increases with a logarithmic growth of the
item number, the increase of the query and response delay of
CryptDB with OPE is also in logarithmic growth. By contrast,
in our scheme, an subtraction, multiplication and addition are
required for each item in Cloud A, and a decryption is required
in Cloud B, therefore the delay is linear to the number of the
items. From the evaluation result to compare the two schemes
shown in Fig. 7, the efficiency of CryptDB with OPE exceeds
ours when the number of involved items increased to over
1000 for single process.

However, the above comparison results are based on one
process, which is too conservative in Cloud B: cloud com-
puting is a service platform built upon numerous servers with
multi-kernel CPUs, which has parallel property to jointly com-
plete a task. Our main evaluation will analyze the performance
of two schemes in the parallel scenario as follows:

The delay in our proposed scheme is mainly caused by the
computation cost (e.g., encryption and decryption for each
item), but without communication cost. The processing of
different items is independent and can be implemented in
parallel. Compared with CryptDB with OPE, which needs to
have multiple round-trip communications for each item and
has non-ignorable communication delay, our scheme does not
need to wait for any other part’s response.

As shown in Fig. 8, for 5000 items, the efficiency increases
linearly to the number of parallel processes, and the query
and response delay decreases rapidly. By contrary, the delay
in CryptDB with OPE is mainly caused by multiple round-
trip communications between the client and the cloud, spent
in searching for the internal node associating with the range
boundary value. Each round trip cannot begin until the former
one is completed. As a result, their scheme cannot enjoy the
advantage of parallel computing in cloud.

For practical datasets in real-world, our scheme can achieve
higher efficiency with the advantage of parallel property of the
cloud computing compared with CryptDB with OPE.

D. Storage Overhead

For the storage overhead, in our proposed scheme, the client
and Cloud B only keeps private key, and Cloud A stores all
the encrypted data as well as public key. And in CryptDB with
OPE, the client keeps a symmetric key, and the cloud stores
both the whole encrypted data and the corresponding tree. The
mainly storage overhead of both schemes is on the encrypted
data, which is consistent with the actual situation.

VIII. CONCLUSION

In this paper, we presented a two-cloud architecture with
a series of interaction protocols for outsourced database ser-
vice, which ensures the privacy preservation of data contents,
statistical properties and query pattern. At the same time,
with the support of range queries, it not only protects the
confidentiality of static data, but also addresses potential
privacy leakage in statistical properties or after large number
of query processes. Security analysis shows that our scheme
can meet the privacy-preservation requirements. Furthermore,
performance evaluation result shows that our proposed scheme
is efficient.

In our future work, we will consider to further enhance
the security while ensuring practicality, and we will extend
our proposed scheme to support more operations, such as
“SUM/AVG”.
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