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Abstract A bootstrap method is presented for finding efficient sum-of-poles approxima-
tions of causal functions. The method is based on a recursive application of the nonlinear
least squares optimization scheme developed in (Alpert et al. in SIAM J. Numer. Anal.
37:1138–1164, 2000), followed by the balanced truncation method for model reduction in
computational control theory as a final optimization step. The method is expected to be
useful for a fairly large class of causal functions encountered in engineering and applied
physics. The performance of the method and its application to computational physics are
illustrated via several numerical examples.

Keywords Rational approximation · Sum-of-poles approximation · Model reduction ·
Balanced truncation method · Square root method

1 Introduction

Suppose that f ∈ H∞+ , where H∞+ is the Hardy space containing all functions that are ana-
lytic in the open right half of the complex plane and bounded in the closed right half-plane
(see, for example, [12, 13, 19, 40]). Such a function is called causal function in the literature
of electrical engineering and physics. Indeed, when a causal function is used as the transfer
function of a control system, the output and internal states of the system depend only on the
current and previous input values (see, for example, [13, 43]). While in electromagnetics
the complex permittivity function belongs to H∞+ indicating the fact that the induced po-
larization field can depend only on the current and previous electric field (see, for example,
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[11, 20]). Causal functions also arise in the construction of the exact nonreflecting bound-
ary conditions of many time-dependent partial differential equations where they appear as
Laplace transforms of the convolution kernels, due to the fact that the nonreflecting bound-
ary conditions are often nonlocal in both space and time but still causal (see, for example,
[5–7, 17, 21, 22]). We also assume that f decays to zero at infinity. However, very often f

is not smooth on the imaginary axis and may have, say, branch points on the imaginary axis.
In this paper, we consider an efficient approximation of f by the sum of a small number

of poles. That is, we try to find two sets of complex numbers {wk} and {zk} with k = 1, . . . ,N

such that
∣
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< ε, y ∈ R, (1)

where i is the unit imaginary number and ε is the prescribed precision. We also require that
all the poles {zk} lie on the open left half of the complex plane and thus (1) implies that
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This approximation is useful in a number of applications. For example, in control theory
it can be used to obtain a reduced system with a much smaller number of parameters
which is very close to the original system (see, for example, [13, 18, 23, 34, 37, 38, 41,
43]). In computational electromagnetics, it can be used to compute the fractional derivatives
in the Havriliak-Negami dielectric model of induced polarization (see, for example, [11]).
The sum-of-poles approximation is also used to speed up the computation of nonreflecting
boundary conditions for the wave and the Schrödinger equations (see, for example, [5, 6,
21, 22]). For some of other recent applications of sum-of-poles approximation, please see,
for example, [26, 27].

This problem has been investigated theoretically by Adamjan, Arov, and Kreǐn using in-
finite Hankel matrices [2–4, 36]. When the function can be expressed as a contour integral
and thus the poles are known to lie on some contour in the complex plane, such approxima-
tion can be obtained via some special quadratures [47] or generalized Gaussian quadrature
[10, 33, 48]. However, there seems to be very few algorithms for directly constructing such
an approximation when the only information about the poles is that they must lie in the
open left half-plane. Indeed, the well-known exchange algorithm deals with the real ratio-
nal approximation of a real function on an interval (see, for example, Chap. 10 in [39]). In
a series of papers [14–16, 44–46], Gutknecht and Trefethen et al. introduced the so-called
CF method for computing complex rational approximations for smooth functions based on
the finite Hankel matrices resulting from the discretization with equispaced points. Their
method can be applied to nonsmooth functions as well, but may result in either a very large
number of poles or low accuracy near the singular points of the given function. In [5] (see
also [6] for its applications on the wave equation), Alpert et al. developed a nonlinear least
squares algorithm for such problem when the pole locations are roughly known asymptoti-
cally, upon which our bootstrap method is built.

Since the Laplace transform of an exponential function is a pole, a closely related prob-
lem is approximation by sum-of-exponentials. Indeed, in many applications including the
nonreflecting boundary conditions for some time-dependent partial differential equations,
one often needs to evaluate a convolution integral of the form I (t) = ∫ t

0 K(t − τ)σ (τ ) dτ ,
where K is the convolution kernel and σ is a given or unknown function. Furthermore,
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the kernel K is not given explicitly, but rather its Laplace transform is known. That is,
K = L−1(f ) for some known function f . Clearly, the direct method of evaluating the convo-
lution integral at NT time steps will take O(N2

T ) operations, rendering the long term simula-
tions unfeasible. But if we can find an efficient and accurate sum-of-poles approximation for
the Laplace transform of the kernel, i.e., f �

∑Np

j=1
wj

z−pj
, then K(t − τ) �

∑Np

j=1 wje
pj (t−τ)

and we readily have

I (t) �

Np
∑

j=1

wj

∫ t

0
epj (t−τ)σ (τ ) dτ :=

Np
∑

j=1

wjCj (t).

Now, it is well known that the convolution with exponential functions can be computed
using a recurrence relation

Cj(t) =
∫ t

0
epj (t−τ)σ (τ )dτ = epj �tCj (t − �t) +

∫ t

t−�t

epj (t−τ)σ (τ ) dτ.

With the help of the above recurrence relation, each mode Cj can be computed in O(1)

operations at each time step and the total computational cost is reduced from O(N2
T ) to

O(NpNT ), where Np is the number of poles in the approximation of f . Very often, one can
show that Np is of order logNT and the computational cost is reduced to near optimal.

We would like to remark here that when the function f is sectorial, López-Fernández et
al. have developed a spectral order method for inverting the Laplace transform and thus ob-
tained an efficient sum-of-exponentials approximation for the convolution kernel K directly
(see, for example, [28, 29] for this method and [30–32, 42] for its applications on fast and
oblivious convolution quadrature). Trefethen et al. have presented a detailed comparison
and discussion about inverting sectorial Laplace transforms using the trapezoidal or mid-
point rule for discretizing various contour integrals in [47]. Finally, we would like to point
out that sum-of-exponentials approximation has many other applications by itself and may
be obtained via other methods (for a detailed discussion please see Beylkin et al. [8, 9]).

In this paper, we propose a bootstrap method for computing an efficient sum-of-poles
approximation for functions which are not very smooth on the imaginary axis. We assume
that the only known information on f is its value along the imaginary axis which is supplied
by a black-box subroutine. Our algorithm is roughly as follows. We first construct a binary
tree structure containing successively larger intervals centered around the singular point of
the function. We then apply the nonlinear least squares procedure in [5] on each subinterval
in the binary tree to extract out the so-called near poles recursively. Finally, we apply the
balanced truncation method in model reduction (see, for example, [13, 18, 25, 34]) to reduce
the number of poles.

The paper is organized as follows. The nonlinear least squares method in [5] and the
balanced truncation method are reviewed in Sect. 2. The bootstrap method is presented
in Sect. 3. Section 4 contains numerical experiments on an ad hoc example, the kernels
of the Havriliak-Negami dielectric model, and the convolution kernels in the nonreflecting
boundary conditions for the Schrödinger equation. Finally, we give a short discussion in
Sect. 5.
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2 Numerical Preliminaries

In this section, we review the nonlinear least squares method in [5] and the balanced trun-
cation method. We only present the tailored version which can be readily incorporated into
our bootstrap algorithm.

2.1 Nonlinear Least Squares Method

Given a complex-valued function f ∈ L2[a, b] and a positive integer d , the nonlinear least
squares method in [5] tries to solve the following minimization problem

min
P,Q

∫ b

a

∣
∣
∣
∣

P (z)

Q(z)
− f (z)

∣
∣
∣
∣

2

dz, (2)

where P and Q are polynomials with deg(P ) + 1 = deg(Q) = d and the leading coefficient
of Q is normalized to 1. Assuming that a good initial guess of Q is available, [5] tries to
find the solution to (2) iteratively by solving the following linear least squares problem at
each iteration step:

min
P (i+1),Q(i+1)

∫ b

a

∣
∣
∣
∣

P (i+1)(z)

Q(i)(z)
− Q(i+1)(z)

Q(i)(z)
f (z)

∣
∣
∣
∣

2

dz. (3)

Straightforward computation shows that problem (3) is equivalent to the following linear
system:

〈−P (i+1)(z) + Q(i+1)(z)f (z), fi(z)
〉 = 0 for i = 1, . . . ,2d, (4)

where

fi(z) =
{

z(i−1)/2f (z), for odd i

zi/2−1, for even i

and the inner product is defined by

〈f,g〉 =
∫ b

a

f (z)ḡ(z)

|Q(i)(z)|2 dz. (5)

However, we do not solve (3) by representing P , Q in terms of their monomial coeffi-
cients and forming the corresponding matrix according to (4) for two reasons. First, the con-
dition number of the resulting matrix is extremely large. Second, the rootfinding and eval-
uation of a polynomial in terms of its monomial coefficients are also very ill-conditioned.
Instead, [5] solves (3) by Gram-Schmidt orthogonalization. The 2d + 1 functions

f,1, zf, z, . . . , zd−1f, zd−1, zdf

are orthogonalized with respect to the inner product (5) to obtain the orthogonal functions

gn(z) =

⎧

⎪⎨

⎪⎩

f (z), n = 1

1 − c21g1(z), n = 2

zgn−2(z) − ∑min{4,n−1}
j=2 cnjgn−j (z), n = 3, . . . ,2d + 1

(6)
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Algorithm 1 Nonlinear least squares method

Comment: Given f ∈ L2[a, b], a positive integer d , and an initial guess Q0, find polynomi-
als P and Q with deg(P ) + 1 = deg(Q) = d so that

∫ b

a
| P(z)

Q(z)
− f (z)|2 dz is minimized.

1: while iter < itermax do
2: Use Gram-Schmidt orthogonalization to construct P and Q such that

∫ b

a
| P(z)

Q0(z)
−

Q(z)

Q0(z)
f (z)|2dz is minimized;

3: Set Q0(z) = Q(z), where Q(z) is obtained from the previous step;
4: iter = iter + 1.
5: end while

where

cnj = 〈zgn−2, gn−j 〉
〈gn−j , gn−j 〉 , for n = 3, . . . ,2d + 1, j = 1, . . . ,min{4, n − 1}.

Remark 1 It is easy to see that the orthogonal functions gn satisfy the five-term recurrence
relation (6) by noting that 〈zgn−2, gj 〉 = 〈gn−2, zgj 〉 on the imaginary axis, zgj are linear
combinations of g1, g2, . . . , gj+2, and thus 〈zgn−2, gj 〉 = 0 for j < n − 4.

We now observe that

g2d+1 = Q(i+1)f − P (i+1),

so P (i+1) and Q(i+1) are computed from the recurrence coefficients cnj by splitting it into
even- and odd-numbered parts.

2.2 The Balanced Truncation Method

Given a rational function of the form

R(z) =
n

∑

i=1

wi

z − pi

with all the poles pi lie on the open left half of complex plane, Algorithm 2 tries to find
another rational function of the same form

R̂(z) =
k

∑

i=1

ŵi

z − p̂i

but with much fewer poles (i.e., k � n) such that |R(z) − R̂(z)| < ε for all z ∈ C
+

for some prescribed precision ε. The algorithm is a special case of the general bal-
anced truncation method for model reduction in computational control theory (for a com-
prehensive review on the balanced truncation method, see, for example, [13]). Here we
would like to remark that Algorithm 2 has been applied to find an efficient sum-of-
poles approximation for the spherical nonreflecting boundary kernel for the wave equation
in [25].
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Algorithm 2 Balanced truncation method

Comment: Given R(z) = ∑n

i=1
wi

z−pi
and a prescribed precision ε, find R̂(z) = ∑k

i=1
ŵi

z−p̂i

so that |R(z) − R̂(z)| < ε for z ∈ C
+.

1: Form a diagonal matrix A = diag(p1,p2, . . . , pn), a row vector C = (
√

w1,√
w2, . . . ,

√
wn), and a column vector B = CT ;

2: Compute the Cholesky factor S of the solution to the Lyapunov equation AP + PA∗ =
−BB∗;

3: Compute the Cholesky factor L of the solution to the Lyapunov equation AQ + QA∗ =
−CC∗;

4: Compute the singular value decomposition of LS∗ = UΣV ∗, where the singular values
σi (i = 1, . . . , n) are also the Hankel singular values of the dynamic system with R as
the transfer function;

5: Find k such that 2
∑n

i=k+1 σi ≤ ε;

6: Form an n × k matrix J whose nonzero entries are Jii = σ
−1/2
i , then form two matrices

Tl = L∗UJ and Tr = S∗V J ;
7: Form a k × k matrix Â = T ∗

l ATr , a column vector of length k B̂ = T ∗
l B , and a row

vector of length k Ĉ = CTr ;
8: Compute the eigenvalue decomposition of Â = XΛX−1 and set p̂i = Λii , i = 1, . . . , k;
9: Compute B̃ = X−1B̂ , C̃ = ĈX, and set ŵi = B̃i C̃i (i = 1, . . . , k).

3 The Bootstrap Algorithm

3.1 An Informal Description

We now consider our main problem, that is, given a function f ∈ H∞+ and a prescribed pre-
cision ε, find a sum-of-poles approximation r(z) = ∑n

i=1
wi

z−zi
such that |f (z) − r(z)| < ε

for all z ∈ C+. We observe that Algorithm 1 is fairly robust and can produce very accurate
sum-of-poles approximations for a function on a finite interval [a, b] if the following condi-
tions hold. First, the function being approximated is smooth on the interval [a, b]. Second,
the number of poles needed in the approximation is small, say, less than 20. Third, a good
initial guess for poles can be obtained by some means. However, none of the above three
conditions hold for a general function in H∞+ . And Algorithm 1 fails to converge due to the
ill-conditioning of the problem when we try to apply it to the given function on a very large
interval on the imaginary axis.

Our bootstrap algorithm tries to find an accurate and efficient sum-of-poles approxi-
mation to f in the following steps. First, we choose a large interval [A,B] = [a0, b0] on
the imaginary axis so that if |f (iy) − r(iy)| < ε for any y ∈ [A,B] and some sum-of-
poles approximation r , then |f (z) − r(z)| < ε for all z ∈ C+. This is possible since both
f and r decay to zero as z → ∞. Second, we construct a sequence of nested intervals
[ai, bi] (i = 0,1, . . . ,L) with [ai, bi] ⊂ [ai−1, bi−1] (i = 1, . . . ,L) so that the smallest in-
terval [aL, bL] is centered around the singular point of f if any. Third, starting from the
smallest interval [aL, bL], we apply Algorithm 1 to find an accurate sum-of-poles approxi-
mation ri to fi on [ai, bi] successively for i = L,L−1, . . . ,0; we initialize fL = f (f is the
original given function) and set fi = fi+1 − rn

i+1, where rn
i+1 is the near-pole part of ri+1. The

near-pole part of ri contains the contribution of poles that are close to the interval [ai, bi];
this will be defined more rigorously later. Finally, we form r = ∑L

i=1 rn
i + r0 and r is an ac-

curate (but not necessarily efficient) sum-of-poles approximation to f ; we use Algorithm 2
to reduce r to a more efficient approximation R without losing accuracy.
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Remark 2 When the function has multiple singular points on the imaginary axis, one needs
to refine the interval around each singular point.

The third step in the above algorithm is the bootstrapping step, where we apply Algo-
rithm 1 iteratively to find sum-of-poles approximation of fi on larger intervals [ai, bi]. The
function fi is formed by subtracting the near-pole contribution from f . The idea here is that
we could either shrink the interval or modify the function to make it less ill-conditioned so
that Algorithm 1 can be applied successfully. And the function fi has similar structure with
respect to the interval [ai, bi] for all i = L, . . . ,0 in the sense that the integral

∫ bi

ai
fi(iy) dy

can be computed accurately using about the same number of nodes. We would like to pro-
vide an intuitive explanation about why bootstrapping works. In the Fourier domain, both
the near poles and the far poles have contributions at low frequencies, but the high frequency
contribution comes mainly from the near poles. So it is clear that if we want to extract out
the poles successively, we should extract the near poles first. We now observe that the near
poles are localized in the physical space, so the restriction to a smaller interval in the phys-
ical space will retain all the essential information about the near poles. Therefore, if we
confine the approximation problem to a smaller interval, then only the poles near that inter-
val matter and hence we need many fewer poles to approximate the given function. Hence,
by restricting our attention to a smaller interval, we effectively mitigate the ill-conditioning
of the problem and can extract the near poles accurately.

We now fill in some details of the algorithm.

3.2 Binary Tree Structure

To obtain a sequence of nested intervals [ai, bi] (i = 0, . . . ,L), we will first build a binary
tree of intervals. We start from the root interval [a0, b0], and recursively subdivide each
interval into two smaller intervals until some splitting criterion is no longer satisfied. We use
standard binary tree notation so that each node has a parent, left, and right child pointers,
and a tree depth. Each node also contains the locations of its two end points a and b. The
root interval is defined to have depth 0. In the construction, we record the maximal depth of
the tree for later use. Our algorithm is as follows (Algorithm 3).

Once this binary tree is constructed, the sequence of nested subintervals is easily obtained
by starting from the leaf of maximal depth and traversing up to the root interval. We now
explain our splitting criterion in detail.

3.3 Splitting Criterion

We first compute the K-term Chebyshev interpolant f̄ (y) of f (iy) on the interval [a, b] as
follows. We translate and scale [a, b] to [−1,1] by

x = 2

b − a

(

y − b + a

2

)

.

Then

f̄ (x) =
K−1
∑

k=0

αkTk(x).



J Sci Comput (2013) 55:16–39 23

Algorithm 3 Recursive INSERT(t,p, a, b, f,maxdepth)

Comment: Construction of a binary tree of subintervals. t denotes the current node, p

denotes its parent, a and b are the end points of the interval, f is the function being ap-
proximated, maxdepth is the maximal depth of the tree. Subroutine split(a,b,f) returns
true if f satisfies the splitting criterion, false otherwise.

1: t.a = a
2: t.b = b
3: t.parent = p
4: t.depth = t.parent.depth + 1
5: if maxdepth < t.depth then
6: maxdepth = t.depth
7: end if
8: if split(a,b,f) then
9: a1 = a

10: b1 = (a + b)/2.0
11: a2 = b1
12: b2 = b

13: Call INSERT(t.left,t,a1,b1,f,maxdepth)
14: Call INSERT(t.right,t,a2,b2,f,maxdepth)
15: end if
16: End INSERT

Here, the Chebyshev coefficients αk are given by

α0 = 1

K

K
∑

j=1

f (iτj ), αk = 2

K

K
∑

j=1

f (iτj )Tk(τj ) for k ≥ 1,

where the classical Chebyshev nodes τj are given by

τj = cos
(2K − 2j + 1)π

2K
for j = 1, . . . ,K.

We then compute the following quantity

S = |αK−1| + |αK−2|
∑K−2

k=0 |αk|
.

We subdivide the interval [a, b] into two smaller intervals if S > δ where the constant δ � 1
is provided by the user. This splitting mechanism guarantees that f (iy) can be approximated
by a low-degree polynomial in each subinterval, since αK−1 and αK−2 are the coefficients
corresponding to the high-frequency components and the magnitude of them are not rel-
atively negligible when S > δ. This splitting criterion is already used in [24] to construct
an adaptive mesh in developing a fast adaptive method for stiff two-point boundary value
problems.

Remark 3 In practice, we set K = 20 and δ = 10−8. This works well for our testing exam-
ples.
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Fig. 1 The curve C within
which the near poles lie

Remark 4 The above splitting criterion will sometimes cause excessive refinement around
the singular point such as a branch point when the function is too singular. In our actual
implementation, we have added a parameter which specifies the maximal number of re-
finement, or the maximal depth of the tree to prevent such excessive refinement around the
singular point.

Remark 5 The use of Chebyshev polynomials is not essential. We may use Legendre poly-
nomials or other orthogonal polynomials as the basis.

3.4 Near Pole Criterion

Suppose that in the iterative procedure we have computed a sum-of-poles approximation
ri(z) = ∑ki

j=1
wj

z−pj
for fi(z) on the interval [ai, bi]. We then need to form a new function

fi−1 by subtracting the near pole contribution rn
i (z) from f and find a sum-of-poles ap-

proximation ri−1 for fi−1 on some larger interval [ai−1, bi−1]. Without loss of generality,
we assume that [a, b] = [−1,1] (the general case can be treated by a simple translation
and scaling). We define a near pole as follows. A pole pj is a near pole with respect to
the interval [−1,1] if it lies within the closed curve C where the curve C is defined by
C = {z | ∫ 1

−1
1

|x−z|2 dx = c, z ∈ C}. We then have

rn
i (z) =

∑

pj ∈NP

wj

z − pj

,

where NP = {pj | pj is a near pole, j = 1, . . . , ki}.

Remark 6 We set c = 12 in our numerical experiments. The curve C is very close to an

ellipse. For c = 12, it is close to the ellipse E = {(x, y) | x2

a2 + y2

b2 = 1, x, y ∈ R} where
a = 1.0801 and b = 0.2249. Also, since we carry out the approximation on the imaginary
axis, the curve needs to be rotated by 90 degrees (see Fig. 1).

Remark 7 We have chosen the above curve C to define the near poles since any pole function
1/(x − z) (here z is the pole location) with the pole located on the curve C has exactly the
same L2 norm with respect to the interval [−1,1]. This is quite natural since we are trying
to use the least squares minimization to find sum-of-poles approximations. Presumably, one
could replace the curve C by some other simpler ones such as an ellipse.

3.5 Some Issues Related with Algorithm 1

We need a good initial guess for Q (i.e., a good initial guess for the location of the poles)
and the number of poles d in order for Algorithm 1 to work robustly. We revise Algorithm 1
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Algorithm 4 Revised nonlinear least squares method

Comment: Given f (iy) ∈ L2[a, b], return polynomials P , Q and a positive integer d with
deg(P ) + 1 = deg(Q) = d such that

∫ b

a
| P(iy)

Q(iy)
− f (iy)|2 dy is less than the desired pre-

cision ε.
1: Set d = 1, TOL = ε

∫ b

a
|f (iy)|2 dy, error = 10TOL.

2: Set the initial guess Q0(z) = z − ( b+a
2 − i b−a

5 ).
3: while error ≥ TOL do
4: Apply Algorithm 1 with the initial guess Q = Q0 to find P , Q such that error =

∫ b

a
| P(iy)

Q(iy)
− f (iy)|2 dy is minimized, where P , Q are polynomials with deg (P ) +

1 = deg (Q) = d .
5: d = d + 1
6: Set the initial guess Q0(z) = (z − 2zd−1)Q(z) where zd−1 is the farthest zero of

Q(z) to the interval [ia, ib].
7: end while

by embedding it in an iterative procedure (see Algorithm 4) so that it can work without a
good initial guess for Q and d .

Remark 8 We discretize the integral in each subinterval with the same number of quadrature
nodes no matter how large the subinterval is. This is consistent with the assumption that the
function after the bootstrap step on any subinterval can be well-approximated by a low-
degree polynomial, as discussed in Sect. 3.3.

Remark 9 We need to represent P/Q as a sum of poles to find Q0(z) and to suit our applica-
tion. Since we can compute P (z), Q(z), and Q′(z) accurately by the recurrence coefficients
resulting from Gram-Schmidt orthogonalization (6), the problem boils down to finding the
complex zeros of a given polynomial (Q(z)). We use Muller’s method [35] to compute the
zeros of Q(z). We choose Muller’s method because it is very robust for complex root finding
and very insensitive to initial guesses.

We now summarize the entire method in Algorithm 5.

4 Numerical Experiments

We have implemented Algorithm 5 in Fortran 95 and some numerical experiments are shown
below.

4.1 An Ad Hoc Example

Our first numerical example is an ad hoc one, namely, we try to approximate

f (z) = 71

z + 2 + 10i
+ 12

z + 3 − 4i
+ 230

z + 6 − 400i

+ −20 − 10i

z + 30 + 70i
+ 1 − 2i

z + 200 + 500i
+ 10

z + 1000 − 4000i
, (7)

which is already a sum of six poles. However, we would like to emphasize that in our boot-
strap code we have not used any information about f other than the value of the function



26 J Sci Comput (2013) 55:16–39

Algorithm 5 Bootstrap method for sum-of-poles approximation
Comment: Given a function f ∈ H∞+ , find an efficient sum-of-poles approximation R(z) =

∑ wk

z−zk
within the desired precision ε.

1: Choose a large interval [ia0, ib0] on the imaginary axis and set it as the root interval.
2: Use Algorithm 3 to construct nested subintervals [iaj , ibj ] (j = 0,1, . . . ,maxdepth)

such that [iaj , ibj ] ⊂ [iaj−1, ibj−1] (j = 1, . . . ,maxdepth).
3: Set fmaxdepth = f (z) and r(z) = 0.
4: for j = maxdepth : −1 : 1 do
5: Apply Algorithm 4 to obtain a rational approximation rj (z) for fj (z) on the inter-

val [iaj , ibj ].
6: Use near-pole criterion (Sect. 3.4) to extract the near pole part of rj and denote it

by rn
j .

7: Set fj−1(z) = fj (z) − rn
j (z).

8: Set r(z) = r(z) + rn
j (z).

9: end for
10: Apply Algorithm 4 to obtain a rational approximation r0(z) for f0(z) on the root interval

[ia0, ib0].
11: Set r(z) = r(z) + r0(z). r(z) is an accurate but inefficient rational approximation to

f (z).
12: Apply Algorithm 2 to reduce r(z) to a more efficient rational approximation R(z).

Fig. 2 (a) The plot of the original function in the vicinity of two “singular points”. (b) A closeup of the
“singular point” near the origin

on the imaginary axis. We plot the function in Fig. 2, which clearly shows that there are
two clusters of peaks and troughs around −10i and 400i along the imaginary axis, respec-
tively.

In this example, the computational domain [A,B] along the imaginary axis is chosen
[−108i,108i] and the bound for tree depth maxdepth is set to 30. Obviously, the binary tree
structure should be built around those two “singular” points for f (z) to be well-resolved.
We plot the binary tree structure in the histogram-like graph in Fig. 3, where the x-axis
represents the imaginary axis and the height indicates the depth of the subinterval. Figure 3



J Sci Comput (2013) 55:16–39 27

Fig. 3 (a) Domain partition and subinterval depths of the tree in the vicinity of two “singular points” which
are shown in Fig. 2(a). (b) A closeup at the “singular point” near the origin which is shown in Fig. 2(b)

Fig. 4 Pole locations where the dots represent poles found in the bootstrap step and the crosses represent
poles after the balanced truncation step

shows that dense partitions occur around the two “singular” points as expected and the depth
of the entire tree is actually 27.

Next we plot the pole locations found by the bootstrap method in Fig. 4, where the dots
represent poles found in the bootstrap step and the crosses represent poles after the balanced
truncation step.

The bootstrap step found 58 poles in order to achieve the desired precision 10−12. Among
these 58 poles, six of them are very close to the original poles in (7) and the rest 52 poles all
have very small weights. Setting the reduction error bound as 10−8, the balanced truncation
step successively reduced the number of poles to six and moved those six poles to their
original positions within the prescribed precision. We list the pole locations and weights
found by the bootstrap method, and their absolute errors as compared with the original
values in Table 1.
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Table 1 Pole locations and weights recovered by Algorithm 5

Pole location Absolute error of pole location

Pole 1 −1.9999999999998306 − 9.9999999999997016i 3.432D−13

Pole 2 −3.0000000000013589 + 4.0000000000008784i 5.993D+12

Pole 3 −6.0000000000005373 + 399.99999999999943i 7.822D−13

Pole 4 −30.000000000069846 − 69.999999999846338i 1.688D−10

Pole 5 −200.00000001195605 − 500.00000000509129i 1.299D−8

Pole 6 −999.99999999300542 + 4000.0000000054019i 8.838D−9

Pole weight Absolute error of pole weight

Pole 1 70.999999999993960 − 1.40690410710408997D−11i 1.531D−11

Pole 2 12.000000000013918 − 1.41815963269550926D−11i 1.987D−11

Pole 3 230.00000000001975 + 1.59899038454369702D−11i 2.541D−11

Pole 4 −20.000000000134609 − 9.9999999998676810i 1.888D−10

Pole 5 1.0000000001671803 − 2.0000000001507807i 2.251D−10

Pole 6 9.9999999999363958 + 1.19021320577061829D−11i 6.471D−11

4.2 Havriliak-Negami Dielectric Model

The Havriliak-Negami model is the most general material model that arises from consider-
ations of the multi-scale nature of the spatial microstructure of a broad class of dielectrics.
When a dielectric material is modeled by the Havriliak-Negami model, the induced polar-
ization P is given by the convolution

P (x, t) =
∫ t

0
χ(t − τ)E(x, τ ) dτ,

where the susceptibility χ(t) is defined by the formula

χ(t) = �εL−1
(

f (sτr)
)

with the function f defined by the formula

f (z) = 1

(1 + zα)β
(8)

and τr the central relaxation time of the material. Note that the well-known Debye model is
obtained by setting α = β = 1, while the Cole-Cole and Cole-Davidson models are obtained
by setting β = 1 and α = 1, respectively. We have used our bootstrap method to find the sum-
of-poles approximation to the function f defined in (8). We present three cases below. For
all these cases the computational domain is chosen [−108i,108i] and the desired precision
for bootstrap step and the error bound for reduction are set 10−12 and 10−8 respectively.

4.2.1 Cole-Cole Kernel

We set α = 0.6 and β = 1, which is a special case of the Cole-Cole model. This function has
a branch point at the origin and its graph is plotted in Fig. 5. The splitting procedure creates
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Fig. 5 (a) The real and imaginary parts of the Cole-Cole kernel with α = 0.6. (b) A closeup around the
“singular point” at the origin

Fig. 6 (a) The pole locations of the Cole-Cole kernel with α = 0.6. (b) Error of the sum-of-pole representa-
tion. (c) A closeup of the error curve near the origin

a tree structure with the depth of 50 to resolve the “singular point”. As shown in Fig. 6(a),
a total of 268 poles are located by the algorithm before the reduction is implemented and
the maximum error 3.803 × 10−12 occurs near the origin. As the reduction error bound is
set to 10−8, we are left with 72 poles yielding an approximation of the original Cole-Cole
kernel with the maximum absolute error about 5.016 × 10−9. The error curve is plotted in
Figs. 6(b) and 6(c).

4.2.2 Cole-Davidson Kernel

We set α = 1 and β = 0.7. The corresponding Cole-Davidson kernel is plotted in Fig. 7.
For this example, a tree with depth of 22 is constructed in partitioning the computational
domain [−108i,108i]. As shown in Fig. 8(a), a total of 145 poles are located by the algorithm
without the reduction and the maximum absolute error is approximately 2.373 × 10−13 in
[−108i,108i]. After reduction with the reduction error bound set as 10−8, 31 poles can give
an approximation of the original Cole-Davidson kernel with the maximum absolute error
about 9.832 × 10−9. The error along the imaginary axis is shown in Figs. 8(b) and 8(c).
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Fig. 7 (a) The real and imaginary parts of the Cole-Davidson kernel with β = 0.7. (b) A closeup around the
“singular point” at the origin

Fig. 8 (a) The pole locations of the Cole-Davidson kernel with β = 0.7. (b) Error of the sum-of-pole repre-
sentation. (c) A closeup of the error curve near the origin

4.2.3 A General Havriliak-Negami Kernel

We choose α = 0.85 and β = 0.5, the corresponding Havriliak-Negami kernel is plotted in
Fig. 9. The domain [−108i,108i] is partitioned using a 45-level tree. As shown in Fig. 10(a),
a total of 244 poles are located by the algorithm before the reduction step giving the maxi-
mum absolute error along the whole imaginary axis no larger than 1.16 × 10−10 and when
the reduction error bound is set 10−8, 63 poles are left to approximate the original Havriliak-
Negamin kernel with a maximum absolute error about 8.359×10−9. The locations and
weights of these 63 poles are listed in Table 2. The error along the imaginary axis is shown
in Figs. 10(b) and 10(c).

4.3 Schrödinger Kernels

The initial-value problem for the Schrödinger equation in two and three dimensions un-
bounded domains is as follow:

{

iut (x, t) = �u(x, t) + V (x, t)u(x, t), x ∈ R
n (n = 2,3), t > 0,

u(x,0) = u0(x).
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Fig. 9 (a) The real and imaginary parts of the Havriliak-Negami kernel with α = 0.85 and β = 0.5.
(b) A closeup around the “singular point” at the origin

Fig. 10 (a) The pole locations of the Havriliak-Negami kernel with α = 0.85 and β = 0.5. (b) Error of the
sum-of-pole representation. (c) A closeup of the error curve near the origin

If we represent the solution of the above problem by a Fourier series in two dimensions and
a spherical harmonic series in three dimensions, then the nonreflecting boundary condition
(for details please see, for example, [21, 22]) for each mode contains a convolution integral
whose kernel is given by

K(t) = L−1

[ √
isK ′

ν(
√

is)

(s − sν)Kν(
√

is)

]

(t),

where Kν is the modified Bessel function [1] and ν of integer values and ν of half integer
values correspond to two dimensions and three dimensions, respectively. The exact value of
sν is not essential and will not affect the performance of the nonreflecting boundary condi-
tions, provided that it does not coincide with the zeros of Kν(

√
is) and does not introduce

new “singular” point rather than the existing turning point iν2. In our numerical experiments,
we have used the following value of sν

sν = iν2 − ν
4
3 .

As discussed in the introduction, in order to be able to implement the nonreflecting
boundary conditions for the Schrödinger equations efficiently and accurately, one needs to
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Fig. 11 (a) The real and imaginary parts of the kernel f40(s) are plotted respectively. (b) A closeup at the
“singular” point

Fig. 12 Numbers of poles for approximating fν(s) on the interval [−108i,108i] with the error
ε = 10−9. (a) Numbers of poles for ν = 1,2, . . . ,1024 before pole reduction. (b) Numbers of poles for
ν = 1,2, . . . ,1024 after reduction using the balanced truncation method of Algorithm 2

find an efficient and accurate sum-of-poles approximation for the following functions

fν(s) =
√

isK ′
ν(

√
is)

(s − sν)Kν(
√

is)
, ν =

{

0,1, . . . ,1024 for 2D
1
2 ,1 + 1

2 , . . . ,1024 + 1
2 for 3D.

These functions fν(s) have similar graphs on the imaginary axis and the graph of f40 on
the imaginary axis is shown in Fig. 11.

We have used our bootstrap method to find the sum-of-poles approximations for these
functions. Since these functions decay rather slowly (like 1/

√
s), we set the root interval

to a very large interval, i.e., [−108i,108i]. The desired precision for the bootstrap step and
the error bound for reduction are 10−12 and 10−9, respectively. The maximal depth of the
binary tree is set to 27 for all ν. Figure 12 plots the number of poles versus the kernel index
ν before and after the pole reduction using the balanced truncation method of Algorithm 2.
In summary, the average number of poles needed to achieve 9-digit accuracy for all kernels
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Fig. 13 (a) The pole locations for approximating the kernel f40(s) before and after reduction and a logarith-
mic scale (base 10) is used for the X-axis. (b) The error when approximates the kernel f40(s) with 24 poles
and logarithmic scale (base 10) is used for the Y -axis

is 25 with the standard deviation roughly equal to 2 after the balanced truncation reduction,
while they are 76 and 12 respectively before the reduction. The pole locations generally
follow a nice trajectory. Figure 13(a) shows the locations of the 109 poles obtained by boot-
strap step and the 24 poles after reduction for approximating the kernel f40(s). The exact
locations and weights of the 24 poles obtained after reduction are listed in Table 3. Finally,
Fig. 13(b) shows the absolute error of the sum-of-poles approximation for f40 on the imag-
inary axis. We observe that the largest error occurs around the turning point iν2, where the
function changes most rapidly. We would like to remark here that these figures are fairly
representative for this class of functions.

5 Conclusions

We have presented a bootstrap method for finding efficient sum-of-poles approximations for
causal functions. Our method is based on the nonlinear least squares method in [5]. Due to
its bootstrapping nature, this method can handle such approximation problems on a much
larger interval and those with multiple “singular” points. It is believed that the algorithm
reported in this paper is more robust since it removes the dependence of a good initial guess
on pole locations. Our method also generates very efficient sum-of-poles approximations
since we have applied the balanced truncation method to reduce the number of poles in the
final optimization step. We expect that the method can be applied to obtain efficient sum-
of-poles approximations for a broad class of causal functions in various areas, including
control theory, computational electromagnetics, and nonreflecting boundary conditions for
other PDEs.

Acknowledgements S. Jiang was supported in part by National Science Foundation under grant CCF-
0905395 and would like to thank Dr. Bradley Alpert at National Institute of Standards and Technology for
many useful discussions on this project. Both authors would like to thank the anonymous referees for their
careful reading and very useful suggestions which have greatly enhanced the presentation of the work.



38 J Sci Comput (2013) 55:16–39

References

1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. Dover, New York (1965)
2. Adamyan, V.M., Arov, D.Z., Krein, M.G.: Infinite Hankel matrices and generalized Carathéodory-Fejér

and I. Schur problems. Funct. Anal. Appl. 2, 269–281 (1968)
3. Adamyan, V.M., Arov, D.Z., Krein, M.G.: Infinite Hankel matrices and generalized problems of

Carathéodory-Fejér and Riesz problems. Funct. Anal. Appl. 2(1), 1–18 (1968)
4. Adamyan, V.M., Arov, D.Z., Krein, M.G.: Analytic properties of the Schmidt pairs of a Hankel operator

and the generalized Schur-Takagi problem. Mat. Sb. 86, 34–75 (1971)
5. Alpert, B., Greengard, L., Hagstrom, T.: Rapid evaluation of nonreflecting boundary kernels for time-

domain wave propagation. SIAM J. Numer. Anal. 37, 1138–1164 (2000)
6. Alpert, B., Greengard, L., Hagstrom, T.: Nonreflecting boundary conditions for the time-dependent wave

equation. J. Comput. Phys. 180, 270–296 (2002)
7. Antoine, X., Arnold, A., Besse, C., Ehrhardt, M., Schädle, A.: A review of transparent and artificial

boundary conditions techniques for linear and nonlinear Schrödinger equations. Commun. Comput.
Phys. 4, 729–796 (2008)

8. Beylkin, G., Monzón, L.: On approximation of functions by exponential sums. Appl. Comput. Harmon.
Anal. 19, 17–48 (2005)

9. Beylkin, G., Monzón, L.: On generalized Gaussian quadratures for exponentials and their applications.
Appl. Comput. Harmon. Anal. 12, 332–373 (2002)

10. Bremer, J., Gimbutas, Z., Rokhlin, V.: A nonlinear optimization procedure for generalized Gaussian
quadratures. SIAM J. Sci. Comput. 32, 1761–1788 (2010)

11. Causley, M., Petropolous, P., Jiang, S.: Incorporating the Havriliak-Negami dielectric model in numerical
solutions of the time-domain Maxwell equations. J. Comput. Phys. 230, 3884–3899 (2011)

12. Dym, H., McKean, H.P.: Fourier Series and Integrals. Academic Press, San Diego (1972)
13. Glover, K.: All optimal Hankel-norm approximations of linear multivariable systems and their L∞-error

bounds. Int. J. Control 39, 1115–1193 (1984)
14. Gutknecht, M.H., Trefethen, L.N.: Real and complex Chebyshev approximation on the unit disk and

interval. Bull., New Ser., Am. Math. Soc. 8, 455–458 (1983)
15. Gutknecht, M.H., Smith, J.O., Trefethen, L.N.: The Carathéodory-Fejér (CF) method for recursive digital

filter design. IEEE Trans. Acoust. Speech Signal Process. 31, 1417–1426 (1983)
16. Gutknecht, M.H.: Rational Carathéodory-Fejér approximation on a disk, a circle, and an interval. J. Ap-

prox. Theory 41, 257–278 (1984)
17. Hagstrom, T.: Radiation boundary conditions for the numerical simulation of waves. Acta Numer. 8,

47–106 (1999)
18. Hammarling, S.: Numerical solution of the stable, non-negative definite Lyapunov equation. IMA J. Nu-

mer. Anal. 2, 303–323 (1982)
19. Hardy, G.H.: On the mean value of the modulus of an analytic function. Proc. Lond. Math. Soc. s2_14,

269–277 (1915)
20. Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1998)
21. Jiang, S.: Fast evaluation of the nonreflecting boundary conditions for the Schrödinger equation. Ph.D.

thesis, Courant Institute of Mathematical Sciences, New York University, New York (2001)
22. Jiang, S., Greengard, L.: Efficient representation of nonreflecting boundary conditions for the time-

dependent Schrödinger equation in two dimensions. Commun. Pure Appl. Math. 61, 261–288 (2008)
23. Laub, A., Heath, M., Paige, C., Ward, R.: Computation of system balancing transformations and other ap-

plications of simultaneous diagonalization algorithms. IEEE Trans. Autom. Control 32, 115–122 (1987)
24. Lee, J., Greengard, L.: A fast adaptive numerical method for stiff two-point boundary value problems.

SIAM J. Sci. Comput. 18, 403–429 (1997)
25. Li, J.R.: Low order approximation of the spherical nonreflecting boundary kernel for the wave equation.

Linear Algebra Appl. 415, 455–468 (2006)
26. Li, J.R.: A fast time stepping method for evaluating fractional integrals. SIAM J. Sci. Comput. 31, 4696–

4714 (2010)
27. Lin, L., Lu, J., Ying, L., E, W.: Pole-based approximation of the Fermi-Dirac function. Chin. Ann. Math.,

Ser. B 30, 729–742 (2009)
28. López-Fernández, M., Palencia, C.: On the numerical inversion of the Laplace transform of certain holo-

morphic mappings. Appl. Numer. Math. 51, 289–303 (2004)
29. López-Fernández, M., Palencia, C., Schädle, A.: A spectral order method for inverting sectorial Laplace

transforms. SIAM J. Numer. Anal. 44, 1332–1350 (2006)
30. López-Fernández, M., Lubich, C., Schädle, A.: Adaptive, fast, and oblivious convolution in evolution

equations with memory. SIAM J. Sci. Comput. 30, 1015–1037 (2008)
31. Lubich, C.: Convolution quadrature revisited. BIT Numer. Math. 44, 503–514 (2004)



J Sci Comput (2013) 55:16–39 39

32. Lubich, C., Schädle, A.: Fast convolution for nonreflecting boundary conditions. SIAM J. Sci. Comput.
24, 161–182 (2002)

33. Ma, J., Rokhlin, V., Wandzura, S.: Generalized Gaussian quadrature rules for systems of arbitrary func-
tions. SIAM J. Numer. Anal. 33, 971–996 (1996)

34. Moore, B.: Principal component analysis in linear systems: controllability, observability, and model re-
duction. IEEE Trans. Autom. Control 26, 17–32 (1981)

35. Muller, D.: A method for solving algebraic equations using an automatic computer. Math. Tables Other
Aids Comput. 10, 208–215 (1956)

36. Peller, V.V.: Hankel Operators and Their Applications. Springer Monographs in Mathematics. Springer,
New York (2003)

37. Penzl, T.: Algorithms for model reduction of large dynamical systems. Linear Algebra Appl. 415, 322–
343 (2006)

38. Penzl, T.: Numerical solution of generalized Lyapunov equations. Adv. Comput. Math. 8, 33–48 (1998)
39. Powell, M.J.D.: Approximation Theory and Methods. Cambridge University Press, Cambridge (1981)
40. Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1987)
41. Safonov, M.G., Chiang, R.Y.: A Schur method for balanced-truncation model reduction. IEEE Trans.

Autom. Control 34, 729–733 (1989)
42. Schädle, A., López-Fernández, M., Lubich, C.: Fast and oblivious convolution quadrature. SIAM J. Sci.

Comput. 28, 421–438 (2006)
43. Sontag, E.D.: Mathematical Control Theory: Deterministic Finite Dimensional Systems. Springer, New

York (1998)
44. Trefethen, L.N.: Rational Chebyshev approximation on the unit disk. Numer. Math. 37, 297–320 (1981)
45. Trefethen, L.N.: Chebyshev approximation on the unit disk. In: Werner, K.E., Wuytack, L., Ng, E. (eds.)

Computational Aspects of Complex Analysis, pp. 309–323. D. Reidel Publishing, Dordrecht (1983)
46. Trefethen, L.N., Gutknecht, M.H.: The Carathéodory-Fejér method for real rational approximation.

SIAM J. Numer. Anal. 20, 420–436 (1983)
47. Trefethen, L.N., Weideman, J., Schmelzer, T.: Talbot quadratures and rational approximations. BIT Nu-

mer. Math. 46, 653–670 (2006)
48. Yarvin, N., Rokhlin, V.: Generalized Gaussian quadratures and singular value decompositions of integral

operators. SIAM J. Sci. Comput. 20, 699–718 (1998)


	A Bootstrap Method for Sum-of-Poles Approximations
	Abstract
	Introduction
	Numerical Preliminaries
	Nonlinear Least Squares Method
	The Balanced Truncation Method

	The Bootstrap Algorithm
	An Informal Description
	Binary Tree Structure
	Splitting Criterion
	Near Pole Criterion
	Some Issues Related with Algorithm 1

	Numerical Experiments
	An Ad Hoc Example
	Havriliak-Negami Dielectric Model
	Cole-Cole Kernel
	Cole-Davidson Kernel
	A General Havriliak-Negami Kernel

	Schrödinger Kernels

	Conclusions
	Acknowledgements
	References


