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In the last thirty years, the Chebyshev points of the first kind have not been given as much 
attention for numerical applications as the second-kind ones. This survey summarizes 
theorems and algorithms for first-kind Chebyshev points with references to the existing 
literature. Benefits from using the first-kind Chebyshev points in various contexts are 
discussed.
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1. Introduction

The Chebyshev polynomials of the first kind, Tn(x) = cos(n arccos x), were introduced by Pafnuty Chebyshev in a paper 
on hinge mechanisms in 1853 [11]. The zeros and the extrema of these polynomials were investigated in 1859 in a paper 
by Chebyshev on best approximation [12]. The zeros of Chebyshev polynomials are called Chebyshev points of the first kind, 
Chebyshev nodes, or, more formally, Chebyshev–Gauss points; they are given by

xk = cos θk, θk = (2k + 1)π

2n
, k = 0, . . . ,n − 1. (1)

The extrema, given by

yk = cosφk, φk = kπ

n − 1
, k = 0,1, . . . ,n − 1, (2)

are called the Chebyshev points of the second kind, or Chebyshev extreme points, or Chebyshev–Lobatto points. Both sets of points 
are the projections onto the real axis of equally spaced points on the upper half of the unit circle that, if extended with a 
uniform spacing to the lower half of the unit circle, are symmetric about the real axis. The difference is that the first-kind 
Chebyshev grid excludes the boundary points ±1, while they are present in the second-kind grid. It is not hard to see that 
polynomial interpolation at either kind of Chebyshev points is equivalent to trigonometric interpolation of an even function 
at evenly-spaced points on unit circle using a cosine series. For a graphical illustration of these points, see [28, p. 90] or 
[56, p. 171]. Both kinds of points have been useful in many areas of numerical analysis and scientific computing, such as 
function approximation and spectral methods.
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Table 1
References and Chebfun commands for fundamental operations on a Chebyshev grid.

First kind Second kind
chebpts(n,1) chebpts(n,2)

Nested sampling Battles & Trefethen [2]
chebtech1.refine chebtech2.refine

Aliasing formula Fox & Parker [26, p. 67] Fox & Parker [26, p. 67]
Hayes [33, p. 21] Hayes [33, p. 21]
Mason & Handscomb [44, p. 153] Trefethen [64, pp. 26–27]
chebtech1.alias chebtech2.alias

Interpolation formulae Fox & Parker [26, p. 32] Fox & Parker [26, p. 32]

Conversion between values and coefficients via FFT Trefethen [62, p. 78]
chebtech1.coeffs2vals chebtech2.coeffs2vals

Cardinal function Boyd [6, pp. 105, 571] Boyd [6, pp. 105, 570]

Barycentric weights Henrici [34, p. 249] M. Riesz [52]
Salzer [55]

[∼,∼,v]=chebpts(n,1) [∼,∼,v]=chebpts(n,2)
Differentiation matrix Gottlieb et al. [30, p. 15]

Weideman & Reddy [66]
diffmat(n,’chebkind1’) diffmat(n,’chebkind2’)

Quadrature rule and algorithms for weights Fejér [24] Clenshaw & Curtis [14]
Waldvogel [65] von Winckel [67]

Waldvogel [65]
[x,w]=chebpts(n,1) [x,w]=chebpts(n,2)

Lebesgue constants Ehlich & Zeller [20] Bernstein [3]
McCabe [45] Erdős [23]
Rivlin [54] McCabe [45]
Günttner [32] Brutman [8]
Brutman [9]
lebesgue lebesgue

Chebfun Since 2014 Since 2004

If we look at popular textbooks in numerical analysis, it is interesting to note that a majority of the classic approximation 
textbooks introduce only the first-kind Chebyshev points but do not discuss them in depth [13,42,50,61], and the second-
kind Chebyshev points are totally omitted. The new title by Trefethen [64] works with the second-kind points entirely and 
little attention is paid to the first-kind points. For spectral methods, the second-kind points are treated in all the classic 
monographs [6,10,25,35,48,57,62] with only some of them discussing the first-kind points as well [6,10,35,57]. If we look at 
these classics chronologically, we see that the second-kind points have been increasingly adopted and have gained dominant 
status in the last three decades.

In this survey, we summarize results for the first-kind Chebyshev points which pertain to function approximation and 
spectral methods and we offer a collection of pointers to relevant references. These results, though they can be found in the 
literature, are scattered over many papers, not all of which are well-known (see Table 1). Unlike the Chebyshev points of 
the second kind, which have been well surveyed in the spectral methods books mentioned above, it seems that no review 
of first-kind Chebyshev points has appeared to date. The aim of this paper is to fill this gap in the literature and also 
to highlight a few occasions where the use of the first-kind Chebyshev points may lead to particularly easy and efficient 
computations in function approximation and solution of differential equations. We do not claim that methods based on 
other sets of points, e.g. the Chebyshev points of the second kind or the Legendre points, are inapplicable or ineffective; 
however, in some circumstances, the first-kind Chebyshev points may be more convenient.

Our writing this survey is motivated in part by a desire to share some of the practical experience we gained with 
first-kind Chebyshev grids during our work on the new version 5 release of Chebfun [19]. Chebfun is an open-source 
software system for numerical computing with functions based on piecewise polynomial interpolation using Chebyshev 
grids. Traditionally, Chebfun has used second-kind grids for all of its computations. Version 5 is the first release that supports 
the first-kind grids as well (see Table 1).

2. Fundamentals

In this section, we review various fundamental results for first-kind Chebyshev points.
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Fig. 1. Circles show Chebyshev points of the first kind for n = 5 and crosses for n = 15.

2.1. Chebyshev points of the first kind

Though they are most simply defined using the cosine function as in (1), in practice, the first-kind points are better 
computed using the sine-based formula

xk = sin
(n − 2k − 1)π

2n
, k = 0, . . . ,n − 1. (3)

One advantage of (3) over (1) is that (3) maintains exact symmetry of xk about the origin in floating-point arithmetic, while 
(1) does not. Formula (3) also has an advantage of better relative accuracy, for example, in the construction of spectral 
differentiation matrices; see e.g. [16,66].

Just like their second-kind siblings, the Chebyshev points of the first kind are distributed in [−1, 1] with the density 
n

π
√

1 − x2
, which implies that the spacing between adjacent points is O (n−2) near the endpoints. This property immunizes 

interpolants in first-kind Chebyshev grids from the famous Runge phenomenon.

2.2. Nested sampling on a Chebyshev grid of the first kind

It is well known that a Chebyshev grid of the second kind is nested in the second-kind Chebyshev grid with twice the 
number of points. Chebyshev grids of the first kind enjoy a similar nestedness. The difference is that we need to have the 
number of points tripled to see the nestedness, instead of doubled.

Consider the grid given by (1) and another Chebyshev grid of the first kind which triples the number of points:

xl = cos
(2l + 1)π

6n
, l = 0, . . . ,3n − 1. (4)

It is easy to see in Fig. 1 that the k-th point in (1) is the (3k + 1)-th point in (4).
If we are approximating a function, this nestedness means that we do not have to re-evaluate the function at the nested 

points when we sample it on a grid three times finer than the current one. Tripling the number of the points and doing 
the nested sampling can save us one third of the function evaluations, each time we need to refine the sampling grid. 
In practice, whether or not these savings are worthwhile depends on programming language, computer, etc. and could be 
marginal, as the induced overhead may outweigh the gain.

2.3. Approximation by Chebyshev series on first-kind grids — interpolation, truncation, and aliasing

Suppose f (x) is a Lipschitz continuous function on [−1, 1] with the Chebyshev series

f (x) =
∞∑
j=0

a j T j(x), (5)

with the truncation or projection to degree n − 1 being

p̃n−1(x) =
n−1∑
j=0

a j T j(x),

and the polynomial interpolation in the n-point Chebyshev grid of the first kind being

pn−1(x) =
n−1∑
j=0

c j T j(x). (6)

We have the following theorems, which parallel similar results given in [64, Theorem 4.1] for Chebyshev points of the 
second kind. The first theorem gives the aliasing property of Chebyshev polynomials on a Chebyshev grid of the first kind.

Theorem 1. For any n ≥ 1 and 0 ≤ m ≤ n − 1, the following polynomials take the same values on the n-point Chebyshev grid of the 
first kind:

Tm, −T2n−m, −T2n+m, T4n−m, T4n+m, −T6n−m, −T6n+m, . . . .
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Fig. 2. Aliasing of T1, −T9, −T11, and T19 on the 5-point Chebyshev grid of the first kind.

Proof. This is clear if we notice that

Tm(xk) = cos

(
(2k + 1)mπ

2n

)
= (−1)r cos

[
(2rn ± m)

(
π(2k + 1)

2n

)]
= (−1)r T2rn±m(xk). �

The second theorem identifies all Chebyshev polynomials T j that take the same values (up to sign) as the m-th Cheby-
shev polynomial Tm on the n-point Chebyshev grid of the first kind.

Theorem 2. For any j ≥ 0, T j takes the same values on an n-point Chebyshev grid of the first kind as (−1)p Tm with

m = |( j + n − 1) (mod 2n) − (n − 1)| , (7)

a number in the range 0 ≤ m ≤ n − 1. Here, p = �n+ j
2n �, where �·� denotes the floor function.

Proof. Suppose first that 0 ≤ j (mod 2n) ≤ n. Then n − 1 ≤ ( j + n − 1)(mod 2n) ≤ 2n − 1, so (7) reduces to m = j (mod 2n), 
with 0 ≤ m ≤ n, and it is shown by Theorem 1 that this implies that (−1)p T j and Tm take the same values on the grid. 
On the other hand, suppose that n + 1 ≤ j (mod 2n) ≤ 2n − 1. Then 0 ≤ ( j + n − 1)(mod 2n) ≤ n − 2, so the absolute value 
becomes a negation and (7) reduces to m = 2n − j (mod 2n), with 1 ≤ m ≤ n − 1. Again Theorem 1 implies that (−1)p T j and 
Tm take the same values on the grid. �

Let us demonstrate the theorems above by taking a 5-point Chebyshev grid of the first kind and plotting T1, −T9, −T11, 
and T19. We can see in Fig. 2 that T1, −T9, −T11, and T19 have identical values on the grid.

From the last two theorems, we give the following aliasing formula with proof omitted.

Corollary 1. (See [26, p. 67] and [44, p. 153].) The coefficients of the interpolant pn−1 on an n-point Chebyshev grid of the first kind 
and the coefficients of the infinite Chebyshev series in (5) are related by

c j = a j − (a2n− j + a2n+ j) + (a4n− j + a4n+ j) − . . . (8)

for 1 ≤ j ≤ n − 1, and

c0 = a0 − a2n + a4n − a6n + a8n − . . . . (9)

Remark 1. On an n-point Chebyshev grid of the first kind, Tln for l = 1, 3, 5, . . . are “blind spots” of aliasing, as they are 
not present in (8) and (9). This happens because the values of Tn on the n-point first-kind Chebyshev grid are zeros (since 
these n points are by definition the zeros of Tn) and the zeros of Tn, T3n, T5n, . . . are nested.

The above aliasing formulae show how we can obtain the coefficients c j of the degree n Chebyshev interpolant (6)
by reassigning the coefficients a j of the infinite series (5) to the corresponding aliases of degree 0 through n − 1, i.e. 
T0, T1, . . . , Tn−1. A matrix interpretation of Corollary 1 can be found in [68].

2.4. Discrete orthogonality on Chebyshev grid of the first kind

Chebyshev polynomials T j are orthogonal on [−1, 1] with respect to the weight function w(x) = 1/
√

1 − x2; see e.g. [53, 
p. 30]. That is,

〈Ti, T j〉 =

⎧⎪⎨
⎪⎩

0 i �= j

π i = j = 0

π/2 i = j > 0,

where the inner product is given by 〈 f , g〉 = ´ 1 w(x) f (x)g(x)dx with the bar over f (x) denoting complex conjugation.
−1
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The orthogonality also holds in a discrete sense on a Chebyshev grid of either kind. On an n-point first-kind grid, the 
discrete inner product leads to the discrete orthogonality as follows.

Theorem 3. The Chebyshev polynomials {T j} j = 0, . . . , n − 1 satisfy discrete orthogonality on the n-point Chebyshev grid of the first 
kind. That is,

〈Ti, T j〉 =

⎧⎪⎨
⎪⎩

0 i �= j and i, j ≤ n − 1

n i = j = 0

n/2 0 < i = j ≤ n − 1

,

where the discrete inner product is defined as

〈u, v〉 =
n−1∑
k=0

u(xk)v(xk)

with xk given by (1).

Proof. See section 4.6.1 of [44]. �
We shall now show that this discrete orthogonality relation immediately leads to an explicit expression for the Chebyshev 

coefficients c j in (6) in terms of function values at the n-point Chebyshev grid of the first kind by linking the conversion 
between Chebyshev coefficients c j and function values to the discrete cosine transform (DCT).

2.5. Transform between function values and coefficients

Just as with Chebyshev points of the second kind, transforming from functions values on a first-kind grid to Chebyshev 
coefficients c j in (6) can be accomplished by variants of the discrete cosine transform.

Values to coefficients. For n ≥ 1, let fk = f (xk) be the values of f (x) on the first-kind Chebyshev grid of n points and let 
ck be the coefficients in (6), and define the vectors

f = ( f0, f1, . . . , fn−1)
T , and c = (c0, c1, . . . , cn−1)

T ,

where the superscript T denotes transpose. Then c j is related to fk via [26, p. 30]

c j = b

n

n−1∑
k=0

fk T j(xk) j = 0,1, . . . ,n − 1, (10)

where b = 1 for j = 0 and b = 2 otherwise. If q = (q0, q1, . . . , qn−1)
T , the discrete cosine transform of type II maps q to a vector 

r = (r0, r1, . . . , rn−1)
T via

r j =
n−1∑
k=0

qk cos

[
π j

n

(
k + 1

2

)]
, j = 0,1, . . . ,n − 1. (11)

Writing this in matrix form as r = Cq, where C is defined by (11), we find that the Chebyshev coefficients (10) satisfy

c = 2

n
Cf,

with the first entry of c, i.e. c0, further halved.
Coefficients to values. The function values can be evaluated in terms of the Chebyshev coefficients:

fk =
n−1∑
j=0

c j T j(xk) = Re
n−1∑
j=0

c j exp

(
− jπ(2k + 1)i

2n

)
.

The inverse discrete cosine transform (IDCT) of type II maps a vector r to another vector q

q j =
n−1∑
k=0

rk cos

[
πk

n

(
j + 1

2

)]
, j = 0,1, . . . ,n − 1; (12)

or equivalently in matrix form q = C̃r, where C̃ is defined by (12), the function values on the n-point Chebyshev grid can be 
evaluated by

f = C̃c.
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In the absence of a specialized DCT code, these transforms can be implemented using the fast Fourier transform; see 
e.g. [43].

2.6. Cardinal functions

Given a set of n distinct points, t0, t1, . . . , tn−1, the k-th cardinal function or Lagrange polynomial defined by

�k(x) =
n−1∏
j=0
j �=k

x − t j

tk − t j

is the unique polynomial of degree n − 1 that vanishes at all points except tk , at which it equals 1. If the points 
t0, t1, . . . , tn−1 are chosen to be the n-point Chebyshev grid of the first kind, the k-th cardinal function can be written 
neatly in terms of the Chebyshev polynomial Tn(x) as

�k(x) = Tn(x)

(x − xk)T ′
n(xk)

. (13)

It follows that the linear combination

p(x) =
n−1∑
k=0

�k(x) f (xk), (14)

is the unique polynomial of degree n −1 interpolating a function f (x) in the given first-kind grid. Evaluating (14) at a single 
value of x requires O (n2) operations; however, this can be reduced to O (n) by using the barycentric formula.

2.7. Barycentric interpolation formula

The barycentric interpolation formula has been widely adopted for polynomial interpolation since the publication of the 
survey paper by Berrut and Trefethen [4].

The formula comes in two canonical forms. When applied to the first-kind Chebyshev points (1), the first form of the 
formula reads

pn(x) = �(x)
n−1∑
k=0

w I
k

x − xk
f (xk), (15)

where �(x) is the node polynomial �(x) = (x − x0)(x − x1) · · · (x − xn−1) = Tn(x)/2n−1 and the barycentric weights are given 
by

w I
k = (−1)k 2n−1

n
sin θk, (16)

where θk is defined in (1).
Rewriting (15) in rational form, the second (true) form of the barycentric interpolation formula is given by

pn(x) =

n−1∑
k=0

w I
k

x − xk
f (xk)

n−1∑
k=0

w I
k

x − xk

(17)

with the same weights {w I
k} given by (16). However, removing the factors in (17) that are independent of the index k, we 

can obtain a simplified set of weights, which are scale-invariant:

w I I
k = (−1)k sin θk.

Formula (17) continues to be valid with the simpler weights {w I I }.
k
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2.8. Spectral differentiation matrix

To approximate the derivative of a function f (x), we can differentiate its Chebyshev interpolant (6) directly, which yields 
an approximation to the derivative in the form of a Chebyshev series. An alternative is to apply a differentiation matrix 
to a vector of function values sampled at chosen points. Such matrices are fundamental building blocks in pseudospectral 
methods for differential equations. Denoting the values of f (x) and its derivative on the n-point Chebyshev grid of the first 
kind by f and u respectively, we can relate f and u by the spectral differentiation matrix Dn:

u = Dnf

with the entries of Dn given by

Dij =

⎧⎪⎪⎨
⎪⎪⎩

xi

2(1 − x2
i )

i = j

T ′
n(xi)

(xi − x j)T ′
n(x j)

i �= j,

where x j are the Chebyshev points given by (1). The entry Dij can be obtained by differentiating the cardinal function � j(x)
given by (13) and then evaluating at xi . Like its counterpart for differentiation on a Chebyshev grid of the second kind, 
application of Dn suffers from numerical instability in the presence of rounding errors [7]. To mitigate the amplification of 
rounding errors, Baltensperger and Berrut [1] suggested that the above formula for the diagonal entries Dii be replaced by 
the negated sum of all off-diagonal entries, that is,

Dii = −
n∑

j=0
j �=i

T ′
n(xi)

(xi − x j)T ′
n(x j)

.

For many years, spectral differentiation matrices have been understood to be square. Recently, Driscoll and Hale [18]
have introduced the concept of rectangular spectral collocation, in which the first-kind Chebyshev points play an important 
role. We defer the discussion of rectangular spectral collocation and rectangular differentiation matrices to section 3.3.

2.9. Quadrature weights on the Chebyshev grid of the first kind

Clenshaw–Curtis quadrature, based on sampling the integrand on a Chebyshev grid of the second kind, has comparable 
performance to Gauss quadrature but is easier to implement [63]. Analogously, this is also true of Fejér’s first rule, which 
uses the values of the integrand on the Chebyshev grid of the first kind. Suppose we wish to compute

I =
1ˆ

−1

w(x) f (x)dx, (18)

where the integrand f (x) is a continuous function on [−1, 1] and the weight function w(x) is positive and continuous on 
(−1, 1). Fejér’s first rule on the n-point Chebyshev grid of the first kind approximates I by

In =
n−1∑
k=0

wk f (xk), (19)

where xk are the first-kind Chebyshev points given by (1) and wk are quadrature weights to be determined. Since Fejér 
quadrature is polynomial interpolatory [15, p. 84], that is, defined by integrating a polynomial interpolant of the integrand, 
we can derive the formula for the weights wk as follows. On the one hand, we can start from (18) by substituting f (x) by 
its interpolant given in (6) and swapping the summation and the integral to get

In =
n−1∑
j=0

c jm j, (20)

where

m j =
1ˆ

−1

w(x)T j(x)dx

is the j-th moment of the weight function w(x). Collecting the Chebyshev coefficients in a column vector c as in section 2.5, 
we can write (20) as
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In = mT c,

where m is a column vector with j-th entry m j . Recognizing (10) as a linear transformation which we denote by

c = Tf,

where T is the matrix that maps the function values at the Chebyshev grid of the first kind to the Chebyshev coefficients, 
we can write the quadrature rule as

In = fT (mT T)T . (21)

On the other hand, (19) can be written in vector notation as

In = fT w, (22)

where w is a column vector with the j-th entry being w j . Comparing (21) and (22), both of which are valid for an arbitrary 
function, we have

w = TT m.

If we notice that TT is the transform matrix from coefficients to function values discussed in section 2.5, up to a constant, 
the weights w can be computed in O (n log n) operations once the moments m are available. Sommariva [59] discusses the 
details of computing the weights w via FFT when the weight function w(x) is of a general form. Here we look at a few 
special cases.

2.9.1. Fejér’s first rule with the Legendre weight function
When the weight function in (18) is identically 1, the moments are as simple as

m j =
1ˆ

−1

T j(x)dx =
⎧⎨
⎩

0 j is odd
2

1 − j2
j is even

and the quadrature weights wk for k = 0, . . . , n − 1 can be explicitly written as (see e.g. [15, p. 85]):

wk = 2

n

⎛
⎝1 − 2

�n/2�∑
j=1

cos(2 jθk)

4 j2 − 1

⎞
⎠ .

Here θk = (2k + 1)π/2n, k = 0, . . . , n − 1 are the arguments of the cosine function in (1).

Remark 2. Another common way to implement Fejér’s first rule, which is slightly more straightforward, is to first figure out 
the Chebyshev coefficients c following the method in section 2.5 and then simply calculate the inner product of c and the 
moment vector m, as in (20).

2.9.2. Fejér’s first rule with the Jacobi weight function
When w(x) is the Jacobi weight function, w(x) = (1 + x)α(1 − x)β , the quadrature weights have no explicit form unless 

α and β have certain special values; however, we can compute the Jacobi moment vector m of dimension n with m j =´ 1
−1(1 + x)α(1 − x)β T j(x)dx cheaply in O (n) operations. For α, β > −1, the Jacobi moments can be expressed in terms of 

hypergeometric functions [49]:

m j(α,β) = 2α+β+1 B(α + 1, β + 1)s j,

where B(·) is the beta function and s j is a generalized hypergeometric function

s j = 3 F2

(
j,− j, β + 1
1
2 ,α + β + 2

;1

)
.

Each s j can be calculated recursively using a three-term recurrence formula which is derived by using Sister Celine’s tech-
nique [51]:

(α + β + j + 2)s j+1 + 2(β − α)s j + (α + β − j + 2)s j−1 = 0 (23)

with initial values

s0 = 1, s1 = α − β
.

α + β + 2
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Note that when α �= β and the smaller one is a half-integer in [− 1
2 , ∞), the naive forward recursion of (23) is not numer-

ically stable. In such a situation, a more sophisticated method for the solution of (23) needs to be used, for example, the 
approach presented in [46].

When α and β are identical, the numbers m j are Gegenbauer moments, which have an explicit formula [37]:

m j =

⎧⎪⎪⎨
⎪⎪⎩

0 j odd,
√

π�(α + 1)

�(α + 3
2 )

j/2∏
k=1

k − 3
2 − α

k + α + 1
2

j even.

Remark 3. When α = β = −1/2, the weights wk become π/n identically, matching the weights of the Gauss–Chebyshev 
quadrature rule exactly [44, section 8.3].

2.10. Lebesgue constants

Given a grid of interpolation points in [−1, 1], the Lebesgue constant for the grid is the norm of the linear operator that 
maps data sampled at the grid points to the corresponding polynomial interpolant [50,64]. (Here, the data are thought of as 
elements of a vector in Cn and the interpolant as belonging to the space of continuous functions on [−1, 1], both measured 
using their respective infinity-norms.) It can be shown that the Lebesgue constant is the maximum value of the Lebesgue 

function λn−1(x) =
n−1∑
j=0

|� j(x)| over the domain, i.e.,


n−1 = sup
x∈[−1,1]

λn−1(x).

The Lebesgue constant enables us to bound the infinity-norm difference between the polynomial interpolant and the best 
infinity-norm polynomial approximation of the same degree.

Theorem 4. For an (n + 1)-point Chebyshev grid of the first kind, the Lebesgue constant 
n has the following properties:
(1) For n = 0, 1, 2, . . .,

a0 + 2

π
log(n + 1) < 
n ≤ 1 + 2

π
log(n + 1), (24)

where a0 = 0.9625 . . ..
(2)


n ∼ 2

π
log(n + 1) + a0 +

∞∑
k=1

ak

(n + 1)2k
, (25)

where a0 is given above and

ak = (−1)k+1(22k−1 − 1)2π2k−1 B2
2k

4k−1k(2k)! for k = 1,2, . . .

and Bk are the Bernoulli numbers. If finitely many terms are taken in (25), the truncation error has the same sign as the first neglected 
term and is less than it in absolute value.

(3) The Lebesgue constant 
n−1 for degree n − 1 interpolation on a Chebyshev grid of the first kind bounds 
∗
n, the Lebesgue 

constant for degree n interpolation on a Chebyshev grid of the second kind, by


n−1 = 
∗
n + sn,

where sn = 0 for odd n and 
π

8(2n)2
< sn <

2
√

2 − 2

(2n)2
for even n.

Proof. The bounds in (24) are given by Rivlin [54] by sharpening the results obtained by a series of authors. The asymp-
totic expansion (25) was first established by Günttner [32]. The relation between the Lebesgue constant for the first-kind 
Chebyshev grid and that of the second kind was found by Ehlich and Zeller [20] and McCabe and Phillips [45]. �

Here are the first 9 Lebesgue constants for the Chebyshev grids of the first and the second kind, which demonstrate 
part (3) of Theorem 4.
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degree first kind second kind
1 1.414213562373095 1.000000000000000
2 1.666666666666667 1.250000000000000
3 1.847759065022574 1.666666666666667
4 1.988854381999833 1.798761803322554
5 2.104397682646484 1.988854381999832
6 2.202214555205530 2.082555385939792
7 2.287016068458566 2.202214555205529
8 2.361856787767076 2.274730766233740
9 2.428829482376075 2.361856787767072

The fact that 
n > 
n−1 due to the monotonic increase of 
n and part (3) of Theorem 4 implies that a Chebyshev grid of 
the first kind has a larger Lebesgue constant than the second-kind grid of the same size. But the difference is by no means 
significant, as suggested by the magnitude of sn in part (3) of Theorem 4.

3. Applications of Chebyshev points of the first kind

The fundamentals of the last section show that the Chebyshev points of the first kind do not differ much from the 
second-kind ones, which suggests that similar numerical results should be expected if they are used for function approxima-
tion or solution of differential equations. In this section, we discuss certain benefits we can gain from using the Chebyshev 
points of the first kind.

3.1. Approximation

A distinctive property of the first-kind Chebyshev grid is the exclusion of the endpoints −1 and 1, which sometimes 
makes things easier when function approximations are constructed.

3.1.1. Construction of piecewise smooth functions
Robust algorithms for edge detection have made automatic construction of piecewise smooth function possible [47]. For 

instance, let us consider the construction of a two-piece representation for the sign function in [−1, 1]:

sgn(x) =

⎧⎪⎨
⎪⎩

−1 if x < 0,

0 if x = 0,

1 if x > 0.

An automatic constructor can locate the discontinuity at 0 using edge detection algorithms. Then the whole domain is split 
into two subdomains and an approximation is sought over each subdomain. One way to construct approximations with 
adequate resolution could be to sample the sign function in each subdomain on grids of increasing size until the Cheby-
shev coefficients decay to machine precision. However, if we sample, for example, the right subdomain on a second-kind 
Chebyshev grid mapped to [0, 1], the vector of function values passed to the interpolant constructor is f = (0, 1, 1, . . . , 1)T

where the first entry 0 is due to sgn(0) = 0. The Chebyshev coefficients corresponding to this vector converge slowly, as the 
function values suggest non-smoothness.

One workaround is to discard the sampling value at the origin and then extrapolate the function value there under the 
assumption that the function value at the endpoints along with other sample values are from a smooth piece, and this is 
what Chebfun does when working in second-kind mode. The extrapolation makes use of the usual barycentric interpolation 
formula. Such a strategy works but at the cost of extra computation. On the other hand, it is not easy to predict when this 
is needed and therefore the use of this method may make the algorithm less easy to automate.

In contrast, if the sampling is done on first-kind Chebyshev grids, the cumbersome process just described is avoided, and 
we never need to worry about boundary issues.

3.1.2. Approximation of functions in unbounded domains
Methods for the approximation of functions defined on unbounded domains generally fall into two categories. Methods 

in the first category use basis functions intrinsic to an unbounded domain. These include sinc-related methods [60] which 
use sinc functions (also known as Whittaker cardinal functions) as the building blocks, and spectral methods based on 
Hermite functions or Laguerre functions which rely on the corresponding orthonormal system defined on an unbounded 
domain. These methods have certain limitations. For example, they are not efficient in approximating functions that decay 
algebraically or more slowly as the convergence cannot be geometric or exponential but only algebraic. Moreover, the 
sinc-related methods cannot be sped up by FFTs and, in general, do not give exact solutions to classic eigenvalue problems. 
For a more detailed discussion, see [6, p. 346].

The methods in the second category construct the approximation to a function defined on an unbounded domain by 
mapping the original function to a finite interval, for example [−1, 1], and then seeking an approximation to the mapped 
function on a finite domain. Experiments show that mapping methods work well for functions that decay algebraically at 
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Table 2
Domain mappings for approximating functions defined on an unbounded domain. The variable y is defined on the unbounded domain, while x lives on 
[−1, 1]. The forward map takes [−1, 1] to one of the three unbounded domains, and the inverse does the opposite.

Domain D (−∞,∞) (−∞,b] [a,∞)

Forward map [−1,1] → D y = 5x

1 − x2
y = 15(x − 1)

x + 1
+ b y = 15(x + 1)

1 − x
+ a

Inverse map D → [−1,1] x = 2y

5 + √
25 + 4y2

x = 15 + y − b

15 − y + b
x = −15 + y − a

15 + y − a

infinity. In practice, the sampling of the function is usually done by first mapping the interpolation points to the unbounded 
domain and then evaluating the function on the mapped grid. The maps recommended by Grosch and Orszag [31] and Boyd 
[5,6] are summarized in Table 2, subject to a slight change. If the second-kind Chebyshev grid is used, we have to treat the 
endpoints ±1 with extra care as they are mapped to ±∞, that is, ±Inf in floating point arithmetic.

However, if Chebyshev grids of the first kind are used, the mapped sampling points are free of this issue and there is no 
need to add an extra check for the mapped endpoints.

3.2. Solution of integral equations

Chebyshev points of the first kind play an important role in the numerical solution of certain integral or integro-
differential equations, which involve integral operators of the form

u �→
ˆ

w(y)K (x, y)u(y)dy.

acting on u(y). Here the weight function is w(y) = 1/
√

1 − y2 and the kernel K (x, y) is singular.
For instance, the singular integral equation of the first kind

−
1ˆ

−1

u(t)dt

t − s
+ λ

1ˆ

−1

u(t)K (s, t)dt = f (s), s ∈ (−1,1) (26)

is of particular importance in certain engineering problems, such as elasticity and aerodynamics; see e.g. [29,27,17]. The 

Hilbert-type integral is interpreted as Cauchy principal value integral, indicated by −
ˆ

, and K (s, t) is a Fredholm kernel [40, 

p. 72]. Equation (26) can be reduced to a Fredholm integral equation of the second kind by setting u(t) = (1 − t2)−1/2 v(t); 
see e.g. [21,22], that is,

−
1ˆ

−1

v(t)dt√
1 − t2(t − s)

+ λ

1ˆ

−1

v(t)K (s, t)√
1 − t2

dt = f (s). (27)

A widely adopted approach for solving (27) is to use Chebyshev points of the first kind as the quadrature points for the 
evaluation of both the integrals and Chebyshev points of the second kind as the collocation points. The benefits are twofold. 
On the one hand, if the quadrature abscissae are the first-kind Chebyshev grid, the quadrature weights are simple and 
explicitly known (see Remark 3). On the other hand, by using different sets of points for quadrature and collocation, we do 
not have to compute the limit of the integrand in the Hilbert-type integral when the quadrature points and the collocation 
points coincide. Therefore, the discrete system we solve for v(t) is

π

n

n−1∑
k=0

(
1

xk − y j
+ λK (y j, xk)

)
v(xk) = f (y j),

where xk are the first-kind Chebyshev grid given by (1) while y j are the second-kind points given by (2).
A similar strategy of using the Chebyshev points of the first kind can also be applied to other singular integral equations, 

such as integral equation of Symm’s type; see e.g. [58,36,41].

3.3. Solution of differential equations

Spectral collocation methods approximate solutions of differential equations by polynomial interpolants that satisfy the 
given equation at a set of carefully chosen points, the collocation points. Chebyshev points of either kind are among the most 
natural choices for spectral collocation methods. As an example, consider the two-point boundary value problem

uxx = f (x), −1 < x < 1, u(−1) = 0 and u(1) = 0. (28)
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Fig. 3. Traditionally, boundary conditions are imposed by row replacement. The top and the bottom rows in grey are replaced by rows corresponding to the 
boundary conditions.

Fig. 4. In the alternative approach introduced by Driscoll and Hale, boundary conditions are appended to a rectangular differentiation matrix, where the 
second-order differential operator D(2) is rectangularized by the barycentric interpolation matrix P and the right hand side f is mapped to the same grid 
too.

When the second-kind Chebyshev grid given by (2) is adopted as is common, (28) is discretized as

D(2)u = f, (29)

where f is the column vector whose j-th entry is the value of f (x) at y j , while u is the discretized version of u. The matrix 
D(2) is the second-order differentiation matrix defined on a second-kind Chebyshev grid; see e.g. [62, Chapter 6]. To impose 
the boundary conditions at ±1, the first and the last rows of (29) are replaced by the boundary conditions, as shown in 
Fig. 3. This serves two purposes. On the one hand, the second order differential equation in (28) governs only the interior 
of the domain. Therefore the first and the last row which correspond to the boundary points should not be included. On 
the other hand, the matrix on the left-hand side of (29) is singular and hence needs to be regularized by adding rows with 
“independent” information. Enforcing the boundary conditions using these kinds of row replacements seem reasonable for 
such a simple example.

In more general situations, how to decide which rows to remove is not always so obvious. For example, if the boundary 
condition at 1 is changed to a more complicated boundary condition like u(−1) + u(1) = c or a side condition such as 

1ˆ

−1

u(x)dx = c with c a given constant, the row replacement approach often does not work. To circumvent this, an ingenious 

method of discretization was suggested by Driscoll and Hale [18], as they observed that a differentiation matrix should be 
rectangular instead of square and boundary information can be further added. Specifically, an order d differentiation ma-
trix should have dimension (n − d) × n. This makes good sense as each differentiation reduces the degree of a polynomial 
interpolant by one and a polynomial interpolant of degree (n − 1) can be uniquely defined by a set of n values. For the 
present example, the second-order rectangular differentiation matrix on the left-hand side of (29) should map from an 
n-point Chebyshev grid of either kind to an (n − 2)-point Chebyshev grid of the first kind. Here the choice of the first-kind 
Chebyshev grid is important, since the collocation grid should not include the boundary points. This rectangular differenti-
ation matrix can be formed by pre-multiplying the standard square differentiation matrix with an (n − 2) × n barycentric 
interpolation matrix P which maps from an n-point grid to an (n − 2)-point one using barycentric interpolation formulae. 
Likewise, we map the values of f (x) on the right hand side to the (n − 2)-point first-kind grid as well, using the same 
barycentric interpolation matrix or by simply sampling at the (n − 2)-point Chebyshev grid of the first kind. Finally, the 
system is “squared up” by appending the boundary conditions, as shown in Fig. 4.

For details of the rectangular spectral collocation method and the explicit construction of rectangular differentiation 
matrices, see [18] and [68]. It also worth noting that a similar idea was exploited by Kopriva et al. for the numerical 
simulation of compressible flows [39,38] using so-called staggered grids.
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4. Conclusion

We have reviewed the fundamental properties of the Chebyshev points of the first kind, which show a clear similarity 
to those of the more widely used Chebyshev points of the second kind. We have also discussed some examples in function 
approximation and integral and differential equations for which benefits can be gained by using the first-kind Chebyshev 
points. We hope to have made clear that certain properties of the first-kind Chebyshev points, e.g., exclusion of the boundary 
points and their interlacing with the second-kind Chebyshev points, can sometimes make them more convenient than their 
second-kind counterparts.
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