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VOLTERRA-TYPE CONVOLUTION

OF CLASSICAL POLYNOMIALS

ANA F. LOUREIRO AND KUAN XU

Abstract. We present a general framework for calculating the Volterra-type
convolution of polynomials from an arbitrary polynomial sequence {Pk(x)}k�0

with degPk(x) = k. Based on this framework, series representations for the
convolutions of classical orthogonal polynomials, including Jacobi and La-
guerre families, are derived, along with some relevant results pertaining to
these new formulas.

1. Introduction

Volterra-type convolution, as a fundamental operation, is commonly seen in
many fields of science and engineering, including statistics and probability theory
[14], computer vision [10], image and signal processing [8], and system control [27].
Particularly, in applied mathematics, convolution operators figure in many topics:
Green’s function [9], Duhamel’s principle [28], non-reflecting boundary condition
[12], large eddy simulation [32], approximation theory [31], fractional calculus [13],
among others. Convolution operators are the key building blocks of the convolution
integral equations [5,6,20]. Let f : [α, β] �→ C and g : [γ, δ] �→ C be two continuous
integrable functions defined on intervals with a same length, that is, β−α = δ− γ,
where α and γ are finite numbers while β and δ can be finite or infinite. Their
convolution h(x) is a third function, given by

(1.1) h(x) = (f ∗ g)(x) =
∫ x−α

γ

f(x− t)g(t)dt, x ∈ [α+ γ, α+ δ],

where the domain of h(x), i.e., [α+ γ, α+ δ], has the same length as those of f(x)
and g(x). This operation is often denoted by an asterisk, as in (1.1).

When β and δ are finite, f(x) and g(x) are compactly supported and can be
mapped to the interval [−1, 1] via changes of variables, and the convolution of the
mapped versions of f(x) and g(x) differs from that of the original f(x) and g(x)
by an affine transform only. Therefore, with slight abuse of our notation, we can
consider exclusively the convolution of two functions f(x) and g(x) that are defined
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on [−1, 1], that is,

(1.2) h(x) = (f ∗ g)(x) =
∫ x+1

−1

f(x− t)g(t)dt, x ∈ [−2, 0],

where the convolution h(x) is, in this case, a function on [−2, 0]. Analogously, when
β and δ are infinities (1.1) becomes

(1.3) h(x) = (f ∗ g)(x) =
∫ x

0

f(x− t)g(t)dt, x ∈ [0,∞),

up to a real Möbius transform. Note that the domains of the transformed f(x),
g(x), and the convolution h(x) all become [0,∞) in (1.3).

A powerful working paradigm that motivates this investigation and are com-
monly adopted in problems where functions considered are smooth is to replace
f(x) and g(x) by their unique series representation in terms of classical orthogonal
polynomials, e.g. Chebyshev or (weighted) Laguerre series for f(x) and g(x) in (1.2)
and (1.3), respectively. In numerical computation, such series are usually truncated
at certain degrees so that the finite series accurate to machine precision can serve
as good approximants. In either case, the calculation of convolution integrals boils
down to the convolution of polynomial series of finite or infinite degrees, or, further,
to the convolution of classical orthogonal polynomials. To see this, suppose that
f(x) and g(x) are approximated by two series

(1.4) fM (x) =

M∑
m=0

amPm(x) and gN (x) =

N∑
n=0

bnPn(x),

of the set of polynomials {Pn}n�0 such that degPn = n. The convolution of fM (x)
and gN (x) results in a degree M +N + 1 polynomial

hM+N+1(x) =
M+N+1∑

k=0

ckPk(x).

As discussed in [34], the convolution operator

V [fM ](gN ) = hM+N+1(x) =

∫ x+a

−a

fM (x− t)gN (t)dt,

which is defined by fM (x) and applied to gN (x), can be represented as an (M +
N +2)× (N +1) matrix R so that the coefficients vector c = (c1, c2, . . . , cM+N+1)

T

equals the product of R and the column vector b = (b1, b2, . . . , bN )T . That is,

(1.5) c = Rb.

In [34] this convolution matrix R is constructed numerically via a stable method.
For the case of Jacobi polynomials, orthogonal on [−1, 1] (therefore a = −1), that
method is based on a four- or five-point recurrence relation satisfied by its entries

alongside weighted symmetry properties of R. For the Laguerre polynomials L
(0)
n ,

orthogonal on [0,+∞) (therefore a = 0), it is shown in [34, Th. 5.2] that the
convolution matrix R is constructed as a difference of two lower-triangular Toeplitz
matrices. However, for neither the Jacobi polynomials nor the generalized Laguerre
polynomials are the entries of the convolution matrix R known explicitly. On the
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one hand, the (j, n)-entry of R in (1.5) is the coefficient Rj,n in

(1.6)

∫ x+a

−a

fM (x− t)Pn(t)dt =

M+n+1∑
j=0

Rj,nPj(x+ a).

On the other hand, if

(1.7)

∫ x+a

−a

Pm(x− t)Pn(t)dt =

m+n+1∑
j=0

ρmj,nPj(x+ a),

then ∫ x+a

−a

fM (x− t)Pn(t)dt =
n∑

j=0

M∑
m=0

amρmj,nPj(x+ a)

+

M+n+1∑
j=n+1

M∑
m=j−(n+1)

amρmj,nPj(x+ a),

which follows from (1.7) and (1.4), by swapping the order of the sums. Comparing
(1.6) and the latter equation leads to

(1.8) Rj,n =

M∑
m=max(0,n+1−j)

amρmj,n.

It turns out that explicit expressions for the ρ-coefficients in (1.7) are not known,
even when Pn(x) are classical polynomials of Jacobi and (general) Laguerre type,

except for Laguerre polynomials L
(0)
n (x) [24, Eq. (18.17.2)]. The knowledge of the

ρ-expressions may hint on the rich structure of convolution matrices R and, in turn,
shed light upon their fast construction as well as the design of fast algorithms for
convolving polynomial series.

Our main goal in this work is to obtain explicit expressions for ρmj,n in (1.7) when
{Pn}n�0 belongs to the family of Jacobi or Laguerre polynomials. To this end, we
develop a new framework, which is universally applicable to the convolution of
general polynomial sets. We approach the problem by exploiting the nature of the
Volterra-type convolution operator rather than any intrinsic properties possessed by
the polynomials considered, e.g. orthogonality. The results presented in this paper
for the convolution coefficients of the Jacobi and Laguerre families are not seen
in the literature and can largely expand the collection of the existing convolution

formulas comprised of those of Laguerre polynomials L
(0)
n (x) [24, Eq. (18.17.2)]

and Bessel functions of the first kind Jn(x) [24, Eq. (10.22.31)].
It should be noticed that the notion of convolution of orthogonal polynomials has

been explored in several works, mostly regarding a discrete convolution procedure.
For instance, discrete convolution appears in the theory of the irreducible Lie alge-
bra su(1, 1) in [17] and, more recently, transformations of such type are discussed in
[16]. In addition, there are continuous transformations involving orthogonal poly-
nomials, which can be regarded as projection operators that somewhat resemble but
do not coincide with the Volterra-type convolution transform considered here; see,
for instance, [4] for Jacobi polynomials and [7] for other orthogonal polynomials.

In the next section, Theorem 2.3 gives explicit expressions for the ρ-coefficients
for a general polynomial set. These expresessions are given as sums depending
only on the connection coefficients between derivatives of Pn as well as those
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between the sequence of monomials with Pn (also known as inversion formula
coefficients). For several sets of polynomials of hypergeometric type, including
the classical polynomials, these connection coefficients are well known (see, e.g.,
[1–3, 15, 18, 19, 23, 26, 30, 33, 35]). Theorem 2.4 further shows that some of the ρ-
coefficients are exactly zero when {Pn}n�0 is a sequence of classical polynomials.
In Section 3, we derive explicit and new expressions for the ρ-coefficients in (1.7),
with a = 1, for the Jacobi family (see Theorem 3.4), including the special cases of
Gegenbauer (see Corollary 3.10), Legendre (see Corollary 3.11), and Chebyshev of
the second kind (see Corollary 3.13) for which the ρ-expressions become simpler.
Section 4 is devoted to the Laguerre family, where we prove that the ρ-coefficients
in (1.7), with a = 0, significantly simplify to a ratio of Pochhammer symbols (see
Theorem 4.1). We close the paper with a few remarks in Section 5.

2. Convolution of two elements in a polynomial sequence

Let {Pn(x)}n�0 be a polynomial sequence with degPn(x) = n, which forms a
basis of the vector space of polynomials with complex coefficients. We consider
the problem of finding explicit expressions for the Pn(x)-series coefficients ρmj,n so
that (1.7) holds for a given constant a. A change of variable t → x − τ shows
the commutativity of the convolution in (1.7), which gives a remarkable symmetry
property

ρmj,n = ρnj,m

for any j, n,m � 0. Therefore, there is no loss of generality if one assumes n � m
or m � n.

A sequence { ds

dxsPn+s(x)}s�0 for n � 0, i.e., the sth derivative of the orig-
inal sequence, also spans the vector space of polynomials. Therefore, the rth
derivatives of Pn(x) can be represented by a linear combination of the elements

of { ds

dxsPn+s(x)}s�0 as

(2.1)
drPn(x)

dxr
=

n−r∑
k=0

γ
(r,s)
n−r,k

dsPk+s(x)

dxs
, n � r,

where the coefficients γ
(r,s)
n−r,k are referred to as the connection coefficients between

{ dr

dxr Pn(x)}n�r and { ds

dxsPn+s(x)}n�0. The unique representation of Pn(x) in terms
of the monomial sequence {(x + a)n}n�0 can be obtained by its Taylor expansion
about x = −a,

Pn(x) =

n∑
k=0

1

k!

dkPn(x)

dxk

∣∣∣∣
x=−a

(x+ a)k, n � 0,

and, reversely, a unique set of coefficients bn,k exists such that

(2.2) (x+ a)n =

n∑
k=0

bn,kPk(x), n � 0.

When {Pn(x)}n�0 is an orthogonal sequence, these b-coefficients can be obtained
via the orthogonality measures and their moments.
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Lemma 2.1. The γ-connection coefficients in (2.1) can be expressed in terms of
the connection b-coefficients in (2.2) by

(2.3) γ
(r,s)
n−r,k =

n−(r+k)∑
σ=0

bσ+k+s,k+s

(σ + k + s)!

dr+k+σPn(x)

dxr+k+σ

∣∣∣∣
x=−a

.

Proof. The Taylor expansion of dr

dxr Pn(x) gives

drPn(x)

dxr
=

n−r∑
σ=0

1

σ!

dr+σPn(x)

dxr+σ

∣∣∣∣
x=−a

(x+ a)σ

=

n−r∑
σ=0

1

(σ + s)!

dr+σPn(x)

dxr+σ

∣∣∣∣
x=−a

(
ds

dxs
(x+ a)σ+s

)
,

where s is an arbitrary positive integer. Substituting (2.2) into the last equation
gives

drPn(x)

dxr
=

n−r∑
σ=0

1

(σ + s)!

dr+σPn(x)

dxr+σ

∣∣∣∣
x=−a

(
σ∑

k=0

bσ+s,k+s
ds

dxs
Pk+s(x)

)
which, after exchanging the summations, becomes

drPn(x)

dxr
=

n−r∑
k=0

⎛⎝n−(r+k)∑
σ=0

bσ+k+s,k+s

(σ + k + s)!

dr+k+σPn(x)

dxr+k+σ

∣∣∣∣
x=−a

⎞⎠ ds

dxs
Pk+s(x).

Matching the like terms in (2.1) leads to (2.3). �

We omit the proof of the following lemma, which is concerned with the pth
derivative of the convolution in (1.7) and can be easily shown by repeatedly applying
the Leibniz rule for differentiation under the integral sign.

Lemma 2.2. For a positive integer p,

dp

dxp

∫ x+a

−a

Pm(x− t)Pn(t)dt =

∫ x+a

−a

dp

dxp
Pm(x− t)Pn(t)dt(2.4)

+

p∑
k=1

dp−kPm(x)

dxp−k

∣∣∣∣
x=−a

dk−1

dxk−1
Pn(x+ a).

With Lemmas 2.1 and 2.2, we show in the following theorem that ρmj,n in (1.7) can
be represented in terms of the γ-coefficients in (2.1) and the b-coefficients in (2.2).

Theorem 2.3. For 0 � j � m+n+1, the coefficients ρmj,n in (1.7) can be expressed
as

(2.5) ρmj,n =

m+n+1∑
p=j

bp,j
p!

p∑
ν=1

(
dp−νPm(x)

dxp−ν

∣∣∣∣
x=−a

dν−1Pn(x)

dxν−1

∣∣∣∣
x=−a

)
,

or, equivalently,

(2.6a) ρmj,n =

m+1∑
ν=max(1,j−n)

(
γ
(j−ν,j)
n−j+ν,0

dν−1Pm(x)

dxν−1

∣∣∣∣
x=−a

)
for j � m+ 1
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and
(2.6b)

ρmj,n =

j∑
ν=1

(
γ
(j−ν,j)
m−j+ν,0

dν−1Pn(x)

dxν−1

∣∣∣∣
x=−a

)

+
n+1∑

ν=j+1

(
dν−1Pn(x)

dxν−1

∣∣∣∣
x=−a

m∑
p=0

bp+ν,j

(p+ ν)!

dpPm(x)

dxp

∣∣∣∣
x=−a

)
for 0 � j � m,

where the γ- and the b-coefficients are the connection coefficients given in (2.1) and
(2.2), respectively.

Proof. To show (2.5), we Taylor expand the convolution integral in (1.7) about
x = −2a:∫ x+a

−a

Pm(x− t)Pn(t)dt(2.7)

=
m+n+1∑
p=0

1

p!

[
dp

d(x+ a)p

∫ x+a

−a

Pm(x− t)Pn(t)dt

]
x=−2a

(x+ 2a)p.

Note that the Taylor coefficients in (2.7) can be obtained using (2.4):[
dp

d(x+ a)p

∫ x+a

−a

Pm(x− t)Pn(t)dt

]
x=−2a

=

p∑
ν=1

dp−νPm(x)

dxp−ν

∣∣∣∣
x=−a

dν−1Pn(x)

dxν−1

∣∣∣∣
x=−a

,

where the sum is assumed zero when p = 0, and (x + 2a)p can be replaced by its
expansion in {Pn(x+ a)}n�0 as given in (2.2):

(x+ 2a)p =

p∑
j=0

bp,jPj(x+ a).

We substitute the last two equations into (2.7) and exchange the order of the
summations to get

∫ x+a

−a

Pm(x− t)Pn(t)dt

(2.8)

=

m+n+1∑
j=0

⎛⎝m+n+1∑
p=j

bp,j
p!

p∑
ν=1

dp−νPm(x)

dxp−ν

∣∣∣∣
x=−a

dν−1Pn(x)

dxν−1

∣∣∣∣
x=−a

⎞⎠Pj(x+ a).

Matching terms in (2.8) and (1.7) gives (2.5).
To see (2.6a), we take the jth derivative on both sides of (1.7) for j � m+ 1 to

get

dj

dxj

∫ x+a

−a

Pm(x− t)Pn(t)dt =

m+n+1−j∑
k=0

ρmk+j,n

dj

dxj
Pk+j(x+ a).
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Meanwhile, Lemma 2.2 gives

dj

dxj

∫ x+a

−a

Pm(x− t)Pn(t)dt =

j∑
�=1

dj−�Pm(x)

dxj−�

∣∣∣∣
x=−a

d�−1

dx�−1
Pn(x+ a),

where the convolution integral on the right-hand side of (2.4) vanishes here, since
the integrand becomes zero for j � m + 1. Combining the last two equations, we
have

(2.9)

m+n+1−j∑
k=0

ρmk+j,n

dj

dxj
Pk+j(x+ a) =

j∑
�=1

dj−�Pm(x)

dxj−�

∣∣∣∣
x=−a

d�−1

dx�−1
Pn(x+ a).

If we denote by S the sum on the right-hand side of (2.9), then

S =

j−1∑
�=0

dj−�−1Pm(x)

dxj−�−1

∣∣∣∣
x=−a

d�

dx�
Pn(x+ a)

=

n∑
�=j−(m+1)

dj−�−1Pm(x)

dxj−�−1

∣∣∣∣
x=−a

d�

dx�
Pn(x+ a),

where the last equality is obtained by noting that the summand disappears when
j − 
 − 1 > m and 
 > n. Now we use the connection formula (2.1) once again to
get

S =

n∑
�=j−(m+1)

dj−�−1Pm(x)

dxj−�−1

∣∣∣∣
x=−a

n−�∑
k=0

γ
(�,j)
n−�,k

dj

dxj
Pk+j(x+ a)(2.10)

=

m+n+1−j∑
k=0

⎛⎝γ
(�,j)
n−�,k

n−k∑
�=j−(m+1)

dj−�−1Pm(x)

dxj−�−1

∣∣∣∣
x=−a

⎞⎠ dj

dxj
Pk+j(x+ a),

where we have swapped the order of the sums. Combining (2.9) and (2.10) and
matching terms yield

(2.11) ρmk+j,n =

n−k∑
�=j−(m+1)

γ
(�,j)
n−�,k

dj−�−1Pm(x)

dxj−�−1

∣∣∣∣
x=−a

for 0 � k � m+ n+ 1− j. Particularly, for k = 0, (2.11) becomes

ρmj,n =

n∑
�=j−(m+1)

γ
(�,j)
n−�,0

dj−�−1Pm(x)

dxj−�−1

∣∣∣∣
x=−a

=

m+1∑
ν=j−n

γ
(j−ν,j)
n−j+ν,0

dν−1Pm(x)

dxν−1

∣∣∣∣
x=−a

,

where we use the change of variable 
 = j − ν in the last step. Ensuring ν − 1 � 0,
we obtain (2.6a).

To see (2.6b), we swap the order of sums in (2.5) to get

ρmj,n =

⎛⎝ j∑
ν=1

m+ν∑
p=j

+
n+1∑

ν=j+1

m+ν∑
p=ν

⎞⎠(
bp,j
p!

dp−νPm(x)

dxp−ν

∣∣∣∣
x=−a

dν−1Pn(x)

dxν−1

∣∣∣∣
x=−a

)
,
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since dp−νPm(x)
dxp−ν

∣∣∣
x=−a

and dν−1Pn(x)
dxν−1

∣∣∣
x=−a

vanish for p > m + ν and ν > n + 1,

respectively. This is equivalent to

ρmj,n =

j∑
ν=1

dν−1Pn(x)

dxν−1

∣∣∣∣
x=−a

m+ν−j∑
p=0

(
bp+j,j

(p+ j)!

dp−ν+jPm(x)

dxp−ν+j

∣∣∣∣
x=−a

)
(2.12)

+

n+1∑
ν=j+1

dν−1Pn(x)

dxν−1

∣∣∣∣
x=−a

m∑
p=0

(
bp+ν,j

(p+ ν)!

dpPm(x)

dxp

∣∣∣∣
x=−a

)
.

In (2.3), we set k = 0 and s = j and replacing r and n by j − ν and m,
respectively, we have

γ
(j−ν,j)
m+ν−j,0 =

m+ν−j∑
σ=0

bσ+j,j

(σ + j)!

dj−ν+σPm(x)

dxj−ν+σ

∣∣∣∣
x=−a

,

by applying which the first double sum in (2.12) can be simplified as

j∑
ν=1

dν−1Pn(x)

dxν−1

∣∣∣∣
x=−a

m+ν−j∑
p=0

bp+j,j

(p+ j)!

dp−ν+jPm(x)

dxp−ν+j

∣∣∣∣
x=−a

=

j∑
ν=1

γ
(j−ν,j)
m−j+ν,0

dν−1Pn(x)

dxν−1

∣∣∣∣
x=−a

.

Hence, (2.6b) is obtained. �

To obtain the preceding results, we have nowhere assumed the sequence of poly-
nomials {Pn(x)}n�0 to be orthogonal and the expressions for the γ-connection
coefficients and the b-coefficients are, in general, not easy to calculate. However,
when {Pn(x)}n�0 is an orthogonal polynomial sequence, these coefficients are usu-
ally explicitly known or more likely to be obtainable. In fact, for a non-decreasing,
non-negative function w(x) in [a, b] which is measurable in the Lebesgue sense,

that is, all the moments
∫ b

a
xnw(x)dx exist and are finite,1 there is an orthogonal

sequence of polynomials {Pn(x)}n�0 for which

〈Pm(x), Pn(x)〉w =

∫ b

a

Pm(x)Pn(x)w(x)dx = hmδm,n, m, n = 0, 1, 2, . . . ,

where hm = 〈Pm(x), Pm(x)〉w 	= 0 for all positive integers m and δm,n denotes the
Kronecker delta symbol. Since Pn(x) ∈ L2

w(a, b) and {Pn(x)}n�0 spans the vector
space of polynomials, any polynomial p(x) of degree m can be written as

p(x) =

m∑
k=0

ckPk(x) with ck =
〈p(x), Pn(x)〉w

hk
.

Particularly, for classical orthogonal polynomial sequences, i.e., Jacobi, Laguerre,
Hermite, and Bessel polynomials, these b- and γ-connection coefficients are well
studied [2, 15, 23, 25, 26, 35]. Based on these known results, we shall explicitly
calculate the ρ-coefficients in (1.7) for the Jacobi and the Laguerre polynomials in
the next two sections.

1In the case of a = −∞ or b = +∞, we require that limx→−∞ xnw(x) and limx→+∞ xnw(x)
be finite, respectively, for any positive integer n.
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We close this section with the following theorem which shows that a consecutive
part of the ρ-coefficients in (1.7) could be exactly zero when {Pn(x)}n�0 is a classical
orthogonal polynomial sequence. However, these zeros are not immediately obvious
from Theorem 2.3.

Theorem 2.4. Let m,n be two non-negative integers such that n � m. Suppose
{Pn(x)}n�0 is a classical polynomial sequence and the interval (−a, x+a) lies within
the support of the orthogonality measure of {Pn(x)}n�0. When n � 2m+ q+2, the
series coefficients ρmj,n = 0 for m + 1 � j � n −m − q − 1, where q = 1, 1, 0, and
−1 for Jacobi, Bessel, Laguerre, and Hermite polynomials, respectively.

Proof. By orthogonality, we have

(t+ a)νPn(t) =

n+ν∑
k=max{n−ν,0}

λν,n(k)Pk(t),

where λν,n(k) =
〈(t+a)νPn(t),Pk(t)〉w

〈Pk(t),Pk(t)〉w , which, together with the Taylor expansion of

Pm(x− t) about t = −a,

Pm(x− t) =

m∑
ν=0

(−1)ν

ν!

dνPm(x+ a)

d(x+ a)ν
(t+ a)ν ,

gives

(2.13) Pm(x− t)Pn(t) =
m∑

ν=0

(−1)ν

ν!

dνPm(x+ a)

d(x+ a)ν

n+ν∑
k=n−ν

λν,n(k)Pk(t).

If, in addition, {Pn(x)}n�0 is a classical sequence, there exists a polynomial Φ(t)
of degree at most 2 and ξn,ν such that

Φ(t)
dPk+1(t)

dt
=

k+degΦ∑
r=k

ξk,rPr(t),

where ξk,k+degΦξk,k 	= 0 for all n � 0. Reversely, there are coefficients ξ̃k,r such
that

Pk(t) =

k+1∑
r=k−q

ξ̃k,r
dPr(t)

dt
,

where q = degΦ(x)− 1 and ξ̃k,k−q ξ̃k,k+1 	= 0 [22, Prop. 2.4]. This can be deemed
as a special case of (2.1). In particular, if {Pn(x)}n�0 is the classical orthogonal
sequence of Jacobi, Bessel, Laguerre, and Hermite polynomials, deg Φ(x) = 2, 2, 1,
and 0, respectively.

We integrate (2.13) over the interval (−a, x+ a) to get∫ x+a

−a

Pm(x− t)Pn(t)dt =
m∑

ν=0

(−1)ν

ν!

dνPm(x+ a)

d(x+ a)ν

×
n+ν∑

k=n−ν

λν,n(k)
k+1∑

r=k−q

ξ̃k,r

(
Pr(x+ a)− Pr(−a)

)
.
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Swapping the order of the last two sums and absorbing the innermost summation

into new coefficients λ̃ν,n(k), we have∫ x+a

−a

Pm(x− t)Pn(t)dt

=

m∑
ν=0

(−1)ν

ν!

dνPm(x+ a)

d(x+ a)ν

n+ν+1∑
k=n−ν−q

λ̃ν,n(k)
(
Pk(x+ a)− Pk(−a)

)

=
m∑

ν=0

(−1)ν

ν!

dνPm(x+ a)

d(x+ a)ν

n+ν+1∑
k=n−ν−q

λ̃ν,n(k)Pk(x+ a)

−
m∑

ν=0

(−1)ν

ν!
Sν,n

dνPm(x+ a)

d(x+ a)ν
,

where λ̃ν,n(n − ν − q)λ̃ν,n(n + ν + 1) 	= 0 and Sν,n =
∑n+ν+1

k=n−ν−q λ̃ν,n(k)Pk(−a).

Since dνPm(x+a)
d(x+a)ν is a polynomial of degree m− ν, there are coefficients χm,ν,k such

that ∫ x+a

−a

Pm(x− t)Pn(t)dt

=
m∑

ν=0

(−1)ν

ν!

n+ν+1∑
k=n−ν−q

λ̃ν,n(k)

k+(m−ν)∑
j=k−(m−ν)

χm,ν,k(j)Pj(x+ a)

−
m∑

ν=0

(−1)ν

ν!
Sν,n

m−ν∑
j=0

γ
(ν,0)
m−ν,jPj(x+ a),

where we have applied (2.1) to the last sum. After swapping the order of the
summations, we see there are coefficients χ̃m,n(j) such that∫ x+a

−a

Pm(x− t)Pn(t)dt =
m+n+1∑

j=n−m−q

χ̃m,n(j)Pj(x+ a)−
m∑
j=0

χ̃m,n(j)Pj(x+ a).

When n � 2m+ q+2, this means that ρmj,n = 0 for m+1 � j � n−m− q− 1. �

3. Convolution of Jacobi polynomials

In this section, we derive the ρ-coefficients in (1.7) based on the results of Sec-
tion 2 for the Jacobi-family, including the subcases of Gegenbauer, Legendre, and
Chebyshev. To facilitate our discussion, we denote the Jacobi-based ρ-coefficients

by ρ
m;(α,β)
j,n throughout this section, that is,

(3.1)

∫ x+1

−1

P (α,β)
m (x− t)P (α,β)

n (t)dt =

m+n+1∑
j=0

ρ
m;(α,β)
j,n P

(α,β)
j (x+ 1),

which corresponds to (1.7) with a = 1. Here, P
(α,β)
n (x) denotes the Jacobi polyno-

mial of degree n � 0 with α, β > −1. With the most commonly-used normalization,
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which can be found, for example, in [29, §4.2.1], it can be represented as a termi-
nating hypergeometric function

P (α,β)
n (x) =

(α+ 1)n
n!

2F1

(
−n, n+ α+ β + 1

α+ 1
;
1− x

2

)
, n � 0,

where (z)n is the Pochhammer symbol, defined as

(z)0 := 1 and (z)n :=

n−1∏
σ=0

(z + σ) for n � 1.

Here and in the rest of this paper, we will use the generalized hypergeometric series

pFq

(
a1, . . . , ap
b1, . . . , bq

;x

)
:=

∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

xn

n!
,

and its detail can be found, for example, in [24, Ch. 16].

The properties of P
(α,β)
n that we will make use of in the rest of this section

include its value at −1,

P (α,β)
n (−1) =

(−1)n(β + 1)n
n!

,

and a symmetry property,

(3.2) P (α,β)
n (−x) = (−1)nP (β,α)

n (x).

The sequence of Jacobi polynomials {P (α,β)
n (x)}n�0 satisfy the orthogonality

condition [15, Ch. 4]∫ 1

−1

P
(α,β)
k (x)P (α,β)

n (x)(1− x)α(1 + x)βdx

=
2α+β+1Γ(α+ n+ 1)Γ(β + n+ 1)

n!Γ(α+ β + n+ 1)(α+ β + 2n+ 1)
δk,n

for any integers n, k � 0. Being a member of a classical sequence, the pth derivative
of a Jacobi polynomial is another Jacobi polynomial with shifted parameters

(3.3)
dp

dxp
P (α,β)
n (x) =

(α+ β + n+ 1)p
2p

P
(α+p,β+p)
n−p (x)

and, in particular,

(3.4)
dp

dxp
P (α,β)
n (x)

∣∣∣∣
x=−1

=
2−p(−1)n+p(p+ β + 1)n−p(n+ α+ β + 1)p

(n− p)!
.

The properties above allow us to derive a connection formula between the deriva-
tives of Jacobi polynomials.

Lemma 3.1. The pth and qth derivatives of Jacobi polynomials are linearly con-
nected via

(3.5)
dp

dxp
P

(α,β)
n+p (x) =

n∑
k=0

γ
(p,q)
n,k (α, β)

dq

dxq
P

(α,β)
k+q (x)
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with
(3.6)

γ
(p,q)
n,k (α, β) =

(k + p+ α+ 1)n−k(n+ p+ α+ β + 1)p(n+ 2p+ α+ β + 1)k
2p−q(n− k)!(k + q + α+ β + 1)q(k + 2q + α+ β + 1)k

× 3F2

(
k − n, k + q + α+ 1, k + n+ 2p+ α+ β + 1

k + p+ α+ 1, 2k + 2q + α+ β + 2
; 1

)
.

Proof. The following connection formula, which can be found in [1, p. 357], [15,
Theorem 9.1.1], or [2], relates Jacobi polynomials with distinct parameters:

(3.7) P (α,β)
n (x) =

n∑
k=0

a
(α,β;γ,δ)
n,k P

(γ,δ)
k (x),

where

a
(α,β;γ,δ)
n,k =

(k + α+ 1)n−k(n+ α+ β + 1)k
(n− k)!(k + γ + δ + 1)k

(3.8)

× 3F2

(
k − n, n+ k + α+ β + 1, k + γ + 1

k + α+ 1, 2k + γ + δ + 2
; 1

)
.

Combining (3.3) and (3.7), we have (3.5) with

(3.9) γ
(p,q)
n,k (α, β) =

(n+ p+ α+ β + 1)p
2p−q(k + q + α+ β + 1)q

a
(α+p,β+p;α+q,β+q)
n,k ,

which, with (3.8) substituted in, gives (3.6). �

Remark 3.2. Via (3.5), the symmetry property (3.2) implies

γ
(p,q)
n,k (α, β) = (−1)n+k γ

(p,q)
n,k (β, α).

One last ingredient we need for deriving ρ
m;(α,β)
k,n is the b-coefficients in (2.2) for

representing the monomial basis in terms of Jacobi polynomials.

Lemma 3.3. The connection coefficients bn,k(α, β) in

(3.10) (x+ 1)n =

n∑
k=0

bn,k(α, β)P
(α,β)
k (x)

are given by

(3.11) bn,k(α, β) = 2nn!(β + 1)n
(α+ β + 2k + 1)Γ(α+ β + k + 1)

(β + 1)kΓ(α+ β + n+ k + 2)(n− k)!
.

Proof. See, for example, [15, (4.2.15)], [21, p. 277, Eq. (30)], or [35] for the proof.
�

3.1. The Jacobi-based convolution coefficients. Though we could derive the
Jacobi-based convolution coefficients directly from the orthogonality of Jacobi poly-
nomials, we opt to find the explicit expressions for the ρ-coefficients in the expan-
sion of the integral (3.1) from Theorem 2.3 by substituting in (2.5) and (2.6) the
expressions (3.4), (3.6), and (3.11).
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Theorem 3.4. Let m and n be two positive integers with n � m. The ρ-coefficients
in the expansion (3.1) can be expressed as

ρ
m;(α,β)
j,n =

m+1∑
ν=max(1,|j−n|)

�m,n
j,ν (α, β) for j � max(m+ 1, n−m− 1),(3.12a)

ρ
m;(α,β)
j,n = 0 for m+ 1 � j � n−m− 2, if n � 2m+ 3,(3.12b)

ρ
m;(α,β)
j,n =

j∑
ν=1

�n,m
j,ν (α, β) +

n+1∑
ν=j+1

dmν,j,n(α, β) for 0 � j � m,(3.12c)

where
(3.12d)
�m,n

j,ν (α, β)

=
2(−1)m+ν−1(j−ν+α+1)n−j+ν(n+α+β+1)j−ν(β+ν)m−ν+1(m+α+β+1)ν−1

(j+α+β+1)j(m+1−ν)!(n−j+ν)!

×3F2

(
j − n− ν, j + α+ 1, n+ j − ν + α+ β + 1

j − ν + α+ 1, 2j + α+ β + 2
; 1

)

and
(3.12e)

dmν,j,n(α, β)

=
2(−1)m+n+1+ν(α+β+2j+1)(β+ν)(j+β+1)m−j(β+1)n(n+1+α+β)ν−1

m!(n+1−ν)!(ν−j)!(j+α+β+1)ν+1

×4F3

(
1,−m, β + ν + 1,m+ α+ β + 1

ν − j + 1, β + 1, j + α+ β + ν + 2
; 1

)
.

Proof. The zero coefficients given by (3.12b) are readily known from Theorem 2.4.
Following (2.6) with a = 1, we have

(3.13a) ρ
m;(α,β)
j,n =

m+1∑
ν=max(1,j−n)

γ
(j−ν,j)
n−j+ν,0(α, β)

dν−1P
(α,β)
m (x)

dxν−1

∣∣∣∣∣
x=−1

for j � m+ 1 and
(3.13b)

ρ
m;(α,β)
j,n =

j∑
ν=1

γ
(j−ν,j)
m−j+ν,0(α, β)

dν−1P
(α,β)
n (x)

dxν−1

∣∣∣∣∣
x=−1

+
n+1∑

ν=j+1

(
dν−1P

(α,β)
n (x)

dxν−1

∣∣∣∣∣
x=−1

m∑
k=0

bk+ν,j(α, β)

(k + ν)!

dkP
(α,β)
m (x)

dxk

∣∣∣∣∣
x=−1

)

for 0 � j � m. Combined with (3.4) and (3.6), (3.13a) gives (3.12a) and (3.12d).
Similarly, the first sum on the right-hand side of (3.13b) yields the first sum in
(3.12c).
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To find dmν,j,n(α, β) of the second sum in (3.12c), we first calculate the inner sum
of (3.13b) to get

m∑
k=0

bk+ν,j(α, β)

(k + ν)!

dkP
(α,β)
m (x)

dxk

∣∣∣∣∣
x=−1

(3.14)

=
2ν(−1)m(α+ β + 2j + 1)Γ(m+ β + 1)

m!Γ(ν − j + 1)Γ(j + β + 1)

× Γ(β + ν + 1)Γ(j + α+ β + 1)

Γ(β + 1)Γ(j + α+ β + ν + 2)

×
m∑

k=0

(−m)k(β + ν + 1)k(m+ α+ β + 1)k
(β + 1)k(−j + ν + 1)k(j + α+ β + ν + 2)k

.

Multiplying by
dν−1P (α,β)

n (x)
dxν−1

∣∣∣
x=−1

the factors in (3.14) that are independent of

index k and simplifying yields

2ν(−1)m(α+β+2j+1)Γ(m+β+1)Γ(β+ν+1)Γ(j+α+β+1)

m!Γ(ν − j + 1)Γ(j + β + 1)Γ(β + 1)Γ(j + α+ β + ν + 2)

dν−1P
(α,β)
n

dxν−1

∣∣∣∣∣
x=−1

= (−1)m+n+1+ν

× 2(α+ β + 2j + 1)(β + ν)(j + β + 1)m−j(β + 1)n(n+ 1 + α+ β)ν−1

m!(n+ 1− ν)!(ν − j)!(j + α+ β + 1)ν+1
.

The expression of dmν,j,n(α, β) then follows from the last two equations and the fact
that the k-sum in (3.14) can be concisely written as a generalized hypergeometric
series:

m∑
k=0

(−m)k(β + ν + 1)k(m+ α+ β + 1)k
(β + 1)k(−j + ν + 1)k(j + α+ β + ν + 2)k

= 4F3

(
1,−m,β + ν + 1,m+ α+ β + 1

ν − j + 1, β + 1, j + α+ β + ν + 2
; 1

)
. �

Figure 3.1. The magnitude plot of the Jacobi coefficients ρ
15;(2.5,1.5)
j,n .
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We calculate the coefficients ρ
m;(α,β)
j,n with α = 2.5 and β = 1.5 for m = 15

using Theorem 3.42 and show their magnitudes for 0 � j, n � 66 in Figure 3.1.

That is, the nth column in this matrix plot corresponds to ρ
15;(2.5,1.5)
j,n . There are

three regions of exact zeros which are indicated by solid lines. The coefficients

ρ
15;(2.5,1.5)
j,n are exact zeros in region A simply because the convolution of P

(2.5,1.5)
15

and P
(2.5,1.5)
n is a polynomial of degree n + 16. The zeros in region B correspond

to (3.12b). Finally, we note that m � 2n+3 in region C and by swapping the roles
of m and n we see the exact zeros in region C, again, from (3.12b).

Remark 3.5. A convolution formula of Volterra type makes appearance in [21,
p. 281, Eq. (51)]:

k!Q
(α,β,0)
n,k+1 (y) =

∫ y

0

(y − t)kP (α,β)
n (2t− 1)dt

which implies (see [21, p. 281, Eq. (53)])

Q
(α,β,0)
n,k+1 (x) =

(−1)n(β + 1)n
n!(k + 1)!

xk+1
3F2

(
−n, n+ α+ β + 1, 1

β + 1, k + 2
;x

)
for a non-negative integer α and k−α = 0, 1, . . . , n− 1. Straightforwardly, one can
deduce∫ x+1

−1

P (α,β)
m (x− t)P (α,β)

n (t)dt

=
2(−1)m(β + 1)m

m!

m∑
k=0

(−m)k(m+ α+ β + 1)k
(β + 1)k

Q
(α,β,0)
n,k+1

(x
2
+ 1

)
,

which is indeed valid for any α, β > −1. However, in order to obtain the expressions
for the ρ-coefficients in (3.1), it would be required to consider connection formulas

between the polynomials Q
(α,β,0)
n,k+1 and the Jacobi polynomials, which does not seem

to be an easy task.

In [34, Th. 4.8], it is shown that the coefficients ρ
m;(α,β)
j,n are symmetric up to a

scaling for j, n � m+ 1:
(3.15)

ρ
m;(α,β)
n,j = (−1)j+n

(α+ β + 2n+ 1)(α+ 1)j(β + 1)j

(
(α+ β + 1)n

)2

(α+ β + 2j + 1)(α+ 1)n(β + 1)n

(
(α+ β + 1)j

)2 ρ
m;(α,β)
j,n ,

which can be shown from (3.12d) with some tedious and lengthy work. However,
this symmetry property is readily seen for the symmetric Jacobi case where α = β
and we show this in the next subsection. In Figure 3.1, the entries that satisfy this
symmetry property are those in the lower right part that is bordered by the dashed
lines.

Bateman’s formula for the expansion of Jacobi polynomials with two variables
is well known (see, for example, [15, Theorem 4.3.3]). In passing, we obtain the
following proposition where we show the binomial-type tensor product expansion

of P
(α,β)
m (x− t) in P

(α,β)
j (x+ 1) and P

(α,β)
k (t). This way, the variables x and t in

a Jacobi-polynomial-based difference kernel [20, p. 37] become detached.

2In this example and the examples in the remainder of this paper, the calculation is carried
out in Mathematica.
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Proposition 3.6. For the mth degree Jacobi polynomial P
(α,β)
m (x),

(3.16) P (α,β)
m (x− t) =

m∑
k=0

m−k∑
j=0

c
m,(α,β)
m−k,j P

(α,β)
j (x+ 1)P

(α,β)
k (t),

where
(3.17)

c
m,(α,β)
m−k,j =

m−j∑
ν=k

(−1)ν(α+ β + 2k + 1)

(β + ν + 1)k−ν(α+ β + k + 1)ν+1(ν − k)!

× (j + ν + α+ 1)m−ν−j(m+ α+ β + 1)ν(m+ ν + α+ β + 1)j
(m− ν − j)!(j + α+ β + 1)j

× 3F2

(
j −m+ ν, j + α+ 1, j +m+ ν + α+ β + 1

j + ν + α+ 1, 2j + α+ β + 2
; 1

)
.

Proof. By Taylor expansion of P
(α,β)
m (x− t) about t = −1, we have

P (α,β)
m (x− t) =

m∑
ν=0

(−1)ν

ν!

dνP
(α,β)
m (x+ 1)

d(x+ 1)ν
(t+ 1)ν .

Using (3.5) and (3.10), the latter equation becomes

P (α,β)
m (x− t) =

m∑
ν=0

(−1)ν

ν!

⎛⎝m−ν∑
j=0

γ
(ν,0)
m−ν,j(α, β)P

(α,β)
j (x+ 1)

⎞⎠
×
(

ν∑
k=0

bν,k(α, β)P
(α,β)
k (t)

)
.

We swap the order of the k- and the ν-summations and then that of the ν- and the
j-summations to obtain (3.16) with

c
m,(α,β)
m−k,j =

m−j∑
ν=k

(−1)ν

ν!
bν,k(α, β)γ

(ν,0)
m−ν,j(α, β).

Substituting in the expressions of bν,k(α, β) and γ
(ν,0)
m−ν,j(α, β), given by (3.11) and

(3.6), respectively, leads to (3.17). �

3.2. Symmetric Jacobi polynomials. In this subsection, we give in Corollary

3.8 the convolution coefficients ρ
m;(α,β)
k,n for the Jacobi polynomials with α = β.

These coefficients could be obtained from Theorem 3.4 by simply setting β = α.
However, a lengthy simplification is necessary in order to obtain exactly what is
given in Corollary 3.8. The route we take is to obtain the explicit expressions for

γ
(p,q)
n,k (α, α), bn,k(α, α), and

dp

dxpP
(α,α)
n (x)

∣∣∣
x=−1

, from which we derive �m,n
j,ν (α, α)

and dmν,j,n(α, α) using (3.13).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

VOLTERRA-TYPE CONVOLUTION OF CLASSICAL POLYNOMIALS 2367

Lemma 3.7. When n− k is even,

γ
(p,q)
n,k (α, α)

(3.18a)

=
(p−q)n−k

2
(α+k+q+ 1

2 )Γ(k+q+2α+1)Γ(n+p+α+1)Γ
(
k+n+1

2 + p+ α
)

2q−p
(
n−k
2

)
!Γ(k + q + α+ 1)Γ(n+ p+ 2α+ 1)Γ

(
k+n+3

2 + q + α
) ,

and

(3.18b) γ
(p,q)
n,k (α, α) = 0

otherwise.

Proof. The connection coefficients in (3.7) with β = α and δ = γ can be found in
[1, Theorem 7.1.4]:

a
(α+p,α+p;α+q,α+q)
n,k

(3.19)

=
(p− q)n−k

2

(
q + α+ 3

2

)
k
(2(q + α) + 1)k(p+ α+ 1)n

(
p+ α+ 1

2

)
k+n
2(

n−k
2

)
!
(
q + α+ 1

2

)
k
(q + α+ 1)k(2(p+ α) + 1)n

(
q + α+ 3

2

)
k+n
2

when n− k is even, while

a
(α+p,α+p;α+q,α+q)
n,k = 0

when n − k is odd, implied by P
(α,α)
n (−x) = (−1)nP

(α,α)
n (x) [1, Theorem 7.1.4].

Now the relation (3.9) between the a- and the γ-coefficients readily show that

γ
(p,q)
n,k (α, α) = 0 when n− k is odd. For the case where n− k is even, we substitute

(3.19) in (3.9) and simplify using the Legendre duplication formula [24, Eq. (5.5.5)]
to obtain (3.18). �

Corollary 3.8. Let m and n be two positive integers with n � m and suppose
α > −1 to be non-zero. For α = β, the ρ-coefficients in the expansion (3.1) become

ρ
m;(α,α)
j,n =

m+1∑
ν=max(1,|j−n|)

�m,n
j,ν (α, α) for j � max(m+ 1, n−m− 1),(3.20a)

ρ
m;(α,α)
j,n = 0 for m+ 1 � j � n−m− 2, if n � 2m+ 3,(3.20b)

ρ
m;(α,α)
j,n =

j∑
ν=1

�n,m
j,ν (α, α) +

n+1∑
ν=j+1

dmν,j,n(α, α) for 0 � j � m,(3.20c)

where
(3.20d)

�m,n
j,ν (α, α) =

2(−1)m+ν+1(α+ ν)m+1−ν(m+ 2α+ 1)ν−1(n+ 2α+ 1)j−ν

(m− ν + 1)!
(
n+ν−j

2

)
!

×
(−ν)n+ν−j

2

(
j + α− ν + 1

2

)
n+ν−j

2

(j + α− ν + 1)n+ν−j

(j + 2α+ 1)j
(
j + α+ 3

2

)
n+ν−j

2

(2j + 2α− 2ν + 1)n+ν−j
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when n+ ν − j is even and

(3.20e) �m,n
j,ν (α, α) = 0

otherwise. Here,
(3.20f)

dmν,j,n(α, α)

=
2(−1)m+n+1+ν(2α+2j+1)(α+ν)(j+α+1)m−j(α+1)n(n+1+2α)ν−1

m!(n+1−ν)!(ν−j)!(j+2α+1)ν+1

× 4F3

(
1,−m,α+ ν + 1,m+ 2α+ 1

ν − j + 1, α+ 1, j + 2α+ ν + 2
; 1

)
.

Proof. The ρ-coefficients in (3.20) inherit from (3.12).
From (3.4), we have

(3.21)
dp

dxp
P (α,α)
n (x)

∣∣∣∣
x=−1

=
2−p(−1)n+p(p+ α+ 1)n−p(n+ 2α+ 1)p

(n− p)!
.

Substituting (3.18) and (3.21) into (3.13a), we have (3.20d) and (3.20e) after
some algebraic simplifications.

Replacing β by α in (3.12e) gives (3.20f). �

The following proposition instantiates the symmetry property for the symmetric
Jacobi-based coefficients, which can be easily derived from Corollary 3.8.

Proposition 3.9. For j, n � m+ 1, the ρ-coefficients in (3.1) with β = α satisfy

(3.22) ρ
m;(α,α)
j,n = (−1)j+n (2α+ 2j + 1) ((2α+ 1)j)

2
((α+ 1)n)

2

(2α+ 2n+ 1) ((α+ 1)j)
2 ((2α+ 1)n)

2 ρ
m;(α,α)
n,j .

Proof. When (n+ ν − j) is even, so is (j + ν − n) and (3.20d) gives

(3.23)
�m,n

j,ν (α, α)

�m,j
n,ν (α, α)

= (−1)j+n (2α+ 2j + 1) ((2α+ 1)j)
2
((α+ 1)n)

2

(2α+ 2n+ 1) ((α+ 1)j)
2 ((2α+ 1)n)

2 ,

which is independent from ν. If |n− j| � m+ 1, (3.23) and (3.20a) imply (3.22).

If n � 2m+ 3, for m+ 1 � j � n−m− 2 we have ρ
m;(α,α)
j,n = 0, as indicated by

(3.20b). Also, j � n −m − 2 suggests n � j +m + 2, in which case ρ
m;(α,α)
n,j = 0.

Therefore, (3.22) holds too for m+ 1 � j � n−m− 2.
Hence, (3.22) is true for j, n � m+ 1. �

Figure 3.2 shows the magnitudes of the coefficients ρ
m;(α,α)
j,n with α = 2.5 and

m = 15. The regions A, B, and C with exact zeros are inherited from those of the
Jacobi-based convolution coefficients. The symmetric coefficients are bordered by
the dashed lines.

3.2.1. Gegenbauer case. Gegenbauer polynomials C
(λ)
n are symmetric Jacobi poly-

nomials with a different normalization:

(3.24) C(λ)
n (x) =

(2λ)n(
λ+ 1

2

)
n

P
(λ− 1

2 ,λ−
1
2 )

n (x), n � 0,
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Figure 3.2. The magnitude plot of the symmetric Jacobi coeffi-

cients ρ
15;(2.5,2.5)
j,n .

with λ > − 1
2 and λ 	= 0. If we denote by ρ̃

m;(λ)
k,n the series coefficients of the

convolution of two Gegenbauer polynomials, that is,

(3.25)

∫ x+1

−1

C(λ)
m (x− t)C(λ)

n (t)dt =

m+n+1∑
k=0

ρ̃
m;(λ)
j,n C

(λ)
j (x+ 1),

then relation (3.24) gives

(3.26) ρ̃
m;(λ)
j,n =

(
λ+ 1

2

)
j
(2λ)m(2λ)n

(2λ)j
(
λ+ 1

2

)
m

(
λ+ 1

2

)
n

ρ
m;(λ−1/2;λ−1/2)
j,n ,

where ρ
m;(λ−1/2;λ−1/2)
j,n are the coefficients given in Corollary 3.8. Combining Corol-

lary 3.8 and (3.26) leads to the following corollary, the proof of which is omitted.

Corollary 3.10. Let m and n be two positive integers with n � m and suppose
λ > − 1

2 to be non-zero. The ρ̃-coefficients in the expansion (3.25) can be expressed
as

ρ̃
m;(λ)
j,n =

m+1∑
ν=max(1,|j−n|)

�̃m,n
j,ν (λ) for j � max(m+ 1, n−m− 1),

ρ̃
m;(λ)
j,n = 0 for m+ 1 � j � n−m− 2, if n � 2m+ 3,

ρ̃
m;(λ)
j,n =

j∑
ν=1

�̃n,m
j,ν (λ) +

n+1∑
ν=j+1

d̃mν,j,n(λ) for 0 � j � m,

where

�̃m,n
j,ν (λ) =

(j + λ)(−1)m+ν+1(λ)ν−1(2λ+ 2ν − 2)m−ν+1(−ν)−j+n+ν
2

2(m− ν + 1)!
(−j+ν+n

2

)
!
(
λ+ j+n−ν

2

)
ν+1
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when n+ ν − j is even and �̃m,n
j,ν (λ) = 0 otherwise. Here,

d̃mν,j,n(λ) =
2(−1)m+ν+n+1(j + λ)(2λ+ 2ν − 1)(2λ)m(j + 2λ+ ν + 1)−j+n−2

m!(ν − j)!(−ν + n+ 1)!

× 4F3

(
1,−m,m+ 2λ, λ+ ν + 1

2

λ+ 1
2 ,−j + ν + 1, j + 2λ+ ν + 1

; 1

)
.

3.2.2. Legendre case. Legendre polynomials P
(0,0)
n (x) are the symmetric Jacobi

polynomials with α = β = 0 or, equivalently, the special case of Gegenbauer
polynomials with λ = 1/2. We show in the following corollary that the convo-
lution coefficients of Legendre polynomials become significantly simpler than those
of symmetric Jacobi or Gegenbauer.

Corollary 3.11. Let m and n be two positive integers with n � m. The coefficients

ρ
m;(0,0)
j,n in (3.1) can be expressed as

ρ
m;(0,0)
j,n =

m+1∑
ν=max(1,|j−n|)

�m,n
j,ν (0, 0) for j � max(m+ 1, n−m− 1),

ρ
m;(0,0)
j,n = 0 for m+ 1 � j � n−m− 2, if n � 2m+ 3,

ρ
m;(0,0)
j,n =

j∑
ν=1

�n,m
j,ν (0, 0) +

n+1∑
ν=j+1

dmν,j,n for 0 � j � m,

where

(3.27a) �m,n
j,ν (0, 0) =

(−1)m+ν+1(2j + 1)(m+ ν − 1)!(−ν)n−j+ν
2

4ν(ν − 1)!(m− ν + 1)!
(
n−j+ν

2

)
!
(
n+j−ν+1

2

)
ν+1

for even n+ ν − j and �m,n
j,ν (0, 0) = 0 otherwise. Here,

dmν,j,n(0, 0)

(3.27b)

=

√
π(2j+1)ν2j+m−ν(−1)m+ν+n+1(n+ν−1)!

(−j−m+ν+1
2

)
j+m

(
j−m+ν+2

2

)
m

(n− ν + 1)!(j +m+ ν)!Γ
(−j+m+ν+2

2

)
Γ
(
j+m+ν+3

2

) .

Proof. Since Pn(x) = P
(0,0)
n (x), (3.27a) can be obtained by setting α = 0 in (3.20d)

and simplifying using the Legendre duplication formula.
Setting α = 0 in (3.20f), we have

dmν,j,n(0, 0) =
2(−1)ν+m+n+1v(2j + 1)(n+ ν − 1)!

(n− ν + 1)!(ν − j)!(j + ν + 1)!
3F2

(
−m,m+ 1, ν + 1

−j + ν + 1, j + ν + 2
; 1

)
,

where the generalized hypergeometric series 3F2 can be represented in terms of
Gamma functions using Whipple’s sum [24, Eq. (16.4.7)]. Further algebraic simpli-
fication using the Legendre duplication formula gives (3.27b). �

The following theorem shows that the symmetry property (3.15) holds for all
j, n � 0 in the Legendre case, which is difficult to see directly from Corollary 3.11.
Our proof employs the fact that the Legendre polynomials are L2 orthogonal on
[−1, 1].
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Theorem 3.12. For any m,n, j � 0, the coefficients ρ
m;(0,0)
j,n in (3.1) satisfy

(3.28) ρ
m;(0,0)
j,n = (−1)n+j 2j + 1

2n+ 1
ρ
m;(0,0)
n,j .

Proof. As indicated in (1.2), x ∈ [−2, 0] in (3.1). By letting y = x+ 1, we have∫ y

−1

P (0,0)
m (y − t− 1)P (0,0)

n (t)dt =
m+n+1∑
k=0

ρ
m;(0,0)
k,n P

(0,0)
k (y),

where y ∈ [−1, 1]. Since the Legendre polynomials are L2 orthogonal, i.e., for
j, n � 0, ∫ 1

−1

P
(0,0)
j (y)P

(0,0)
k (y)dy =

2

2j + 1
δj,k,

we have

(3.29)

∫ 1

−1

P
(0,0)
j (y)

∫ y

−1

P (0,0)
m (y − t− 1)P (0,0)

n (t)dtdy =
2

2j + 1
ρ
m;(0,0)
j,n

for 0 � j � m+ n+ 1.
Now, we swap the order of integration to get∫ 1

−1

P
(0,0)
j (y)

∫ y

−1

P (0,0)
m (y − t− 1)P (0,0)

n (t)dtdy

=

∫ 1

−1

P (0,0)
n (t)

∫ 1

t

P
(0,0)
j (y)P (0,0)

m (y − t− 1)dydt,

where t ∈ [−1, 1]. Applying the changes of variables t = −T and y = −Y gives∫ 1

−1

P
(0,0)
j (y)

∫ y

−1

P (0,0)
m (y − t− 1)P (0,0)

n (t)dtdy(3.30)

= (−1)n+j

∫ 1

−1

P (0,0)
n (T )

∫ T

−1

P
(0,0)
j (Y )P (0,0)

m (T − Y − 1)dY dT,

where we have used Pn(y) = (−1)nPn(−y).
Recognizing the inner integral in (3.30) as the convolution of Pj(T ) and Pm(T )

with T ∈ [−1, 1], we can replace it by its series representation∫ 1

−1

P
(0,0)
j (y)

∫ y

−1

P (0,0)
m (y − t− 1)P (0,0)

n (t)dtdy(3.31)

= (−1)n+j

j+m+1∑
k=0

ρ
m;(0,0)
k,j

∫ 1

−1

P (0,0)
n (T )P

(0,0)
k (T )dT

= (−1)n+j 2

2n+ 1
ρ
m;(0,0)
n,j ,

where the second equality follows from the orthogonality. Finally, (3.29) and (3.31)
lead to (3.28). �

The Legendre-based symmetry property (3.28) suggests extended regions of exact
zeros in the magnitude plot, as seen in Figure 3.3. Now, the non-zero coefficients
are confined in a tilted rectangle-shaped band surrounded by zeros in regions A, B,
and C.
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Figure 3.3. The magnitude plot of the Legendre coefficients ρ
15;(0,0)
j,n .

3.2.3. Chebyshev case. Chebyshev polynomials of second kind Tn(x) are symmetric
Jacobi polynomials with α = β = −1/2 and a different normalization:

(3.32) P (−1/2,−1/2)
n (x) =

(1/2)n
n!

Tn(x), n � 0.

Corollary 3.13. Let m and n be two positive integers with n � m. The coefficients
ρ̃mk,n in the expansion∫ x+1

−1

Tm(x− t)Tn(t)dt =

m+n+1∑
k=0

ρ̃mk,nTk(x+ 1)

can be expressed as

ρ̃mj,n =
m+1∑

ν=max(1,|j−n|)
�̃m,n

j,ν for j � max(m+ 1, n−m− 1),(3.33a)

ρ̃mj,n = 0 for m+ 1 � j � n−m− 2, if n � 2m+ 3,(3.33b)

ρ̃mj,n =

j∑
ν=1

�̃n,m
j,ν +

n+1∑
ν=j+1

d̃mν,j,n for 0 � j � m,(3.33c)

where

(3.33d) �̃m,n
j,ν =

(−1)m 21−2νn(−m)ν−1(m)ν−1(−ν)n+ν−j
2

(
n+ν−j+2

2

)
j−ν−1

(1/2)ν−1

(
n+ν+j

2

)
!

for even (n+ ν − j) and �̃m,n
j,ν = 0 otherwise. Here,

d̃ m
ν,j,n =

22−δ0,j (−1)m+n(−n)ν−1(n)ν−1 (ν − 1/2)

(ν − j)!(j + ν)!
(3.33e)

× 4F3

(
1,−m,m, ν + 1/2

1/2,−j + ν + 1, j + ν + 1
; 1

)
.
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Proof. Equation (3.32) suggests

(3.34) ρ̃mj,n =
m!n!(1/2)j

(1/2)m(1/2)nj!
ρ
m;(−1/2,−1/2)
j,n ,

which leads to (3.33a)–(3.33c) with

�̃m,n
j,ν =

m!n!(1/2)j
(1/2)m(1/2)nj!

�m,n
j,ν (−1/2,−1/2).

Setting α = −1/2 in (3.20d) and simplifying gives (3.33d).
Similarly, (3.34) implies

(3.35) d̃ m
ν,j,n =

m!n!(1/2)j
(1/2)m(1/2)nj!

dmν,j,n(−1/2,−1/2),

where
(3.36)

dmν,j,n(−1/2,−1/2) =
4(−1)m+n+1+ν(−1/2 + ν)(j + 1/2)m−j(1/2)n(n)ν−1

m!(n+ 1− ν)!(ν − j)!(j + 1)ν

× 4F3

(
1,−m, 1/2 + ν,m

ν − j + 1, 1/2, j + ν + 1
; 1

)
for j � 1. When j = 0, (3.20f) gives

dmν,0,n(−1/2,−1/2) = lim
α→−1/2

dmν,0,n(α, α)(3.37)

=
2(−1)m+n+1+ν(ν − 1/2)(1/2)m(1/2)n(n)ν−1

m!(n+ 1− ν)!(ν!)2

× 4F3

(
1,−m, 1/2 + ν,m

ν + 1, 1/2, ν + 1
; 1

)
.

By combining (3.36) and (3.37), we have

dmν,j,n(−1/2,−1/2) =
22−δ0,j (−1)m+n+1+ν(−1/2 + ν)(j + 1/2)m−j(1/2)n(n)ν−1

m!(n+ 1− ν)!(ν − j)!(j + 1)ν

× 4F3

(
1,−m, 1/2 + ν,m

ν − j + 1, 1/2, j + ν + 1
; 1

)
,

which, along with (3.35), yields (3.33e). �

Figure 3.4 shows the magnitudes of the coefficients ρmj,n for m = 15 and the
regions A, B, and C where ρmj,n are exactly zero. The coefficients that satisfy the
symmetry are encompassed by the dashed lines.

4. Laguerre case

Laguerre polynomials parameterized by α with �(α) > −1 can be defined in
terms of terminating hypergeometric functions with the commonly-used normaliza-
tion

L(α)
n (x) =

(1 + α)n
n!

1F1

(
−n

α+ 1
;x

)
, n � 0,

and they satisfy the orthogonality relations∫ +∞

0

xαe−xL
(α)
k (x)L(α)

n (x)dx =
Γ(α+ n+ 1)

n!
δn,k.
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Figure 3.4. The magnitude plot of the Chebyshev coefficients ρ̃15j,n.

Laguerre polynomials with different parameters are linearly related via [4, (3.46)]

(4.1) L(α)
n (x) =

n∑
k=0

(α− β)n−k

(n− k)!
L
(β)
k (x),

and the pth derivatives of L
(α)
n+p equal to L

(α+p)
n up to a sign:

(4.2)
dp

dxp
L
(α)
n+p(x) = (−1)pL(α+p)

n (x).

We combine (4.1) and (4.2) to have

(4.3)
dp

dxp
L
(α)
n+p(x) =

n∑
k=0

γ
(p,q)
n,k (α;L)

dq

dxq
L
(α)
k+q(x),

where

γ
(p,q)
n,k (α;L) =

(−1)p+q(p− q)n−k

(n− k)!
.

The Laguerre representation of monomials can be found in, for example, [25,
p. 207]:

(4.4) xn =

n∑
k=0

bn,k(α)L
(α)
k (x),

where

bn,k(α) =
(−n)kΓ(n+ α+ 1)

Γ(k + α+ 1)
= (−1)kn!

dkL
(α)
n

dxk

∣∣∣∣∣
x=0

.

The value of L
(α)
n (x) or that of its derivatives at x = 0 also follow from (4.2) :

(4.5)
dpL

(α)
n

dxp

∣∣∣∣∣
x=0

= (−1)p
(1 + α+ p)n−p

(n− p)!
.
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Chu-Vandermonde’s identity, used repeatedly in the rest of this section,

(4.6)
(α+ β + 2)n

n!
=

n∑
k=0

(α+ 1)k
k!

(β + 1)n−k

(n− k)!
,

is valid for any complex numbers α and β. Observe that for α, β > −1, it corre-
sponds to (4.1) evaluated at x = 0.

For the case of α = 0, convolution of Laguerre polynomials L
(0)
n (x) and L

(0)
m (x)

is sparse in the sense that only two coefficients of its L
(0)
n -series representation are

non-zero:

(4.7)

∫ x

0

L(0)
m (x− t)L(0)

n (t)dt = −L
(0)
m+n+1(x) + L

(0)
m+n(x).

This well-known result can be found in, for example, [24, Eq. (18.17.2)] or [11, Eq.
(7.411.4)]. There does not seem to be any similar formula addressing the cases with
other values of α and this is what we present in Theorem 4.1 below.

Theorem 4.1. Let m and n be two positive integers with n � m and let α be
a complex number with �(α) > −1. When n � m + 1, the ρ̂-coefficients in the
expansion ∫ x

0

L(α)
m (x− t)L(α)

n (t)dt =
m+n+1∑

j=0

ρ̂
m;(α)
j,n L

(α)
j (x)

are given by

(4.8a)

(4.8b)

(4.8c)

(4.8d)

(4.8e)

ρ̂
m;(α)
j,n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− (α− 1)m+n+1−j

(m+ n+ 1− j)!
for n+ 1 � j � m+ n+ 1,

(α)m
m!

for j = n,

0 for m+ 1 � j � n− 1 (when n � m+ 2),

(α)n+1

(n+ 1)!
for j = m,

(α− 1)m+n+1−j

(m+ n+ 1− j)!
for 0 � j � m− 1.

In the case of n = m, the ρ̂-coefficients become

(4.9a)

(4.9b)

(4.9c)

ρ̂
m;(α)
j,n =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

− (α− 1)2m+1−j

(2m+ 1− j)!
for m+ 1 � j � 2m+ 1,

(α)m+1

(m+ 1)!
+

(α)m
m!

for j = m,

(α− 1)2m+1−j

(2m+ 1− j)!
for 0 � j � m− 1.

Proof. With a = 0, Theorem 2.3 gives

(4.10a) ρ̂
m;(α)
j,n =

m+1∑
ν=max(1,j−n)

γ
(j−ν,j)
n−j+ν,0

dν−1L
(α)
m

dxν−1

∣∣∣∣∣
x=0

for j � m+ 1



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

2376 ANA LOUREIRO AND KUAN XU

and
(4.10b)

ρ̂
m;(α)
j,n =

j∑
ν=1

γ
(j−ν,j)
m−j+ν,0

dν−1L
(α)
n

dxν−1

∣∣∣∣∣
x=0

+
n+1∑

ν=j+1

(
dν−1L

(α)
n

dxν−1

∣∣∣∣∣
x=0

m∑
p=0

bp+ν,j

(p+ ν)!

dpL
(α)
m

dxp

∣∣∣∣∣
x=0

)
for 0 � j � m,

where the γ-coefficients, the b-coefficients, and the derivatives of Laguerre polyno-
mials at x = 0 are given by (4.3), (4.4), and (4.5), respectively. The main task now
boils down to the simplification of (4.10a) and (4.10b). Our discussion branches
for different ranges of j.

For j � m+ 1: Equation (4.10a) gives

ρ̂
m;(α)
j,n =

m+1∑
ν=max(1,j−n)

γ
(j−ν,j)
n−j+ν,0

dν−1L
(α)
m

dxν−1

∣∣∣∣∣
x=0

(4.11)

= −
m+1∑

ν=max(1,j−n)

(−ν)−j+n+ν(α+ ν)m−ν+1

(n− j + ν)!(m− ν + 1)!
.

For n + 1 � j � m + n + 1, the summation index ν in (4.11) runs from j − n.
Making a change of variable ν → ν + j − n and using the fact that (−j + n −
ν)ν = (−1)ν(j − n + 1)ν and (α + j − n + ν)m+n+1−j−ν = (−1)m+n+1−j−ν(−α −
m)m+n+1−j−ν leads to

ρ̂
m;(α)
j,n = (−1)m+n+j

m+n+1−j∑
ν=0

(j − n+ 1)ν(−α−m)m+n+1−j−ν

(m+ n+ 1− j − ν)!ν!
,

from which we obtain (4.8a) by applying (4.6) and noting that (−α− n−m+ j +
1)m+n+1−j = (−1)m+n−j+1(α−1)m+n+1−j . In the case of m = n, this gives (4.9a).

For j = n, by noting that (−ν)ν = (−1)νν! we simplify (4.11) to find

ρ̂m;(α)
n,n = −

m+1∑
ν=1

(−1)ν(α+ ν)m−ν+1

(m− ν + 1)!
= (−1)m

m+1∑
ν=1

(−α−m)m−ν+1

(m− ν + 1)!

= (−1)m
m∑

ν=0

(−α−m)ν
ν!

=
(α)m
m!

,

where the first equality follows the sign-flip trick (α+ν)m−ν+1 = (−1)m−ν+1(−α−
m)m−ν+1 and the second is due to a change of variable with m+ 1− ν in place of
ν. The last equality is obtained by using (4.6). This proves (4.8b).

If n � m+2, it is possible that m+1 � j � n−1. In this case, (−ν)−j+n+ν = 0,
which leads to (4.8c).
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For 0 � j � m: We denote the two ν-sums in (4.10b) by S1 and S2, respectively.
The first sum

S1 =

j∑
ν=1

γ
(j−ν,j)
m−j+ν,0

dν−1L
(α)
n

dxν−1

∣∣∣∣∣
x=0

= −
j∑

ν=1

(−ν)m−j+ν(α+ ν)n−ν+1

(m− j + ν)!(n− ν + 1)!

vanishes for any j � m− 1, since (−ν)τ = 0 for τ � ν +1. Therefore, we only have
to consider the case of j = m, for which

S1 =

m∑
ν=1

(−1)ν+1(α+ ν)n−ν+1

(n+ 1− ν)!
= (−1)n

n∑
ν=n−m+1

(−α− n)ν
ν!

(4.12)

= (−1)n

(
n∑

ν=0

−
n−m∑
ν=0

)
(−α− n)ν

ν!
=

(α)n
n!

− (−1)m(α+m)n−m

(n−m)!
,

where the first equality follows from a change of variable and the last is obtained
by applying (4.6) to each of the two sums.

The second sum in (4.10b) reads

S2 =

n+1∑
ν=j+1

(
dν−1L

(α)
n

dxν−1

∣∣∣∣∣
x=0

m∑
p=0

bp+ν,j

(p+ ν)!

dpL
(α)
m

dxp

∣∣∣∣∣
x=0

)

=
n+1∑

ν=j+1

(
(−1)ν−1(α+ ν)n−ν+1

(n− ν + 1)!

×
m∑

p=0

(−1)p(−p− ν)jΓ(p+ α+ ν + 1)(p+ α+ 1)m−p

(p+ ν)!Γ(j + α+ 1)(m− p)!

)

= (−1)m+n+j
n+1∑

ν=j+1

(
(−α− n)n−ν+1

(n− ν + 1)!

m∑
p=0

(α+ j + 1)p+ν−j(−α−m)m−p

(p+ ν − j)!(m− p)!

)
,

where, to obtain the last equality, we have used the identities (α + ν)n−ν+1 =
(−1)n−ν+1(−α − n)n−ν+1 and (p + α + 1)m−p = (−1)m−p(−α −m)m−p. Making
the changes of variables ν → n− ν + 1 and p → m− p, we have

S2 = (−1)m+n+j

n−j∑
ν=0

(
(−α− n)ν

ν!

m∑
p=0

(j + α+ 1)m+n+1−j−ν−p(−α−m)p
(m+ n+ 1− j − ν − p)!p!

)

= (−1)m+n+j

n−j∑
ν=0

[
(−α− n)ν

ν!(
m+n+1−j−ν∑

p=0

−
m+n+1−j−ν∑

p=m+1

)
(j + α+ 1)m+n+1−j−ν−p(−α−m)p

(m+ n+ 1− j − ν − p)!p!

]
.

By virtue of (4.6), the first p-summation in the last equation simplifies to
(j−m+1)m+n+1−j−ν

(m+n+1−j−ν)! , which vanishes for 0 � j � m − 1 and equals 1 for j = m.
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Now we change the variable p → p+m+ 1 in the second p-summation to obtain

S2 = (−1)m+n+j

n−j∑
ν=0

[
(−α− n)ν

ν!

(
δj,m −

n−j−ν∑
p=0

(j + α+ 1)n−j−p−ν(−α−m)m+1+p

(n− ν − j − p)!(m+ 1 + p)!

)]

= (−1)m+n+j

[
n−j∑
ν=0

(−α− n)ν
ν!

δj,m

−
n−j∑
p=0

(
(−α−m)m+1+p

(m+ 1 + p)!

n−j−p∑
ν=0

(j + α+ 1)n−j−p−ν(−α− n)ν
(n− ν − j − p)!ν!

)]
,

where we have swapped the order of ν- and p-sums. Now, both the ν-sums can be
simplified using (4.6):

S2 = (−1)m+n+j

[
(−α− n+ 1)n−j

(n− j)!
δj,m −

n−j∑
p=0

(j − n+ 1)n−j−p(−α−m)m+1+p

(n− j − p)!(m+ 1 + p)!

](4.13)

= (−1)m+n+j

[
(−1)n−j (α+ j)n−j

(n− j)!
δj,m

−
n−j∑
p=0

(j − n+ 1)p(−α−m)m+1+n−j−p

p!(m+ 1 + n− j − p)!

]
,

where we have used the sign-flip trick for the first term in the brackets and changed
variable p → n− j − p in the p-sum.

When j = m = n, only the zeroth summand is left for the p-sum in (4.13):

S2 = (−1)m
[
1− (−α−m)m+1

(m+ 1)!

]
= (−1)m +

(α)m+1

(m+ 1)!
,

which, combined with (4.12) for m = n, gives (4.9b). For all other cases, the upper
limit of the p-sum in (4.13) can be bumped to m+n+1− j as (j−n+1)p vanishes
for p � n− j+1. Simplifying the sum by (4.6), followed by using the sign-flip trick
again, we finally obtain

S2 =
(−1)m(α+m)n−m

(n−m)!
δj,m +

(α− 1)m+n+1−j

(m+ n+ 1− j)!
,

which, together with (4.12), yields (4.8d), (4.8e), and (4.9c). �

Remark 4.2. When α = 0, ρ̂
m;(0)
j,n given by (4.8) becomes zero for any 0 � j �

m+ n− 1, while ρ̂
m;(0)
m+n+1,n = −1 and ρ̂

m;(0)
m+n,n = 1, which recovers (4.7). The same

goes for ρ̂
m;(0)
j,m given by (4.9).

Remark 4.3. When α = 1, ρ̂-coefficients also enjoy sparsity, suggested by Theorem
4.1: ∫ x

0

L(1)
m (x− t)L(1)

n (t)dt = −L
(1)
m+n+1(x) + L(1)

n (x) + L(1)
m (x).

Figure 4.5 shows the magnitudes of the coefficients ρ̂
m;(α)
j,n with m = 15 for

(a) α = 0, (b) α = 1, and (c) α = 2.5. The nth column in this matrix plot
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corresponds to ρ
15;(α)
j,n . Panes (a) and (b) confirm Remarks 4.2 and 4.3, respectively.

With α = 2.5, the plot in pane (c) is representative for a general case where three
regions of exact zeros are indicated by solid lines. The exact zeros in region A is

again due to the fact that the convolution of L
(2.5)
15 and L

(2.5)
n is a polynomial of

degree n+16, while the zeros in region B corresponds to (4.8c). The zeros in region
C are also due to (4.8c) but with the roles of n and m exchanged.

(a) α = 0 (b) α = 1 (c) α = 2.5

Figure 4.5. The magnitude plot of the Laguerre coefficients

ρ̂
15;(α)
j,n for 0 � n � 50.

5. Closing remarks

In this paper, we have derived the explicit formulas for the coefficients in the
series representation for the convolution of the elements in a polynomial sequence.
Particularly, the results are significantly simplified when the polynomial sequence
is formed by classical orthogonal polynomials of Jacobi- or Laguerre families.

As seen from the magnitude plots in Section 3, many of the ρ-coefficients, though
they are non-zero in an exact sense, can be deemed as zeros in floating point arith-
metic due to their tiny magnitudes. An exciting extension of the results in this
paper is the investigation of the asymptotic behavior of the ρ-coefficients for large j
and n using the newly derived explicit formulas. The asymptotics will help us iden-
tify via (1.8) the entries of R that can be safely zeroed in numerical computation
and, therefore, enable a faster construction of the convolution matrix R.

On the other hand, the explicit formulas for the convolution coefficients may also
reveal the numerical rank of the convolution matrix R. The low rank property of
R or its subparts, if any, could lead to potential speed-up in either construction of
R or fast algorithms for convolution. We save these possibilities for a future work.
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