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Abstract
We apply the ultraspherical spectral method to solving time-dependent PDEs by proposing
two approaches to discretization based on the method of lines and show that these approaches
produce approximately same results.We analyze the stability, the error, and the computational
cost of the proposedmethod. In addition, we show how adaptivity can be incorporated to offer
adequate spatial resolution efficiently. Both linear and nonlinear problems are considered.
We also explore time integration using exponential integrators with the ultraspherical spatial
discretization. Comparisons with the Chebyshev pseudospectral method are given along the
discussion and they show that the ultraspherical spectral method is a competitive candidate
for the spatial discretization of time-dependent PDEs.

Keywords Spectral method · Time-dependent PDEs · Chebyshev polynomials ·
Ultraspherical polynomials

Mathematics Subject Classification 65L04 · 65M12 · 65M15 · 65M20 · 65M70

1 Introduction

In this article, we consider the one-dimension time-dependent PDE

T u = F(t, u(x, t)), (1a)

s.t. Bu = c, (1b)

u(x, 0) = f (x), (1c)

where T is the first-order differential operator in time. F is a spatial operator that acts on
the time t and the solution u(x, t). For a fixed t , u(x, t) becomes a univariate function of the

B Kuan Xu
kuanxu@ustc.edu.cn

1 School of Mathematical Sciences, University of Science and Technology of China, 96 Jinzhai Road,
Hefei 230026, Anhui, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-023-02287-2&domain=pdf
http://orcid.org/0000-0002-8038-9540
http://orcid.org/0000-0002-0617-5085


70 Page 2 of 34 Journal of Scientific Computing (2023) 96 :70

spatial variable x defined on [−1, 1]. F(t, u(x, t)) can be further decomposed as

F(t, u(x, t)) = Lu + N (t, u(x, t)), (2)

where L and N are the linear and nonlinear parts, respectively. Throughout this article, we
follow the convention ofwritingLu, instead ofL(u), forL is linear.Without loss of generality,
we assume that L is an N th order linear differential operator in space for x ∈ [−1, 1]

L = aN (x)
dN

dxN
+ · · · + a1(x)

d

dx
+ a0(x) (3)

with aN (x) �= 0 so thatL is non-singular. The side conditionsB contains N linear functionals
which are boundary conditions or constraints of other sorts and c is an N -vector. The function
f (x) gives the initial condition.
In [18] Olver and Townsend present a fast and stable spectral method enabled by the

ultraspherical polynomials which solves linear ordinary differential equations of the form

Lu = g, (4a)

s.t. Bu = c, (4b)

where L is also defined as in (3). This ultraspherical spectral method assumes the solution
is written in its Chebyshev expansion

u(x) =
∞∑

k=0

ukTk(x),

where Tk(x) is the Chebyshev polynomial of degree k. This way, u(x) is identified by the
coefficient vector u = [u0, u1, . . .]T . With a change of basis, the λ-order differentiation
operator is as sparse as

Dλ = 2λ−1(λ − 1)!

λ times︷ ︸︸ ︷⎛

⎜⎜⎜⎝

0 · · · 0 λ

λ + 1
λ + 2

. . .

⎞

⎟⎟⎟⎠
, (5)

for λ = 1, 2, . . ., whereDλ maps Chebyshev coefficients to ultrasphericalC (λ) coefficients.1

If any of aλ(x) in (3) is not constant and written as

aλ(x) =
∞∑

k=0

a jC
(λ)
j (x),

the differential operator Dλ should be pre-multiplied by the multiplication operator whose
( j, k) entry reads

Mλ[aλ] j,k =
k∑

s=max(0,k− j)

a2s+ j−kc
λ
s (k, 2s + j − k) (6)

1 In [18], D0 = D1, while in this paper we let D1 maps from Chebyshev T to C1 and D0 = I, i.e., the
identity operator, for notational consistency.
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for j, k ≥ 0, where

cλ
s ( j, k) = j + k + λ − 2s

j + k + λ − s

(λ)s(λ) j−s(λ)k−s

s!( j − s)!(k − s)!
(2λ) j+k−s

(λ) j+k−s

( j + k − 2s)!
(2λ) j+k−2s

.

Note thatMλ[aλ] maps the ultraspherical space of C (λ) to itself. As long as aλ(x) possesses
certain smoothness, it can be approximated by a finite series, that is,

aλ(x) ≈
m∑

k=0

a jC
(λ)
j (x).

This way,Mλ[aλ] becomes banded since a j = 0 for j > m. Another approach to calculating
the entries of Mλ[aλ] is given in [26], based on a recurrence relation for the multiplication
operator.

When Dλ and Mλ[aλ] are employed, each term in (3) maps to a different ultraspherical
basis. So the following conversion operators Sλ are needed to map the coefficients in T to
those in C (1) or C (λ) to C (λ+1) respectively

S0 =

⎛

⎜⎜⎜⎝

1 − 1
2

1
2 − 1

2
1
2 − 1

2
. . .

. . .

⎞

⎟⎟⎟⎠ , (7a)

Sλ =

⎛

⎜⎜⎜⎝

1 − λ
λ+2

λ
λ+1 − λ

λ+3
λ

λ+2 − λ
λ+4

. . .
. . .

⎞

⎟⎟⎟⎠ for λ ≥ 1. (7b)

In terms of (5), (6), and (7), the differential equation (4a) can be represented as

(
MN [aN ]DN +

N−1∑

λ=0

SN−1 . . .SλMλ[aλ]Dλ

)
u = SN−1 . . .S0g, (8)

where g is the vector containing the Chebyshev coefficients of g(x). To make (8) of finite
dimension, the operators are truncated by the projection operator Pn = (In, 0), where In is
the n × n identity matrix, with the dimension n properly chosen. The truncated version of
(8) reads

Pn−N

(
MN [aN ]DN +

N−1∑

λ=0

SN−1 . . .SλMλ[aλ]Dλ

)
P�
n Pnu

= Pn−NSN−1 . . .S0P�
n Pn g,

(9)

where the unknown Pnu and the (unconverted) right-hand side Pn g are n-vectors and the
differential operators on the left-hand side and the product of the conversion operators on the
right-hand side are approximated by their truncated version of dimension (n − N ) × n via
exact truncation. The system (9) is finally squared up to form an n × n system by the first
n columns of the discretized version of the boundary conditions (4b) and this is the system
by solving which one obtains the Chebyshev coefficients uk of the truncated version of the
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solution

ũn(x) =
n−1∑

k=0

ukTk(x).

The ultraspherical spectral method recapitulated above enjoys a few important advan-
tages over the collocation-based pseudospectral methods, including linear computational
complexity, good conditioning, and adaptivity via optimal truncation.

In this article, we extend the ultraspherical spectral method to the solution of the time-
dependent problem (1) within the method of lines (MOL) framework. Our investigation is
by no means the first attempt to solve time-dependent PDEs by the ultraspherical spectral
method. In [27], Townsend and Olver describe an extension of the ultraspherical spectral
method to two spatial dimensions for the solution of linear PDEs with variable coefficients
defined on bounded rectangular domains and their focus is on the automated manner of
solution provided that the splitting rank of the partial differential operator (PDO) is known.
When applied to an initial boundary value problem, this bivariate ultraspherical spectral
method treats it as a boundary value problem of two spatial dimensions by deeming the time
variable as a second spatial variable. Our motivation in this article, however, is to employ
the ultraspherical spectral method in space while do the time-stepping using common time
integration schemes. Moreover, we consider a more general setting where the problem may
or may not have a sufficiently concise closed-form description or the spatial operator can
only be evaluated via black-box routines, which is often the case in real-world problems.

The first and probably only existingworkswhere the ultraspherical spectralmethod is used
in conjunctionwith time-stepping schemesmay be [9, 24], where the implicit-explicitmethod
and the backward Eulermethod are employed, respectively. However, the application of these
time-stepping schemes are not theoretically analyzed to give insights on their performance.
On the software side, the Dedalus package solves time-dependent PDEs using (a first-order
variant of) the ultraspherical spectral method with the time-integration done by a range of
ODE integrators including multistep and Runge–Kutta IMEX methods [3]. The success of
these attempts suggests a pressing demand on the theoretical analysis of time stepping when
the ultraspherical spectralmethod is used for the spatial discretization. This is exactlywhat the
present article focuses on. By giving a rather complete treatment to solving time-dependent
PDEs in one spatial dimension, this article may well serve as a foundation for migration to
problems in higher spatial dimensions.

In the first part of this article, we concentrate on the linear case of (1), i.e.,

T u = Lu, (10a)

s.t. Bu = c, (10b)

u(x, 0) = f (x), (10c)

by discussing the discretization of (10) via standard time stepping schemes (Sect. 2) and
analyzing the stability (Sect. 3), the error (Sect. 4), and the computational cost (Sect. 5).
The stepping nature of the method enables an adaptive implementation which we describe in
Sect. 6. In the linear regime, our discussion will make frequent use of the one-dimensional
transport equation

ut (x, t) = ux (x, t), (11a)

u(1, t) = 0 (11b)
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and the heat equation

ut (x, t) = uxx (x, t), (12a)

u(−1, t) = u(1, t) = 0, (12b)

both subject to the initial condition u(x, 0) = f (x). Also, we shall simply take f (x) =
exp(−200x2) and f (x) = sin(2πx) for (11) and (12), respectively. In the study of the
collocation-based pseudospectral method, much attention has been paid to these problems
from various perspectives, particularly regarding the stability restrictions on time stepping
and the eigenvalue distribution of the spatial discretization operators, see, e.g., [7, 11, 25,
34].

We close our discussion in the linear regime by briefly analyzing the problems with
periodic boundary conditions (Sect. 7). The collocation-based pseudospectral method, for
many years, has been taken as ‘the’ method, and the discussion and analysis for the linear
case facilitate the comparison between the two methods. In addition, they lay the foundation
for the analysis of nonlinear time-dependent problems (Sect. 8). In Sect. 9, we examine
the application of the exponential integrator in conjunction with the ultraspherical spectral
method. Conclusion and discussion are given in the final section.

Throughout this article, all the norms are taken to be the infinity norm. Calligraphy font
is used for operators or infinite matrices and bold fonts for infinite vectors, whereas the
truncated version of operators, infinite matrices, and vectors are in normal fonts.

All the numerical experiments in this article are performed in Julia v1.5.3 on a desktop
with a 4 core 2.1 Ghz AMD Ryzen 5 3500U CPU.

2 Discretization

We start by considering the discretization of (10). Suppose that the solution u(x, t) is written
as an infinite Chebyshev series

u(x, t) =
∞∑

k=0

uk(t)Tk(x),

where the coefficients uk(t) we are solving for are now dependent of time t . If the spatial
operator L on the right-hand side of (10a) is expressed in terms of the operators reviewed in
Sect. 1 as

L = MN

[
aN

]
DN +

N−1∑

λ=0

SN−1 · · ·SλMλ

[
aλ
]
Dλ, (13)

the left-hand side of (10a) must be pre-multiplied by a series of conversion operators so that
both the sides end up being in the C (N ) basis, that is,

SN−1 . . .S0T u = Lu, (14)

where u = [u0(t), u1(t), . . .]T is the infinite vector collecting the coefficients uk(t).
Now we bifurcate our discussion by presenting two ways to further discretize (14) and

enforce the boundary condition (10b), both following the method of lines. They differ in how
a square system is formed by solving which we obtain a truncated approximation to u.

In the remainder of this article, we confine our discussion about the discretization of the
temporal operator T to the standard time marching schemes for solving the ODE initial value
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problem vt = f (t, v). That is, we consider the linear multistep methods

r∑

j=0

α jv
k+ j = h

r∑

j=0

β j f
k+ j , (15)

where αr = 1, and the explicit Runge–Kutta methods

y j = h f (tk + θ j h, vk + μ j y j−1), for j = 1, 2, · · · , s (16a)

vk+1 = vk +
s∑

j=1

γ j y j , (16b)

where θ1 = μ1 = 0 and
s∑

j=1
γ j = 1. In (15) and (16), h is the step size.

2.1 Approach 1

Our first approach enforces the main equation and the boundary conditions simultaneously.
To this end, we truncate the operators and u

Pn−NSN−1 . . .S0P�
n T Pnu = Pn−NLP�

n Pnu, (17)

which amounts to taking the first n − N rows and the first n columns of SN−1 . . .S0 and L
and approximating the solution by its n-term truncation

un(x, t) ≈ ũn(x, t) =
n−1∑

k=0

uk(t)Tk(x).

Note that the truncation of Pn−NLP�
n is done exactly as

Pn−NLP�
n =Pn−N

(
MN [aN ]DN +

N−1∑

λ=0

SN−1 . . .SλMλ[aλ]Dλ

)
P�
n

=
(
Pn−NMN [aN ]P�

n−N

)
(Pn−NDNPn) +

N−1∑

λ=0

(
Pn−NSN−1P�

n−N+2

)

×
(
N−λ∏

i=2

Pn−N+2(i−1)SN−iP�
n−N+2i

)(
Pn−N+2(N−λ)Mλ[aλ]P�

n−λ

)

×
(
Pn−λDλP�

n

)
.

For exact truncations of operators, see [18, Remark 2] for details.
We truncate the operators in the boundary conditions analogously by taking the first n

columns of B

BP�
n Pnu = c. (18)

When (18) is laid on the top of (17), an n × n square system is formed despite that the
temporal operator is not yet discretized.
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Fig. 1 Sparsity patterns of the fully discretized systems in Approach 1 for linear multistep methods (21) and
Runge–Kutta methods (22). a, b mainly differ in the matrix on the left-hand side in that the lower bandwidth
of its banded part is zero for explicit schemes whereas the banded part could have nonzero sub-diagonals for
implicit schemes

Now we turn to the discretization in time. When a multistep method is applied to (17), we
have

r∑

j=0

α jPn−NSN−1 . . .S0P�
n Pnuk+ j = h

r∑

j=0

β jPn−NLP�
n Pnuk+ j .

or, equivalently,

(Pn−NSN−1 . . .S0P�
n − hβrPn−NLP�

n )Pnuk+r

= h
r−1∑

j=0

β jPn−NLP�
n Pnuk+ j −

r−1∑

j=0

α jPn−NSN−1 . . .S0P�
n Pnuk+ j .

(19)

Here, uk = [u0(tk), u1(tk), . . .]T is the approximate solution at kth time step, and Pnuk is
the n-vector with the trailing coefficients dropped.

When a Runge–Kutta method is applied to (17), each stage becomes

Pn−NSN−1 . . .S0P�
n y j = hPn−NLP�

n (Pnuk + μ j y j−1) (20)

for j = 1, 2, · · · , s. Note that y j is a finite vector (see (16a)).
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We are finally in a position to form the fully discretized square system. Stacking the
boundary conditions (18) and the main equation (19) gives

(
BP�

n
Pn−NSN−1 . . .S0P�

n − hβrPn−NLPn

)
Pnuk+r

=
⎛

⎝
c

r−1∑
j=0

(β j hPn−NLP�
n − α jPn−NSN−1 . . .S0P�

n )Pnuk+ j

⎞

⎠ ,

(21)

by solving which we have Pnuk+r . The sparsity structure of (21) is shown by Fig. 1a, b for
explicit and implicit multistep methods, respectively.

When (20) is combined with the boundary conditions, we obtained a square system for
the intermediate solutions y j at each stage of a Runge–Kutta method

(
BP�

n
Pn−NSN−1 . . .S0P�

n

)
y j =

(
0

hPn−NLP�
n (Pnuk + μ j y j−1)

)
, (22)

where j = 1, 2, · · · , s, and we update P�
n uk+1 as

Pnuk+1 = Pnuk +
s∑

j=1

γ j y j .

The sparsity of (22) is shown by Fig. 1c.

2.2 Approach 2

Approach 2 ignores the boundary conditions in the first place and truncates (14) to form a
square system:

PnSN−1 . . .S0P�
n T Pnu = PnLP�

n Pnu, (23)

where the truncations of PnSN−1 . . .S0P�
n and PnLP�

n are, again, carried out exactly. Step-
ping using multistep or Runge–Kutta methods, we end up with

(PnSN−1 . . .S0P�
n − hβrPnLPn)Pnuk+r

= h
r−1∑

j=0

β jPnLP�
n Pnuk+ j −

r−1∑

j=0

α jPnSN−1 . . .S0P�
n Pnuk+ j (24)

and

PnSN−1 . . .S0P�
n y j = hPnLP�

n (Pnuk + μ j y j−1), (25)

respectively. The sparsity patterns are shown in Fig. 2. Note that (24) and (25) differ from
(19) and (20) by being square systems instead of rectangular. Since PnSN−1 . . .S0P�

n is
non-singular, (24) and (25) can be solved forPnuk+r and the intermediate result at j th stage,
respectively. Obviously, Pnuk+r obtained this way rarely satisfies the boundary condition.
To enforce the boundary condition, we free N components in Pnuk+r and allow them to be
re-determined by

BP�
n Pnuk+r = c.
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Fig. 2 Sparsity patterns of the fully discretized system in Approach 2 for linear multistep methods (24) and
Runge-Kutta methods (25)

This is, in fact, an N × N system. For example, if we choose to re-determine the last N
components inPnuk+r , we end up with the N ×N system in, for example,Matlab’s syntax

B(1:N,n-N+1:n)uk+r(n-N+1:n) = c − B(1:N,1:n-N)uk+r(1:n-N).

One may wonder the difference between the solutions obtained via these two approaches,
which we investigate now.

2.3 Approach 1 versus Approach 2

Assuming the solution of (10) is Lipschitz continuous in both space and time, we now
show that the difference between the solutions obtained via the two approaches is bounded
and vanishes when the discretization in both time and space becomes increasingly dense.
Although what is furnished below is not a rigorous proof, it suffices to give an explanation
why these two approaches return converging solutions.

We set out by considering three problems and assuming the solutions uk+ j are known for
j = 0, 1, . . . , r − 1.
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– Problem 1: use Approach 1 to obtain a solution vector of length n + N , which can be
computed by solving the following system (see (21), (22), and Fig. 1):

⎛

⎝
B(1) B(2)
S(1) S(2)
S(3) S(4)

⎞

⎠ uk+r
P1

=
⎛

⎜⎝
c

r−1∑
j=0

(
L j

(1) L j
(2)

L j
(3) L j

(4)

)
uk+ j

⎞

⎟⎠ . (26)

Note that (26) covers both linear multistep and Runge–Kutta methods. On the left-hand
side, the top N rows are partitioned as an N ×n part B(1) and an N × N part B(2). Along
with the N -vector c, the first N equations represent the boundary conditions. The banded
part of the coefficientmatrix is partitioned into S(1), S(2), S(3), and S(4), whose dimensions
are (n − N ) × n, (n − N ) × N , N × n, and N × N , respectively. The solution, denoted
by uk+r

P1
, is an (n + N )-vector. The (n + N )-vector uk+ j represents either the solution

at the previous steps or the initial condition. The banded matrices which uk+ j multiplies
with are partitioned into L j

(1), L
j
(2), L

j
(3), and L j

(4), whose dimensions are conformal with
S(1), S(2), S(3), and S(4), respectively.

– Problem 2: use Approach 1 to obtain a solution vector of length n, which amounts to
solving the n × n system

(
B(1)
S(1)

)
uk+r
P2

=
⎛

⎝
c

r−1∑
j=0

L j
(1)u

k+ j(1:n)

⎞

⎠ .

– Problem 3: use Approach 2 to obtain a solution vector of length n by first solving the
n × n system

(
S(1)
S(3)

)
ûk+r
P3

=
r−1∑

j=0

(
L j

(1)

L j
(3)

)
uk+ j(1:n), (27a)

which produces the intermediate solution ûk+r
P3

. This is then followed by the correction

step which re-determines the last N components of ûk+r
P3

. If the corrected solution is

denoted by uk+r
P3

, the boundary conditions are satisfied

B(1)u
k+r
P3

= c. (27b)

Now we assume that n is large enough so that the solution is fully resolved and spec-
tral accuracy is achieved in space. Thus, there exists a small number ε > 0 so that∥∥uk+ j(n-N+1:n+N)

∥∥ < ε for j = 0, 1, . . . , r − 1 and
∥∥∥uk+r

P1
(n-N+1:n+N)

∥∥∥ < ε.

Also, we assume h is small enough to stabilize whatever time stepper we are using.
In the following argument, Problem 1 serves as a bridge connecting Problems 2 and 3

whose solutions are what we try to show to be close. Thus, we bound the difference between
uk+r
P1

and uk+r
P3

(Step 1) and that between uk+r
P1

and uk+r
P2

(Step 2) first, and these results, when

combined, give the difference between uk+r
P2

and uk+r
P3

.

Step 1 We first look at the difference between the first n components of uk+r
P1

and the

uncorrected solution ûk+r
P3

, i.e., e1 = ||uk+r
P1

(1:n) − ûk+r
P3

||. From (26), we have

(
S(1) S(2)
S(3) S(4)

)
uk+r
P1

=
r−1∑

j=0

(
L j

(1) L j
(2)

L j
(3) L j

(4)

)
uk+ j ,
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that is,
(
S(1)
S(3)

)
uk+r
P1

(1:n) +
(
S(2)
S(4)

)
uk+r
P1

(n+1:n+N)

=
r−1∑

j=0

(
L j

(1)

L j
(3)

)
uk+ j(1:n) +

r−1∑

j=0

(
L j

(2)

L j
(4)

)
uk+ j(n+1:n+N).

Combining the last equation with (27a), we have

e1 =

∥∥∥∥∥∥∥∥∥

(
S(1)
S(3)

)−1

⎛

⎜⎜⎜⎝

S(2)u
k+r
P1

(n+1:n+N) −
r−1∑
j=0

L j
(2)u

k+ j(n+1:n+N)

S(4)u
k+r
P1

(n+1:n+N) −
r−1∑
j=0

L j
(4)u

k+ j(n+1:n+N)

⎞

⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥

≤
∥∥∥∥∥

(
S(1)
S(3)

)−1
∥∥∥∥∥max

j
{‖S(2)‖, ‖L j

(2)‖, ‖S(4)‖, ‖L j
(4)‖}2ε = C1ε. (28)

Now we bound the correction due to the enforcement of the boundary conditions, i.e.,

e2 =
∥∥∥ûk+r

P3
− uk+r

P3

∥∥∥.
For a multistep method (15), we have

B(1)û
k+r
P3

− B(1)u
k+r
P3

= B(1)û
k+r
P3

− c =B(1)û
k+r
P3

+ B(1)

r−1∑

j=0

α j

αr
uk+ j , (29)

where we have used the fact that all uk+ j
P3

satisfy the boundary conditions, i.e., B(1)uk+ j
P3

= c
for j = 0, . . . , r − 1, and the consistency condition

r∑

j=0

α j = 0.

Substituting (15) into (29) gives

B(1)û
k+r
P3

− B(1)u
k+r
P3

= B(1)

αr
h

⎛

⎝
r−1∑

j=0

β j

(
S j
(1)

S j
(3)

)−1 (
L j

(1)

L j
(3)

)
uk+ j + βr

(
Sr(1)
Sr(3)

)−1 (
Lr

(1)
Lr

(3)

)
ûk+r
P3

⎞

⎠ ,

which further leads to

e2 =
∥∥∥∥∥∥
h

αr

⎛

⎝
r−1∑

j=0

β j

(
L j

(1)

L j
(3)

)
uk+ j + βr

(
Lr

(1)
Lr

(3)

)
ûk+r
P3

⎞

⎠

∥∥∥∥∥∥
≤ C2h, (30)

Analogously, for Runge–Kutta methods (16)

B(1)û
k+r
P3

− B(1)u
k+r
P3

= B(1)û
k+r
P3

− c = B(1)û
k+r
P3

− B(1)u
k+r−1 = B(1)

r∑

j=1

γ j y j ,
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implying

e2 =
∥∥∥∥∥∥

r∑

j=1

γ j y j

∥∥∥∥∥∥
≤ C3h. (31)

Finally, (28) and any one of (30) and (31) give

e3 =
∥∥∥∥

(
uk+r
P3
0

)
− uk+r

P1

∥∥∥∥

≤
∥∥∥∥

(
ûk+r
P3
0

)
−
(
uk+r
P1

(1:n)
0

)∥∥∥∥+
∥∥∥∥

(
uk+r
P1

(1:n)
0

)
− uk+r

P1

∥∥∥∥ (32)

+
∥∥∥∥

(
uk+r
P3
0

)
−
(
ûk+r
P3
0

)∥∥∥∥

≤ e1 + ε + e2 = C4h + C5ε. (33)

Step 2 Since n is large enough to resolve the solution, the difference between uk+r
P2

(pro-

longed by padding with zeros) and uk+r
P1

should be small:

e4 =
∥∥∥∥

(
uk+r
P2
0

)
− uk+r

P1

∥∥∥∥ ≤ ε. (34)

Step 3 Inequalities (33) and (34) give

||uk+r
P2

− uk+r
P3

|| ≤
∥∥∥∥

(
uk+r
P2
0

)
− uk+r

P1

∥∥∥∥+
∥∥∥∥u

k+r
P1

−
(
uk+r
P3
0

)∥∥∥∥

= e4 + e3 = C4h + C6ε. (35)

The message conveyed by (35) is that the solutions obtained using Approaches 1 and 2
differ only by a quantity ofO(h) plus a multiple of ε. In fact, the actual differences observed
in all of our experiments are ratherminuscule. In Fig. 3, the differences between the computed
solutions via the two approaches are displayed versus the number of time steps for the one-
dimensional transport equation (11) and the heat equation (12). To have the initial conditions
and the solutions at the subsequent time steps fully resolved, we let n = 300 for both
problems. For the one-dimensional transport equation, 4th-order Adam-Bashforth method is
used with h = 0.1/n2, while for the heat equation, 3rd-order Runge–Kutta method is used
with h = 1/n4. These h’s are chosen to stabilize the time steppers and the derivation of these
restrictions is discussed in the next section. For both problems, the computed solution via the
two approaches differ only by an amount of virtually machine epsilon after the first 50, 000
steps.

3 Stability

The primary task now is to understand when the approaches proposed in the last section lead
to stable calculation if a standard time stepping scheme is employed. In a general application
of the method of lines, we consider the semi-discretized problem T u = Au, where A is a
matrix that approximates the spatial operator. The rule of thumb for stability is that the MOL
is stable if the eigenvalues of A, scaled by the step size h, lie in the stability region of the
time stepper [28]. The same conclusion is drawn from our extensive experiments with the
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Fig. 3 Difference between solutions obtained via the two approaches
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Fig. 4 Modal instability incited when solving (11) with n = 80 and h = 3.45/n2

ultraspherical spectral method — for many problems in the form of (10), the two proposed
approaches lead to discretization whose stability is mainly determined by the spectra of A.
For example, if we apply the forward Euler method to the one-dimensional transport equation
(11), both of the approaches begin to yield unstable results when h > 3.41/n2, as shown in
Fig. 4. This instability is modal [30, section 31], as it sets in globally and never ceases to
grow — if we carry on to t = 0.3, the unstable solution would be O(105).

Modal instability also occurs with h > 7.2/n4 when the proposed approaches and the
forward Euler method are used to solve the heat equation (12).
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We now show that these restrictions are indeed attributable to eigenvalues. The discussion
belowwill mainly be based onApproach 2 as it offers an easier form for analysis. To facilitate
our discussion, we adopt the following notations in this section for the truncated version of
the solution vector and the relevant operators:

u = Pnu, Sλ = PnSλP�
n , Dλ = PnDλP�

n , L = PnLP�
n ,

Θλ =
(
PnSN−1P�

n+2

)(N−λ∏

i=2

Pn+2(i−1)SN−iP�
n+2i

)
,

Mλ = Pn+2(N−λ)Mλ[aλ]P�
n for λ = 0, 1, . . . , N .

(36)

Let us first look at the one-dimensional transport equation (11). When Approach 2 is
applied to (11), the system we end up solving can be written as

S0T Wu = D1u, (37)

where, other than the temporal differential operator T , all the operators and the solution

vector are replaced by their discretized and truncated counterparts. Here, W =
(
In−1 0

BP�
n

)

is an n × n matrix. The Dirichlet boundary condition is represented by the following 1× ∞
functional B = (

1 1 1 1 · · · ).
Note that the last row of (37) simplifies to (see (7a))

1

2
T BP�

n u = 0. (38)

Since any of the multistep and Runge–Kutta methods represents uk+r as a linear combination
of uk+ j for j = 0, 1, . . . , r − 1 and the boundary condition is satisfied by uk+ j for j =
0, 1, . . . , r − 1, (38) amounts to the statement that the boundary condition is also satisfied,
that is,

BP�
n u = 0. (39)

On the other hand, the top n − 1 rows of (37) are

S0(1:n-1,1:n-1)T u(1:n-1) + S0(1:n-1,n)T BP�
n u = D1(1:n-1,:)u.

(40)

Because of (39), the second term on the left-hand side of (40) can be dropped and (40)
coincides with the first n − 1 rows of (23) for N = 1 and L = D. Hence, (37) represents the
semi-discretized system for which the largest eigenvalue(s) of W−1S0−1D1 may determine
the step size of a time-stepping method for stability. The following theorem gives an upper
bound for the spectral radius of W−1S0−1D1.

Theorem 3.1 The spectral radius of Q = W−1S0−1D1 satisfies

ρ(Q) ≤ (n − 1)2
√
1

3
+ 2

3(n − 1)2
.

Proof We assume that n is an odd number; the proof for the even case follows analogously.
Note that

S0 = (I − B)A,
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where A = diag

(
1,

1

2
,
1

2
, · · · ,

1

2

)
and B =

(
0(n−2)×2 In−2

02×2 02×(n−2)

)
. Since B is a double-shift

matrix, the inverse of S0 can be represented as a finite series

S−1
0 = A−1(I − B)−1 = A−1

n/2∑

j=0

B j ,

which, when spelled out, reads

S−1
0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1

2 2
. . .

2 2
.
.
.

. . .
. . .

. . . 2
2

2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (41)

and it is easy to show

W−1 =
(
In−1 0

−BP�
n

)
.

A simple calculation gives

Q =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 5 n − 2
4 8 · · · 2(n − 3) 2(n − 1)

6 10 2(n − 2)
. . .

. . .
.
.
.

. . .
. . .

.

.

.

. . .
. . .

.

.

.

. . .
.
.
.

. . .
.
.
.

2(n − 1)

0 −12 −22 −32 −42 −52 · · · −(n − 3)2 −(n − 2)2 −(n − 1)2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The characteristic polynomial det(λI −Q) = λn +an−1λ
n−1+ . . .+a1λ+a0 has concise

expressions for the coefficients of the leading terms,2

an−1 = −tr(Q) = (n − 1)2,

an−2 = E2(Q) =
∑

1≤i �= j≤n

det(Q[{i, j}]) = (n − 1)2

3
[(n − 1)2 − 1],

2 For an n × n matrix A, Ek (A) denotes the sum of A’s principal minor of size k [15, section 1.2] and we
use the notation A[α] = A[α, α], where α is a set of indices, to denote a principal submatrix of A [15, section
0.7.1].
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which, by Vièta’s theorem [32, section 5.7], imply

n∑

k=1

λk = −(n − 1)2,

∑

i< j

λiλ j = (n − 1)2

3
[(n − 1)2 − 1],

where {λk}nk=1 are the n roots of det(λI − Q), i.e., the eigenvalues of Q. We then have

n∑

k=1

λ2k =
(

n∑

k=1

λk

)2

− 2
∑

i �= j,i< j

λiλ j = (n − 1)4

3
+ 2(n − 1)2

3
,

which gives

|λmax |≤
√

(n − 1)4

3
+ 2(n − 1)2

3
= (n − 1)2

√
1

3
+ 2

3(n − 1)2
.


�
The necessary condition of the step size can be readily derived from Theorem 3.1. For

example, for the forward Euler method to be stable, it is required that |hλmax + 1|≤ 1, that
is,

h ≤ 3.41

(n − 1)2
. (44)

This is exactly the threshold beyond which we see the modal instability as in Fig. 4.
In Fig. 5a, the eigenvalues of n−2Q for n = 64 are plotted using dots, where the rescaling
factor of n−2 helps remove the dependence of the entries of Q on the dimension n. The largest
eigenvalue is an outlier located on the real axis that breaks away from the main cohort formed
by the rest of the spectra and juts out into the left half plane. Along with the spectra, we also
display the ε-pseudospectra in Fig. 5a. The pseudospectra clearly show the importance of the
outlier. Although the spatial discretization matrix of the one-dimensional transport equation
is nonnormal, as indicated by the pseudospectra around the main cohort, it is not far from
normal in that its behavior is largely determined by the outlier. More precisely, it is only the
magnitude of this outlier, not the pseudospectra around it, that matters. This can be seen from
the facts that (1) the outlier is much larger in modulus than the ε-pseudospectra around the
main cohort, (2) even in a plot for ε as large as 10−3 we do not see the pseudospectra contours
around the outlier, and (3) the pseudospectra around the outlier (see the close-up) consist of
a few concentric circles whose radii shrink proportionally with the order of ε. In fact, this
outlier is almost a normal eigenvalue [30, §52] — its condition number κ(λoutlier ) ≈ 9.2
(calculated in ∞-norm). In contrast, the two most outlying eigenvalues in the main cohort
(symmetric about the real axis) have a condition number approximately 1378.8, which is the
smallest among all the eigenvalues in the main cohort.3 That is, the eigenvalues in the main
cohort are nonnormal or significantly so. In a word, the outlier is of physical significance, and
it is this outlier that restricts the step size of a time stepper with a bounded stability region.

3 The condition number of other eigenvalues in themain cohort could bemuch larger. The closer they are to the
origin, the greater the condition numbers become. The eigenvalues near the origin can hardly be numerically
calculated to any satisfactory accuracy due to the extremely poor conditioning.
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Fig. 5 The spectra and the ε-pseudospectra of the spatial discretization matrices due to the ultraspherical
spectral method (left panes) and the Chebyshev pseudospectral method (right panes), rescaled by n−2 and
n−4 respectively for the one-dimensional transport equation (top panes) and the heat equation (bottom panes).
The insets show close-ups in the neighborhood of the outlier(s)

Hence, we can say that for the proposed approaches the stability of a time marching scheme,
when applied to (11), is mainly determined by the spectra.

For comparison purposes, we show in Fig. 5b the spectra and pseudospectra of the rescaled
first-order differentiation matrix from the Chebyshev pseudospectral method. As the largest
eigenvalues in Fig. 5b are smaller than the outlier in Fig. 5a, one might think that the Cheby-
shev pseudospectral method is superior to the ultraspherical spectral method. This is, in
fact, not the case. First, it is not true that ultraspherical spectral method always results in
greater spectral radius than the collocation pseudospectral method, e.g., the second-order
differentiation operator (see below), or if boundary conditions of other types are enforced
(see Remark 3.1). Second, the Chebyshev pseudospectral method, in this particular case,
allows a step size only of a constant times larger than the ultraspherical spectral method,
since for both methods the spectral radius isO(n2). Third, the ultraspherical spectral method
is cheaper stepwise than the Chebyshev pseudospectral method (see Sect. 5), thanks to its
sparsity structures.

Now,we turn to the heat equation (12)which features the spatial differentiation of a second
order. Applying Approach 2 to the heat equation (12), but leaving the temporal operator non-
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discretized, gives

S1S0T Hu = D2u, (45)

where H =
(
In−2 0

BP�
n

)
, and the functional B =

(
1 1 1 1 · · ·
1 −1 1 −1 · · ·

)
represents the Dirich-

let boundary conditions in Chebyshev space. The equivalence of (45) and the Approach 2
discretization follows exactly the same reasoning for that of (37) whereW is involved instead.

The following theorem gives a bound on the spectral radius of H−1S−1
0 S−1

1 D2.

Theorem 3.2 The spectral radius of G = H−1S0−1S1−1D2 is bounded by

ρ(G) ≤ 2

3
n(n − 2)(n − 1)2.

Proof S−1
0 and D2 are given by (41) and (5), respectively, and S

−1
1 can be derived analogously

to S−1
0 . Also, we have H−1 =

(
In−2 0

H ′

)
, where H ′ =

( −1 −1 . . . 0 1
2 − 1

2−1 −1 . . . −1 1
2

1
2

)
.

It can be shown that Gnn = −2

3
n(n − 2)(n − 1)2 is the entry with the largest magnitude.

Noting this, we can further show that for any λ < −2

3
n(n − 2)(n − 1)2 the determinant

det(λI − G) �= 0. Hence, all eigenvalues of G are smaller than
2

3
n(n − 2)(n − 1)2 in

modulus. 
�
The spectra and the pseudospectra of n−4G are shown in Fig. 5c, where the eigenvalues

are lined up on the real axis, due to the parity of the order of the spatial differentiation. Once
again, there are (two) outliers which detach themselves from the rest of the spectra and reside
far in the left half plane. Though we can see the pseudospectra for both the outliers and the
rest of the spectra, the relatively large ε, the relatively small scale of the axes, the shape of
the pseudospectra contours around the outliers, and the fact that the condition numbers of
these two outliers are small (both approximately 2.3) suggest that the outliers are physically
significant, governing the behavior of the matrix.4 Therefore, the outlier of largest modulus
determines the maximum step size if a time stepper with bounded stability region is used.
The spectra and the pseudospectra of the rescaled Chebyshev second-order differentiation
matrix are shown in Fig. 5d for comparison.

Again, we can derive from Theorem 3.2 a threshold value below which the step size of the
timemarching scheme leads to a stable solution to (12).Although this bound is not sharp, i.e., a
step size bigger than this valuemaywell stabilize the computation, the key point is not missed
— the largest eigenvalue of the ultraspherical discretization matrix behaves likeO(n4). This
echoes [34], which gives a same result for the second-order pseudospectral differentiation
matrix. Such an agreement is not a coincidence. Furthermore, the last two theorems suggest
that the largest eigenvalues of the N th order spatial differentiation operator, when truncated
to n × n and converted back to Chebyshev space, scale like O(n2N ), the same as in the
Chebyshev pseudospectral methods.5 Indeed, this is exactly what we show in Theorem 3.3

4 In fact, the rest of the eigenvalues are all normal with O(1) condition numbers.
5 It is well known that the largest eigenvalues of the N th order Chebyshev pseudospectral differentiation
matrix scale likeO(n2N ). Surprisingly, however, this assertion is not found in the literature and it seems that
no one has ever given a proof of it.
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below. To do so, we look at (23). Inverting the product of the conversion matrices on the
left-hand side of (23) gives

T u = (SN−1SN−2 . . . S0)
−1 Lu, (46)

where each conversionmatrix is truncated exactly before the inversion. The following lemma
gives an upper bound for the norm of S−1

λ .

Lemma 3.1 For λ = 1, 2, . . .,
∥∥∥S−1

λ

∥∥∥ ≤ Cλn2 for some constant Cλ and
∥∥∥S−1

0

∥∥∥ ≤ n.

Proof Following a derivation analogous to the one for S−1
0 , we find

S−1
λ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1
λ+1
λ

λ+1
λ

λ+1
λ

λ+2
λ

λ+2
λ

. . .
...

λ+3
λ

λ+3
λ

...

. . .
. . .

. . . λ+n−3
λ

λ+n−2
λ

λ+n−1
λ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Hence, we have
∥∥∥S−1

λ

∥∥∥ = max
i

(
n + 1

2
,
n − 1

2

λ + 1

λ
, · · · ,

(
n + 1

2
−
⌈
i

2

⌉)
λ + i

λ
, · · · λ + n − 1

λ

)

≤ Cλn
2,

and
∥∥∥S−1

0

∥∥∥ ≤ n follows from (41). 
�
Now we are in a position to bound the norm of the matrix on the right-hand side of (46).

Lemma 3.2 Suppose that each of Mλ is of a finite bandwidth independent of the degrees of
freedom n for λ = 0, 1, . . . , N, then

∥∥∥
(
SN−1 . . . S0

)−1
L
∥∥∥ ≤ Cn2N (47)

for some constant C.

Proof From (5), it is easy to see that

‖Dλ‖ ≤ CNn

for all λ.
Since Mλ[aλ] has a finite bandwidth, ∥∥Mλ[aλ]∥∥ is bounded by a constant regardless the

dimension n. Similarly, this is the case for ‖Sλ‖ for all λ.
By the triangle inequality and the submultiplicativity of matrix norms, it follows from

(36) that

‖L‖ ≤ n

(
‖MN‖ +

N−1∑

λ=1

‖ΘλMλ‖
)

≤ CLn,

for some CL and this, along with Lemma 3.1, gives (47). 
�
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Fig. 6 The spectral radius, normalized by n−2N , of the n × n spatial discretization matrices for N th-order
differentiation operators versus n

A direct consequence of Lemma 3.2 is an upper bound for the spectral radius of the matrix
on the right-hand side of (46).

Theorem 3.3 When Approach 2 is used for solving (10) where L is an Nth order differential
operator with smooth variable coefficients given by (3), there exists a constant C independent
of the degrees of freedom n for the spatial discretization such that

ρ(S−1
0 S−1

1 . . . S−1
N−1L) ≤ Cn2N . (48)

Proof The smoothness of the variable coefficients implies finite bandwidth for each Mλ.
Hence, this is a standard result led to by (47) which can be found, for example, in [15,
Theorem 5.6.9]. 
�

Theorem 3.3 is numerically verified for the cases of N = 3, 4 in Fig. 6, where the
spectral radius of N th-order differentiation matrices is normalized by n−2N and plotted
versus different n. It can be seen that the normalized spectral radii indeed tend to be a
constant.

In fact, the ε-pseudospectra radius of the matrix on the right-hand side of (46) is bounded
by the same quantity plus ε.

Theorem 3.4 If the assumption holds as in Theorem 3.3,

ρε(S
−1
0 S−1

1 . . . S−1
N−1L) ≤ Cn2N + ε, (49)

where the constant C is the one given in (48).

Proof For any ‖E‖ ≤ ε,

ρ(S−1
0 S−1

1 . . . S−1
N−1L + E) ≤

∥∥∥S−1
0 S−1

1 . . . S−1
N−1L

∥∥∥+ ‖E‖ ≤ Cn2N + ε,

which, by the second definition of pseudospectra [28, §2], gives (49). 
�
The bounds in the last two theorems give the worst case scenario of how the spectra and

the pseudospectra scale with n for N . If we use the quantity n2N as a guidance for choosing
the step size, the stability is guaranteed.

Since the largest eigenvalue(s) of a spatial discretizationmatrix also grows likeO(n2N ) for
the Chebyshev pseudospectral method, the ultraspherical spectral method and the Chebyshev
pseudospectral method roughly tie in terms of the largest step that can be taken for a time
marching scheme with a bounded stability region. The fact that the largest eigenvalues match
for these two methods can also be seen by premultiplying both sides of (46) by an inverse
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discrete cosine transform (iDCT)matrix and ignoring the first and last rows, as this reproduces
the discretization led to by the Chebyshev pseudospectral method [28, chapter 10]. Because
the iDCT matrix is unitary, the norms of the spatial discretization matrices due to these two
methods should be roughly same.

Remark 3.1 Our discussion in this section is based on the one-dimensional transport equation
and the heat equation subject to homogeneous Dirichlet boundary conditions. However, the
use of homogeneous Dirichlet boundary conditions is unimportant. Although other boundary
conditions may lead to different constants in bounds such as (44), it would not change the
main result given by Theorem 3.3. In addition, homogeneous Dirichlet boundary conditions
were adopted in the study of the collocation-based pseudospectral methods [11, 28, 30, 34].
It is for comparative purposes that the use of the same boundary conditions seems natural.

4 Error

The error in the computed solution of PDEs comes mainly from two sources: discretization
and rounding, where the former, in the present context, consists of those in space and time.
That is,

Total error =
spatial

discretization
error

+
temporal

discretization
error

+ rounding
error

.

Like any other spectralmethod, the ultraspherical spectralmethod offers spectral accuracy,
that is, the accuracy is limited not by the order of the discretization, but by the smoothness
of the solution being approximated. When the degrees of freedom are sufficiently large, the
solution can be adequately resolved in space, thereby bringing no spatial discretization error.
The temporal discretization error introducedby the standard timemarching schemes is usually
of an algebraic order and its quantification and analysis can be found in standard texts like [1,
4, 12]. When the time step is small enough, the temporal discretization error can essentially
be restricted to or below the level of machine epsilon. Hence, it is possible to completely
annihilate the discretization error and this is a commonworking paradigm adopted by spectral
methods for PDEs. This way, one is only left with the errors introduced by rounding. We now
give an analysis of the rounding error for the proposed method, assuming the discretization
error is absent.

We consider the iterative model

AUk+1 = BUk, (50)

which can be deemed as the prototype of the discretized systems obtained by the proposed
method. Here, Uk and Uk+1 are the computed solutions at two successive steps6.

The key to our analysis is the quantity

Δk+1 = Uk+1 − A−1BUk,

whereUk andUk+1, stored as floating point numbers, are the computed solutions at kth and
(k + 1)th step, respectively. Here, the matrix A−1B is assumed to be exact, not in its floating

6 For a r -step linear multistep method, such a relation can be derived by forming A and B as rn × rn block
matrices and Uk and Uk+1 as vectors that incorporate the computed solution at r successive time steps.
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point representation, so that Δk+1 quantifies the amount of error introduced by rounding at
a single step. We shall find an upper bound for its magnitude as follows.

∥∥∥Δk+1
∥∥∥ =

∥∥∥Uk+1 − A−1BUk
∥∥∥ =

∥∥∥ f l(A−1B Uk) − A−1BUk
∥∥∥ ,

where f l(x) denotes the function producing the closest floating point approximation to a
given number x . There exists ε with |ε|≤ εmach such that f l(x) = x(1+ε) [20]. Here, εmach

is themachine epsilon and in IEEE double precision arithmetic εmach is 2−53 ≈ 1.11×10−16.
Hence,
∥∥∥Δk+1

∥∥∥ =
∥∥∥A−1B Uk(1 + ε) − A−1BUk

∥∥∥

≤ ∥∥A−1B − A−1B
∥∥
∥∥∥Uk

∥∥∥+ ε
∥∥A−1B

∥∥
∥∥∥Uk

∥∥∥

≤ ∥∥A−1
∥∥ ∥∥B − B

∥∥
∥∥∥Uk

∥∥∥+ ‖B‖ ∥∥A−1 − A−1
∥∥
∥∥∥Uk

∥∥∥+ ε
∥∥A−1B

∥∥
∥∥∥Uk

∥∥∥ ,

By Theorem 2.3.9 in [33], we have
∥∥A−1 − A−1

∥∥ ≤ C1εmach,

where C1 =
∥∥A−1

∥∥+ κ(A)

1 − εmach
∥∥A−1

∥∥
∥∥A−1

∥∥ and κ(A) is the condition number of A in the infinity

norm. A little algebraic work gives
∥∥∥Δk+1

∥∥∥ ≤ C2

∥∥∥Uk
∥∥∥ εmach, (51)

where C2 = ∥∥A−1
∥∥
(
n +

∥∥A−1
∥∥+ κ(A)

1 − εmach
∥∥A−1

∥∥ ‖B‖ + ‖B‖
)
.

Now we add up the error introduced in each and every step to have the accumulated error
at (K + 1)th step in the form of a discrete convolution

EK+1 =
K+1∑

j=1

(
A−1B

)K+1− j
Δ j ,

whose magnitude can be bounded as

∥∥∥EK+1
∥∥∥ =

∥∥∥∥∥∥

K+1∑

j=1

(
A−1B

)K+1− j
Δ j

∥∥∥∥∥∥
(52)

≤ (K + 1) sup
0≤r≤K

∥∥∥
(
A−1B

)r∥∥∥ sup
1≤ j≤K+1

∥∥∥Δ j
∥∥∥

≤ (K + 1) sup
0≤r≤K

∥∥∥
(
A−1B

)r∥∥∥ sup
1≤ j≤K+1

∥∥∥U j
∥∥∥C2εmach

= C3(K + 1)εmach, (53)

where we have used (51) to come up with the constant coefficient

C3 = sup
0≤r≤K

∥∥∥
(
A−1B

)r∥∥∥ sup
1≤ j≤K+1

∥∥∥U j
∥∥∥
∥∥∥A−1

∥∥∥

⎛

⎝n +
∥∥∥A−1

∥∥∥+ κ(A)

1 − εmach
∥∥A−1

∥∥ ‖B‖ + ‖B‖
⎞

⎠ ,

independent of K .

123



Journal of Scientific Computing (2023) 96 :70 Page 23 of 34 70

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

number of steps

0

0.5

1

1.5

2

2.5

3

er
ro

r
10-11

RK3
BDF3
AB4

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2
10-14

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

number of steps

0

0.5

1

1.5

2

2.5

3

er
ro

r

10-11

RK3
BDF3
AB4

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2
10-14

(b)

0 1 2 3 4 5 6 7 8 9 10

number of steps 104

0

0.5

1

1.5

er
ro

r

10-11

RK3
BDF3
AB4

0 2 4 6 8 10

104

0

0.5

1

1.5
10-14

(c)

0 1 2 3 4 5 6 7 8 9 10

number of steps 104

0

1

2

3

4

5

6

7

er
ro

r

10-11

RK3
BDF3
AB4

0 2 4 6 8 10

104

0

1

2

3
10-14

(d)

Fig. 7 The growth of the rounding error when solving (11) (top panes) and (12) (bottom panes) using ultras-
pherical spectral method (left panes) and Chebyshev pseudospectral method (right panes)

What (53) shows is that the accumulated error grows at worst linearly with the number of
the time steps. We solve the one-dimensional transport equation (11) and the heat equation
(12) using three different time marching schemes, i.e., RK3, AB4, and BDF3, and compare
the computed solution with the exact solution. Sufficiently large n and small enough Δt are
used so that there is no discretization error and the observed error is solely due to rounding.
The error is plotted in Fig. 7 (left panes) to show its growth versus the number of time steps.

As shown in Fig. 7a, the errors grow exactly linearly for all three methods. The error of
the AB4 method is relatively negligible compared to those of RK3 and BDF3, so its curve is
indistinguishable from the x-axis in the same plot. The inset shows the linear growth of the
error of AB4 using a different y-scale. The results shown in Fig. 7c look similar, only except
that the error curves are somewhat more oscillatory, especially in the inset plot for AB4.

The different slopes of the curves are attributed to C3 in (53). In fact, our calculation

shows that it is the factor sup0≤r≤K

∥∥∥
(
A−1B

)r∥∥∥ that really makes a difference for these three

methods. For example, this quantity is 3.9 × 1010, 8.9 × 106, and 5.0 for BDF3, RK3, and
AB4, respectively. Note that this factor is partly attributed to our analysis on the norms of
the spatial discretization matrices in Sect. 3 and the Kreiss matrix theorem [30, Chapter 18].

Whatwe also show in Fig. 7 (right panes) is how the rounding errors growwhenChebyshev
pseudospectral method is used to solve (11) (Fig. 7b) and (12) (Fig. 7d). It is not surprising
that they grow too at most linearly, since the model (50) and the analysis given above are
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also applicable to the Chebyshev pseudospectral method. We can see that the rounding errors
are comparable in these two methods and this should also be expected by the reasoning right
above Remark 3.1.

5 Computational Cost

As pointed out in [18], solving an almost banded system involves two steps: the QR factor-
ization and the back substitution. They costO(m2n) andO(mn) respectively, where n is the
degrees of freedom and m is the bandwidth of the almost banded matrix.

The sparsity shown by Figs. 1 and 2 readily implies the same strategy for solving the
resulting systems and, therefore, a computational cost ofO(n) too for both the discretization
approaches regardless of the timemarching scheme.7 However,whenApproach2 is employed
we solve an upper triangular banded system (see Fig. 2) for which only the back substitution
is needed. Moreover, note that since the boundary condition (10b) and the coefficients on the
right-hand side of (10a) are independent of time, the QR factorization can be done once and
for all at the beginning and at the subsequent steps only the back substitution is carried out.

The O(n) complexity is in stark contrast to the computational cost for solving (10) using
the collocation-based pseudospectral method [28]. If an explicit time marching scheme is
used, the cost to calculate the derivatives on the right-hand side of (10a) is O(n log2 n) with
the aid of FFTs.8 If an implicit method is used, a dense system with no particular structure
needs to be solved by a direct method such as LU factorization at a cost ofO(n3) flops. Even
though this cost is paid only once at the start of the time stepping and can be amortized over
the subsequent steps, the cost of the backward substitution is still as high as O(n2) since the
system is dense. Furthermore, for an adaptive implementation similar to the one introduced
below in Sect. 6, multiple or even a large number of LU decomposition may be needed,
raising the cost significantly. These certify the great advantage of the ultraspherical spectral
method in solving time-dependent PDEs.

6 Adaptivity

As time evolves, the solution to (10) may become spatially simpler or more complicated. It
would be ideal if the method can take this into account and adapt the implementation for
better efficiency but at the same time ensure that the degrees of freedom is large enough to
guarantee an adequate resolution of the solution. This requires deciding a proper length of
the solution vector at each time step.

Aurentz and Trefethen [2] propose an automated procedure in the context of function
approximation for determiningwhere to chop aChebyshev series so that the truncatedCheby-
shev series is accurate and economical. The key of their chopping algorithm is the detection
of a plateau, where the Chebyshev coefficients stay below a threshold and are sufficiently
level. It is then based on this plateau that a chopping strategy is formulated. Algorithm 1
summarizes the plateau detection part of their chopping algorithm. As we can see, when
we approximate a given function by Chebyshev series the emergence of a plateau signals
sufficient resolution, and a large portion of the plateau and all the trailing coefficients beyond
the plateau are discarded for efficiency (not indicated in Algorithm 1).

7 For simplicity, we have omitted here the implied factor dependent of the bandwidth in the big-oh notation.
8 In pseudospectral methods, variable coefficients are represented by diagonal matrices.
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Algorithm 1 Detection of a plateau [2].
1: procedure plateau(u, tol)
2: Step 1: Compute the normalized upper envelope of u.
3: envelope j = max j≤k≤n |uk |
4: if envelop1 �= 0 then
5: envelope = envelope/envelope1
6: end if
7: Step 2: Search for a plateau.
8: for j ← 2, n do
9: j2 = round(1.25 j + 5)
10: e1 = envelope( j)
11: e2 = envelope( j2)
12: r = 3 (1 − log(e1)/ log(tol))
13: if (e1 == 0 or e2/e1 > r) then
14: return j , j2
15: end if
16: end for
17: end procedure

In the context of solving time-dependent PDEs, a plateau also serves as an indicator of
adequate resolution. However, we only chop off the trailing coefficients beyond the plateau
at each step.

Suppose we are marching to the (k + r)th step using the information at tk, tk+1, . . . ,

tk+r−1 by a multistep scheme or a Runge-Kutta method (for which r = 1). If there is no
plateau in the computed solution uk+r , we keep doubling the lengths of uk, uk+1, . . . , uk+r−1

by prolonging them with zeros and then re-calculate uk+r until a plateau emerges. This way,
we come up with the following algorithm which allows adaptivity for the solution — the
solution vector is lengthenedwhen an improved resolutionmay be effected or truncated when
keeping some of the coefficients would not improve the resolution.

Algorithm 2 Adaptive stepping from tk, tk+1, . . . , tk+r−1 to tk+r .

1: Stepping by a linear multistep or Runge-Kutta method to obtain the computed solution uk+r . In case
uk , uk+1, . . . , uk+r−1 are not of the same length, extend the shorter vectors to the length of the longest
vector by prolonging them with zeros before stepping.

2: procedure adapt(uk , uk+1, …, uk+r )
3: L = length(uk+r ) � Function length returns the length of a vector.
4: Call plateau(uk+r , tol).

5: if there is a plateau formed by {uk+r
i } j2i= j then

6: Drop {uk+r
i }Li= j2+1, use u

k+r = {uk+r
i } j2i=0 for computation at future steps.

7: else
8: uk = [uk , 0, . . . , 0] (padding with zeros so that the lengths of uk is 2L) for k = 0, 1, . . . , r − 1
9: Re-calculate uk+r by the same time marching scheme
10: Call adapt(uk , uk+1, …, uk+r )
11: end if
12: end procedure

Note that the computed solution vectors fed into the calculation of the future steps are the
ones with the plateau coefficients kept, i.e., only the trailing coefficients beyond the plateau
are discarded. However, when a solution vector is no longer used for stepping, its plateau
part can be safely dropped for saving storage, since keeping the plateau coefficients would
not be of any help in improving the accuracy of the solution.
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Fig. 8 Solving transport equation (54) of variable speed with adaptivity

To demonstrate how Algorithm 2 works, we solve

ut = c(x)ux s.t. u(1, t) = 0, u(x, 0) = e−400(x−0.75)2 , (54)

where c(x) = 3/5 + 3 sin2(x − 1)2 is a variable propagation speed depending on x which
results in a deformation of the left-travelling wave, as displayed in Fig. 8b. The solid line
in Fig. 8a shows the evolution of the length n of the solution vector at each step, up to final
time t = 1. This length includes the coefficients forming the plateau, whereas the dotted line
shows the length if the plateau coefficients are discarded.

A noteworthy point is that the systems with different dimensions due to an adaptive
implementation are not unrelated. Suppose that we solve with adaptivity and systems of
dimensions n1 × n1 and n2 × n2 are solved by the QR factorization at two occasions with
n2 > n1. Since the n2 × n2 system is plainly an augment of the n1 × n1 one by n2 − n1 more
rows and columns, we can simply cache the QR factorization for whichever system comes
first to speed up the calculation for the other. Hence, for an adaptive implementation with
systems of various sizes, the actual cost could be as little as doing the QR factorization once
— only for the system with the largest dimension.

Finally, we note that the Chebfun system [6], particularly its PDE solver pde15s, offers
a similar adaptivity in space. However, it is much more basic than the proposed one in that
it does not have a mechanism for reducing the degrees of freedom when it is larger than
it needs to be. Therefore, over-resolution may cause unnecessary drag in speed when the
solution becomes spatially smoother.

7 Spatially Periodic Problems

Up to this point, our discussion has been concentrated on spatially non-periodic problems.
For (4) subject to periodic boundary conditions, one can simply follow the same framework
of [18] but take

{
e±ikx

}∞
k=0 as the basis functions, reproducing the tau-method [19]. With

the Fourier basis, the λ-order differentiation operator remains sparse as

Dλ = diag
(
0, iλ, (−i)λ, (2i)λ, (−2i)λ, . . . , (2k)λ, (−2k)λ, . . .

)
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and there is nomore need for conversion operatorsSλ, resulting in an even simpler implemen-
tation of the ultraspherical spectral method in the periodic case. However, for time-dependent
PDEs with periodic boundary conditions, i.e., (10) with (10b) replaced by periodic boundary
conditions, time marching is not as easy as in the non-periodic case. For the simple cases
where the right-hand side of (10a) is an odd-order spatial derivative of u, all the eigenvalues
of the spatial discretization matrix reside on the imaginary axis for which only the schemes
with a stability region enclosing the origin and its neighborhood along the imaginary axis
are applicable. For example, for the one-dimensional transport equation (11) with periodic
boundary conditions, this immediate disqualifies all the explicit Runge-Kutta methods, the
first two Adams-Bashforth methods, the Adams-Moulton methods of 2, 3, and 4 steps, and
the BDF methods with more than 2 steps.

8 Nonlinearity

So far, the discussion has been concentrated on linear problems, which help simplify the
analysis substantially. We now return to (1) where F also includes a nonlinear part as in (2).
In the remainder of this article, we slightly abuse the notation by assuming that the nonlinear
operator F takes in and returns Chebyshev and C (λ) coefficients respectively, instead of
function values. This way, the input and the output of F are consistent with those of the
linear part L. For Approach 1, the fully discretized system reads

(
BP�

n
Pn−NSN−1 . . .S0P�

n

)
Pnuk+r

=
⎛

⎝
c

r−1∑
j=0

(β j hPn−NF(tk+ j ,Pnuk+ j ) − α jPn−NSN−1 . . .S0P�
n Pnuk+ j )

⎞

⎠ ,

(55)

if an explicit multistep method (βr = 0) is used. For an implicit multistep method (βr �= 0),
we end up with the nonlinear equation

(
BP�

n Pnuk+r

Pn−NSN−1 . . .S0P�
n Pnuk+r − hβrPn−NF(tk+r ,Pnuk+r )

)

=
⎛

⎝
c

r−1∑
j=0

(β j hPn−NF(tk+ j ,Pnuk+ j ) − α jPn−NSN−1 . . .S0P�
n Pnuk+ j )

⎞

⎠ .

(56)

The last two equations should be compared with (21). If a Runge–Kutta method is used, (22)
should be adapted to become

(
BP�

n
Pn−NSN−1 . . .S0P�

n

)
y j =

(
0

hPn−NF(tk + θ j h,Pnuk + μ j y j−1)

)
, (57)

For Approach 2, explicit and implicit multistep methods leads to

PnSN−1 . . .S0P�
n Pnuk+r

= h
r−1∑

j=0

β jPnF(tk+ j ,Pnuk+ j ) −
r−1∑

j=0

α jPnSN−1 . . .S0P�
n Pnuk+ j (58)
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and
PnSN−1 . . .S0P�

n Pnuk+r − hβrPnF(tk+r ,Pnuk+r )

= h
r−1∑

j=0

β jPnF(tk+ j ,Pnuk+ j ) −
r−1∑

j=0

α jPnSN−1 . . .S0P�
n Pnuk+ j ,

(59)

respectively, where Runge–Kutta methods gives

PnSN−1 . . .S0P�
n y j = hPnF(tk + θ j h,Pnuk + μ j y j−1), (60)

which should be contrasted with (25). The nonlinear part N (t, u) of F(t, u) at specific t
and u is usually evaluated by plugging in the value of t ,9 sampling N (u(x)) at Chebyshev
grids in x of increasing size, calculating the Chebyshev coefficients by FFT until complete
resolution, and converting them to C (λ) coefficients. The total cost is dominated by the few
FFTs for the value-to-coefficient transform. Thus, the nominal complexities for solving (55),
(57), (58), and (60) are all O(n log2 n), where the linear complexity of system solving is
prevailed over by the complexity of the evaluation of the nonlinear terms. Note that (56)
and (59) are nonlinear equations of Pnuk+r and the cost of solution may be the greatest
concern since the multiplication operators lose bandedness. However, it has been shown that
fast solution to the nonlinear systems obtained from ultraspherical discretization can still
be effected withO(n log2 n) flops per iteration by an inexact Newton-GMRES method [21].
Since the solution at the previous time step can always serve as a good initial iterate for the next
step, Newton’s method usually skips the global stage and converges to machine precision in
very few iterations. Thus, ultraspherical spectral method guarantees fast solution for virtually
all the scenarios – explicit and implicit schemes, linear and nonlinear equations. This is in
marked contrast to solving time-dependent PDEs with the collocation-based pseudospectral
method as the corresponding differentiation matrices are dense and much less structured.

The convergence of the solutions obtained by the two approaches in the nonlinear case is
guaranteed ifF(t, u) satisfies Lipschitz conditions. This is met by virtually all the real-world
problems.

To see how rounding errors accumulate, we replace the iterative model (50) by

Uk+1 = g(Uk),

where g is the nonlinear map corresponding to F . It can be shown that the modulus of the
rounding error

∥∥∥Δk+1
∥∥∥ =

∥∥∥Uk+1 − g(Uk)

∥∥∥ =
∥∥∥ f l(g(Uk)) − g(Uk)

∥∥∥ ≤ C1ε,

where g denotes the floating point approximation to g and C1 = (2 + ε)
∥∥g(Uk)

∥∥. The
accumulative error EK+1 at (K + 1)th step is bounded by

∥∥∥EK+1
∥∥∥ =

∥∥∥∥∥∥

K+1∑

j=1

gK+1− j
(
Δ j

)
∥∥∥∥∥∥

≤ C2(K + 1)εmach,

where C2 = (2 + ε) sup0≤r≤K ‖gr (·)‖ sup1≤ j≤K+1

∥∥g(U j−1)
∥∥. This constant C2 is, again,

solely determined by the nonlinear map g. The conclusion that the rounding error, in the
worst possible scenario, renders a linear growth is unchanged.

How the adaptivity described in (6) is implemented is not affected by the nonlinearity
and, thus, stays the same. For nonlinear periodic problems, the evaluation of the nonlinear

9 In practice, N is often independent of t , being a univariate function of u.
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term F is done with the Fourier coefficients, analogous to their Chebyshev counterpart in a
straightforward manner.

The implementation of more advanced methods, such as the implicit-explicit differencing
method, shares substantial similarities with those of the multistep and the Runge–Kutta
methods. We choose to omit the discussion here.

9 Exponential Integrators

We could have closed this article at the end of last section. But the exponential integrators,
also known as exponential time differencing, deserve a detailed discussion – it is arguably
the most powerful method for solving stiff ODE initial value problems. More importantly,
the combination of the exponential integrators and the ultraspherical spectral method turns
out to be extremely efficient, as we shall see below.

Consider the main equation (1a), that is,

T u = Lu + N (t, u).

Suppose the linear operatorL is expressed as in (13). To ensure that the coefficients produced
on both sides are in the same space, we premultiply the right-hand side by S−1

0 . . .S−1
N−1 to

obtain

T u = S−1
0 . . .S−1

N−1Lu + N (t, u).

Following Approach 2 in Sect. 2, we ignore the boundary conditions momentarily and inte-
grate the last equation on both sides from tk to tk+1 to have the variation-of-constant formula
in terms of the ultraspherical spectral operators

u(tk+1) = ehS
−1
0 ...S−1

N−1Lu(tk) + ehS
−1
0 ...S−1

N−1L

×
∫ h

0
eτS−1

0 ...S−1
N−1LN (tk + τ, u(tk + τ)) dτ.

(61)

Different approximations to the integral in (61) lead to various classes of exponential
integrator [14]. If the integrand in (61) is replaced by its polynomial interpolant at certain
distinct points in [tk, tk+1], we have the exponential multistep methods

uk+1 = ehS
−1
0 ...S−1

N−1Luk + h
p−1∑

j=0

ζ j (hS−1
0 . . .S−1

N−1L)∇ jvk, (62)

where uk = u(tk), vk = N (tk, uk), and ∇ jvk denotes the j th backward difference defined
recursively by ∇0vk = vk and ∇ j+1vk = ∇ jvk −∇ jvk−1. The weights ζ j can be calculated
via the recurrence relation

ζ0(z) = ϕ1(z),

zζ j (z) + 1 =
j−1∑

i=0

1

j − i
ζi (z),
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where ϕ1(z) = ez−1
z is one of the so called ϕ-functions. These ϕ-functions can be generated

from ϕ0(z) = ez and the recurrence relation [13]

ϕ j+1(z) = ϕ j (z) − ϕ j (0)

z
.

Similarly, replacing the integrand in (61) by its Taylor expansion at tk gives the exponential
Runge–Kutta methods

uk+1 = exp(hS−1
0 . . .S−1

N−1L)uk + h
s∑

i=1

bi (hS−1
0 . . .S−1

N−1L)vki , (63a)

uki = exp(ci hS−1
0 . . .S−1

N−1L)uk + h
s∑

j=1

ai j (hS−1
0 . . .S−1

N−1L)vk j , (63b)

where uki = u(tk+ci h), vki = N (tk+ci h, uki ). Like the Runge-Kuttamethods, theweights
ai j and bi satisfy

∑s
j=1 b j (z) = ϕ1(z) and

∑s
j=1 ai j (z) = ciϕ1(ci z) for i = 1, 2, . . . , s. For

(63) to be explicit, it is also required that c1 = 0 and ai j (z) = 0 for 1 ≤ i ≤ j ≤ s.
Various exponential Runge–Kutta methods have been constructed and some of the most

commonly used higher-order schemes are those proposed byCox andMatthews [5], Krogstad
[17], and Hochbruck and Ostermann [13]. For example, the method by Krogstad is given by
the following Butcher tableau

c1 = 0

c2 = 1
2 a21 = 1

2ϕ1,2

c3 = 1
2 a31 = 1

2ϕ1,3 − ϕ2,3 a32 = ϕ2,3

c4 = 1 a41 = ϕ1,4 − 2ϕ2,4 a43 = 2ϕ2,4

b1 = ϕ1 − 3ϕ2 + 4ϕ3 b2 = 2ϕ2 − 4ϕ3 b3 = b2 b4 = −ϕ2 + 4ϕ3

,

where ϕi, j (z) = ϕi (c j z).
Tomake the exponential multistepmethod (62) and exponential Runge-Kutta method (63)

practical, we still need to truncate all the operators and infinite vectors to finite dimensions.
This is done by replacing hS−1

0 . . .S−1
N−1L byG = hPnS−1

0 . . .S−1
N−1LP�

n and only retaining
the first n components of uk , vk , and vki . For convenience, we denote by uk , vk , and vki

respectively the vectors formed by the first n components of uk , vk , and vki .
The implementation of the exponential multistep and Runge–Kutta methods reviewed

above boils down to the calculation of the product ϕ j (G)ξ , where we use ξ to denote any of
uk , vk , and vki . Since evaluating ϕ j (G) directly usually suffers from large cancellation errors
for G of small magnitude, the evaluation of ϕ j (G) should be done via the Dunford-Taylor
integral [16]. It is further shown that

ϕ j (z) = 1

2π i

∫

Γ

es

s j
1

s − z
ds,

where Γ is a closed contour enclosing all the eigenvalues of G [23]. Replacing Γ by a
θ -parameterized Hankel contour φ(θ), such as a Talbot’s contour [31], leads to

ϕ j (z) = 1

2π i

∫ +∞

−∞
eφ(θ)

φ(θ) j

1

φ(θ) − z
φ′(θ)dθ.
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By truncating the integration interval to [−π, π] and approximating the integral by q-point
trapezoidal rule, we have a q-term sum-of-pole approximation of ϕ j (z)

rC I
( j) (z) =

q∑

l=1

wC I
l

z − zC I
l

, (64)

wherewC I
l = iq−1eφlφ′

l/φ
j
l ,φl = zC I

l = φ(θl),φ′
l = φ′(θl), and θl = π(2 l−q−1)/(q−1)

for l = 1, 2, . . . , q .
One can also use the Carathéodory-Fejér approximation [29, 31] to obtain a near-best

rational approximation to ϕ j (z)

rCF
( j) (z) =

q∑

l=1

wCF
l

z − zCF
l

, (65)

which is also in the sum-of-pole form as the one found by contour integral. The poles zCF
l

and weights wCF
l of the CF approximation to ϕ j (z) usually differ for different j .

Note that when (64) or (65) are used, the calculation of ϕ j (G)ξ turns to solving linear
systems (G − zl I )xl = ξ , or equivalently

(hL − zl SN−1 . . . S0)xl = SN−1 . . . S0ξ, (66)

for l = 1, 2, . . . , q . What makes the exponential integrator even more powerful in the current
context is the fact that (66) is a banded system as L and SN−1 . . . S0 are both banded. When
the poles and weights are known from pre-computation, the total cost O(qn) for computing
each of ϕ j (G)ξ is significantly less than if the collocation-based pseudospectral methodwere
used, for which (66) is dense. Note that the convergence rate of rCF

( j) (z) is twice of that of

rC I
( j) (z) and further speed-up for the CF method can be achieved by using common poles for
all ϕ j , whereas the contour-based method can compute the weights and poles cheaply. For
comparisons of the contour-based and the CF methods, see [23, 31].

Here is a quick example of exponential integrating the Fisher equation

ut = 0.001uxx + u − u2, x ∈ [−1, 1],

subject to the homogeneous Dirichlet boundary conditions and the initial condition u(0, x) =
(1 − tanh(40x/

√
6))/4 using the ultraspherical and the pseudospectral spectral methods.

For both the methods, we choose n = 512 and integrate up to t = 10 with steps of size
1/n2, contrasted with the O(1/n4) restriction derived in Sect. 3. It takes 2.7 seconds for the
ultraspherical spectral method to finish the simulation, which is compared with 3.9 seconds
using the collocation-based pseudospectral method. Twomethods have comparable accuracy
of O(10−9) in this experiment. The acceleration is more substantial when the degrees of
freedom is greater.

Remark 9.1 Different exponential integrators vary by how the integral of the nonlinear term
is approximated. For a linear problem, i.e., N = 0, all the exponential integrators coincide
and give the same solution

uk+1 = ϕ0(G)uk . (67)
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Since this solution is exact, the step size is unlimited,10 and the exponential integrators are
also superb in solving linear problems. For example, exponential integrating the heat equation

ut = 0.1uxx , u(0, 1) = u(0,−1) = 0, u(x, 0) = sin (2πx)

by the ultraspherical spectral method with n = 32 allows the step size to be as large as 0.1.
With this step size, the absolute error of the computed solution at t = 10 is about 1.1352e−14.

Chebfun has an expm function for calculating operator exponentials, which overrides
the Matlab function with the same name but working on matrices. It can exactly be used
for evaluating ϕ0(G) in (67). However, Chebfun does not offer any more functionality in
exponential integration beyond the linear case. Additionally, the Chebfun expm explicitly
forms the matrix that approximates ϕ0(G) before it is applied to the vector uk , therefore the
sparsity seen in (66) is not taken advantage of and the storage cost becomes O(n2) instead
of O(n).

10 Conclusion and Remarks

We have applied the ultraspherical spectral method to solving time-dependent PDEs by offer-
ing two approaches for discretization and have examined a few key aspects of the proposed
method, including the stability of stepping, the error accumulation, and the computational
cost, for both the linear and nonlinear cases. Careful comparison shows that the new method
ties with the Chebyshev pseudospectral method in terms of stability and error and has a clear
advantage in speed and adaptivity.

So far, we have seen banded or almost-banded systems in two scenarios – the implicit
multi-step methods like the Adam-Moulton and BDFmethods and the exponential integrator.
Since the sparsity is a consequence of the employment of the ultraspherical spectral method
for the spatial discretization, manymore timemarching schemes can also enjoy the fast linear
algebra when used for solving time-dependent PDEs. More advanced examples include the
spectral deferred correction method [8] for obtaining high accuracy solutions, the parareal
method for time integration in parallel [10], the symplectic integrator forHamiltonian systems
[22], just to name a few. When stiffness requires the use of basic implicit methods as the
underlying driving schemes, the method benefits from the resulting sparse linear systems.

The speed-up that we have seen could be even more conspicuous for problems in higher
spatial dimensions since the degrees of freedom n is squared or cubed.

One thing we have left out but worth mentioning is the handling of a second derivative
in time. If high accuracy is not required, it is usually approximated by the simple leap frog
formula. A more general approach is to reduce an equation with a second-order temporal
derivative to a system of two equations with first-order derivatives in time. For instance,
utt = F(t, u(x, t)) is reduced to

vt = F(t, u(x, t)),

ut = v(x, t),

where the methods covered in the previous sections can be applied.
Another possibility that is beyond the scope of this work is the extension of the ultraspher-

ical spectral method to time-dependent problems inmultiple spatial dimensions. The analysis
may be more complicated and subtler than the present one, partly due to the boundary con-
ditions. However, our initial numerical experiments show that the discretization approaches

10 In practice, ϕ0 can hardly be evaluated accurately for extremely large argument due to the conditioning.
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Fig. 9 Solving a two dimensional heat equation by Approach 1 with nx = ny = 128 and the backward Euler
with h = 0.001

discussed in Sect. 2 work well as expected. Figure9b displays the solution at t = 1 to
the two-dimensional heat equation in a square domain subject to homogeneous boundary
conditions

ut = 0.01
(
uxx + uyy

)
, (x, y) ∈ [−1, 1] × [−1, 1],

s.t. u|Γ = 0 and u(x, 0) = e−100(x2+y2),

where initial profile is shown in Fig. 9a.
As the ultraspherical spectral method has been widely accepted in the last decade, we

believe the methods proposed in this article can serve as a natural companion of the ultra-
spherical spectral method for solving time-dependent problems and the analysis we have
carried out can help understand and interpret the numerical results obtained from using these
methods.
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