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We extend the ultraspherical spectral method to solving nonlinear ordinary differential equation (ODE)
boundary value problems. Naive ultraspherical Newton implementations usually form dense linear
systems explicitly and solve these systems exactly by direct methods, thus suffering from the bottlenecks
in both computational complexity and storage demands. Instead, we propose to use the inexact Newton—
GMRES framework for which a cheap but effective preconditioner can be constructed and a fast
Jacobian-vector multiplication can be effected, thanks to the structured operators of the ultraspherical
spectral method. The proposed inexact Newton—-GMRES—ultraspherical framework outperforms the naive
implementations in both speed and storage, particularly for large-scale problems or problems whose
linearization has solution-dependent variable coefficients in higher-order terms. Additional acceleration
can be gained when the method is implemented with mixed precision arithmetic.

Keywords: spectral method; nonlinear ODEs; boundary value problems; Chebyshev polynomials; ultra-
spherical polynomials.

1. Introduction

In this article, we extend the ultraspherical spectral method (Olver & Townsend, 2013) to solving the
nonlinear ordinary differential equation (ODE) boundary value problem

Fw) =0, s.t. NM(w) =0,

where F is a nonlinear differential operator on u(x). The solution u#(x) is a univariate function of the
independent variable x € [—1, 1]. The functional constraint A contains linear or nonlinear boundary
conditions or side constraints of other types, such as interior point conditions, global constraints, etc.

In the final paragraph of Olver & Townsend (2013), the authors briefly discuss the possibility of
solving nonlinear differential equations by the ultraspherical spectral method and caution the loss of
bandedness in the multiplication operators as a threat to the sparsity of the linear system and, therefore, to
the exceptional speed of the ultraspherical spectral method. It has been a decade since Olver & Townsend
(2013) was published. While there have been some preliminary implementations of the ultraspherical
spectral method for nonlinear problems (Driscoll et al., 2014; Olver, 2019; Burns et al., 2020), it seems
that no substantial progress has been made towards this extension, particularly for large-scale problems.
This paper aims to fill this long-overdue gap.

What we find in this study is that the loss of bandedness in multiplication operators can be remediated
surprisingly easily with the inexact Newton—-GMRES framework, a proper preconditioner and a correct
way to carry out the Jacobian-vector multiplication. The proposed framework is easy to implement and
can largely restore the speed of the original ultraspherical spectral method without compromising on the
accuracy and stability.

© The Author(s) 2024. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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2 0. QIN AND K. XU

We begin by first setting up the inexact Newton—-GMRES-ultraspherical (INGU) framework in
Section 2. We discuss the fast application of the truncated Fréchet operators in Section 3 and the
preconditioning in Section 4. Section 5 describes a few possibilities to further speed up the computation,
including our mixed precision implementation. Numerical experiments are shown in Section 6 before
we close in the final section.

Throughout this article, calligraphy fonts are used for operators or infinite matrices and bold fonts
for infinite vectors, whereas functions, truncations of operators, infinite matrices and infinite vectors are
denoted by normal fonts. We denote the infinite identity operator and the n x n identity matrix by Z and
I, respectively.

2. The INGU framework

To make our discussion uncluttered, we give a quick review of the very essence of the ultraspherical
spectral method in Section 2.1, which we could have dispensed with, but at a cost of annoyingly
frequent reference to Olver & Townsend (2013). We discuss the linearization, truncation and adaptivity in
Section 2.2, which yield a primitive ultraspherical-based Newton method. The inexact Newton condition
enabled by GMRES and the three popular global Newton variants briefly reviewed in Section 2.3 and
Section 2.4, respectively, lead to the prototype INGU method given in Section 2.5.

2.1 Ultraspherical spectral method

The ultraspherical spectral method solves the linear ODE

Lu=f 2.1
s.t. Bu=rc
by approximating the solution with a Chebyshev series u(x) = Zfio ujTj(x), where Tj(x) is the

Chebyshev polynomial of degree j. Here, £ is an Nth order linear differentiation operator

avy d
— N 1 0
L=a (x)@—}—...—}—a (x)a+a x), 2.2)
and B contains N linear functionals of boundary conditions. Once the coefficients u; are known, the
solution u(x) is identified by the coefficient vector u = (uy, uy, uy,...) .
For A > 1, d*/dx" is replaced by the Ath-order differentiation operator

A times
——

i 0--0 )L
D, =2 (A-1)! A+ ,

A+2

mapping the Chebyshev T coefficients to the ultraspherical C*) coefficients. !

! In Olver & Townsend (2013), Dy = Dy, while in this paper D1 maps from Chebyshev T to cM and Do = Z, i.e., the identity
operator, for notational consistency.
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SOLVING NONLINEAR ODES WITH THE ULTRASPHERICAL SPECTRAL METHOD 3

When a®(x) = Z 0 a]T (x) is variable, the action of a®(x) on u(x) is represented by a Toeplitz-plus-
Hankel-plus-rank-1 mu1t1phcati0n operator

2ay ay ay, az --- 0 0 0 O
1 al 2610 al az .'. al a2 a3 a4 s
MO[QO] — z a, a; 2a0 a + a, ds dy dsg

as a, a 2(10 ‘. as a, ds dg

If any of at(x) = Z/OOO : C () (x) for A > 0 is not constant, the differential operator D, should be pre-

multiplied by the multlphcatlon operator M, [a*], which represents the product of two C*) series. The
most straightforward way to generate M, [@*] (Townsend, 2014, §6.3.1) is to express it by the series

o
M, la"1 =D a M, [C], (2.3a)
j=0

where M, [C]W] is obtained by the three-term recurrence relation

2+ A) j+on—1 ,
(») (A) ()
Yl = cH]-+—F— crl], j=1 2.3b
M;[C Iy AxIM, [C] Y MGh] iz (2.3b)
: M7 _ M7 _
with M, [Cq” | = T, M, [C}"] = 2AM, [x] and
2A
0 364D
500 B
M, [x] = * 2 (0+) 242 (2.3¢)
AL 20.+D) 5 2(A+3) . : :
20:+2) .0

Another way to construct these multiplication operators is by the explicit formula

k
Mld = D k2 +j—k), k=0, (2.4)
s=max(0,k—j)

where cﬁ‘ (j, k) can be evaluated recursively following the remark in Olver & Townsend (2013, §3.1).
Our solution to the nonlinear ODEs relies on a third way to express M ,\[a)‘], which allows fast
applications of truncations of M A[ak] to vectors. See Section 3 below.
When D, and M A[a)‘] are employed, each term in (2.2) maps to a different ultraspherical basis. So
the following conversion operators S, and S, are used to map the coefficients in Chebyshev T and C »
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4 0. QIN AND K. XU

to those in CV) and C*+D) respectively

1 1 1 A
[ PO
SO = 2 | 2 1 and SA = A+l N A+3 N
2 2 P R s
for 1 > 1. In terms of these operators, the differential operator (2.2) is represented as
N—1
L=Myld" 1Dy + D Sy ... M, [d1D;, (2.5)
2=0
and (2.1) becomes
Lu=S8y_...Syf, (2.6)

where both the sides are coefficients in C™).

If @’ (x) is analytic or many-times differentiable, it can often be approximated to machine precision
by an ultraspherical approximant of low degree, resulting in the infinite multiplication matrices MO[aO]
and M ,\[a)‘] being banded. Thus, a”(x) is assumed to be an ultraspherical series, and, if the degree of
a*(x) is denoted by d*, the bandwidths of M A[a)‘] are both @”. Therefore, the Ath-order operator in the
sum in (2.5) has the upper and lower bandwidths d* + 2N — A and d* — A, respectively.

To obtain a system of finite dimension, one truncates £ by premultiplying P, _, and postmultiplying
P,,T , where the projection operator P, = (/,,,0). Incorporating the first n columns of the boundary
conditions gives us an n X n square system

BPJ B .
(PH—N”’I ) Fast = (Pn_NSN_l ..SyPT Pnf)’ 2.7

where the unknown P, u and the (unconverted) right-hand side P, f are n-vectors. Solving (2.7) gives the
Chebyshev coefficients of the n-truncation of the solution i, (x) = Z}:ol ujTj(x).

The matrix on the left-hand side of (2.7) is almost-banded with the upper and lower bandwidths both
m=N + rnax,\(dA —)\), whenn > m.

The ultraspherical spectral method recapitulated above enjoys three key advantages over the

collocation-based pseudospectral methods:

e Since (2.7) is an almost-banded system, it can be solved in O(m*n) flops, where n and m are the
degrees of freedom of the solution vector and the bandwidth, respectively.

e The condition number of (2.7) is effectively constant (Olver & Townsend, 2013; Cheng & Xu,
2024).

e The forward error of the computed solution can be read directly from the right-hand side of the
linear system in the course of solving (2.7) by QR factorization. This helps determine the minimal
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SOLVING NONLINEAR ODES WITH THE ULTRASPHERICAL SPECTRAL METHOD 5

degrees of freedom that is required to resolve the solution for a preset accuracy tolerance, therefore
allowing for adaptivity at virtually no extra cost.”

These advantages can be largely retained in solving nonlinear ODEs as we shall see.

2.2 Linearization, truncation and adaptivity

In kth iteration of Newton’s method, we solve the linearized problem
T 18" (x) = —F (")

to obtain the update Sk(x) for the current iterate uf(x). J[u*], the Fréchet derivative of F at u* (x),is a
linear differential operator

N
Tk = aN(x);7 +...4+d (x)% +d’(v), (2.8)
where we slightly abuse the notations by recycling the symbols used in (2.2). Here, we use brackets
instead of parentheses in J [u¥] to emphasise that J [u] is constructed out of u¥(x) in the sense that
the variable coefficients a’(x) depend on uk(x). It should not be understood as J acting on uk(x),
as it is 8%(x) that J[uf] acts on. A standard text on Newton’s method in functional space and the
Fréchet derivative is, e.g., Atkinson & Han (2005, §5). For the calculation of the Fréchet derivatives
by algorithmic differentiation, see, e.g., Griewank & Walther (2008); Naumann (2011); Birkisson &
Driscoll (2012).

Besides the right-hand side F (u"), the dependence of a(x) on uk (x) is also often in the form of
composition of u*(x). For example, for the nonlinear operator on the left-hand side of the Bratu equation
u” + Be" = 0 with a given B, the Fréchet derivative J [u] = d‘i—zz +Bet ata given u. Here, a®(x) = Be*™ is
a scaled composition of the exponential function and u(x). Multiple approaches are available to calculate
such a composition. The simplest one is to sample the composition, e.g., e“k("), on Chebyshev grids of
increasing sizes and calculate the Chebyshev coefficients by discrete cosine transform or fast Fourier
transform (FFT) until the composition is fully resolved. With the variable coefficients a* (x) available in
its Chebyshev or ultraspherical coefficients, we have

N—1
Tk = Myld" 1Dy + D Sy ... M, [a"1D;. (2.9)
=0
Analogously, linearization gives
N[k 185 (x) = =N (b, (2.10)

where N ’[uk], the Fréchet derivative of the boundary condition A at uk (x), has dimension N x o0.

% This is exactly how adaptivity is effected in ApproxFun (Olver, 2019).
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6 0. QIN AND K. XU

We truncate (2.9) and (2.10) to have
Jksk = %, (2.11)

where 8¢ = (85,85, ..., 85 DT,

k_ NP k_ N Wb
= (Pan[uk]P,j ) and f* = = (PnNle L SyPIPFuh))

The subscript n in JX is used to indicate the dimension of JX.

The dependence of a” (x) on u¥(x) suggests that the bandwidth of M )L[a’\] becomes proportional to
its size, therefore implying the same proportionality between the bandwidth and the dimension of J,’f. In
many cases, the bandwidth and the dimension of Jﬁ could be roughly equal, i.e., m = n, rendering the
loss of the bandedness. For example, for the Bratu equation m = n, implying a dense system with no
trace of bandedness at all.

If (2.11) were to be solved by the QR factorization as in Olver & Townsend (2013), adaptivity would
be effected as in the linear case, despite of the loss of bandedness. However, since we choose to solve
(2.11) inexactly using GMRES (see below), adaptivity has to be realized in another way. The strategy
we follow is the one introduced by Aurentz & Trefethen (2017). Specifically, the dimension of (2.11) is
initially determined by the degrees of a’(x) for all A and the degree of the residual F (%). That is, we
choose

7 = max (N + max(d* - )\),df) F1, 2.12)

where d” is reused to denote the degree of a*(x) in (2.9) and d '~ is the degree of F (uk). Since we are
essentially working with functions in the Newton—Kantorovich framework (Birkisson, 2013), it is natural
to require the emergence of a plateau in 8% before it can be deemed as fully resolved. If such a plateau
is not seen, we double the dimensions of the system to deal with the rapid growth of the high-frequency
components due to some of the most common nonlinearities, such as u*. Thus, we solve (2.11) of the
initial size (2.12), check the resolution, augment the system and repeat until the solution is eventually
satisfactorily resolved. Finally, the solution is ‘chopped’ to trim off the unnecessary trailing coefficients
of small magnitude. Note that each time 7 is doubled, the bandedness seems restored with the bandwidth
being half of the dimension of the system. Despite the bandedness, this proportionality still suggests
O(n?) operations for solving the system via a direct method.

2.3 Inexact Newton condition

Instead of solving (2.11) exactly, we choose to solve it by enforcing only the inexact Newton condition

|58 = 4] < *|F (2.13)

where o € [0, 1) is the forcing term. The purpose of choosing a nonzero o is to solve (2.11) for
8k to just enough precision so that good progress can still be made when the current approximation
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SOLVING NONLINEAR ODES WITH THE ULTRASPHERICAL SPECTRAL METHOD 7

is far from a solution, but also to obtain quadratic convergence when near a solution (Eisenstat &
Walker, 1994, 1996; Kelley, 1995). This immediately suggests the use of Krylov subspace methods,
e.g., GMRES, as these methods produce inexact solutions cheaply. That is, once (2.13) is satisfied,
the Krylov subspace iteration of GMRES terminates and returns an inexact solution 8%. The adop-
tion of the inexact Newton condition and the use of GMRES are justified in Sections 3, 4 and 5
where we see how the full potential of the ultraspherical spectral method can be unleashed in the
current context, forming an extremely efficient framework for solving nonlinear ODE boundary value
problems.

In existing implementations of the ultraspherical spectral method for nonlinear problems (Driscoll
et al., 2014; Olver, 2019), (2.11) is usually explicitly formed before solved by direct methods, e.g., LU
or QR, as in the linear case, thus enforcing effectively the exact Newton condition.

2.4 Global Newton methods

A naive implementation of Newton’s method based on (2.11), sometimes regarded as the local Newton
method, has limited chance of convergence unless the initial iterate is close enough to the solution. Thus,
a practical global Newton method must be applied. The global Newton method for solving nonlinear
systems has many variants, and they differ mainly by the strategy for determining the search direction
and the step length, how the linear systems are solved and whether the derivative is dispensed with.
We use three global Newton methods as the vehicle for implementing the INGU framework—the trust
region method (Nocedal & Wright, 2006, §11.2) enabled by the dogleg approximation (TR—dogleg)
(Powell, 1970), the line search with Armijo backtracking (LS—backtracking) (Kelley, 1995, §8) and
the trust region method in the affine contravariant framework (TR—contravariant) (Deuflhard, 2005,
§3.2).

The TR—dogleg method is arguably the most reliable and widely accepted algorithm, being the default
implementation in many mainstream computing platforms, standard libraries or public domain codes.
However, there is a catch—the TR—dogleg requires the knowledge of the transpose of the Jacobian or
the access to it via its products with vectors. The line search method is relatively easy to implement,
and this is true particularly for its backtracking-based implementation. The TR—contravariant method
assumes that F () satisfies an affine contravariant Lipschitz condition based on which the minimization
of the residual is modeled as a constrained quadratic optimization problem. Though it is not as well
received as the TR—dogleg and LS—backtracking methods, TR—contravariant performs equally well on
average in our experiments.

2.5 A prototype framework

We now have the key ingredients for setting up the prototype INGU framework, which is summarized in
Algorithm 1. For convenience, we denote by G the operator formed by concatenating A/ and F vertically
as [V; F], where MATLAB syntax is used. This way, when G is applied to a solution ¥, it returns a column
vector containing the residual of both the nonlinear equation and the boundary conditions.

There are three nested loops in this framework. As the outer loop (lines 2-9), the Newton iteration
generates the sequence of the updates % and the approximate solutions u*. The initial iterate is usually
chosen to be the polynomial of lowest degree that satisfies the boundary conditions. The outer iteration
terminates when the residual G(uX) is smaller than the preset tolerance. This tolerance usually includes
terms for both the relative and absolute residuals.

The intermediate loop (lines 3-6) ensures that the update 5 has an adequate resolution by repeatedly
doubling the size of the linear system until a plateau is formed in 8. A zero vector is usually used as the
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8 0. QIN AND K. XU

Algorithm 1 INGU prototype

Inputs: nonlinear operator G, Fréchet operator .7, initial iterate uY, relative tolerance n, for the residual.
Output: approximate solution uk satisfies “g(uk) | <n, ||g(u0) || +n,.

. Set k = 0, construct °, n=n, ||g(u0) || +n,.
while ||g () H > ndo > outer iteration
while 8% is not resolved do > intermediate iteration
Double the size of the system.
Solve (2.11) inexactly by GMRES. > inner iteration
end while
Call POSTPROCESS.
k=k+1
end while
return u*

SOV XN R WD =

[y

initial iterate of the intermediate loop. The solution 8 from the last intermediate iteration is zero-padded
to double its length before being used as the initial iterate for GMRES in the subsequent intermediate
iteration. In most of our experiments, the size of the system is doubled only a couple of times before the
intermediate loop terminates. See Section 6 for more details.

The Krylov subspace iteration of GMRES is deemed as the inner loop (line 4) and is terminated when
(2.13) is satisfied. The forcing term ! is determined by the function PosTPROCESS from the previous
outer iteration. The function POSTPROCESS usually takes in the information of the current outer iteration,
such as the residual and the Jacobian, and the information inherited from the previous outer iteration, such
as the contraction factor and the contravariant Kantorovich quantity for the TR—contravariant method.
The outputs of POSTPROCESS usually include an updated solution #**! obtained by adding to u¥ a post-
processed Newton step &%, a new forcing term wf*! and the size of the trust region for the next outer
iteration. See Algorithms 3, 4 and 5 in Appendix A for details of the function POSTPROCESS for each
global Newton method.

3. Fast matrix-vector multiplication

The efficiency of the GMRES method hinges on if fast matrix-vector multiplication is available.
Specifically, we wish to be able to apply Jﬁ to n-vectors speedily, despite the loss of the bandedness
in JX.

3.1 A basic approach

For the moment, let us ignore the top N rows of J,’i, i.e., the boundary conditions, and examine
P._nT ”P,—lr in a termwise manner. We first look at the zeroth-order term that is a truncation of

Sy_p--- SOMO[aO]. Denote by 7 [a"], H[a®] and R[a"] the Toeplitz, the Hankel and the rank-1 parts of
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SOLVING NONLINEAR ODES WITH THE ULTRASPHERICAL SPECTRAL METHOD 9

ZMO[aO], respectively, i.e., Mo[ao] = (T[ao] + H[a"] + R[ao]) /2, where

2ay a; ay ay e ay a, a, das
a;, 2ay a; a, . a, a, az ay
T[aO] — a, a; 2610 a , H[aO] — a, ds dau ds ,
as a, a 2(10 . as a4 d4s dg
and R[a"] = —elao. Here, e, is the first column of Z, and a® is the infinite vector obtained by prolonging
a® = (ay,ay, . ..,ap) with zeros. For an n-vector v, calculating each of s; = P, 7 [a’]P,] v and s, =

PHH[aO]P,;r v costs two FFTs and one inverse FFT, all of length 2n (Golub & Van Loan, 2013, P4.8.6).
Calculating sg = P, R[a]1P,] v, s = sp + sy +sg and P,_ySy_; - - - SyP, s can be done in O(n) flops.
Hence, the total cost of applying P,_nSy_; - .- <S'0/\/lo[ao]77nT is dominated by the 6 FFTs of length 2n.

The first-order term P,_ySy_; ... S M, [a! ]DIP,;F can also be quickly applied, as pointed out by
Olver & Townsend (2013, Remark 3). To see this, we observe that M, [a'] is constructed using al(x)’s
CD coefficients a! = (a(l), ai, e, a}il) and it also acts on and maps to coefficient vectors in CD . This
suggests another way to express it

Mila'1 = SeMo[P 1Sy ' P, 1a']S

—1pT
where Mo[Pgi1,1Sy Py,
and then construct the M, multiplication operator with the Chebyshev coeftficients of a' (x). In practice,
a' (x) is often available by its Chebyshev coefficients, either as the variable coefficient of a linear term in

JF(u) or a composition of uk (x) or a combination of both. Hence, we assume a!' = PSSy IpT 4l =

a']means to first convert the CV coefficients of a! (x) to the Chebyshev ones

d'+1
(8g» @y, - -, ay) is available from now on and replace M, [a'] by M, [a'] when it is constructed using
A1
a.
By definition, the displacement of MO[&l], also known as Sylvester map, is
Vs, (Mola'l) := SeMgla'l — Myla'1s,. (3.1)

whose linearity leads to

Vs, Mola'l) = 5 (Vs, (T1a') + Vs, (H1a']) + Vs, (RI@'),

R =

where T[a'], H[a'] and R[a'] are the Toeplitz, the Hankel and the rank-1 parts of M,[a'], respectively.
Some algebraic work then gives

Vs, (T1a") = ¢ry. Vs, (Hla']) = H[a'] + ¢,y Vs, (Rla'1) =e¢,r,. (3.2)
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10 0. QIN AND K. XU
where
v/ 2 0 0 0 T Gy 4, a ay
¢ =3 ayt+a, a;+az ay+tay az+as --- T =3 -2 0 0 0

Qg —4dy Q_y—4az dgp—ay ap —ds

. 1 R ~ 2
H[a'l=-| do—ds a—ds dy—ag 43— 0y ,
.
1 2 0 0 0
Cr=7| %-2tdo Gy tay dotdy daytaz o),
a‘71| ao al az
T 1 A A A A A
cr=—(1000) N rrZE(O al ao+a2 al+a3"').

Here, 7—2[&1] is, again, a Hankel operator. Absolute values are used in some of the subscripts in ¢;, and

’}:l[&]] to reveal the pattern. Equation (3.2) shows that the displacement VSO (MO[&I]) is a Hankel-plus-

low-rank operator. Using (3.1) to express M, [a'] in terms of V So (MO[&I]), we have

Mla'] = Vs, (Mola'1)Sy ' + Myla'l

(FULa"1+ (e, + ey, +¢,r,) Sy + Tla'1+ Hla' + Rla').

1
2
Using MATLAB’s notation triu to denote the upper triangular part of an operator, we have

.
1 , 0 0 10202 --. 10
Sy =triu(c’r), ¢ =(0 5020...) ™01

(A2 + (¢, +epry +er)Sg = —| G4 G5 G a7 | _qqpal) - Rpa".

01 ---
10 ...)"

(3.3)

34
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SOLVING NONLINEAR ODES WITH THE ULTRASPHERICAL SPECTRAL METHOD 11

The last equation and (3.3) show that M [a'] is a Toeplitz-plus-Hankel operator given by

2ay a, a, az --- a, a3 a, as

| 4 2?0 ap dy dz a4 ds dg
M@= g | | G 2 & |y ds g G
2 ay a, a; 2ay . as dag a; dg

Hence, when the Chebyshev coefficients of a'(x) are available, the cost of multiplying
P, NSn_i - - S M,[a' 1D, P, with a vector is again 6 FFTs of length 2n plus O(n) flops.

We wish the higher order terms in J7[uf] are structured alike so that fast multiplications can be
effected similarly. Unfortunately, whether general higher order multiplication operators bear a Toeplitz
plus Hankel form, or something akin to to allow a fast application is not known. Fortunately, we can
always circumvent this via M, [a']. Keeping in mind that M )\[a)‘] is constructed by using a*(x)’s C*)

coefficients a* = (aé, aq‘, el ai;l) and that it maps between C ) coefficients, we re-express it as
M@ =S,_; .. . SMEMST ... ST, fora > 2, (3.5)
where a* = Ppi1Sy L ..S)TJIP; Hak are the Chebyshev coefficients of a*(x) and S, ! can be

expressed explicitly as

_ . L(x 0 242 0 r4+4---\'
1 A A
S, =triu(c'r), ¢ :X(Ok-i-l 0 a+3 0 ) , fora > 1.

Since S, !is the upper triangular part of a rank-2 operator, applying S, !'to an n-vector has a complexity
of only O(n) flops.
Finally, substituting (3.5) into (2.9) yields

N
T =8y_,...8, (Z M aMSt .S D, + SOMO[aO]), (3.6)
A=1

which shows that the multiplication part of each term in J[u*] can be done via M, or M,,. Since
multiplying any of S, ..., Sy_;, 81_1, ... ,Slgll, Dy, ..., Dy with an n-vector costs O(n), the cost of
applying P,_nJ [uk]P;r is mainly the 6(N + 1) FFTs of length 2n.

Standard FFT libraries, like FFTW (Frigo & Johnson, 2005), allow the users to pre-plan an optimized
FFT of a given size and apply the plan repeatedly to vectors of the same size. This can help accelerate
each of the intermediate iteration for the dimension of the system is unchanged throughout.

Noting that applying the boundary rows A/ ’P,;r to v can be done in O(Nn) flops, we conclude that
the multiplication of J,’j and v costs only O(Nn log, n) flops. This justifies the use of GMRES.

We also remark that computing f* costs at most O(n log, n) flops, since F (u¥) is a composition of
u¥ and N (%) are N functionals.
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12 0. QIN AND K. XU

3.2 Even fewer FFTs

The cost of 6(N + 1) FFTs can be further reduced. Noting that M [a°]S, = Sy M, [a"], we can rewrite
(3.6) as

N
T =8y_,...8 (ZMl[ak]sll LSTUD, 4 Ml[a"]so), (3.7)
r=1

where we let a° = a to facilitate the notation below. This way, the inverse FFT for each of the M,
terms can be factored out of the parentheses. To see this, let

P, M, [a"PT =T + H,

where 7% and H” are the Toeplitz and the Hankel parts, respectively. Let w be an n-vector. To compute
T*w by FFTs, we embed T into a 2n x 2n circulant matrix by choosing A* € C"*" carefully, i.e.,

T*w ™ AN\ (w 1. w
( % ) = (A)‘ TA) (0) = F2n dlag (FZnI)L) F2n (0)’

where #* € C?" denotes the first column of the circulant matrix, and F,, € C**?" and F z_nl € C22n gre
the forward and inverse DFT matrices that we effect by FFT and inverse FFT, respectively. Analogously,
for the Hankel part

H*w\ _ (fliplr(H*) B flipudw)\ _ 1 .. N flipud(w)

where i* € C?" is again the first column of the circulant matrix formed by fliplr(H*) and a carefully
chosen B*. Since all T* and H* share the same Fz_nl, the inverse DFT matrix can be effected by one
inverse FFT for all M, [a’]. See Algorithm 2 for details and the stepwise costs.

Hence, besides the construction of @*, the major cost of applying 7 [u*] to an n-vector is about 4(N +
1) 4+ 1 FFTs of length 2n. Since it is common that not every term in F(u) is nonlinear or premultiplied
by a variable coefficient and no FFT is involved for terms with a constant coefficient, this is likely to be
an overestimate for many problems.

3.3 Exact truncation
So far, we have been slack in truncating the operators and used only square truncations for simplicity.

Rigorously, it follows that the exact truncation of J [uk] in (3.7) should be calculated as

N

PunTW TP, = (P xSy 1Plnid) - (Puan—aSiPlin_2) [Z (Pusn—a M, [@1P,,)
A=1

x (Pn—AS;]PJ—)») te (Pn—AS;llPl;r—l) (Pn—ADAP;lr) + (/Pn—&-N—ZMl[&O],PI;r) (PnSOP;lr)] - (38
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Algorithm 2 Fast Jacobian-vector multiplication

Inputs: A Fréchet operator J [uk] in the form of (2.9), the order N of J [uk] and an n-vector v.
Output: An (n — N)-vector y = P,_nJ [uF]P,] v.

1. Calculate the Chebyshev coefficients of a* for all A. > O(nlog, n)
2. Calculate w° = P, S, P, v > O(n)
0 . 0

3. and w, = diag(Fy,)F,, (Vg ) + diag(Fy, i°)Fy, (ﬂlpuod(w )). > 4 FFT(2n)s
4. for A =1to N do

5. Calculate w* = 77”8]_1 .. .S;JID)\P,,TV > O(n)

A . A

6.  andw, = w, +diag(Fy,")F,, (Vg ) + diag(Fy,h*)F,, (ﬂlpu(;i(w )). > 4 FFT(2n)s
7. end for

8. Calculate v, = F;n] W > 1 FFT(2n)
9. Returny = P,_ySy_1---S Pl vy(1:n). >O(n)

To effect all M, operators via FFTs as discussed above, we have to choose the largest common
dimension for all M, which is determined by P, y_, and PJ_A for A = 0,1,...,N. Therefore, the
dimension of all M, should be max, _, y{n+N—2,n—2},ie,nwhenN = 1orn+ N — 2 for
N > 1. The subscripts of the truncation operators in (3.8) can then be determined accordingly. Our
experiments show that the simple square truncations for all the operators do produce virtually identical
results for all the experiments.

4. Preconditioner

Our GMRES-based approach is also justified by a simple but effective preconditioner. The fact that
J[uk] is dense motivates us to use an almost-banded preconditioner—if a diagonal scaling or Jacobi-
type preconditioner works perfectly for an almost-banded system, as suggested in Olver & Townsend
(2013), why not use an almost-banded one to precondition the dense system where the latter can be
deemed as obtained from the former by extending the bandwidth of the former? Hence, we propose the
use of a right preconditioner for the kth outer iteration

K j\ﬂ)
W _(J[u"]’

where

N—-1
) = M@ 1Dy + D~ Sy .. S, M, [@1D,. (4.1)
=0

Here, the multiplication operators are constructed from the first m* + 1 leading coefficients of a*, that

is, a* = (aé, ai‘, e, ai‘n x>’ where m* = P + X < n and the value of integer p is to be determined. Each

of the summands M y[aV]Dy and Sy_; .. .S, M, [@*]D, in (4.1) and, therefore, 7 [u¥] have the upper
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14 0. QIN AND K. XU

and lower bandwidths p 4+ 2N and p, respectively, due to the argument given below (2.6). Hence, Tk
is a banded approximation of 7[u*], and @ has its contribution in all the nonzero diagonal entries of
j [4*]. Note that an entry in the band of j [u¥] differs from the entry in the same position in J [u¥] as the
latter has contribution from every element of a*, not just the first m* 4+ 1 ones. Approximation to 7 [u*]
by banded matrices is also investigated in Huang & Boyd (2016), where the authors recommend the use
of unsymmetrical truncations in the upper and the lower bands, particularly for ODEs obtained as the
linearizations of the nonlinear ones. However, their analysis is based on an oversimplified model and is
limited to a specific second-order ODE, therefore not applicable to the general case that we consider here.

Instead of (4.1), we find it easiest to follow (3.6) or (3.7) to construct the banded part of W*. Since
(4.1) is banded, we construct the (truncated) operators explicitly without using FFTs. Suppose that we
use (3.6), that is,

N
T =8y_,...8, (Z M8 .S D, + SOMO[ZIO]),
A=1

1Sy Lo S, a 17?;; +]Zl)‘ are the Chebyshev coefficients of a*(x) = Z}Z\o aj).‘ Cj@) ).

Because of the bandedness, the equivalence of j [u¥] and J [4*] can be guaranteed by exact truncations.
Instead of solving (2.11), we solve

where &* = P,

TE W)~k = £, (4.2)

where WX = P, WKPT and ¥ is finally recovered by solving WXs* = 6% Note that W¥ stays unchanged
within each inner loop. Thus, it suffices to compute the QR factorization of W,’j only once for each call
of GMRES. Since the bandwidths of W,’; are both p + N, its construction and inversion cost O((p + N)n)
and O((p + N)2n) flops, respectively. Thus, we choose

p=|VIogn| 43)

to match up the cost of the FFT-based Jacobian-vector multiplication and the function composition of
uk, resulting in an asymptotic complexity of O(n log, n). For a nonlinear ODE that is not singularly
perturbed, as we shall see in Section 6, p usually has a value below 10. Our experiments suggest that a
fixed p of small integral value often works equally well. But (4.3) offers a weak dependence on » and this
adaptivity may play a bigger role when we migrate to nonlinear problems in higher spatial dimensions.

Assuming a” (x) = 1in (2.8) and employing virtually the same technique used in the proof of Lemma
4.3 in Olver & Townsend (2013), we can readily show that the right-preconditioned system (4.2) is a
compact perturbation of the identity operator in the Banach space E%(. For the definition of the norm of
@%(, see Olver & Townsend (2013, Definition 4.2).

LEMMA 4.1 Assume the boundary operator A/ : E% — CV is bounded and @V (x) = 1. Let W¥ :
K%(H — E%( for some K € {D — 1,D,...}, where D is the smallest integer such that N : E%) — CNis
bounded. Then

% .
(j[uk]) Wy =14k,

where £ : E% — E% is a compact operator for K =D — 1,D, . . ..
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The well-conditionedness implied by Lemma 4.1 follows from Lemma 4.4 of Olver & Townsend
(2013) and is confirmed in Section 6.1 by extensive numerical experiments.

There are two remarks to be made regarding the proposed preconditioner. First, WX can be
interpreted as a coarse-grid preconditioner or low-order discretization preconditioner that captures the
low-frequency components of the problem, leaving the high frequencies to be treated by the Krylov
subspace iteration. What is also noteworthy is that it works in the frequency/coefficient space directly—
there is no need to do the interpolation and transfer back and forth between the physical/value and the
frequency/coefficient spaces.

Second, the diagonal preconditioner R given in Olver & Townsend (2013, §4.1) continues to work,
despite the loss of bandedness in (2.11). On the one hand, it is apparent that the diagonal preconditioner
costs less to apply. On the other hand, experiments show that the proposed preconditioner has a better
chance to make the eigenvalues of J,’j cluster.> Therefore, it is difficult to say which preconditioner is
more effective. Whether the proposed preconditioner (significantly) outperforms the diagonal one also
depends on other factors, including but not limited to how frequently GMRES is restarted, the forcing
term w¥, etc. Extensive numerical tests show that the INGU method is faster with the new preconditioner
and very much so when the number of iterations allowed before GMRES restarts is not very large.

5. Further acceleration

The fast application of the Jacobians and the preconditioner are decisive in making our INGU method
fast. In this section, we discuss other opportunities that may potentially allow the computation to be
further accelerated.

5.1 Mixed precision

After a rapid development in the last couple of decades, mixed precision algorithms have earned a
proven track record in accelerating iterative methods and made inroads into the tool set of our day-to-day
computation (Abdelfattah ef al., 2021; Higham & Mary, 2022).

Tisseur analyzes the limiting accuracy and limiting residual of Newton’s method in floating point
arithmetic in a multiple-precision setting (Tisseur, 2001). A recent work by Kelley (2022) investigates
the use of reduced precision arithmetic to solve the linearized equation for the Newton update by a
direct linear solver. These works are reviewed and summarized in Higham & Mary (2022, §5). See also
Algorithm 5.1 therein. The main idea is to compute the residual in a relatively high precision p;, and the
Newton update in a relatively low precision p;, while maintain the approximate solution uF in a working
precision p,, with p;, < p,, < p,;. In Kelley (2022), p, = p,, are chosen to be double precision and p,
single or half precisions.

Our mixed-precision implementation for the INGU method follows the same strategy. To be specific,
we compute and store the residual and the solution in double precision, whereas the GMRES solve is
done in single precision. Similar to what is reported in Kelley (2022), our numerical experiments show
that the result from a reduced-precision implementation of GMRES does not distinguish from those done
by a fixed-precision computation with double precision throughout. We observe an average gain of 20%
to 30% in speed.

3of course, eigenvalues clustering needs not indicate fast convergence (Greenbaum & Strakos, 1994; Greenbaum ez al., 1996).
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TABLE 1

O. QIN AND K. XU

A collection of 1D nonlinear ODE boundary value problems

equation and BCs

linearization

note

Blasius equation
W +u" /2 =0
u(0) =0,4/(0) =0,/(L)—1=0

8/// + (u(s// + u//a)/z — 0
8(0) = 0,8'(0) = 0,8'(L) =0

boundary layer

Falkner—Skan equation
u” +ud” /242 (1 — @)?) /3=0
u(0) =0,4'(0)=0,/(L)—1=0

8" + (us" 4+ u'8)/2 — 4u'8' /3 =0
§(0) = 0,8'(0) = 0,8'(L) =0

an extension of the Blasius
equation

Fisher—KPP equation
W 4+u(l—u)=0
u(—4) —1=0,u(4)=0

8 +68—2u8 =0
5(—4)=0,8(4) =0

a perturbed
reaction-diffusion equation

fourth-order equation

u(4) — ' +uy" =0

u(0) = 0,4'(0) = 0,
u(lh)y-1=0,4/(1)+5=0

8(4) —u's" —u”8/+u8”/—|—u/’/8 =0
8(0) = 0,8'(0) =0,
§(1)=0,8(1) =0

the equation of
highest-order in this
collection

Bratu equation
W+ Bet =0
u(—=1) =0,u(1)=0

5" + Bes =0
5(—1) = 0,8(1) =0

no solution when 8 > 0.878
& closed-form solution
exists

Lane-Emden equation
xu” +2u +xud =0
u(0)—1=0,4/(0)=0

x8" + 28 +5xu*8 =0
§(0)=0,8(0) =0

an IVP solved as a BVP and
closed-form solution exists

gulf stream

u”’—ﬂ((u’ 2—uu")—u+1 =0
w0 —1=0,4"0) =0,
ull)y—1=0

8" — B (2u's —us" —u's)—8 =0
§(0) = 0,8"(0) = 0,8(L) =0

a conservation law holds for
u and second-order
boundary condition

interior layer
e +u +u=0
u0)+7/6 =0,u(l) —3/2=0

€ +us +us+8=0
§(0)=0,8(1)=0

singularly perturbed by the
leading coefficient

boundary layer

e +uu —xu=20 € +us +u's—x5=0 as above
w(0) +7/6 =0,u/(1) —3/2=0 8(0) = 0,8'(1) =0

sawtooth

e + W) —-1=0 €8 +2u'8 =0 as above

u(=1)—08 =0,u(l) —12=0

5(=1)=0,8(1)=0

Allen—Cahn equation
e +u—ud —sinx) =0
u0)—1=0,u(10)+1=0

€8 +8—3u25 =0
8(0) =0,8(10) =0

singularly perturbed steady
state equation

pendulum
u +sinu=0
u0) —2=0,u(10) —2=0

8" +cosud =0
5(0) = 0,5(10) = 0

multiple solutions

(Continued)
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TABLE 1  Continued

equation and BCs linearization note

Carrier equation

el +2(0 —xPHu+u>—1=0 €8 +2(1 —x3)8+2us =0 as above
u(=1)=0,u(l) =0 3(=1)=0,6(1)=0

Painlevé equation

W —u?+x=0 8" —2us =0 as above

u(0) = 0,u(L) — VL =0 8(0)=0,8(L)=0

Birkisson I

u" — (cosx)u' + ulogu =0 8" — (cosx)8’ + (logu + 1)6 = 0 closed-form solution exists
u0)—1=0,u(m/2) —e=0 8(0) =0,8(7/2)=0

Birkisson II

W —u + eu+ u* = sin? (¢¥) 8" — 8 +e*84+2us =0 as above

u(0) —sinl =0, 8(0)=0,8(5/2) =0

u(5/2) —sin (e3/?) =0

Birkisson IIT

u +18(u — u3) =0, xe[-1,1] 8" 4+ 18(8 — 3u28) =0 interior point condition
u(—1) 4+ tanh3 =0, 8(=1)=0,8(00=0

u(0) — tanh0 = 0

There are a few more opportunities for further GMRES speed boost by mixed-precision arithmetic.
First, it has been shown in Simoncini & Szyld (2003); Van Den Eshof & Sleijpen (2004); Giraud et al.
(2007) that matrix-vector products can be done in increasingly reduced precision without degrading
the overall accuracy of the entire computation. In addition, the orthonormalization step in GMRES
can also be performed in a reduced precision (Gratton et al., 2019). Hence, we could implement the
matrix-vector multiplication and the orthonormalization in, for example, half precision using fp16 or
bfloat16. Second, we can replace a single GMRES solve by an iterative refinement solve by performing
reduced-precision GMRES as an inner solver for the corrections (Turner & Walker, 1992). Third, we
could have started our Newton’s method with a low precision, e.g., half precision, and only upgrade
precision once Newton’s method converges to the current precision. We, however, choose not to pursue
these enhancements in this work for a few reasons. First, using a reduced precision for the entire GMRES
solve is the easiest to implement, but gain the most. Also, our primary goal is to demonstrate that
Newton—-GMRES method can be done in mixed precision, which does not seem previously to have
appeared in the literature. The possible enhancements listed above are out of the scope of the current
investigation. Second, though the limiting accuracy and residual would stay the same, the effect of
reduced precision on the convergence rate is not fully understood for some of these enhancements. The
quadratic convergence may be at stake. Finally, hardware support for half precision is not as widely
available in CPUs as in GPUs at the time of writing. Moreover, JULIA currently supports half precision
only through software emulation at, inevitably, a huge cost of speed. We save this line of research for the
future.
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(d) interior layer equation (€ = 0.01)

FiG. 1. The eigenvalue distributions of the original systems (left panes), those preconditioned by the diagonal preconditioner
(middle panes) and by the almost-banded preconditioners (right panes) for the last intermediate iteration before the termination of
the Newton process. Note the conspicuous difference in the axis scales across each triptych.

5.2 Krylov subspace acceleration

GMRES also stands a chance for further acceleration with various Krylov subspace techniques. In Parks
et al. (2006), the authors suggest that the cost of constructing the Krylov subspace in an iteration of the
Newton—-GMRES method can be reduced by salvaging the Krylov subspaces of the previous iterations.
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FiG. 2. Convergence (vertical axis on the left) and the increase of the solution length (vertical axis on the right) for the four selected
problems.

However, our experiments show that the gain acquired from this Krylov subspace recycling strategy is
very marginal in the current context, if at all, as the Krylov subspaces vary very quickly across Newton
iterations.

Recently, fast randomized sketching is utilized to speed up the subspace projection in GMRES
(Nakatsukasa & Tropp, 2021). However, we found that the sketched GMRES (sGMRES) can hardly
accelerate the INGU method. As pointed out in Nakatsukasa & Tropp (2021, §8.2), sGMRES can hardly
give a speed boost if the matrix-vector multiplication outweighs other parts of the algorithm, which is
exactly the case in the INGU method—though it is done by FFTs, the Jacobian-vector multiplication is
still the most costly part. Therefore, sGMRES has a very large break-even in our experiments and no
gain in speed is seen if n < 10*. Unless a problem is singularly perturbed (see Section 6.4), there is
usually no need for such large degrees of freedom in a 1D problem.

Meanwhile, sGMRES is unable to handle ill-conditioned systems even when GMRES succeeds
(Nakatsukasa & Tropp, 2021, §8.2). This also rules out the possibility of applying it to singularly
perturbed problems, since the condition number of such a problem is usually extremely large.

Hence, these Krylov subspace acceleration techniques are not included in the experiments shown in
Section 6. However, we believe that these techniques have much bigger potentials for problems in higher
spatial dimensions, particularly for those not singularly perturbed.

6. Numerical experiments

We collect 17 univariate nonlinear ODE boundary value problems from various sources, such as
Birkisson (2013); Driscoll et al. (2014), and use them as a test bank for the INGU framework. These
problems and their linearizations are gathered in Table 1 with a one-liner note for each. Five of these
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problems have a closed-form solution—the solutions to the Bratu and Lane-Emden equations can be
found in standard texts of applied mathematics, while those to the Birkisson equations are given in
Birkisson (2013). The residual and error are measured in the 2-norm, and we choose to have GMRES
restarted after r = n/100 iterations. In case of r < 20 or r > 150, we simply take » = 20
and r = 150, respectively. All the numerical experiments are performed in JULIA v1.8.3 on a laptop
with a 4 core 2.8 Ghz Intel Core i7 CPU and 16GB RAM. The execution times are obtained using
BenchmarkTools.j1l.

6.1 Preconditioning

To demonstrate the effectiveness of the preconditioner, we solve the Blasius, the fourth-order, the Lane—
Emden and the interior layer equations and compare the eigenvalue distributions of JX with those of J&

preconditioned with the diagonal preconditioner and those of J,’; (W,’;)f1 in Fig. 1 for the systems arise
in the last intermediate iteration of each problem. These four problems are typical and representative
of the entire collection. The Blasius equation features a mild boundary layer formed by a physically
meaningful no-slip boundary condition rather than a boundary layer caused by singular perturbation.
The fourth-order equation is the one of highest order in this collection. The Lane—Emden equation is an
ODE initial value problem that we solve by regarding it as an ODE boundary value problem. A closed-
form solution of the Lane—Emden equation is known, which helps in measuring the solution error instead
of the residual. The equation labeled as interior layer has an interior layer caused by singular perturbation
in the leading order term with ¢ = 0.01 and this interior layer results in a solution with length greater
than 1000 for a complete resolution.

The marked difference in the axis scales between the left panes (the original systems) and the
middle and right panes (the systems preconditioned by the diagonal and almost-banded preconditioners,
respectively) underscores the significant improvement in conditioning. For the first three examples,
the eigenvalues resulting from the almost-banded preconditioner are much more closely clustered
compared to those from the diagonal preconditioner. In the interior layer example, eigenvalues produced
by the almost-banded preconditioner predominantly cluster around unity in the complex plane. In
contrast, the eigenvalues obtained with the diagonal preconditioner center around the origin, which
suggests that GMRES may converge at a very slow rate. This is because when Ax = b is solved
by GMRES the relative residual |r,|| /||6]l after n iterations is bounded by inf,cp [Ip(A)]l, where
P, = {polynomials p of degree < n withp(0) = 1}. With A’s eigenvalues all being close to zero,
it is difficult to diminish |[p(A)| (Trefethen & Bau, 1997, §35). The superiority of the almost-banded
preconditioner observed in these examples is consistent throughout the rest of the collection.

6.2 Convergence

We take the four problems above again for examples to show the typical convergence of the INGU
method. In Fig. 2, we show the convergence history by plotting the residual G(u*) or absolute error and
the lengths of the approximate solutions for the TR—contravariant method. The other two global methods
produce very similar results. The residual/error and the solution length can be read off from the y-axes on
the left and the right, respectively. The x-axis indicates the number of intermediate iterations. A marker
signals the start of an outer iteration.

The residual curves for all four problems show that the convergence usually evolves with two
phases—the first phase is characterized by the relatively level trajectory that corresponds to the slow
convergence in the global Newton stage and the second phase features a steep descent of the residual/error
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that is the consequence of the fast convergence of the local Newton stage. The pattern is most obvious
for the interior layer problem with the first 115 intermediate iterations for the global Newton search until
the quadratic convergence kicks in at about the 5th to last iteration.

The evolution of the solution lengths matches the decay of the residual in that the lengths increase
only moderately until the local Newton phase is reached where the lengths grow very quickly for much
improved resolution.

6.3  Speed and accuracy

Now we examine the INGU method for its speed and accuracy by benchmarking against plain
implementations of the three global methods. In these plain implementations with only double precision
throughout, the outer and intermediate loops are retained, whereas GMRES is replaced by LU factor-
ization, resulting in the exact Newton condition being always satisfied. We refer to this plain approach
as the exact Newton LU ultraspherical method (ENLU). The ENLU framework is adopted, for example,
by CHEBFUN (Driscoll et al., 2014) and ApPROXFUN* (Olver, 2019).

In an ENLU implementation, solving (2.11) by LU or QR costs O(2rn3/3) and O(4n3/3) flops,
respectively. For INGU, the dominant cost for solving (2.11) is the fast Jacobian-vector multiplication
that entails O(knlogn) flops, where we assume that GMRES finds an inexact solution in « iterations.
Note that this outweighs the cost of applying the preconditioner W,’f—one QR factorization in O(nlog n)
flops and back substitution in O(kn+/log n) flops. Hence, INGU is expected to have advantage for large
scale problems.

The contrast may be even more stark for the construction of (2.11). If for A > 2 any of a*(x) is
variable, either (2.3) or (2.4) must be employed for the explicit construction of M A[ak]. In case of
a”* (x) depending on u(x), this cost is O0n3/3) and O(37n3/3), respectively. In our collection, Blasius,
Falkner—Skan, fourth-order and gulf stream equations fall into this category. See the middle column in
Table 1 for the linearized equations. The significance of this cost can be perceived by realizing that it
would be the cost of solving (2.11) by LU 10 or 18 times. Even in the absence of such high-order terms,
the construction of (2.11) still costs O(n?) flops. Quite the contrary, INGU never constructs M )L[a)‘]
or any other operators explicitly—all the calculation is done on the fly. The only matrix that INGU
explicitly forms is the preconditioner W,’j at a relatively small cost of O(n+/logn) flops. Thus, clear
advantage is expected from INGU in matrix construction, especially when there is a solution-dependent
variable coefficient in the higher-order terms of the linearized problem.

In terms of storage, INGU is also advantageous compared to ENLU, i.e., O(n+/log n) versus On?).

We solve the entire collection using both INGU and ENLU implementations. For the ENLU
implementations, LU is used for linear solve and M, [a*], if any, is constructed via (2.3). The results are
listed in Table 2, where only the data for TR—contravariant (TRC) are displayed as the other two global
methods give similar results. The first column contains the values of the parameters used, if any, right
beneath the equation name. Columns 2 and 4 list the accuracy that INGU-TRC and ENLU-TRC can
achieve and the corresponding execution time. The accuracy is measured by the absolute residual G (uX)
for the approximate solution ¥ or the absolute error at the termination of the outer iteration in case of a
closed-form solution being available. Column 5 shows the speedup that is the ratio of the ENLU-TRC
execution time to that of INGU-TRC. We also repeat the experiments in double precision throughout to
exclude the benefits gained from the use of mixed-precision arithmetic. See Column 3 for the accuracy
and time and Column 6 for the speedups. The last column gives the final solution length.

4 In APPROXFUN, QR, instead of LU, is used, causing twice the cost for linear solve.
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TaBLE 2  INGU vs ENLU in TRC implementation

O. QIN AND K. XU

equation INGU-TRC INGU-TRC ENLU-TRC speedup speedup length
(double) (double)
T
lelinclzg—)Skan g ;Zé : ‘1‘5 % gj‘;: ;4 i‘égz: ;4 18.24 12.17 28
Fisher—KPP %?2;2:;5 %.;;2:;5 ‘3*:322:;5 2.96 2.77 62
fourth-order éggz: ‘115 %ZZZ: ;5 3252: éS 8.31 6.84 28
R e = = (T
Lane-Emden g ggz : ;6 2 ?)22: ;6 gg‘é‘é: ;6 8.87 6.64 63
T = T T
i(reltzigf&?gfer 2%22:15 é-g;‘;js %g%e_ls 17.97 7.00 1084
= = N
e = 005) 02 232 et 0% 73 e
P T W Ef e e
pendulum 1220714 Lodels Blenls ) 164 8
mme  amn men e o i
Birkisson | BRI els  LMenlS s 1.49 25
Birkisson II ;ngz: §5 iﬁf)f)ii ;5 -’;:Z‘;:;S 2.48 1.83 52
Birkisson IIT %giz:és ;;gz:;é 2222:;5 2.07 1.77 88
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FI1G. 3. Solution length versus execution time for singularly perturbed problems with various €.

We immediately identify the large speedups in Blasius, Falkner—Skan, fourth-order and gulf stream
equations, which are attributed to the considerable cost for constructing M A[a)‘] (A > 2)in ENLU, even
though these problems are not large at all. As expected, large speedups also occur in the problems with
long solutions, such as the interior layer, boundary layer, sawtooth equations, where INGU solves the
linear systems for inexact Newton steps much faster than ENLU does for exact ones. For the rest of the
collection, which are small scale problems with no need to construct high order multiplication operators,
the speedups range from marginal to modest. These speedups are mainly due to the relatively cheaper
matrix construction of O (n+/Iog n) flops in INGU versus O(n?) flops in ENLU.

To get a sense of how the degrees of freedom » plays its role in the speedup, we vary € in the interior
layer and sawtooth equations and record the solution lengths and the execution time for each € until the
problem is too singularly perturbed that the simple initial iterate for the outer loop described in Section 2.5
leads to divergence or different solutions. Figure 3 shows the result. It can be seen that INGU has a clear
speed advantage and this advantage is increasingly conspicuous as n grows. For the largest n shown here,
the speedups are roughly 77 and 66, respectively. Note that in these two examples there is no expensive
matrix construction involved, and the speedup is solely brought about by the fast solution of INGU.

Finally, we show in Fig. 4 the accuracy-versus-time curves of the four problems discussed in
Sections 6.1 and 6.2 for all three pairs of INGU and ENLU implementations. Multiple bailout tolerances
are used to obtain roughly equispaced residuals or errors in logarithm along with the corresponding
execution times. A couple of observations can be made. First, same as TRC (see Table 2) all other global
implementations also reach an accuracy close to the machine precision. Second, for a same accuracy
goal, the three INGU implementations have comparable execution times, and their speedups over the
ENLU counterparts are roughly uniform across almost all target accuracies only except in the fourth-
order problem. For the fourth-order problem, the speedup is marginal when the tolerances are large, and
it ramps up as the tolerance is reduced.

6.4 Singularly perturbed problems

So far, we have not yet chosen particularly small € for the singularly perturbed equations. As € becomes
smaller, difficulty arises as the region(s) outside which the initial iterate would fail to converge shrinks
rapidly. To produce a quality initial iterate, we resort to the approach of pseudo-arclength continuation
(Nocedal & Wright, 2006; Birkisson, 2013; Kelley, 2018). Specifically, we solve the same equation, but
with a much larger € for which a simple initial iterate usually suffices, e.g., the polynomial of the lowest
degree that satisfies the boundary conditions. This easy problem can be solved by the INGU method up
to a low accuracy, and the solution, along with the corresponding e, serves as the starting point for the
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FIG. 4. Residual or error versus execution time for the selected problems.

continuation process. It is then followed by parameterizing the solution u(x, s) = Z}fg—l u; (s)Tj(x) and
the perturbation parameter € (s) by the arclength s along the so-called solution path and tracing this path
by the common predictor-corrector method (Allgower & Georg, 2003; Nocedal & Wright, 2006) in order
to get close to the target €. In each predictor-corrector iteration, we leave the solution path by marching
along the predictor direction before successive corrector iterations bring us (almost) back onto the path
so that we have the solution to the original equation, but with an ever smaller €. The path tracing ceases
one predictor-corrector iteration before the target € is overshot. Note that (1) these intermediate solutions
usually need not to be calculated to high accuracy, as long as they finally lead to a good initial iterate;
(2) both the predictor and the corrector steps are obtained by solving the corresponding expanded
equations, and since these expanded equations are formed by augmenting (2.11) with one more row
and column, the solution can be accelerated by the fast multiplication, the preconditioner and the mixed-
precision arithmetic as above.

We take for example the sawtooth equation with € = 5 x 107> to demonstrate how an average
singularly perturbed equation is solved. We start off by solving the sawtooth equation with € = 5 x 1072
for which the linear polynomial that satisfies the boundary conditions is good enough as the initial iterate.
Setting s = O for this solution and marching with the predictor-corrector method as described above, we
obtain a sequence of 7 more intermediate solutions on the path and the corresponding €, before reaching
€ =5 x 1073, For each predictor step, the corrector iteration stops once the last update in the current
corrector is smaller than 1072 in a relatively sense. See columns 2—8 in Table 3 for € along with the length
of the corresponding intermediate solution and the execution time for its calculation. These data are also
plotted in Fig. Sc. Finally, the last intermediate solution is fed into the INGU method as the initial iterate.
The length of the solution to the original problem and the execution time are appended in the last column
of Table 3, and the residual of this final solution is about 4.07 x 10~15. Note that it takes about 45 seconds
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TABLE 3 The intermediate and final solutions to the sawtooth equation on the solution path for
progressively smaller €

€ 5.00e—2 2.52e—2 4.31e—3 7.69e—4 1.70e—4 7.00e—5 5.33e—5 5.06e—5 5.00e—5

length 214 311 857 3,273 13,071 41,733 88,296 146,868 243,065
time (sec) 4.83e—3 2.58e—3 1.08e—2 8.53e—2 7.81e—1 4.38 1.20el  1.86el  4.52el

-10 fH
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F1G. 5. Solving sawtooth equation with e = 5 x 1075,

to calculate the final solution whose length is 243, 065! Even if we take into account the pre-computation
of the intermediate solutions, the total execution time is still as little as 82 seconds, which gives a good
sense of the speed that the INGU method offers. The scale of the computation in this example almost
exhausts the RAM of the machine on which this experiment is carried out. If the memory were large
enough, we should be able to solve the sawtooth equation that is even more singularly perturbed. As
expected, ENLU fails to produce the fifth intermediate solution due to a quick drain on the memory.

The sequence of the solutions, including the intermediate ones and the one to the original equation,
are shown in Fig. 5a, with a close-up displaying the solutions at the turning point x = —0.2. As expected,
the solutions become more pointed as € diminishes. The coefficients of these solutions are shown in
Fig. 5b with a close-up for the first few intermediate solutions that are too short to be seen in the master
plot. We also include a plot of the solution path in Fig. 5d to show the evolution of the value of the
solution at x = —0.2 versus that of €.
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7. Concluding remarks

The success of the proposed INGU framework in solving nonlinear equations demonstrates that the
ultraspherical spectral method is still a powerful tool beyond the linear regime, thanks to the structured
operators of differentiation, multiplication and conversion. The source code of our implementation is
publicly available at Qin (2023).

Can we solve nonlinear ODEs in the same vein by the collocation-based pseudospectral method?
The answer is probably no. The value-based approximation of differential operators can also be quickly
applied, since fast differentiation can also be effected via FFT and variable coefficients are represented as
diagonal matrices. However, the construction of an efficient preconditioner to expedite the convergence
of Krylov subspace methods remains unknown. This highlights an advantage of the ultraspherical
spectral method over the pseudospectral approach.

Immediate applications of INGU include but not limited to nonlinear ODEs arising from solving
nonlinear time-dependent PDEs (Cheng & Xu, 2023) and nonlinear eigenvalue problems of operators
with eigenvector nonlinearity (NEPv) (Upadhyaya, 2021, §2.3.3). The INGU framework can also be
extended from ultraspherical or coefficient-based spectral methods for integral equations (Slevinsky &
Olver, 2017), convolution integral equations (Xu & Loureiro, 2018; Hale, 2019) and fractional integral
equations (Hale & Olver, 2018) to their respective nonlinear counterparts, as the infinite operators in
these equations are also structured.

There are both challenges and opportunities towards extending the ultraspherical spectral method to
solving nonlinear differential equations in higher spatial dimensions as generalized Sylvester equations
(Townsend & Olver, 2015) and tensor decomposition are involved (Strossner & Kressner, 2023).
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Appendix A. Post-processing algorithms for the global Newton methods

We list in this appendix the algorithms of the post-processing step for each of the global Newton methods
of Section 2.4. Details, including the values of the parameters, are given so that the results we report in
Section 6 can be reproduced when these algorithms are plugged into line 7 of Algorithm 1. Particularly,
Algorithm 3 is mainly drawn from Algorithm 11.5 and Procedure 11.6 in Nocedal & Wright (2006).
Since no literature is found to have a discussion on the determination of the forcing term w**! for TR—
dogleg, we copy the strategy from the line search method. Line 24 and lines 25-26 are borrowed from
Eisenstat & Walker (1996) and Kelley (1995), respectively. The main body of Algorithm 4 is drawn from
Algorithm INB in Eisenstat & Walker (1996), except that line 11 is taken from Kelley (1995) and the
norm in line 15 is not squared. Algorithm 5 is a combination of the global and local inexact Newton—RES
methods in Deuflhard (2005, §2 & §3). The 2-norm is used throughout these algorithms.
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Algorithm 3 PostproCESs: TR—dogleg

Inputs: The current approximate solution u

k

, nonlinear operator G, residual vector fk , Jacobian J,li and

. T. . . ..
its transpose (J,’;) , inexact Newton step sk , current size of the trust region AF , termination tolerance 7.

, anew size of the trust region AL anew forcing term w

k+1

Outputs: A new approximate solution u*+!
1. A =100, p, =0.25, p, = 0.75, @ ax
2. if ||8%|| < A¥ then
3. Sk=¢k
4. else
5. g =)'

P L
175812
7. if |6€)| > AF then
k
8. 5k — ——A gk
[F
9. else

10. Find v s.t. 18€ + v(8k — 86)| = Ak

11. 8k =8¢ + v(sk - 89)

12. end if

13. end if 5

14, p = W2 — 1664+ 807

IFAN2 — I+ Jksk)|12

15. if p < p, then

Sk
16. Ak+1 — HS ||
4 ~

17. elseif p > p, & 8% = A* then

18. AR = min(A, 245

19. else

20. AR = Ak

21. end if

22. if p > p, then

23. uk+l — Mk +Sk’ fk+l — g(uk+l)

P2
24. C!)k+1 = OgT
Il
k+1 _ k+1 n

25. w = max (a) L ”)

26. "t = min (a)k'H, a)max)

27. else

8. uk+l — I/lk fk—H :fk a)k—l—l — (,()k

29. end if

30. return i+l Ak gktl

=0.1

> initialization
> inexact Newton step in the trust region

> gradient of the merit function
> Cauchy point
> Cauchy point out of the trust region

> largest step along Cauchy direction

> dogleg strategy

> ratio of actual reduction to predicted reduction

> reduction of the trust region

> extension of the trust region

& initial size of trust region A = 0.1

> step accepted

> initial forcing term o = 0.1

> safeguard for oversolving

> safeguard for too much inexactness

> no change
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Algorithm 4 PosTPROCESS: LS—backtracking
k

Inputs: The current approximate solution ¥, nonlinear operator G, residual vector f¥, inexact Newton
step 8%, current forcing term w, termination tolerance 7.
Outputs: A new solution #**! and a new forcing term »**! or a flag if fails to converge.

Lt=10"%1=1, =0 £ =10, [V Vimax) = [0.1,0.5], @, = 0.1 > initialization
2. w, =09 (a)k)2 > safeguard
3. fori=1,2,....,¢ > finite times of backtracking
4, i = uk + % > a trial step
5. if |G@)| < (1 —t(1 — w))|f*|| then > sufficient decrease
6. sk = ¢k, Wkt = yk 4 5k, A1 = Gkt > update
”fk—l—l ”2
7. o1 =09 e > initial forcing term w® = 0.01
8. if o, > 0.1 then
9. o = max(o**!, w)) > safeguard for too small forcing term
10. end if
k1 _ k+1 U -
11. T = max (a) , W) > safeguard for oversolving
12. o1 = min (wkH, Omax) > safeguard for too much inexactness
13. return ¢+, oFt!
14. end if

15. Construct the quadratic polynomial p(y) s.t. p(0) = g(0), p’(0) = g'(0), p(1) = g(1), where
gy) = G + ysh)l.

16. Find y which minimizes p(y) over interval [V,in» Vmax])-
17. T=91, w=1—79( —w) > backtracking
18. end for

19. return flag: failure of backtracking.
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Algorithm 5 PostprOCESs: TR—contravariant

Inputs: The current approximate solution u*

, nonlinear operator G, residual vector fk, inexact Newton

step 8, current forcing term o*, residual ¥ of GMRES, contraction factor @*~! and contravariant
Kantorovich quantity #~! from the previous outer iteration.

k+1

Outputs: A new solution "™ and a new forcing term

k+1

or a flag if fails to converge.

L fin = 1075, w0 = 0.1, @5 = 1075, p = 0.9 > initialization
2. if k > 1 then
. 1 .
3. # = min (1, i+ a)k)®k_1hk_1) > prediction for
4. else
5. n=0.1
6. end if
7. acceptStep = FALSE, reduced = FALSE
8. while —acceptStep do
9. if u < pp;, then
10. return flag: regularity test fails.
11. else A
12. ik = uk + psk, k= Ga@k) > a trial step
2k
13. er = :ll]]:—k:: > contraction factor
2% — (1 — pwyf* — wrk
14. Wk = ™ =« M)fz il > Kantorovich quantity
w2 (1= (@) I
15. if © > 1 — £ then > 10 contraction
1
16. [ = min (m, %) , reduced = TRUE > damping
17. else |
18. i =min|l, ——
g mm( 1+ wk)hk)
19. if & > 4u & —reduced then
20. W= > try for a larger step
21. else
22. acceptStep = TRUE > step accepted
23. end if
24. end if
25. end if

26. gnd while ~
27. & = psk, ubtl = uk + 3K, F = gkt

. 20 (0F)?
28 h= r(©9) .
1+ (1= (@)?)
N2
1+ () =1
29. wft! = min #,w

30. o*t! = max (o1, 0y ;
31. return u*t!, !

> update

> a-posterior estimate

& quadratic convergence mode, ’ = 1073

> safeguard for oversolving
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