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Abstract. We have developed a method for constructing spectral approximations for convolution
operators of Fredholm type. The algorithm we propose is numerically stable and takes advantage
of the recurrence relations satisfied by the entries of such a matrix approximation. When used
for computing the Fredholm convolution of two given functions, such approximations produce the
convolution more rapidly than the state-of-the-art methods. The proposed approximation also leads
to a spectral method for solving the Fredholm convolution integral equations and makes the operator
analogue of the Krylov subspace methods efficient for computing the eigenvalues and pseudospectra
of Fredholm convolution operators.
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1. Introduction. Convolution is a fundamental operation which abounds in sci-
ence and engineering. The convolution of two smooth signals or functions typically
results in a piecewise smooth function, which consists of three pieces. The two end
pieces are known as Volterra convolution integral because each has a variable integra-
tion limit, while the middle piece, which has constant limits, is a Fredholm convolution
integral. See [5, 12] for detailed discussion and illustrative diagrams. In this paper, we
are concerned with the construction of approximations to the convolution operators of
Fredholm type and the applications of such approximations, including the calculation
of Fredholm convolution integrals and the spectral method for solving Fredholm con-
volution integral equations. This paper can be considered a companion work to [13],
which addresses the spectral approximation of the convolution operators of Volterra
type.

Let f(x) : [a, b]\rightarrow \BbbR and g(x) : [c, d]\rightarrow \BbbR be two continuous integrable compactly
supported functions with b - a> d - c. The Fredholm convolution of f(x) and g(x) is

h(x) =

\int d

c

f(x - t)g(t)dt, x\in [a+ d, b+ c].

Since it is convenient to discuss in terms of functions defined on canonical intervals
centered at the origin, we define the following mapped versions of f and g:

\~f(y) = f

\biggl( 
d - c

2
y+

a+ b

2

\biggr) 
, y \in [ - (r+ 1), r+ 1],

\~g(y) = g

\biggl( 
d - c

2
y+

d+ c

2

\biggr) 
, y \in [ - 1,1],
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APPROXIMATION OF FREDHOLM CONVOLUTION OPERATORS A1965

where r= (b - a)/(d - c) - 1> 0. Thus, the convolution of \~f(y) and \~g(y) is

\~h(y) =

\int 1

 - 1

\~f(y - t)\~g(t)dt, y \in [ - r, r],(1.1)

which is related to h(x) by

h(x) =
d - c

2
\~h

\biggl( 
2x - (a+ b+ c+ d)

d - c

\biggr) 
, x\in [a+ d, b+ c].

Thus, in the remainder of this paper we consider only the convolution \~h given by
(1.1) with \~f and \~g defined on [ - (r + 1), r + 1] and [ - 1,1]. To further facilitate the
discussion, we slightly abuse the notations by dropping the tildes in \~f , \~g, and \~h, i.e.,
f(x) : [ - (r + 1), r + 1] \rightarrow \BbbR , g(x) : [ - 1,1] \rightarrow \BbbR , and h(x) : [ - r, r] \rightarrow \BbbR . Hence, we
consider the convolution operator \scrF of Fredholm type that is defined by f(x) and
acts on g(x),

\scrF f [g](x) = h(x) =

\int 1

 - 1

f(x - t)g(t)dt, x\in [ - r, r].

Here, f(x) is usually called the kernel function or, simply, the kernel. Note that unlike
in the convolution of Volterra type, the kernel function f(x) and the function to be
convolved, i.e., g(x), do not commute, i.e., \scrF f [g](x) \not = \scrF g[f ](x). As we shall see, the
value r plays a pivotal role throughout our discussion.

If f(x) and g(x) have certain regularity, they can be approximated by poly-
nomials fM (x) and gN (x) of sufficiently high degree so that \| f(x) - fM (x)\| \infty and
\| g(x) - gN (x)\| \infty are on the order of machine precision. Such polynomial approxi-
mants can be constructed as, e.g., Legendre series

fM (x) =

M\sum 
m=0

amPm

\biggl( 
x

r+ 1

\biggr) 
and gN (x) =

N\sum 
n=0

bnPn(x),(1.2)

where Pm is the Legendre polynomial of degree m. This way, h(x) is a polynomial of
degree M , denoted by hM (x), since h(x) and f(x) should have the same degree. It
follows then that hM (x) is the product of a [ - r, r]\times (N +1) quasi-matrix R and the
coefficient vector b= (b0, b1 . . . , bN )

T
. That is,

hM (x) =Rb=

\left(   \scrF fM [P0]

\bigm| \bigm| \bigm| \bigm| \bigm| \scrF fM [P1]

\bigm| \bigm| \bigm| \bigm| \bigm| \cdot \cdot \cdot 
\bigm| \bigm| \bigm| \bigm| \bigm| \scrF fM [PN ]

\right)   b,(1.3)

where the nth column of R is the convolution of fM (x) and Pn(x). For convenience,
we denote by Rn the nth column of R, with the index n starting from 0. Since hM (x)
and Rn are both polynomials of degree not exceeding M , they can be written as
Legendre series, i.e.,

hM (x) =

M\sum 
m=0

cmPm

\Bigl( x
r

\Bigr) 
,(1.4a)

Rn(x) =

M\sum 
m=0

Rm,nPm

\Bigl( x
r

\Bigr) 
,(1.4b)
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A1966 XIAOLIN LIU, KUAN DENG, AND KUAN XU

where \{ Rm,n\} Mm=0 are the Legendre coefficients of Rn(x). Substituting (1.4b) into
(1.3) gives

M\sum 
m=0

cmPm

\Bigl( x
r

\Bigr) 
=

N\sum 
n=0

bn

M\sum 
m=0

Rm,nPm

\Bigl( x
r

\Bigr) 
,

or, equivalently,

c=Rb,(1.5)

where c= (c0, . . . , cM )
T
and R is an (M + 1)\times (N + 1) matrix whose (m,n)th entry

is Rm,n.
In [3], Hale proposes constructing R via the approximation of two related convo-

lution operators of Volterra type but limited to the case of r= 1. The primary goal of
the current work is to propose a new method for the construction of R for general r.
One might think that the approximation of Volterra convolution operator (see (3.1))
is more difficult than that of the Fredholm one, since the former has a variable limit of
integration. However, as shown by (1.2), the approximation of the latter is probably
more challenging due to the fact that one can never map the domains of both fM and
gN to the canonical domain [ - 1,1] simultaneously if r \not = 0.

The outline of this paper is as follows. In section 2, we propose a novel approach
to constructing the matrix approximation R of the Fredholm convolution operator.
Section 3 relates the proposed approximation to that of the Volterra convolution
operator. We demonstrate in section 4 the speed and accuracy when the proposed
approximations are employed to calculate convolution integrals, followed by various
applications of such approximations. We close in section 5 with a summary.

2. Constructing the convolution matrices. We start off by the lemma below
which collects some basic results of Legendre polynomials.

Lemma 2.1. For n\geq 1,

(2n+ 1)Pn(x) =
d

dx
(Pn+1(x) - Pn - 1(x)) ,(2.1a) \int 

Pn(x) =
1

2n+ 1
(Pn+1(x) - Pn - 1(x)) +C,(2.1b)

(2n+ 1)xPn(x) = (n+ 1)Pn+1(x) - nPn - 1(x),(2.1c)

where C is the integration constant.

Proof. The proof can be found in many standard texts on Legendre polynomials,
e.g., [9].

Given a Legendre series S(x) =
\sum L

l=0\alpha lPl(x), it follows immediately from (2.1b)
that \int 

S(x)dx=

L+1\sum 
l=0

\^\alpha lPl(x) +C,

where (\^\alpha 0, \^\alpha 1, . . . \^\alpha L+1)
T
= IL (\alpha 0, \alpha 1, . . . \alpha L)

T
and

IL =

\left(     
0  - 1

3
1 0  - 1

5
1
3 0  - 1

7
. . .

. . .
. . .

\right)     \in \BbbR (L+2)\times (L+1)
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APPROXIMATION OF FREDHOLM CONVOLUTION OPERATORS A1967

is the integration matrix. Similarly, it follows from (2.1c) that the product of x and
S(x),

xS(x) =

L+1\sum 
l=0

\~\alpha lPl(x),

where (\~\alpha 0, \~\alpha 1, . . . \~\alpha L+1)
T
=XL (\alpha 0, \alpha 1, . . . \alpha L)

T
and

XL =

\left(     
0 1

3
1 0 2

5
2
3 0 3

7
. . .

. . .
. . .

\right)     \in \BbbR (L+2)\times (L+1)

is the x-multiplication matrix. In IL and XL, the subscript L indicates the matrix
dimension.

The following theorem shows that the matrix R is skew upper triangular, whose
dimension is solely determined by M .

Theorem 2.2 (skew upper triangularity). For R given in (1.5), Rm,n = 0 for
m+ n>M .

Proof. Since fM is a polynomial of degree M ,

fM (x - t) =

M\sum 
l=0

Ql(x)Pl(t),

where deg(Ql) + deg(Pl)\leq M . For m+ n>M ,

Rm,n =
2m+ 1

2r

\int r

 - r

\int 1

 - 1

fM (x - t)Pn(t)dtPm

\Bigl( x
r

\Bigr) 
dx

=
2m+ 1

2r

M\sum 
l=0

\int r

 - r

Pm

\Bigl( x
r

\Bigr) 
Ql(x)dx

\int 1

 - 1

Pl(t)Pn(t)dt= 0.

To see why this must be zero, we assume that this is not the case. Then we must
have l = n and deg(Ql)\geq m for some l. Thus, M \geq deg(Ql) + l \geq m+ n >M , which
is a contradiction.

Hence, we consider mainly the case of M =N in the rest of this section. In case
of N <M , we prolong b by zeros. This theorem also justifies the employment of the
Legendre polynomials in approximating the Fredholm convolution operators in that
the triangularity is lost if we switch to other classical orthogonal polynomials.

What follows next is our first main result which shows a four-term recurrence
relation satisfied by the entries of R.

Theorem 2.3 (four-term recurrence relation). For m,n\geq 1,

Rm,n+1 =Rm,n - 1 + r(2n+ 1)

\biggl( 
Rm - 1,n

2m - 1
 - Rm+1,n

2m+ 3

\biggr) 
,(2.2a)

Rm+1,n =
2m+ 3

2m - 1
Rm - 1,n  - 1

r

2m+ 3

2n+ 1
(Rm,n+1  - Rm,n - 1) ,(2.2b)

Rm,n - 1 =Rm,n+1  - r(2n+ 1)

\biggl( 
Rm - 1,n

2m - 1
 - Rm+1,n

2m+ 3

\biggr) 
,(2.2c)

Rm - 1,n =
2m - 1

2m+ 3
Rm+1,n +

1

r

2m - 1

2n+ 1
(Rm,n+1  - Rm,n - 1) .(2.2d)
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A1968 XIAOLIN LIU, KUAN DENG, AND KUAN XU

Proof. We show (2.2a) only, for (2.2b)--(2.2d) are just rearrangements of (2.2a).
By a change of variable z = y - t, we have

Rn+1(y) =

\int 1

 - 1

fM (y - t)Pn+1(t)dt=

\int y+1

y - 1

fM (z)Pn+1(y - z)dz.

Differentiating the last equation on both sides gives

d

dy
Rn+1(y) =

\int y+1

y - 1

fM (z)
d

dy
Pn+1(y - z)dz + fM (y+ 1)Pn+1( - 1)

 - fM (y - 1)Pn+1(1)

=

\int y+1

y - 1

fM (z)

\biggl[ 
(2n+ 1)Pn(y - z) +

d

dy
Pn - 1(y - z)

\biggr] 
dz

+ fM (y+ 1)Pn - 1( - 1) - fM (y - 1)Pn - 1(1)

= (2n+ 1)Rn(y) +
d

dy
Rn - 1(y),

where we have used (2.1a) and Pn+1( - 1) = Pn - 1( - 1) and Pn+1(1) = Pn - 1(1). Inte-
grating on both sides over [ - r,x] yields

Rn+1(x) = (2n+ 1)

\int x

 - r

Rn(y)dy+Rn - 1(x) +C.

Substituting (1.4b) into the last equation and noting the triangularity of R, we have

M - n - 1\sum 
m=0

Rm,n+1Pm

\Bigl( x
r

\Bigr) 
= (2n+ 1)

M - n\sum 
m=0

Rm,n

\int x

 - r

Pm

\Bigl( y
r

\Bigr) 
dy

+

M - n+1\sum 
m=0

Rm,n - 1Pm

\Bigl( x
r

\Bigr) 
+C.

Using (2.1b) and matching the Legendre coefficients of Pm

\bigl( 
x
r

\bigr) 
for m \geq 1 leads to

(2.2a).

The four identities in (2.2d) suggest that the entries in R can be calculated recur-
sively in four ways: columnwise rightward, rowwise downward, columnwise leftward,
and rowwise upward. It may not be immediately obvious how to initiate the recursion
with (2.2c) or (2.2d), and we leave it aside for the moment. To recurse with (2.2a)
or (2.2b), it is apparent that we have to first figure out the first two columns and the
zeroth row or the first two rows and the zeroth column, respectively. To this end,

we first give the following lemma on representing Pj

\Bigl( 
x+1
r+1

\Bigr) 
 - Pj

\Bigl( 
x - 1
r+1

\Bigr) 
in terms of\bigl\{ 

Pk

\bigl( 
x
r

\bigr) \bigr\} j - 1

k=0
. For notational convenience, we let P j =

\bigl( 
P0

\bigl( 
x
r

\bigr) 
, P1

\bigl( 
x
r

\bigr) 
, . . . , Pj

\bigl( 
x
r

\bigr) \bigr) 
.

Lemma 2.4. Suppose that

Pj

\biggl( 
x+ 1

r+ 1

\biggr) 
 - Pj

\biggl( 
x - 1

r+ 1

\biggr) 
=

j - 1\sum 
k=0

wk,jPk

\Bigl( x
r

\Bigr) 
.

If the coefficients wk,j are collected in the matrix WL = (wk,j)\in \BbbR (L+1)\times (L+2), WL is
strictly upper triangular with

WL(0:2,0:3) =

\left(   0 2
r+1 0 2r2 - 6r+2

(r+1)3

0 0 6r
(r+1)2

0

0 0 0 10r2

(r+1)3

\right)   .
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APPROXIMATION OF FREDHOLM CONVOLUTION OPERATORS A1969

With the further assumption that wk,j = 0 for k < 0 for all j, the entries of WL satisfy
a 9-term recurrence relation

wk,j+2 =Bk - 1,j+1wk - 1,j+1 +Ck+1,j+1wk+1,j+1 +Ek - 2,jwk - 2,j + Fk,jwk,j

+Gk+2,jwk+2,j +Hk - 1,j - 1wk - 1,j - 1 + Jk+1,j - 1wk+1,j - 1 +Kk,j - 2wk,j - 2,
(2.3)

where

Ak,j+2 =
2j + 3

(j + 2)(r+ 1)
, Bk - 1,j+1 =

2rkAk,j+2

2k - 1
, Ck+1,j+1 =

2r(k+ 1)Ak,j+2

2k+ 3
,

Ek - 2,j = - r2k(k - 1)(2j + 1)Ak,j+2

(r+ 1)(2k - 3)(2k - 1)(j + 1)
, Fk,j = F 1

k,j + F 2
k,j + F 3

k,j ,

F 1
k,j =

(2j + 1)Ak,j+2

(j + 1)(r+ 1)
, F 2

k,j = - (r+ 1)(j + 1)Ak,j+2

2j + 3
 - (r+ 1)j2Ak,j+2

(j + 1)(2j  - 1)
,

F 3
k,j = - r

2(2j + 1)(2k2  - 2k - 1)Ak,j+2

(r+ 1)(j + 1)(4k2  - 4k - 3)
,

Gk+2,j = - r
2(2j + 1)(k+ 1)(k+ 2)Ak,j+2

(r+ 1)(j + 1)(2k+ 5)(2k+ 3)
, Hk - 1,j - 1 =

2rjkAk,j+2

(j + 1)(2k - 1)
,

Jk+1,j - 1 =
2rj(k+ 1)Ak,j+2

(j + 1)(2k+ 3)
, Kk,j - 2 = - j(j  - 1)(r+ 1)Ak,j+2

(j + 1)(2j  - 1)
.

Additionally, wk,j = 0 when k+ j is even.

Proof. Let \phi j(x) = Pj(
x+1
r+1 ) - Pj(

x - 1
r+1 ) and \psi j(x) = Pj(

x+1
r+1 )+Pj(

x - 1
r+1 ). It is easy

to see that \phi j(x) is a polynomial of degree j - 1 for j \geq 1, implying that WL is strictly
upper triangular. The first few \phi j(x) can be easily obtained with a bit of algebraic
manipulation:

\phi 0(x) = 0, \phi 1(x) =
2

r+ 1
, \phi 2(x) =

6r

(r+ 1)
2P1

\Bigl( x
r

\Bigr) 
,

\phi 3(x) =
2r2  - 6r+ 2

(r+ 1)
3 +

10r2

(r+ 1)
3P2

\Bigl( x
r

\Bigr) 
.

It follows from (2.1c) that

\phi j+1(x) =
2j + 1

j + 1

\biggl[ 
x+ 1

r+ 1
Pj

\biggl( 
x+ 1

r+ 1

\biggr) 
 - x - 1

r+ 1
Pj

\biggl( 
x - 1

r+ 1

\biggr) \biggr] 
 - j

j + 1

\biggl[ 
Pj - 1

\biggl( 
x+ 1

r+ 1

\biggr) 
 - Pj - 1

\biggl( 
x - 1

r+ 1

\biggr) \biggr] 
=

2j + 1

(j + 1)(r+ 1)
(x\phi j(x) +\psi j(x)) - 

j

j + 1
\phi j - 1(x).

Similarly,

\psi j+1(x) =
2j + 1

(j + 1)(r+ 1)
(x\psi j(x) + \phi j(x)) - 

j

j + 1
\psi j - 1(x).

Combining the last two equations, we have

\phi j+2(x) =
2j + 3

(j + 2)(r+ 1)

\biggl[ 
2x\phi j+1(x) +

2jx

j + 1
\phi j - 1(x) - 

j(j  - 1)(r+ 1)

(j + 1)(2j  - 1)
\phi j - 2(x)

+

\biggl( 
2j + 1

(j + 1)(r+ 1)

\bigl( 
1 - x2

\bigr) 
 - (j + 1)(r+ 1)

2j + 3
 - j2(r+ 1)

(j + 1)(2j  - 1)

\biggr) 
\phi j(x)

\biggr] 
,(2.4)
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A1970 XIAOLIN LIU, KUAN DENG, AND KUAN XU

which relates \phi j - 2(x), . . . , \phi j+2(x) together. To get rid of the multiplying factors of
x and x2, we note \Bigl( x

r

\Bigr) 
\phi j(x) = P jXj - 1(w0,j ,w1,j . . .wj - 1,j)

T
,\Bigl( x

r

\Bigr) 2

\phi j(x) = P j+1XjXj - 1(w0,j ,w1,j . . .wj - 1,j)
T
.

(2.5)

Substituting (2.5) into (2.4) and matching up the Legendre coefficients in the resulting
equation gives (2.3). In case of k + j being even, wk,j = 0 follows from the 9-term
recurrence relation.

We are now in a position to construct the zeroth column of R.

Theorem 2.5 (construction of the zeroth column). The elements of the zeroth
column of R are

(r+ 1)WMIMa,(2.6)

where a= (a0, a1, . . . , aM )
T
.

Proof. The zeroth column ofR is the vector collecting the coefficients of
\int 1

 - 1
fM (x - 

t)dt in the basis \{ Pm

\bigl( 
x
r

\bigr) 
\} M
m=0

. Using (2.1b), we have

\int 1

 - 1

fM (x - t)dt=

\int 1

 - 1

M\sum 
m=0

amPm

\biggl( 
x - t

r+ 1

\biggr) 
dt

= (r+ 1)

M+1\sum 
m=0

\^am

\biggl[ 
Pm

\biggl( 
x+ 1

r+ 1

\biggr) 
 - Pm

\biggl( 
x - 1

r+ 1

\biggr) \biggr] 
,(2.7)

where \^a= (\^a0, . . . \^aM+1)
T
= IMa. It follows from Lemma 2.4 that

M+1\sum 
m=0

\^am

\biggl[ 
Pm

\biggl( 
x+ 1

r+ 1

\biggr) 
 - Pm

\biggl( 
x - 1

r+ 1

\biggr) \biggr] 
= PMWM\^a,

which, combined with (2.7), gives\int 1

 - 1

fM (x - t)dt= (r+ 1)PMWMIMa.

The following theorem shows the construction of the first column of R.

Theorem 2.6 (construction of the first column). The elements of the first column
of R are \bigl( 

r(r+ 1)XM+1WMIM  - (r+ 1)2WM+1IM+1XM

\bigr) 
a.(2.8)

Proof. Since the entries in the first column of the matrix R are the coefficients of\int 1

 - 1
fM (x - t)tdt,\int 1

 - 1

fM (x - t)tdt= (r+ 1)

M\sum 
m=0

am

\int 1

 - 1

Pm

\biggl( 
x - t

r+ 1

\biggr) \biggl( 
x

r+ 1
 - x - t

r+ 1

\biggr) 
dt

= x

M\sum 
m=0

am

\int 1

 - 1

Pm

\biggl( 
x - t

r+ 1

\biggr) 
dt - (r+ 1)

M\sum 
m=0

am

\int 1

 - 1

x - t

r+ 1
Pm

\biggl( 
x - t

r+ 1

\biggr) 
dt.
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APPROXIMATION OF FREDHOLM CONVOLUTION OPERATORS A1971

By (2.1c) and Theorem 2.5, we have

M\sum 
m=0

am

\int 1

 - 1

x - t

r+ 1
Pm

\biggl( 
x - t

r+ 1

\biggr) 
dt= (r+ 1)PM+1WM+1IM+1XMa.

For the first term, up to a constant r,

x

r

M\sum 
m=0

am

\int 1

 - 1

Pm

\biggl( 
x - t

r+ 1

\biggr) 
dt= (r+ 1)PM+1XM+1WMIMa,

which follows from a similar argument. The last three equations gives (2.8).

The length of (2.8) is M +2, whose last two entries are exactly zero, since R1(x)
is a polynomial of degree M  - 1.

The zeroth and first rows can be constructed analogously. Lemma 2.7 and Theo-
rem 2.8 below are the results in parallel for rows, and we omit the proofs.

Lemma 2.7. Suppose that

Pj

\biggl( 
r - t

r+ 1

\biggr) 
 - Pj

\biggl( 
 - r+ t

r+ 1

\biggr) 
=

j - 1\sum 
k=0

\^wk,jPk(t),

If the coefficients \^wk,j are collected in the matrix \^WL = ( \^wk,j)\in \BbbR (L+1)\times (L+2), \^WL is
strictly upper triangular with

\^WL(0:2,0:3) =

\left(   0 2r
r+1 0 r(2r2 - 6r+2)

(r+1)3

0 0  - 6r
(r+1)2

0

0 0 0 10r
(r+1)3

\right)   .

With the further assumption that \^wk,j = 0 for k < 0 for all j, the entries of \^WL satisfy
a 9-term recurrence relation

\^wk,j+2 = \^Bk - 1,j+1 \^wk - 1,j+1 + \^Ck+1,j+1 \^wk+1,j+1 + \^Ek - 2,j \^wk - 2,j + \^Fk,j \^wk,j

+ \^Gk+2,j \^wk+2,j + \^Hk - 1,j - 1 \^wk - 1,j - 1 + \^Jk+1,j - 1 \^wk+1,j - 1 + \^Kk,j - 2 \^wk,j - 2,

where

\^Bk - 1,j+1 = - Bk - 1,j+1/r, \^Ck+1,j+1 = - Ck+1,j+1/r, \^Ek - 2,j =Ek - 2,j/r
2,

\^Fk,j = \^F 1
k,j + \^F 2

k,j + \^F 3
k,j , \^F 1

k,j = r2F 1
k,j , \^F 2

k,j = F 2
k,j , \^F 3

k,j = F 3
k,j/r

2,

\^Gk+2,j =Gk+2,j/r
2, \^Hk - 1,j - 1 = - Hk - 1,j - 1/r,

\^Jk+1,j - 1 = - Jk+1,j - 1/r, \^Kk,j - 2 =Kk,j - 2.

Additionally, \^wk,j = 0 when k+ j is even.

For the first two rows, we also need the diagonal matrix DM = diag (1,1/3,
. . . ,1/(2M + 1))\in \BbbR (M+1)\times (M+1) which comes from the integration constant.

Theorem 2.8. The elements of the zeroth and the first rows of R are

r+ 1

r
DM

\^WMIMa,(2.9)

3(r+ 1)

r2
DM+1

\Bigl( 
(r+ 1) \^WM+1IM+1XM +XM+1

\^WMIM

\Bigr) 
a,(2.10)

respectively.
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A1972 XIAOLIN LIU, KUAN DENG, AND KUAN XU

Fig. 1. Error growth when recursing for R corresponding to f39 using (2.2a), which is stable in
the region that is to the left of the red borderline. (Figure in color online.)

The calculation of R could have been as easy as suggested by (2.2a) and (2.2b)---
generate the first two columns and the first row or the first two rows and the first
column followed by recursing the entries columnwise or rowwise, respectively. Unfor-
tunately, (2.2a) and (2.2b) are numerically unstable. In fact, recursing with (2.2a)

and (2.2b) is only stable when r(2n+1)
2m - 1 \leq 1 and 2m+3

r(2n+1) \leq 1, respectively. Otherwise,
the error in Rm\pm 1,n and Rm,n\pm 1 are to be amplified repeatedly in the course of re-
cursion. In the worst-case scenario, the error in certain entries could be amplified
approximately by a factor of M\varsupsetneq . To see the instability, consider R \in \BbbR 40\times 40 defined
by f39(x) and r = 2, which is a Legendre series of degree 39 with all the coefficients
set to 1. Figure 1 shows the entrywise error in R obtained by recursing columnwise
with (2.2a). The largest error is 2.7098\times 1030 in this example, occurring at R1,37.

To identify the entries for which each of (2.2d) is stable, we first safely ignored
the amplification effect caused by 2m+3

2m - 1 in (2.2b) since it is close enough to 1 for large
m. Thus, the four recurrence relations in (2.2d) are stable, respectively, when

r
2n+ 1

2m - 1
\leq 1,

2m+ 3

r(2n+ 1)
\leq 1, r

2n+ 1

2m - 1
\leq 1,

2m - 1

r(2n+ 1)
\leq 1.(2.11)

If we further ignore the constants in the fractions in (2.11), (2.2a), and (2.2c) are
stable when m/n\geq r whereas (2.2b) and (2.2d) are stable for m/n\leq r. The stability
regions for (2.2d) are marked by red lines in Figure 2. For r \geq 1, (2.2a) and (2.2c)
are stable in S1, whereas (2.2b) and (2.2d) are stable in S23 = S2 +S3. For 0< r\leq 1,
(2.2a) and (2.2c) are stable in \^S12 = \^S1+ \^S2, while (2.2b) and (2.2d) are stable in \^S3.

Now it should be clear that we have four possible recursing strategies for entries
of R when r \geq 1: (1) recursing with (2.2a) rightward in S1 followed by recursing
with (2.2d) upward in S23, (2) recursing with (2.2b) downward in S23 followed by
recursing with (2.2c) leftward in S1, (3) recursing with (2.2a) rightward in S1 followed
by recursing with (2.2b) downward in S23, and (4) recursing with (2.2b) downward in
S23 followed by recursing with (2.2a) rightward in S1. We would not prefer (3) and
(4) since we have to precompute both the first two columns and rows, which incurs
unnecessary cost. If we take (2), we have to know certain entries in S1 to recurse
downward for the entries in S2. Hence, when r > 1 we recurse following strategy
(1) (Figure 3a). Following an analogous argument, we recurse with (2.2b) downward
in \^S3 followed by recursing with (2.2c) leftward in \^S12 for 0 \leq r \leq 1 (Figure 3b).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/1

1/
25

 to
 1

03
.5

6.
52

.2
34

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



APPROXIMATION OF FREDHOLM CONVOLUTION OPERATORS A1973

(a) r \geq 1 (b) 0 < r \leq 1

Fig. 2. Partition of the nonzero region by the borderline of stability (red) and the line of de-
pendence (blue). (Figure in color online.)

(a) r \geq 1 (b) 0 < r \leq 1

Fig. 3. Stable recursing strategies.

We summarize the stable recursions in Algorithm 2.1. If we recalculate the example
in Figure 1 using Algorithm 2.1, the largest entrywise error is about 2.3\times 10 - 16.

Since each nonzero entry of WM or \^WM is obtained at a cost of approximately
145 flops and only M2/4 entries of WM or \^WM are nonzero, the total complexity
of constructing WM or \^WM is about 36M2. If we ignore the \scrO (M) operations, the
dominant cost in evaluating (2.6) and (2.8) or (2.9) and (2.10) is the three multipli-
cation of WM or \^WM with vectors, totaling 6M2 flops. The cost for generating the
first two columns or rows is thus 42M2. For the M2/(2(r + 1)) entries in S1 or \^S12,
recursing for each entry with (2.2a) or (2.2c) requires 12 flops, leading to a total cost
of 6M2/(r+1) flops. Analogously, each entry in S23 or \^S3 can be obtained following
(2.2d) and (2.2b), respectively with 15 flops. For the rM2/(2(r+1)) entries in S23 or
\^S3, the total cost is 7rM

2/(r+1). Thus, the total complexity in the recursing part of
Algorithm 2.1 is roughly 7M2, independent of r. We list the stepwise complexities in
Algorithm 2.1 and note that the overall cost of Algorithm 2.1 is roughly 49M2 flops.

If only the coefficients of the convolution hM are what we need, the cost of storage
can be reduced from \scrO (M2) to \scrO (M) by allocating only three M -vectors, two for the
recursion and one for accumulating c.

3. Relation to the convolution operator of Volterra type. For \v f, \v g :
[ - 1,1]\rightarrow \BbbR , the convolution operator of Volterra type is defined as

\v h= \scrV \v f [\v g](x) =

\int x

 - 1

\v f(x - t)\v g(t)dt,(3.1)

where the resulting function \v h : [ - 2,0]\rightarrow \BbbR . Suppose that \v f(x) and \v g(x) are approx-
imated by the Legendre series \v fM (x) =

\sum M
m=0 \v amPm(x) and \v gN (x) =

\sum N
n=0

\v bnPn(x),
respectively. Then \v hM+N+1(x) =\scrF \v fM

[\v gN ](x) is a Legendre series of lengthM+N+2,
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A1974 XIAOLIN LIU, KUAN DENG, AND KUAN XU

Algorithm 2.1. Stable construction of the convolution matrix R.

if r\geq 1 then
Construct the first two columns by (2.6) and (2.8). �42M2

Recursing with (2.2a) rightward for the entries in S1. �6M2/(r+ 1)
Recursing with (2.2d) upward for the entries in S23. �7rM2/(r+ 1)

else
Construct the first two rows by (2.9) and (2.10). �42M2

Recursing with (2.2b) downward for the entries in \^S3. �7rM2/(r+ 1)

Recursing with (2.2c) leftward for the entries in \^S12. �6M2/(r+ 1)
end if

and the (M +N + 2)\times (N + 1) matrix that relates \v hM+N+1(x) and \v gN (x) serves as
an approximation of \scrV \v f . If we denote by V \v f this matrix approximation of \scrV \v f , V \v f

is also obtainable by a four-term recurrence relation similar to (2.2d) at a cost of
\scrO ((M+N)N). Particularly, V \v f is banded with the upper and lower bandwidths both
being exact M + 1. For details, see [5, 13].

For a function \varphi , let \varphi \{ a,b\} denote the restriction of \varphi to the interval [a, b] and
\^\varphi = \varphi ( - x). It is shown in [3] that when r = 1 a convolution operator of Fredholm
type can be written as the combination of two Volterra convolution operators

\scrF f [g](x) = \scrV f1 [g](x) + \scrV \^f2
[\^g](\^x),(3.2)

where f1 = f\{ 0,2\} and f2 = f\{  - 2,0\} . Let \^I = diag(1, - 1,1, - 1, . . .) be the alternating

diagonal matrix. Suppose that both f1 and \^f2 can be approximated by Legendre series
of degreeM and g by a Legendre series of degree N . Hence, the (M+N+2)\times (N+1)
matrix approximation of the Fredholm convolution operator

\^R= Vf1 +
\^IV \^f2

\^I.(3.3)

Note that \^R may have different dimensions from R, as the latter is assumed square
throughout. Obtaining \^R via (3.3) incurs the construction of both Vf and V \^f , the cost
being \scrO ((M+N)N). On the contrary, the cost of constructing R following Algorithm
2.1 is \scrO (M2), independent of N .

Since the dimensions of Vf and V \^f are usually determined by the length of gN (x), a
great deal of the computation might be wasteful whenN is much larger thanM . When
\^R is constructed via (3.3), cancellations are expected for entries in the band except
those in the top-left triangular part. Furthermore, the cancellation is never perfect---
entrywise residuals are usually on the order of machine epsilon or greater. When
such a \^R is used to calculate convolutions or solve convolution integral equations, the
cancellation errors may lead to inaccurate, if not totally erroneous, results. This is
particularly the case if certain entries in the nonzero triangular part are on the same
order of or smaller than the cancellation errors.

Let f17(x) be the Legendre series of degree 17 which approximates ex on [ - 2,2]
and consider the Fredholm convolution operator defined by f17(x). Figure 4a shows
the entrywise magnitude of \^R obtained by (3.3), where the nonzero entries that could
be obtained directly by Algorithm 2.1 are enclosed by the borderline in red. Compar-
ing with Figure 4b which displays the entrywise magnitude of R constructed using
Algorithm 2.1, we can see that the cancellation errors are of the same magnitude as or
even larger than many nonzero entries, making the skew upper-triangular structure
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APPROXIMATION OF FREDHOLM CONVOLUTION OPERATORS A1975

(a) \^R obtained by (3.3) (b) R obtained by Algorithm 2.1

Fig. 4. The entrywise magnitude of the matrix approximations \^R and R to the Fredholm con-
volution operator defined by the Legendre series that approximates ex for x \in [ - 2,2]. When (3.3)
is used, cancellation errors are introduced so that the triangularity (marked by the red borderline)
is lost and we can only see bandedness since the matrix approximation to the Volterra convolution
operator (3.1) is strictly banded when both \v f(x)\v g(x) are Legendre series [5, 13]. In contrast, the
triangularity is respected by Algorithm 2.1. (Figure in color online.)

invisible. This may explain why the triangularity is overlooked by Hale and Townsend
in their works [3, 5].

For r \not = 1, there is unfortunately no direct relation like (3.2). Hence, Algorithm
2.1 is so far the only way to construct coefficient-based matrix approximations to the
Fredholm convolution operator for r \not = 1 (see subsection 4.3). However, the Fredholm
convolution of two functions can still be calculated via convolutions of Volterra type
[5] but in a less efficient way. To see this, consider the case of r < 1. It is shown by
Hale and Townsend that

\scrF f [g](x) = \scrV f\{ r - 1,r+1\} [g](x) + \scrV \^f\{  - r - 1,r - 1\} 

\bigl[ 
\^g\{  - 2r+1,1\} 

\bigr] 
( - x), x\in [ - r, r].(3.4)

Thus, we need to make two restrictions of f and one of g. These are done by evaluating
f and g at Chebyshev grids of M and N points, respectively, via the Clenshaw algo-
rithm at a cost of \scrO (M2+N2), followed by Chebyshev transforms from values to coef-
ficients via FFT in \scrO (M logM +N logN) flops and Chebyshev--Legendre transforms
to recover the Legendre coefficients for each restriction in \scrO (M(logM)2+N(logN)2)
flops. Finally, constructing two Volterra convolution matrices costs \scrO ((M +N)M)
flops.

For r > 1,

\scrF f [g](x) =

\lfloor r\rfloor \sum 
j=1

\scrF f [j] [g](x) +\scrF f\{ 2\lfloor r\rfloor  - r - 1,r+1\} [g](x), x\in [ - r, r],(3.5)

where f [j] = f\{  - (r+1)+2(j - 1), - (r+1)+2(j+1)\} and the summation and the plus sign
should be understood as concatenations. Each summand \scrF f [j] [g](x) satisfies r = 1
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A1976 XIAOLIN LIU, KUAN DENG, AND KUAN XU

since the length of the domain of f [j] is twice that of g. When r is an integer,
the last term in (3.5) vanishes. In such a case, we need to make r restrictions
of f and construct 2r approximations of the Volterra convolution operators, in-
curring \scrO 

\bigl( 
rM(M +N + (logM)2)

\bigr) 
flops. If r is not an integer, the last term

\scrF f\{ 2\lfloor r\rfloor  - r - 1,r+1\} [g](x) corresponds to r < 1 and can be treated following (3.4), adding
an extra \scrO (N2 +N(logN)2) term to the total complexity.

In contrast to the complexities we just worked out, the cost of Algorithm 2.1 is
independent of N and r. This immediately suggests the advantage of the proposed
approximation in calculating the convolution for which the domain of f is much more
sizable than that of g or N is much greater than M . See subsection 4.1 for numerical
experiments.

4. Numerical examples. In this section, we first test the use of the approxima-
tion to the Fredholm convolution operator for calculating the convolution of two given
functions (subsections 4.1 and 4.2), followed by its applications in solving convolution
integral equations (subsection 4.3) and the calculation of pseudospectra (subsection
4.4). All the numerical experiments are performed in Julia v1.9.3 on a laptop with
a 14 core 4.7 GHz Intel Core i7 CPU and 16 GB RAM. The execution times are
obtained using BenchmarkTools.jl.

4.1. Speed in computing Fredholm convolutions. We evaluate the Fred-
holm convolution of two given Legendre series with randomly generated coefficients
using the proposed approximation and compare the computational time with that of
the Hale--Townsend method [5, section 5]. Since the Hale--Townsend method depends
on M , N , and r, we time the computation by varying one of them and fixing the
other two.

Each panel of Figure 5 has fixed value of r and shows the dependence of the
execution time on M for various values of N/M . It is shown that the time grows
quadratically with M for both methods, as expected. The dependence on N of the
Hale--Townsend method is suggested by the curves corresponding different ratios of
N/M , whereas the proposed method is N -independent. Since the proposed method is
independent of r, its execution times remain consistent and are thus indistinguishable
across the panels. On the other hand, the time for the Hale--Townsend method grows
proportionally with r. In the case of r = 1, the new method based on the proposed
approximation is 5\times to 10\times faster than the Hale--Townsend method. For r= 100, the
speed-up is roughly 200 folds.

Figure 6 shows the time for varying N/M ratio at fixed M and r. We could have
shown the plots for time versus N . However, the use of the ratio N/M helps align the
curves for different M so that the dependence on N is better illustrated. Since the
proposed method is N -independent the solid curves are largely straight lines, whereas
the time for the Hale--Townsend method scales linearly with N . The greater N is, the
more conspicuous the speed-ups are gained by the new method. Figure 7 displays the
(in)dependence on r of the two methods. This is again where the proposed method
is favored as its computational time is constant despite the length of the intervals. In
Figures 5 to 7, M , N , and r are chosen to be typical and representative, and the new
method is faster in all these tests with clear advantages for r\gg 1 or N \gg M .

4.2. An example for demonstrating the Weierstrass approximation
theorem. Our second example is the evaluation of the Fredholm convolution of
f(x) = sin(1/x) sin(1/(sin(1/x))) with x \in [0.2885554757,0.3549060246] and g(x) =
exp( - x2/(4t))/

\surd 
4\pi t with t = 10 - 7 and x \in [ - 3 \times 10 - 3,3 \times 10 - 3]. This example
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APPROXIMATION OF FREDHOLM CONVOLUTION OPERATORS A1977

(a) r = 1 (b) r = 2

(c) r = 10 (d) r = 100

Fig. 5. Comparison between the proposed method (blue) and the Hale--Townsend method
(other): computational time versus M for various choices of N and r. The proposed method is
significantly faster than the Hale--Townsend method for various choices of N and r. (Figure in color
online.)

is borrowed from [10, section 6], where it is used to demonstrate the Weierstrass
approximation theorem. As in [10, section 6], we approximate f(x) and g(x) by
polynomials of degree 2000 and 65, respectively. Figure 8 shows the errors obtained
by comparing the computed convolution using the Hale--Townsend method and the
proposed method with that obtained in octuple precision.1 The execution times of
the proposed method and the Hale--Townsend method are 38 and 98 milliseconds,
respectively. That is, the new method is 2.5\times faster than the Hale--Townsend one
even though N is much smaller than M in this example.

4.3. Convolution integral equation. The approximation of Fredholm convo-
lution operators is the key in solving convolution integral equations of Fredholm type
[3]. For instance, Love's integral equation [6]

1The 256-bit octuple precision is the default format of Julia's BigFloat type of floating point
number. BigFloat, based on the GNU MPFR library, is the arbitrary precision floating point number
type in Julia.
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(a) r = 1 (b) r = 2

(c) r = 10 (d) r = 100

Fig. 6. Comparison between the proposed method (solid) and the Hale--Townsend method
(dashed): computational time versus N/M for various choices of M and r. Unlike the Hale--
Townsend method, the execution time for the proposed method does not depend on N .

y(t) = f(t) - \delta 

\pi 

\int 1

 - 1

y(s)

\delta 2 + (t - s)
2 ds,  - 1\leq t\leq 1,(4.1)

is a Fredholm convolution integral equation of the second kind that arises in elec-
trostatics. We choose \delta = 1 and f(t) = 1/

\bigl( 
1/4 + 4x2

\bigr) 
for our test. The resulting

linear system constructed using the proposed approximation is an arrow-shaped one
of infinite dimensions. This suggests a spectral method for Fredholm convolution in-
tegral equations in the framework of infinite-dimensional linear algebra [7], though
in practice we need only solve the M \times M subsystem that encloses the nonzero tri-
angular part. The error in the computed solution is shown in Figure 9a by taking
the solution obtained in octuple precision as the exact. Alongside, the error in the
solution obtained using (3.3) is also plotted for comparison.

If we modify (4.1) so that r \not = 1, the method of [3] ceases to work while the
proposed approximation continues to produce accurate solutions. Figure 9b shows
the error in the solution to (4.1) but with  - 5\leq t\leq 5.
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(a) M = 10N (b) M = 2N

(c) M = N (d) 10M = N

Fig. 7. Comparison between the proposed method (solid) and the Hale--Townsend method
(dashed): execution time versus r for various choices of M and N/M . Unlike the Hale--Townsend
method, the execution time for the proposed method does not depend on r.

Fig. 8. The error in the computed convolution using the Hale--Townsend method and the pro-
posed method by taking the convolution computed in octuple precision as the exact.

4.4. Pseudospectrum. As for solving Fredholm convolution integral equations,
the calculation of the pseudospectra of the Fredholm convolution operator relies on
the approximation to the operator. Consider the Huygens--Fresnel operator

(\scrH u)(s) =
\sqrt{} 
iF

\pi 

\int 1

 - 1

e - iF (s - t)2u(t)dt,
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(a) r = 1 (b) r = 5

Fig. 9. Error in the computed solution to Love's equation.

Fig. 10. \varepsilon -pseudospectra of the Huygens--Fresnel operator.

which comes from the modeling of the laser problem [11, section 60]. This integral
operator acts on u\in L2([ - 1,1]) and corresponds to stable resonators.

Figure 10 displays the pseudospectra of the Huygens--Fresnel operator with the
Fresnel number F = 64\pi . These boundaries of \varepsilon -pseudospectra at \varepsilon = 10 - 1,10 - 1.5, . . . ,
10 - 3 are computed using the operator analogue of the Lanczos iteration [2], employing
the ``solve-then-discretize"" strategy. In each iteration of the Lanczos process, we solve
in succession two Fredholm convolution integral equations of the second kind (z\scrI  - 
\scrH )v= u and (z\ast \scrI  - \scrH \ast )w= v, where the asterisk denotes the complex conjugate for z
and the adjoint of \scrH . The proposed spectral approximation plays a key role in solving
these two equations and, as a consequence, obtaining the pseudospectra accurately and
efficiently. While the contours in Figure 10 are visually indistinguishable from those
in the final panel of Figure 60.2 from [11, section 60], which Trefethen and Embree
obtained following the conventional ``discretize-then-solve"" method, the traditional
approach is at high risk of spectral pollution and spectral invisibility. See [2] for more
details.

5. Conclusion. We have presented a novel \scrO (M2) method for constructing
the spectral approximation of a convolution operator of Fredholm type defined by a
Legendre series. In contrast to existing methods, the method is applicable to prob-
lems where the two convolved Legendre series are defined in intervals with an arbi-
trary length ratio. When such an approximation is used to evaluate the Fredholm
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convolution of two given Legendre series, the computational cost depends only on the
length of the kernel, and is independent of the Legendre series being convolved and
the interval length ratio. In all the cases that we test, the method is faster than the
existing methods. In cases where the Legendre series being convolved is of large de-
gree or the interval length ratio is far greater than 1, the new method is significantly
faster. Moreover, such approximations lead to spectral methods for solving Fredholm
convolution integral equations, and make the operator analogue of the Krylov sub-
space methods efficient for computing the eigenvalues and pseudospectra of Fredholm
convolution operators.

This work complements the previous ones on the spectral approximation of the
Volterra convolution operators [5, 13]. An exciting generalization of this work is
to kernels with singularities following a similar approach in [13] and this paper via
recurrence relations. This may lead to new methods for the evaluation of fractional
integrals and the solution to fractional integral and differential equations, joining the
existing spectral methods for these problems, e.g., [14, 1, 4, 8].

Reproducibility of computational results. This paper has been awarded
the ``SIAM Reproducibility Badge: Code and data available"" as a recognition that
the authors have followed reproducibility principles valued by SISC and the scientific
computing community. Code and data that allow readers to reproduce the results
in this paper are available at https://github.com/xiaolin9907/FredConv and in the
supplementary materials (M165253 SM.zip [local/web 18.9KB]).
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