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Abstract—In this paper we propose and analyze a localized
backbone renovating algorithm (LBR) to renovate a broken
backbone in the network. This research is motivated by the
problem of virtual backbone maintenance in wireless ad hoc
and sensor networks, where the coverage area of nodes are disks
with identical radii. According to our theoretical analysis, the
proposed algorithm has the ability to renovate the backbone
in a purely localized manner with a guaranteed connectivity of
the network, while keeping the backbone size within a constant
factor from that of the minimum CDS. Both the communication
overhead and computation overhead of the LBR algorithm
are O(k), where k is the number of nodes broken or added.
We also conduct extensive simulation study on connectivity,
backbone size, and the communicaiton/computation overhead.
The simulation results show that the proposed algorithm can
always keep the renovated backbone being connected at low
communication/computation overhead with a relatively small
backbone, compared with other existing schemes. Furthermore,
the LBR algorithm has the ability to deal with arbitrary number
of node failures and additions in the network.

Index Terms—maximal independent set, backbone renovating

I. INTRODUCTION

Virtual backbone is an important issue in wireless ad hoc
and sensor networks and has been widely applied in various
research domains such as routing, coverage, interference man-
agement, energy saving, etc., e.g., CDS as a virtual backbone
[1]–[5], or for coverage [6] and network topology control
[7]–[9] for saving energy and reducing signal interference.
In general, most of these approaches end up of forming a
dominating set as a backbone, through which each node in the
network either is on the backbone or has at least a backbone
node as its neighbors.

However, in wireless ad hoc and sensor networks the
network topology keeps changing all over the time due to
node failures, additions, or periodically switch on/off. It is
very likely that the constructed backbone quickly becomes
defective. The dynamism of the network poses a great chal-
lenge for backbone management/maintenance. Therefore, it
is imperative to provide an effective solution for backbone
maintenance.

In maintaining a backbone in ad hoc and sensor networks,
the localized approach is most favorable due to its efficiency

and its support to scalable design and network dynamism.
In this paper, we propose and analyze a localized back-
bone renovating (LBR) algorithm. This algorithm explores
the geometric properties of unit-disk graphs and renovates a
backbone at an ultra low O(k) computation overhead and O(k)
communication overhead, where k is the number of nodes
broken or added.

The major contributions of this paper are identified below:
• In this paper, we proposes a purely localized backbone

renovating algorithm (LBR) with ultra low communica-
tion and computation overhead.

• The proposed LBR algorithm has the capability of provid-
ing a renovated backbone with guaranteed connectivity
of the network. It is proved that unless the network is
no longer connected, the proposed algorithm can always
keep the renovated backbone being connected.

• The proposed LBR algorithm has the ability to deal with
arbitrary number of node failures and additions in the
networks in a purely localized manner.

• We have conducted extensive simulation study under var-
ious scenarios. The results show that the LBR algorithm
can effectively repair the backbone in an efficient manner
compared with other existing centralized and localized
approaches.

The rest of the paper is organized as follows: Section II
presents the related works. The preliminaries, models and
assumptions are introduced in Section III. Section IV fur-
ther derives some geometric properties of unit-disk graphs
that serve as the basis of the localized backbone renovating
algorithm. Section V is devoted to the localized backbone
renovating algorithm design. Section VI provides our theo-
retical analysis on LBR. Section VII reports our simulation
study and comparison results, followed by the conclusions in
Section VIII.

II. RELATED WORK

In the following we briefly overview the related works of
backbone construction and maintenance in unit-disk graph and
summarize the most related research.

Finding a CDS in the network is a popular approach for
backbone construction. The study of NP-Completeness of



finding an MCDS in general graphs is proposed in [10].
This problem remains NP-hard in unit-disk graphs [11]. For a
detailed literature survey, we refer the readers to [12] and the
references therein.

Wan proposes the first MIS based CDS construction algo-
rithm [13]–[15]. A similar approach is proposed in [16] to
construct and connect an MIS simultaneously. A PTAS for
MCDS in unit-disk graphs is proposed in [17]. [18] proposed
a distributed algorithm for producing a tree-like backbone with
O(n) computation complexity and O(nlogn) communication
overhead. [19] selects the nodes with wider communication
range, more energy, etc., then uses a steiner tree to connect
the dominating set. [20] constructs the backbone via alge-
braic connectivity and introduce a new metric, connectivity
efficiency, as a benchmark when constructing the backbone.
In [21], by setting a timer at each node, the nodes with higher
node degree have higher probability to be included in the
backbone, which finally produces a spanning tree. [22] aims
to construct a backbone with the longest lifetime based on a
weight matrix of energy efficiency.

In unit-disk graphs and general graphs, the size relationship
between MCDS and MIS has been well studied, e.g., [9],
[23]–[30]. [31] uses local neighbors information and takes
node priority into consideration to construct a CDS, and
used an iterative application of a selected local solution to
maintain the CDS when the topology changed. In [32], a
connected dominating set is built directly without calculating
MIS. In [33], an MIS is constructed at first, and then the
CDS constructed with gateway nodes. [34] proposed a protocol
that is called Distributed Clustering Algorithm (DCA), which
can produce a maximal independent that is also a minimal
dominating set. [35] proposed a distributed algorithm for cal-
culating a minimal dominating set by a sequential, centralized
greedy way, whose execution time is polynomial, which is
associated with the size of network. [29]presents a distributed
algorithm which constructs a CDS D of size at most α·opt for
some fixed constant α in a polynomial time. Compared with
[29], [30] proposes a polynomial-time constant-approximation
algorithm, GOC-MCDS-C, that produces a CDS D whose size
|D| is within a constant factor from that of the minimum CDS.
[36] proposed a local randomized greedy (LRG) algorithm,
which calculates a minimal dominating set in poly-logarithmic
time. However, it can‘t guarantee connectivity.

Another kind of approach focuses on cluster based topology
and produces a independent set with the cluster heads. [37]
selects the cluster head based on node degree, while in
[38] the cluster head is selected based on the normalized
link failure frequency and the mobility of the nodes. These
algorithms usually start from a single-leader, whose election
costs O(n log n) in message complexity [39]. To improve this,
multiple-leader based algorithms are proposed in [9], [40],
[41]. To connect all nodes in MIS, [40] requires that each
node u in the MIS computes a shortest path to all independent
neighbors (the nodes in I whose distance to u is either two
or three hops) with a higher id. This connection algorithm
results in a CDS with size at most 192 · opt+ 48. By further

exploring the geometric properties of neighboring independent
nodes, [9] proposes a connection algorithm to generate a CDS
with size at most 147 · opt+ 33.

Note that [9], [40], [41] are the most related work since both
propose to connect an MIS in a localized fashion. There exist
other distributed or centralized algorithms to connect an MIS.
For example, a distributed spanning tree can be constructed
to connect all nodes in an MIS [42]; or a Steiner tree with
minimum number of Steiner points can be applied to connect
an MIS [43].

III. PRELIMINARIES, MODELS AND ASSUMPTIONS

A. Preliminaries

• dominating set: Given a graph G(V,E), a dominating set
D of G(V,E) is a subset of V such that for ∀u ∈ V −D,
there exists a v ∈ D satisfying uv ∈ E.

• connected dominating set: If all nodes in D induce a
connected graph, D is a connected dominating set.

• minimum (connected) dominating set: Among all (con-
nected) dominating sets of V , the one with the smallest
cardinality is called the minimum (connected) dominating
set.

• independent set: An independent set I of V is a subset
of V such that ∀u, v ∈ S, uv /∈ E.

• maximal independent set (MIS): If adding any node w ∈
V to I breaks the independent property, I is a maximal
independent set (MIS).

For any vertex u in a maximal independent set I , the length
of the shortest path from u to its closest vertex in I is either
two hops or three hops.

B. Network Model

In this paper, we model the ad hoc and sensor network
as a unit-disk graph G(V,E), a widely adopted model for
wireless ad hoc and sensor networks in which nodes can
communicate with each other if their distance is at most 1 unit.
Specifically, V represents the set of sensors and E represents
the set of edges. An edge uv ∈ E if and only if u, v ∈ V
and the Euclidean distance between u and v is no larger than
1 unit. This assumption is reasonable as in ad hoc and sensor
networks the topology is determined by the transmission range,
which is usually fixed.

We assume that in the network there already exists an
MIS and a corresponding backbone that are generated by any
approach available. For example, the algorithms proposed in
[9], [40], [41] can be applied here. Let u be any vertex in
MIS, Nu be the node set of one-hop neighbors of u, I denote
the node set of MIS, and C denote the set of nodes that are
on the backbone but not in the MIS I (i.e., C is the set of
nodes that connect the MIS nodes on the backbone). Let N (I)

u

⊂ MIS denote the set of nodes in MIS that are two hops or
three hops away from u, and Iu denote the set of MIS nodes
within three hops of u. We assume N

(I)
u and Iu are available

to u.



When a node v fails or is added to the network, we assume
there is a message broadcasted to v’s neighbors in three-hop
distance.

IV. GEOMETRIC PROPERTIES OF UNIT-DISK GRAPHS

Based on the definition, an edge in a unit-disk graph exists
between two nodes if and only if their Euclidean distance is
at most 1. We have identified the following properties:

Lemma 4.1: Let uv and st be two crossing edges in a unit-
disk graph G(V,E), as shown in Fig 1. Then at least one of
u, v, s, t has direct edges to the other three vertices in G.

Proof: Assume all the four edges in the quadrilateral usvt
have length greater than 1. That is, none of the four edges us,
sv, vt, and tu exists in G. Since |sv| > 1, |vt| > 1, and |st| ≤
1, we have either ∠stv > π/3 or ∠tsv > π/3 or both. Without
loss of generality, assume ∠tsv > π/3. Then ∠usv > π/3,
which means either |uv| > |sv| or |uv| > |us|. Since |us| > 1
and |sv| > 1, we have |uv| > 1, a contradiction. Therefore at
least one of the four edges of usvt must have length at most
1.

Without loss of generality, assume |sv| ≤ 1. If |vt| ≤ 1,
then v can reach s, t, and u directly in G. Now let’s assume
|vt| > 1. Let o be the crossing point of edges uv and st.
Based on the triangle inequality, we have |ov| + |ot| > |vt|
and |os| + |ou| > |us|. Therefore |uv| + |st| > |vt| + |us|.
Since |uv| ≤ 1, |st| ≤ 1, and |vt| > 1, we have |us| < 1,
indicating s can reach u, v, and t directly in G.

From the above analysis, we conclude that at least one of
u, s, v, t can reach the other three vertices directly if uv and
st intersect in a unit-disk graph G.

s

u
t

v

o

Fig. 1. uv and st are two crossing
edges in a unit-disk graph G. Then
at least one of u, v, s, and t
can reach the other three vertices
directly in G.

Fig. 2. The array Hu, in which
elements are sorted in counter-
clockwise.

Lemma 4.2: Let u, v, s, t be four vertices in any MIS of a
unit-disk graph G such that there exists a path Puv with length
at most three hops to connect u and v and a path Pst with
length at most three hops to connect s and t. Let P be the set
of intersecting nodes in Puv and Pst. Then u, v, s, t can reach
each other by traversing only vertices in P .

Proof: Let v1, v2, v3, v4 be the four vertices in Puv and
Pst such that the two edges v1v2 and v3v4 cross. From
Lemma 4.1, we know that one of these four vertices can reach
the other three directly. Without loss of generality, assume
v1 can reach v2, v3, v4 directly. Then by passing through v1
and other vertices in P , u, v, s, t can reach each other. Three
example scenarios are illustrated in Fig 3.

Note that the path length constraint of this Lemma can be
relaxed. Actually in a unit-disk graph G, every pair of nodes
in two crossing paths can reach each other by traversing only
vertices in these two paths.

Lemma 4.3: Let u, v be two vertices in any MIS of a unit-
disk graph G such that there exists a path Puv with length
at most three hops to connect u and v. Considering the
straight line segment uv, every point on uv is covered in the
transmission range of the nodes in Puv .

Proof: As shown in Fig 4(a), we only need to consider
the extreme case that Puv is a three hops path with maximum
length. It is obvious that other paths with smaller length are
always within the polygon uvyx, and cover all the points that
Puv covers on uv. Let x, y be the intermediate nodes in Puv .
Take x and y as the center, draw a circle with radius 1 unit
crossing uv at point a and b respectively. Take u and v as the
center, draw a circle with radius 1 unit crossing uv at point
c and d respectively. Let α and β denote ∠xuc and ∠yvd
respectively.

There are three different cases:

Case 1: ac and bd are within u’s transmission range and
v’s transmission range, respectively, as shown in Fig 4(b).

Suppose u’s transmission range and v’s transmission range
do not overlap. Since α > π/3 and β > π/3. Denote
the projection of xc and yd on uv by Projxc and Projyd
respectively. Obviously the length of Projxc and Projyd is
larger than 1/2. We have |Projxc|+ |Projyd| > 1. Therefore,
|Projxc+|Projyd+cd| > 1. Since Projxc+Projyd+cd is the
projection of xy on uv, |Projxc + |Projyd + cd| < |xy| = 1.
Contradict to previous derivation. Therefore, u’s transmission
range and v’s transmission range must overlap. So every point
on uv is covered in the transmission range of the nodes in
Puv .

Case 2: Either ac or bd is within u’s transmission range
or v’s transmission range.

Suppose u’s transmission range and v’s transmission range
do not overlap, namely |uv| > 1. Without loss of generality,
we assume bd is within v’s transmission range, as shown in
Fig 4(c). Obviously β > π/3 and |yu| ≤ |xy|+ |xu| = 2. We
have |yu|2 = |uv|2+1−2|uv| cosβ ≤ 2. Therefore, |uv| ≤ 1,
which contradicts the assumption |uv| > 1. Therefore, u’s
transmission range and v’s transmission range must overlap.
So every point on uv is covered in the transmission range of
the nodes in Puv .

Case 3: ac and bd are outside of u’s transmission range
and v’s transmission range.

We assume ac and bd do not overlap, as shown in Fig 4(d).
Otherwise all the points in cd are covered by either x or y,
and thus the proof is trivial.
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Fig. 3. Case study for Lemma 4.2. Puv and Pst are two crossing paths in a unit-disk graph G. v1, v2, v3 and v4 are the four vertices of the two crossing
edges. Then u, v, s, t connect to each other by traversing only nodes in Puv and Pst.
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(c) Case 2: ac is outside u’s trans-
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u v

x
y

a b

1 1 

dc

1 1 
α β

1 

(d) Case 3: ac and bd are outside of
u’s transmission range and v’s trans-
mission range.

Fig. 4. Case study for Lemma 4.3

Obviously α < π/3 and β < π/3. We also have ∠uxa =
π − 2α and ∠vyb = π − 2β. Therefore

∠xyb+ ∠yxa
= 2π − ∠uxa− ∠vyb− α− β

= α+ β

< 2π/3

Since ac and bd do not overlap, we have |xb| > |xa| = 1
and |xy| = |by| = 1. In ∠xby, we have |xb| > |xy| = |by| =
1. Therefore ∠xyb > π/3. Similarly we have ∠yxa > π/3.
Thus ∠xyb+ ∠yxa > 2π/3. Contradict.

Therefore, ac and bd must overlap and are covered in the
transmission range of the nodes in Puv .

Corollary 4.1: All the points within the convex polygon
uvst are covered by the transmission range of the nodes in
Puv .

Lemma 4.4: Let u, v, s, t be four vertices in any MIS of a
unit-disk graph G such that u and v are within at most three
hops, and s and t are within at most three hops. If the line
segment uv crosses the line segment st, given any arbitrary
path Pst with length at most three hops to connect u and v
and path Puv with length at most three hops to connect s and
t, they must be connected.

Proof: Given an arbitrary path Puv . Consider the convex
polygon uvyx formed by Puv and uv, as shown in Fig 5.
There are three different cases:

Case 1: t is within the convex polygon uvyx, as shown
in Fig 5(a).

t is covered by the transmission range of the nodes in
Puv according to Corollary 4.1. Therefore Puv and Pst are
connected.

Case 2: Pst crosses Puv , as shown in Fig 5(b).
The proof is trivial according to Lemma 4.2.

Case 3: Pst does not cross Puv , as shown in Fig 5(c).
Since v is within the convex polygon formed by st and Pst,

same result applies here according to Case 1.

V. LOCALIZED BACKBONE RENOVATING ALGORITHM

In this section, a backbone expansion procedure is proposed
first. Then we introduce our localized backbone renovating
(LBR) algorithm. Specifically, during backbone renovating
there are two scenarios to consider: 1. node failure; 2. node
addition. In both scenarios we choose to update either I or C,
or both. The detailed design of LBR algorithm is elaborated
in the following sections.

A. Backbone Expansion with Convex-hull

Given a node u in MIS I , let Hu denote the convex
hull of the nodes in u ∪ N

(I)
u , where Hu is an array that

records the nodes on the boundary of the convex hull of u,
as shown in Fig.2. The convex hull can be easily calculated
by Graham’s Scan algorithm. Note that the number of nodes
on the boundary of convex hull Hu is limited by a constant
number 18 [27], the execution of Graham’s Scan algorithm
costs a constant time for the computation of convex hull Hu.

Let node u ∈ V compute the shortest path to connect u and
the nodes of N (I)

u on the boundary of convex-hull Hu. All the
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Fig. 5. Case study for Lemma 4.4

intermediate nodes that connect u and the nodes of N
(I)
u on

the convex-hull Hu form a set Cu, as shown in Fig.2. ∀u ∈ V
∩Cu form the set C. It is worth pointing out that C ∪ I is
proved to be a backbone in [27]. In the following the word
backbone refers to the expanded backbone.

B. Localized Backbone Renovation with Node Failure
Given an arbitrary node v fails in the network, there are

three cases: (a). v ∈ I , namely v belongs to the MIS; (b).
v ∈ C, namely v belongs to the backbone but v is not in the
MIS; (c). v belongs to neither I nor C, namely v does not
belong to the backbone. In the following we sketch the basic
idea of our algorithm to deal with the three cases.

1) Case 1: v ∈ I , namely v belongs to the MIS: In this
case, there are four steps to renovate the backbone:

• Step 1. The MIS is renovated by I ′ = I ∪ MDS(S),
where S denotes the set of v’s one-hop neighbors that
are not adjacent to any node in I , and MDS(S) denotes
the minimum dominating set of S.
Remark 5.1: Note that the local topology information
(e.g., N I

v ) is available to ∀u ∈ S, where |S| is no
greater than the node degree of v (usually a small constant
number), node u ∈ S could easily compute a uniquely
determined MDS(S). Then the nodes u ∈ N I

v update
their Iu. We have I ′ = I ∪MDS(S).
Remark 5.2: Note that though we use I ′ = I∪MDS(S),
this update is not necessarily taken all over the network.
Instead, it is only taken by nodes within three hops of v,
i.e., only the nodes within v’s three hops update their Iu
with I ′u = Iu ∪MDS(S) ∩N I

u .
• Step 2. The node u ∈ I where v ∈ Hu (i.e., v is on the

boundary of the convex hull of u) renovates its convex
hull based on N I′

u \ v. Specifically, node u launches
Graham Scan algorithm with N I′

u \v to update its convex
hull and the shortest paths to the nodes on convex hull,
denoted as H ′

u and C ′
u.

Remark 5.3: It is worth pointing out that all the nodes
in Hu except v will remain in H ′

u. The detailed proof is
given in Lemma 6.1.

• Step 3. Every newly added node u ∈ MDS(S) computes
its convex hull Hu and the corresponding Cu to connect
to the nodes in Hu. According to Step 1 and Step 2, the
set C is renovated by C ′ = (

∪
u∈I′\I Cu) ∪ C \ Cv .

• Step 4. I ′ ∪ C ′ contributes the renovated backbone. It is
worth pointing out that I ′ ∪ C ′ is a CDS. The detailed
proof will be given in Lemma 6.4.

2) Case 2: v ∈ C, namely v is on the backbone but v does
not belong to MIS: Let u,w ∈ I denote two nodes in the MIS
that are connected through node v on the backbone, where
u ∈ N I

w and w ∈ N I
u . If the alternate shortest path between u

and w is not greater than 3, u and w will be connected with
this alternate shortest path. The corresponding intermediate
nodes on the path between u and w will be updated in C ′.

If the alternate shortest path between u and w is greater
than 3, i.e., u /∈ N I

w and w /∈ N I
u , u and w begin to update

their convex hulls based on Section V-A. All the nodes in Hu

except w will remain in H ′
u, and vice versa. The detailed proof

is given in Lemma 6.1.
3) Case 3: v /∈ I ∪ C, namely v does not belong to the

backbone: Since the backbone is a connected dominating set,
for the nodes that do not belong to the backbone, they must
be dominated by the backbone. In other words, they are all
one-hop neighbors adjacent to the backbone nodes. Therefore,
it doesn’t need to take any action when node v fails in this
case.

According to Lemma 6.9, I ′∪C ′ is the renovated backbone
and connects all the nodes in the network.

C. Localized Backbone Renovation with Node Addition

Given an arbitrary node v added into the network, there
are two cases: (a). v ∈ Nu, where u ∈ I , namely v has a
neighbor u in MIS; (b). @u ∈ I such that v ∈ Nu, namely v
is not adjacent to any node in MIS. In the following we sketch
the basic idea of our algorithm to deal with the two cases.

1) Case 1: @u ∈ I such that v ∈ Nu, namely v is not
adjacent to any node in MIS:

• Step 1. The MIS I is renovated first by adding v to I .
Let I ′ denote the renovated MIS, we have I ′ = I ∪ v.
Specifically, v selects itself as a new MIS node by
broadcasting this notification to its neighbors within three
hops and then collecting the local topology information
from these nodes.
Remark 5.4: Note that though we have I ′ = I ∪ v, this
information is not necessary to be broadcast over the
whole network. Instead, every node only needs to know
the topology changes within its three hops. Therefore,



only the nodes u within v’s three hops update their local
MIS information I ′u.

• Step 2. The set C is renovated. Let C ′ denote the
renovated set C, we have C ′ = C ∪ Cv . Specifically, v
computes Hv with N I

v based on Graham Scan algorithm
and connects to the nodes on the boundary of convex-
hull Hv via the shortest path. Then all the intermediate
nodes that connect v and the nodes on the boundary of
convex-hull Hv form the set Cv . I ′ ∪ C ′ contributes the
renovated backbone.

• Step 3. I ′ ∪ C ′ contributes the renovated backbone.
2) Case 2: v ∈ Nu, where u ∈ I , namely v has a neighbor u

in MIS: Since v has a neighbor u in MIS, it must be dominated
by u on the backbone. Therefore, it doesn’t need to take any
action when node v is added into the network in this case.

According to Lemma 6.9, I ′∪C ′ is the renovated backbone
and connects all the nodes in the network.

D. LBR Algorithm

This section provides the pseudo code of LBR algorithm.

VI. PERFORMANCE ANALYSIS

Lemma 6.1: Given an arbitrary node v on the boundary of
node u’s convex hull Hu that fails, all the other boundary
nodes in Hu will remain in the renovated H ′

u.
Proof: It’s obvious that the coverage area of convex-hull

Hu will shrink. According to the property of convex hull and
the execution procedure of Graham Scan algorithm, all the
nodes in Hu except v will remain in H ′

u.
Corollary 6.1: Given an arbitrary node v ∈ I fails, during

the convex hull renovation executed at the MIS node u ∈ I
that v ∈ Hu, all the nodes in Hu will remain in the renovated
H ′

u.
Lemma 6.2: Given an arbitrary node v in the network fails

or is added in the network, LBR terminates locally in a
constant time.

Proof: According to the renovating procedure proposed
in Section V-B and Section V-C, it is easy to find that LBR
is a localized algorithm and thus terminates locally. For the
execution time, we consider two cases here.

• Case 1: Node v fails.
According to Section V-B,

1) if v ∈ I , there are four steps to renovate the backbone:
– In Step 1, the MIS is renovated as I ′ = I ∪

MDS(S). Note that |S| is no greater than the degree
of v (usually a small constant) and |MDS(S)| ≤
|S|. Step 1 is expected to terminate in a constant
time.

– In Step 2, each MIS node u ∈ I where v ∈ Hu

renovates its convex hull based on N I′

u \ v. Let k1
denote the number of nodes that need to update
their convex hull and k2 denote the size of a convex
hull. It is obvious that k1 and k2 are bounded by
the constants 30 and 18 respectively according to
[27]. Since the input of Step 2 is a constant, Step 2

Algorithm 1 Localized Backbone Renovating Algorithm
Input: v, I , C, G(V,E)
Output: The renovated backbone I ′ ∪ C′.

1: function LBR(v, I , C, G(V,E))
2: Case 1: v fails
3: if v ∈ I then ◃ v is an MIS node
4: Step 1: I ′ = I ∪MDS(S) ◃ The nodes

within v’s three-hop distance update their Ius with
I ′u = Iu ∪ MDS(S) ∩ NI

u , where S denotes the
set of v’s one-hop neighbors that are not adjacent to
any node in I , and MDS(S) denotes the minimum
dominating set of S.

5: Step 2: Renovate H ′
u ← Hu and C′

u ← Cu, ∀u ∈ I
where v ∈ Hu ◃ Each MIS node
u ∈ I where v ∈ Hu renovates its convex hull and
corresponding Cu based on NI′

u \ v.
6: Step 3: C′ = (

∪
u∈I′\I Cu) ∪ C \ v ◃

Every newly added node u ∈MDS(S) recomputes
its convex hull Hu and the corresponding Cu. The
renovated C′ is updated by the newly generated Cu

according to Step 1 and Step 2.
7: end if
8: if v ∈ C then ◃ v is on the backbone but is not an MIS

node.
9: Step 1. Compute the shortest path SP (u,w) between u

and w ◃ u,w ∈ I denote two nodes in the MIS
that are connected through node v on the backbone,
where u ∈ NI

w and w ∈ NI
u

10: Step 2-1. If |SP (u,w)| ≤ 3, update C′ with SP (u,w)
◃ If the alternate shortest path between u and w is
no greater than 3, update the set C′ with this shortest
path SP (u,w).

11: Step 2-2. If |SP (u,w)| > 3, recompute H ′
u, H

′
w and

C′
u, C

′
w and update C with C′

u and C′
w ◃ If the

alternate shortest path between u and w is greater
than 3, i.e., u /∈ NI

w and w /∈ NI
u , u and w begin to

update their convex hulls and then Cu and Cw.
12: end if
13: if v /∈ I ∪ C then
14: No action is needed.
15: end if
16:
17:
18: Case 2: v is a newly added node
19: if @u ∈ I such that v ∈ Nu then ◃ v is not adjacent to any

node in MIS
20: Step 1: I ′ = I ∪ v ◃ The MIS I is renovated by adding

v to I
21: Step 2: Compute Hv, Cv ◃ The set C is renovated
22: else
23: No action is needed.
24: end if
25: Nodes in I ′ ∪C′ contribute the renovated backbone. Return.
26: end function



terminates in a constant time according to Graham
Scan algorithm.

– In Step 3, the set C is renovated as C ′ =
(
∪

u∈I′\I Cu)∪C \Cv; Since the number of newly
added nodes u ∈ I ′ \ I is a small constant number
and the size of a convex hull is limited by 18, the
computation of the convex hulls and the correspond-
ing Cus costs a constant time.

– In Step 4, I ′ ∪ C ′ contributes the new backbone,
which costs a constant time for the local nodes
within three-hop distance of v to update their cor-
responding information of the renovated backbone.

2) if v ∈ C, either an alternate shortest path SP (u,w)
within three hops between u and w is computed, where
u,w ∈ I denotes two nodes in the MIS connected
through node v on the backbone and u ∈ N I

w and
w ∈ N I

u ; or u and w need to update their convex hull.
Both cost a constant time.

3) if v /∈ I ∪ C, no action is taken.
From the above we can see that in each step the ren-
ovation procedure can be finished in a constant time.
Therefore, LBR terminates in a constant time when a
node fails.

• Case 2: Node v is a newly added node.
According to Section V-C,

1) if v ∈ Nu, where u ∈ I , no action is taken.
2) if @u ∈ I such that v ∈ Nu

– In Step 1, the MIS I is renovated by adding v to I ,
which costs a constant time.

– In Step 2, the set C is renovated by C ′ = C ∪
Cv . Specifically, the corresponding convex hull Hv

is generated with Graham Scan algorithm and v is
connected to the nodes in Hv via the shortest path,
both of which cost a constant time since the size of
convex hull is limited by 18 [27];

– In Step 3, I ′ ∪ C ′ contributes the new backbone,
which costs a constant time.

From the above we can see that in each step the update
procedure can be finished in a constant time. Therefore,
LBR terminates in a constant time when a node is added.

Therefore, LBR terminates locally in a constant time.
Corollary 6.2: Given that an arbitrary node in the network

fails or is added, the communication overhead of LBR is O(k),
where k is the number of nodes broken or added.

Corollary 6.3: Given that an arbitrary node in the network
fails or is added, the computation overhead of LBR is O(k),
where k is the number of nodes broken or added.

Corollary 6.4: The computation complexity of LBR is
O(n), where n is the number of nodes broken or added.

Lemma 6.3: Given an arbitrary node v ∈ I fails while the
network is still connected, all the other nodes in I will remain
on the renovated backbone.

Proof: According to Section V-B, during backbone ren-
ovating procedure, the only node that is removed from the

backbone is v itself. All the other nodes in I remain in the
newly renovated MIS I ′. Since the backbone is I ′ ∪ C ′, all
the other nodes in I remain on the renovated backbone.

Lemma 6.4: Given an arbitrary node v ∈ I fails, while
the network is still connected, the renovated backbone is
connected.

Proof: Obviously I ′ is a dominating set. In the following
we prove that I ′ ∪ C ′ is a connected dominating set, namely
a backbone. According to Section V-B1, S denotes the set of
v’s one-hop neighbors that are not adjacent to any node in I ,
and MDS(S) denotes the minimum dominating set of S, we
have

• Case 1: If MDS(S) = ∅, namely S = ∅, we have I ′ =
I \v. Let C ′′ denote the set that is obtained by launching
backbone expansion with I ′. According to [27], since the
network is still connected, I ′ ∪ C ′′ can be proved to be
a backbone. We then prove C ′ = C ′′.
According to the convex hull computation procedure,
∀u ∈ I that is not involved in the convex hull renovation
procedure, its Cu is the same as that in C ′′.
∀u ∈ I that needs to update its convex hull Hu and Cu in
Step 2 in Section V-B1, it is obvious that H ′

u is computed
based on I \ v, (or more specifically N I

u \ v), which is
the same as the convex hull computed during backbone
expansion with N I′

u . Thus C ′
u is the same as that in C ′′.

Therefore, we have C ′ = C ′′, and thus the renovated
nodes in I ′∪C ′ are connected and contribute a backbone.

• Case 2: ∀u ∈ MDS(S), suppose w ∈ I ′ is the farthest
node to u where w ∈ N I′

u ∩ (I ′ \MDS(S)). If w exists,
u must connect with w according to the convex hull
generation procedure given in Graham Scan algorithm.
If w does not exist, u must connect with at least one
node in MDS(S). Let M denote such set of nodes in
MDS that these nodes only connect with the nodes in
MDS(S). Since the network is connected, the nodes in
M must connect with at least one node in I ′ \MDS(S).
Therefore, every node in MDS(S) either directly con-
nects to the nodes in I ′\MDS(S), or indirectly connects
to them through some intermediate nodes in MDS(S).

(a) If (I ′ ∪ C ′) \MDS(S) is connected, note that every
node in MDS(s) directly or indirectly connects to the
nodes in I ′ \MDS(S), I ′ ∪ C ′ must be connected.

(b) If (I ′ ∪C ′) \MDS(S) is not connected, without loss
of generality, we assume (I ′∪C ′)\MDS(S) consists
of two disjointed components A and B. Note that the
network is connected, there must exist a path connect-
ing A and B through MDS(S). Let c, d ∈ MDS(S)
denote the closest node to A and B on the path,
respectively, a ∈ N I′

c denotes the farthest node to
c where a ∈ N I′

c ∩ A, and b ∈ N I′

d denotes the
farthest node to d where b ∈ N I′

c ∩ B. According to
the convex hull generation procedure given in Step 3
in Section V-B1, c, d ∈ MDS(S) must connect with
a ∈ A and b ∈ B respectively via the nodes in I ′∪C ′.
For contradiction we assume c and a are not connected



by the nodes in I ′ ∪ C ′. We have a /∈ H ′
c and

c /∈ H ′
a (otherwise c and a are connected via H ′

c

(H ′
a) and C ′

c (C ′
a), which contradicts the assumption).

Since a and c are within three hops of each other,
a must be enclosed by Hc and c must be enclosed
by Hv . Let c1 and c2 be the two closest vertices
in Hc such that the polygon P (c, c1, c2) encloses a.
Similarly let a1 and a2 be the two closest vertices
in Ha such that the polygon P (a, a1, a2) encloses c.
It is obvious that the shortest paths SP (c, c1) and
SP (a, a1) cross, and SP (c, c2) and SP (a, a2) cross.
From Lemma 4.2, c and a can reach each other by
traversing only vertices in SP (c, c1) and SP (a, a1),
or in SP (c, c2) and SP (a, a2). This contradicts to our
assumption that c and a cannot be connected via the
nodes in I ′∪C ′. Therefore c and a must be connected
with each other via the nodes in I ′ ∪ C ′. So does
the nodes b and d. Similarly, Let e, f ∈ MDS(S)
denote the second closest node to A and B on the
path, respectively, and e and f will connect with A∪ c
and B ∪ d respectively. And so on. Until e and f are
within three hops of each other. Based on the proof
above, we can easily find that e and f connect with
each other according to Lemma 4.2

Based on the proof above, the renovated backbone I ′ ∪ C ′ is
connected.

Lemma 6.5: Given an arbitrary node v ∈ I is added into the
network, while the network is still connected, the renovated
backbone is connected.

Proof: According to Section V-C1, node v indirectly
connects to the backbone via its convex hull Hv . Therefore
the renovated backbone is still connected.

Corollary 6.5: Given an arbitrary node v ∈ I fails or is
added into the network, while the network is still connected,
the renovated backbone is connected.

Lemma 6.6: Given an arbitrary node v in C fails, while
the network is still connected, the renovated backbone is
connected.

Proof: If v ∈ C fails, either an alternate shortest path
between u and w should be computed, where u,w ∈ I denotes
two nodes in the MIS that are connected through node v on the
backbone, u ∈ N I

w and w ∈ N I
u ; or u and w need to update

their convex hull. In the former case, the alternate shortest
path connects the backbone. Therefore the renovated backbone
is connected. In the latter case, let C ′′ denote the set that
is obtained by launching backbone expansion with I ′ = I .
Note that ∀u ∈ I that needs to update its convex hull Hu

and Cu according to Section V-B2, it is obvious that H ′
u is

computed based on I and the local topology is the same as
that of backbone expansion. There C ′

u is the same as that in
C ′′, C ′ = C ′′. The renovated nodes in I ′ ∪ C ′ are connected
and contribute a backbone.

Lemma 6.7: Given an arbitrary node v ∈ Nu where u ∈ I
is added, while the network is still connected, the renovated
backbone is connected.

Proof: According to Section V-C2, node v directly con-
nects itself to the backbone (or more specifically node u).
Therefore the renovated backbone is still connected.

Lemma 6.8: Given an arbitrary node on the backbone that
fails, while the network is still connected, the renovated
backbone is connected.

Proof: According to Corollary 6.5, Lemma 6.6 and
Lemma 6.7, given an arbitrary node on the backbone fails,
the renovated backbone provided by LBR is connected.

Lemma 6.9: Given an arbitrary node in the network fails or
is added, while the network is still connected, the renovated
backbone is connected.

Proof: According to Lemma 6.8, given an arbitrary node
on the backbone fails or is added, the renovated backbone
provided by LBR is connected.

Corollary 6.6: The renovated backbone is always con-
nected if the network is connected.

Lemma 6.10: Let h denote the cardinality of the convex
hull Hu, the cardinality of the renovated backbone is at most
2h · |I|.

Proof: Since all nodes in Hu are independent, their
communication radius is at least one unit. In the extreme
case, at most the number of h vertices reside on Hu whose
distance is three hops from u (h is a constant number which is
smaller than 18 since the maximum number of nodes in Hu is
2π×3 = 6π < 19). In other words, u may be connected to at
most h nodes in Hu through shortest paths. Since each shortest
path is at most three hops, at most two intermediate nodes are
introduced between u and any node in Hu. Therefore each
node u will be charged for at most 2h intermediate vertices.
This completes the proof.

Note that a maximal independent set of V is also a domi-
nating set of V . Multiple works (e.g., [15]) have proved the
following result that relates the size of any MIS of a unit-disk
graph G to that of its MCDS.

Lemma 6.11: Let I be any maximal independent set and
opt be any MCDS of a unit-disk graph G. Then |I| ≤ k ·
|opt|+ 1 for |opt| > 1, k ≤ 4.

Lemma 6.12: Let h denote the cardinality of the convex
hull Hu, which is usually a small constant. The size of the
connected dominating set renovated by LBR is less than 8h ·
opt+ h+ 1, where opt is the size of a MCDS.

Proof: This lemma follows from Lemma 6.11 and
Lemma 6.10.

VII. SIMULATION

In this section, We compare the performance of three
different backbone maintenance algorithms with LBR, OST, a
centralized algorithm that keeps a minimum spanning tree in
entire network; AST, another centralized algorithm that keeps
the minimum spanning trees computed with every MIS node
as a root in the network; BF, a localized best-effort algorithm
that tries to reconnect every broken part on the backbone with
shortest path within three hops. It is worth pointing out that



BF may fail to renovate the backbone sometimes and cannot
guarantee network connectivity after maintenance.

The metrics we used to evaluate the performance of LBR
and other algorithms are the size of maintained backbone and
the success rate that the renovated backbone is connected while
the network is connected.

A. Settings

In the simulation, nodes are randomly distributed in an
area of 500m × 500m and the results are averaged over 100
runs. The communication radius of each node is chosen from
[30m, 40m]. According to our simulation settings, the radius
of 30m indicates that the initial network is sparse (i.e., average
node degree is about 6) and the radius of 40m indicates that the
initial network is relatively dense (i.e., average node degree is
about 10). Let cn denote the number of changed nodes in the
network, where cn = [50, 100, 150, 200, 250, 300, 350, 400]
and 0 represents the initial topology, fr denotes the percentage
of the number of failed nodes in cn, ar denotes the percentage
of the number of added nodes in cn. Obviously, fr + ar =
100%.

The network topology changes over time in three ways.
In the first topology changing situation, the initial number of
nodes in the network is 300, fr = 10%, and ar = 90%. This
setting can show the performance of these algorithms when the
number of nodes in the network increases (i.e., the network
becomes denser). In the second topology situation, the initial
number of nodes is 500, fr = 50%, and ar = 50%. This
setting can show the performance when the size of the network
slightly changes. In the third situation, the initial number of
nodes is 500, fr = 90%, and ar = 10%. This setting can show
the performance when the number of nodes in the network
decreases (i.e., the network becomes sparser). The failed nodes
(newly added nodes) are randomly selected (deployed) in the
network.

B. Simulation Results

1) Simulation Study on Backbone Size: Fig.6, Fig.7, and
Fig.8 illustrate the relationship between the size of the
backbone and the number of changed nodes given [ar =
90%, fr = 10%], [ar = 50%, fr = 50%], and [ar =
10%, fr = 90%], respectively, under different communication
radii 30m and 40m.

Both Fig.6 and Fig.8 show that as the number of nodes in
the network increases (decreases), the size of the backbone
increases (decreases) linearly in all the algorithms OST, AST,
BF, and LBR. OST leads to the slowest backbone size increase
(decrease) as it uses only one minimum spanning tree in
the network. BF leads to the second slowest backbone size
increase (decrease) as it repairs a spanning tree locally and
thus leads to limited size increase (decrease) in the network.
AST leads to the fastest backbone size increase (decrease)
as it uses all possible minimum spanning trees rooted at the
nodes in MIS. LBR leads to the medium increase (decrease)
of backbone size among the three algorithms, as it repairs the
backbone locally and terminates locally at a constant time,

as shown in Lemma 6.2. LBR does not necessarily provide
a minimum spanning tree or contribute the combination of
all possible minimum spanning trees. Thus LBR leads to the
medium increase (decrease) in both Fig.6 and Fig.8.

Fig.7 illustrates the relationship between the size of the
backbone and the number of changed nodes given ar = 50%
and fr = 50% under the communication radii 30m and
40m, respectively. Both Fig.7(a) and Fig.7(b) show that as
the number of nodes in the network remains stable, the size
of the backbone remains stable in all algorithms OST, AST,
BF, and LBR.

According to Fig.6, Fig.7, and Fig.8, OST and BF lead
to the smallest backbone all the time as they use only one
minimum spanning tree in the network. AST leads to the
largest backbone as it uses all possible minimum spanning
trees rooted at the nodes in MIS. LBR leads to a medium-
size backbone among the three algorithms, as it repairs the
backbone locally and terminates locally at a constant time, as
shown in Lemma 6.2.

From Fig.6, Fig.7, and Fig.8, we can also find that the
larger the communication radius, the denser the network, the
smaller the renovated backbone, and vice versa. It is also
interesting to observe that when the network becomes denser,
the backbone size of LBR generally follows the trend of that
of OST; when the network becomes sparser, the backbone size
of LBR generally follows the trend of AST.
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(b) Communication radius = 40m

Fig. 6. The size of backbone vs. the number of changed nodes under
the topology changing setting ar = 90% and fr = 10% under different
communication radii [30m, 40m].
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(b) Communication radius = 40m

Fig. 7. The size of backbone vs. the number of changed nodes under
the topology changing setting ar = 50% and fr = 50% under different
communication radii [30m, 40m].



50 100 150 200 250 300 350 400
100

150

200

250

300

350

400

The number of changed nodes

T
he

 s
iz

e 
of

 th
e 

ba
ck

bo
ne

 

 

AST
LBR
BF
OST

(a) Communication radius = 30m

50 100 150 200 250 300 350 400
100

150

200

250

300

350

400

The number of changed nodes

T
he

 s
iz

e 
of

 th
e 

ba
ck

bo
ne

 

 

AST
LBR
BF
OST

(b) Communication radius = 40m

Fig. 8. The size of backbone vs. the number of changed nodes under
the topology changing setting ar = 10% and fr = 90% under different
communication radii [30m, 40m].

2) Simulation Study on Success Rate: It is worth pointing
out that the success rates of AST, OST are always 1 when
the network is connected. This result is reasonable since
both AST and OST are centralized algorithms and thus can
always guarantee connectivity when the network is connected.
Therefore, we simple compare the success rate of LBR and
BF.

Fig.9, Fig.10, and Fig.11 illustrate the relationship between
the success rate and the number of changed nodes given
[ar = 90%, fr = 10%], [ar = 50%, fr = 50%], and [ar =
10%, fr = 90%], respectively, under different communication
radii 30m and 40m.

Both Fig.9 and Fig.11 show that as the number of nodes
in the network increases (decreases), the success rate that the
backbone renovated by BF is connected increases (decreases)
in BF. In Fig.10, it is also interesting to observe that when the
number of nodes in the network remains stable, the success
rate that the backbone renovated by BF is connected is not
stable and slowly decreases as the number of changed nodes
increases. This indicates that BF is not robust for backbone
maintenance.

From Fig.9, Fig.10, and Fig.11, we can easily find that the
backbone renovated by LBR is always connected if the net-
work is connected. This is also proved in Lemma 6.9. In these
figures, we can also find that the larger the communication
radius, the denser the network, the higher the success rate that
the backbone renovated by BF is connected, and vice versa.
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(b) Communication radius = 40m

Fig. 9. The success rate of maintaining the network connectivity via the
renovated backbone vs. the number of changed nodes under the topology
changing setting ar = 90% and fr = 10% under different communication
radii [30m, 40m].
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(b) Communication radius = 40m

Fig. 10. The success rate of maintaining the network connectivity via the
renovated backbone vs. the number of changed nodes under the topology
changing setting ar = 50% and fr = 50% under different communication
radii [30m, 40m].
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(b) Communication radius = 40m

Fig. 11. The success rate of maintaining the network connectivity via the
renovated backbone vs. the number of changed nodes under the topology
changing setting ar = 10% and fr = 90% under different communication
radii [30m, 40m].

3) Communication and Computation Overhead: This sec-
tion studies the relationship between the size of the network
and the communication/computation overhead of the four
algorithms. Specifically, we set the initial number of nodes
in the network to [500, 1000]. The number of changed nodes
is set to 500, given the topology changing setting ar = 50%
and fr = 50% with a communication radius 40m.

Fig.12(a) shows that as the size of the network increases,
the communication overhead of the four algorithms increases.
As shown in the graph, since AST and OST are centralized
algorithm, they need to collect the global topology infor-
mation, and thus have the highest communication overhead.
OST has smaller communication compared with AST, since
OST computes much less number of minimum spanning trees
than AST. LBR and BF are localized algorithms and thus
have much less communication overhead compared with AST
and OST. However, LBR has slightly larger communication
overhead than that of BF, because it needs to repair the
topology within three hops instead of repairing only one path.

Fig.12(b) shows that as the size of the network increases,
the computation overhead of centralized algorithms increases
to some extents, because the backbone size of OST and
AST, which determines their computation overhead, becomes
stable when the size of the network (or more specifically,
the network density) increases to some extent. We can also
find that the computation overhead of LBR and BF slowly



increases, because as the size of the network increases the
number of nodes needed to repair increases.
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(b) Computation overhead

Fig. 12. The communication/computation overhead vs. the number of nodes
in the network under the topology changing setting ar = 50% and fr = 50%
with communication radius 40m.

VIII. CONCLUSION

In this paper we propose a localized backbone renovating
algorithm (LBR) for backbone maintenance in wireless ad
hoc and sensor networks. Our theoretical analysis shows that
the LBR algorithm could renovate the backbone in a purely
localized manner with guaranteed connectivity while keeping
the backbone size within a constant factor from that of the
minimum CDS. Unless the network is no longer connected,
LBR can always keep the renovated backbone connected.
Both theoretical analysis and simulation study also show that
LBR has ultra low communication and computation overhead.
Besides, LBR can deal with arbitrary number of node failures
and additions, which provides good scalability to network
management.

REFERENCES

[1] J. Wu and H. Li, “On calculating connected dominating set for efficient
routing in ad hoc wireless networks,” in DIALM ’99: Proceedings of
the 3rd international workshop on Discrete algorithms and methods for
mobile computing and communications, 1999, pp. 7–14.

[2] M. T. Thai, F. Wang, D. Liu, S. Zhu, and D.-Z. Du, “Connected
dominating sets in wireless networks with different transmission ranges,”
IEEE Transactions on Mobile Computing, vol. 6, no. 7, pp. 721–730,
2007.

[3] J. Wu, F. Dai, M. Gao, and I. Stojmenovic, “On calculating power-
aware connected dominating set for efficient routing in ad hoc wire-
less networks,” Journal of Communications and Networks, vol. 5, no. 2,
pp. 169–178, 2002.

[4] Y. Xu, J. Heidemann, and D. Estrin, “Geography-informed energy
conservation for ad hoc routing,” in MobiCom ’01: Proceedings of
the 7th annual international conference on Mobile computing and
networking, 2001, pp. 70–84.

[5] R. Sivakumar, P. Sinha, and V. Bharghavan, “Cedar: a core-extraction
distributed ad hoc routing algorithm,” IEEE Journal on Selected Areas
in Communications, vol. 17, no. 8, pp. 1454 –1465, 1999.

[6] J. Carle and D. Simplot-Ryl, “Energy-efficient area monitoring for
sensor networks,” Computer, vol. 37, no. 2, pp. 40–46, 2004.

[7] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, “Span: an
energy-efficient coordination algorithm for topology maintenance in ad
hoc wireless networks,” Wirel. Netw., vol. 8, no. 5, pp. 481–494, 2002.

[8] M. D. J. Blum and X. Cheng, Handbook of Combinatorial Optimiza-
tion. Kluwer Academic Publisher, 2004, ch. Applications of Connected
Dominating Sets in Wireless Networks, pp. 329–369.

[9] X. Cheng, M. Ding, D. H. Du, and X. Jia, “Virtual backbone construction
in multihop ad hoc wireless networks,” Wireless Communications and
Mobile Computing, vol. 6, pp. 183–190, 2006.

[10] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[11] B. N. Clark, C. J. Colbourn, and D. S. Johnson, “Unit disk graphs,”
Discrete Mathematics, vol. 86, pp. 165–177, 1990.

[12] J. Blum, M. Ding, A. Thaeler, and X. Cheng, “Connected dominating
sets in sensor networks and manets,” in Handbook of Combinatorial
Optimization (Eds. D.-Z. Du and P. Pardalos), 2004, pp. 329–369.

[13] K. Alzoubi, P.-J. Wan, and O. Frieder, “New distributed algorithm for
connected dominating set in wireless ad hoc networks,” in HICSS ’02:
Proceedings of the 35th Annual Hawaii International Conference on
System Sciences (HICSS’02)-Volume 9, 2002, p. 297.

[14] K. Alzoubi, P. Wan, and O. Frieder, “Distributed heuristics for connected
dominating set in wireless ad hoc networks,” in Journal of Communi-
cations and Networks, vol. 4, no. 1, 2002.

[15] P.-J. Wan, K. M. Alzoubi, and O. Frieder, “Distributed construction of
connected dominating set in wireless ad hoc networks,” in Twenty-First
Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM 2002), 2002, pp. 1597–1604.

[16] X. Cheng, “Routing issues in ad hoc wireless networks,” in PhD Thesis,
Department of Computer Science, University of Minnesota, 2002.

[17] X. Cheng, X. Huang, D. Li, W. Wu, and D.-Z. Du, “A polynomial-time
approximation scheme for the minimum-connected dominating set in ad
hoc wireless networks,” Networks, vol. 42, no. 4, pp. 202–208, 2003.

[18] P. Wan, K. Alzoubi, and O. Frieder, “Distributed construction of
connected dominating set in wireless ad hoc networks,” in INFOCOM
2002. Twenty-First Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, vol. 3, 2002, pp. 1597–
1604.

[19] H. Guo, Y. Qian, K. Lu, and N. Moayeri, “Backbone construction for
heterogeneous wireless ad hoc networks,” in Communications, 2009.
ICC’09. IEEE International Conference on, 2009, pp. 1–5.

[20] Z. Zhang, Q. Ma, and X. Wang, “Exploiting use of a new performance
metric for construction of robust and efficient wireless backbone net-
work,” in IWQoS’10, 2010, pp. 1–9.

[21] K. Sakai, S. Huang, W. Ku, M. Sun, and X. Cheng, “Timer-based cds
construction in wireless ad hoc networks,” Mobile Computing, IEEE
Transactions on, vol. 10, no. 10, pp. 1388–1402, 2011.

[22] S. Hussain, M. Shafique, and L. Yang, “Constructing a cds-based
network backbone for energy efficiency in industrial wireless sensor
network,” in Proceedings of HPCC, 2010, pp. 322–328.

[23] W. Wu, H. Du, X. Jia, Y. Li, and S. C.-H. Huang, “Minimum connected
dominating sets and maximal independent sets in unit disk graphs,”
Theor. Comput. Sci., vol. 352, no. 1, pp. 1–7, 2006.

[24] M. Cardei, M. X. Cheng, X. Cheng, and D.-Z. Du, “Connected dom-
ination in ad hoc wireless networks,” in International Conference on
Computer Science and Informatics (CS&I 2002), 2002, pp. 251–255.

[25] Y. Li, M. T. Thai, F. Wang, C.-W. Yi, P.-J. Wan, and D.-Z. Du, “On
greedy construction of connected dominating sets in wireless networks:
Research articles,” Wirel. Commun. Mob. Comput., vol. 5, no. 8, pp.
927–932, 2005.

[26] X. Cheng, X. Huang, D. Li, W. Wu, and D.-Z. Du, “A polynomial-time
approximation scheme for the minimum-connected dominating set in ad
hoc wireless networks,” Networks, vol. 42, no. 4, pp. 202–208, 2003.

[27] D. Chen, X. Mao, X. Fei, K. Xing, F. Liu, and M. Song, “A Convex-Hull
based algorithm to connect the maximal independent set in Unit-Disk
graphs,” 2006, pp. 363–370.

[28] L. Ding, W. Wu, J. Willson, H. Du, and W. Lee, “Construction of
directional virtual backbones with minimum routing cost in wireless
networks,” in IEEE INFOCOM’11. IEEE, 2011, pp. 1557–1565.

[29] H. Du, Q. Ye, W. Wu, W. Lee, D. Li, D. Du, and S. Howard, “Constant
approximation for virtual backbone construction with guaranteed routing
cost in wireless sensor networks,” in IEEE INFOCOM’11, 2011, pp.
1737–1744.

[30] H. Du, W. Wu, Q. Ye, D. Li, W. Lee, and X. Xu, “Cds-based virtual
backbone construction with guaranteed routing cost in wireless sensor
networks,” IEEE Transactions on Parallel and Distributed Systems,
2012.

[31] J. Wu, F. Dai, and S. Yang, “Iterative local solutions for connected dom-
inating set in ad hoc wireless networks,” Computers, IEEE Transactions
on, vol. 57, no. 5, pp. 702–715, 2008.

[32] B. Das and V. Bharghavan, “Routing in ad-hoc networks using minimum
connected dominating sets,” in IEEE ICC’97, vol. 1, 1997, pp. 376–380.



[33] S. Basagni, D. Turgut, and S. Das, “Mobility-adaptive protocols for
managing large ad hoc networks,” in IEEE ICC’01, vol. 5, 2001, pp.
1539–1543.

[34] S. Basagni, “Distributed clustering for ad hoc networks,” in I-SPAN’99,
1999, pp. 310–315.

[35] B. Liang and Z. Haas, “Virtual backbone generation and maintenance in
ad hoc network mobility management,” in IEEE INFOCOM’00, vol. 3,
2000, pp. 1293–1302.

[36] L. Jia, R. Rajaraman, and T. Suel, “An efficient distributed algorithm
for constructing small dominating sets,” Distributed Computing, vol. 15,
no. 4, pp. 193–205, 2002.

[37] M. Gerla and J. Tsai, “Multicluster, mobile, multimedia radio network,”
Wireless networks, vol. 1, no. 3, pp. 255–265, 1995.

[38] U. Kozat, G. Kondylis, B. Ryu, and M. Marina, “Virtual dynamic
backbone for mobile ad hoc networks,” in ICC’01, vol. 1, 2001, pp.
250–255.

[39] I. Cidon and O. Mokryn, “Propagation and leader election in a multihop
broadcast environment,” in DISC ’98: Proceedings of the 12th Interna-
tional Symposium on Distributed Computing, 1998, pp. 104–118.

[40] K. M. Alzoubi, P.-J. Wan, and O. Frieder, “Message-optimal connected
dominating sets in mobile ad hoc networks,” in MobiHoc ’02: Pro-
ceedings of the 3rd ACM international symposium on Mobile ad hoc
networking & computing, 2002, pp. 157–164.

[41] Y. Li, S. Zhu, M. T. Thai, and D.-Z. Du, “Localized construction of
connected dominating set in wireless networks,” in NSF International
Workshop on Theoretical Aspects of Wireless Ad Hoc, Sensor and Peer-
to-Peer Networks (TAWN04), 2004.

[42] S. Guha and S. Khuller, “Approximation algorithms for connected
dominating sets,” Algorithmica, vol. 20, no. 4, pp. 374–387, 1998.

[43] M. Min, H. Du, X. Jia, C. X. Huang, S. C.-H. Huang, and W. Wu,
“Improving construction for connected dominating set with steiner tree
in wireless sensor networks,” J. of Global Optimization, vol. 35, no. 1,
pp. 111–119, 2006.


