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For a cost-sharing cooperative game with an empty core, we study the problem of calculating a near-optimal
cost allocation that satisfies coalitional stability constraints and maximizes the total cost allocated to all play-

ers. One application of such a problem is finding the minimum level of subsidy required to stabilize the grand
coalition. To obtain solutions, we propose a new generic framework based on Lagrangian relaxation, which has
several advantages over existing work that exclusively relies on linear programming (LP) relaxation techniques.
Our approach can generate better cost allocations than LP-based algorithms, and is also applicable to a broader
range of problems. To illustrate the efficiency and performance of the Lagrangian relaxation framework, we
investigate two different facility location games. The results demonstrate that our new approach can find better
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LP-based algorithm can also solve to optimality.
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1. Introduction
Cooperative game theory addresses situations involv-
ing collaboration between multiple independent deci-
sion makers. It has applications in a variety of areas,
such as economics, finance, operations research (OR),
and telecommunications, to name just a few. In the
context of cost reduction, a cooperative game (with
transferable utility) can be roughly stated as follows.
There are n players, each of whom needs to complete a
specific task at minimum cost using a certain resource
she owns. Some, or all of the players, may form a coali-
tion by pooling their resources together to jointly work
on all their tasks, with the goal being to reduce their
total cost. The set of all players is called the grand
coalition. The major concern is how to share the total
cost of the grand coalition in a “fair” way among all
players such that no player has any incentive to quit.

While there are different approaches to defining the
“fairness” of a cost allocation, one fundamental con-
cept is coalitional stability, which requires that the
cost allocated to each coalition (the sum of the cost
allocated to each player in the coalition) is no more
than the minimum cost incurred by the coalition if
its members do not join the grand coalition. In addi-
tion, it is desirable to have a budget balance constraint

requiring that the total cost allocated to all players
is equal to the minimum cost of the grand coalition.
The core of a cooperative game is defined as the set
of cost allocations satisfying (1) coalitional stability
and (2) the budget balance constraint. The core is
not empty if there exists at least one such allocation.
When this is the case, the grand coalition is stable.
Various conditions and methods have been developed
to test the nonemptiness of the core of different coop-
erative games.

Unfortunately, it is well known that many coopera-
tive games have an empty core. For such games, alter-
native concepts have been proposed that can be used
to motivate a solution. The basic idea is to relax one of
the two conditions specified in the definition of core.
For example, the concept of least core (e.g., Maschler
et al. 1979; Kern and Paulusma 2003; Schulz and Uhan
2010, 2013) is defined by relaxing the requirement of
coalitional stability. Under the least core concept, the
cost allocated to each coalition is limited to no more
than a value z plus the minimum cost of the coalition,
where z is a parameter to be minimized.

In an alternative concept known as �-core (e.g., Jain
and Mahdian 2007), the budget balance constraint is
replaced with a �-budget balance constraint requiring
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that the total cost allocated to all players is no less
than � times the minimum cost of the grand coalition,
where 0 < � ≤ 1. The �-core is mathematically equiv-
alent to another concept known as the �-approximate
core (e.g., Faigle et al. 1998, Bläser and Ram 2008),
which enforces the budget balance constraint and
relaxes coalitional stability constraints such that the
total cost allocated to each coalition is no more than
41 + �5 times the minimum cost of the coalition. Gen-
erally speaking, the main focus of studying the �-core
or �-approximate core has centered on finding a con-
stant bound on � or � for specific games.

In this paper, we study the idea of �-core, but
with a different focus. Instead of looking for a con-
stant bound on �, we study the optimal cost allo-
cation problem (OCAP) introduced by Caprara and
Letchford (2010), to design an algorithm to exactly
calculate the best value of � for any given instance
of the game. Specifically, OCAP tries to maximize the
total cost allocated to all players subject to coalitional
stability. As pointed out by Caprara and Letchford
(2010), this can be viewed equivalently as calculat-
ing the “cost” of stabilizing the social optimum under
the grand coalition where a third party, representing
the social welfare, is willing to subsidize the stabil-
ity of the grand coalition. Here, the third party may
be a government agency, and the players a group of
private companies. Alternatively, the third party may
be the headquarters of a large corporation, and the
players different branches. In such cases, the objec-
tive of OCAP is equivalent to minimizing the gap
between the total cost allocated to all players and the
cost incurred by the grand coalition, where the gap is
to be subsidized by the third party.

Roughly speaking, there are at least two difficulties
in finding solutions to OCAP. First, as we will show
later, the common linear programming (LP) formula-
tion requires an exponential number of constraints in
the number of players n, i.e., 2n constraints. Second,
for a given cost allocation, just to verify that one of
the LP constraints is satisfied often involves solving
an optimization problem that is itself NP-hard. Hence
it is always hard to solve OCAP directly from its LP
formulation.

Solving OCAP is a natural solution concept for
cooperative games with an empty core. However,
it had not been fully studied until recently, when
Caprara and Letchford (2010) developed an LP-based
framework, referred to herein as the LPB algorithm,
to handle games in which the minimum cost of each
coalition has an integer linear programming (ILP)
formulation. Many games with this property origi-
nate from OR applications. The basic idea is to gen-
erate a stable cost allocation that achieves an LP
relaxation lower bound on the grand coalition cost.
Theoretically speaking, the LPB algorithm can solve

OCAP optimally, but doing so requires that all the
“assignable” constraints, as defined in the online sup-
plement (available as supplemental material at http://
dx.doi.org/10.1287/ijoc.2016.0707), are first identified
and added to the ILP formulation. However, some-
times it is hard to identify all assignable constraints
(e.g., rooted traveling salesman problem (TSP) game
and vehicle routing game in Caprara and Letchford
2010). Even in a case where all assignable constraints
can be identified, such as the unrooted traveling sales-
man game studied in Caprara and Letchford (2010),
the LPB algorithm may still not be applicable if there
is no polynomial-time separation algorithm over the
exponential number of assignable constraints.

In this paper, we propose a new framework to
tackle OCAP that is based on Lagrangian relaxation
rather than LP relaxation. Our approach, referred to
as the Lagrangian relaxation based (LRB) algorithm,
also tries to find a cost allocation that achieves a lower
bound on the grand coalition cost, but has the follow-
ing advantages compared to the LPB algorithm.

First, it is a generic framework that can be applied
to a broader class of cooperative games than those
addressed by Caprara and Letchford (2010). Unlike
the LPB algorithm, which is restricted to problems
with only linear objectives, the new approach is also
applicable to problems with nonlinear objectives.

Second, the LRB algorithm can find better solutions
than the LPB algorithm under the same formulation
of the grand coalition problem, due to the well-known
fact that the Lagrangian relaxation bound is no worse
than the bound provided by the relaxed LP solu-
tion. To a certain extent, this avoids the requirement
of identifying all “assignable” constraints in the LPB
algorithm. In addition, even for certain cases where
it is easy to find all assignable constraints to guar-
antee the optimality of the LPB algorithm, the LRB
algorithm is still valuable because it can offer alterna-
tive optimal cost allocations to the players, and hence,
more choices for evaluation.

Third, in solving the OCAP, our algorithm takes a
decomposition approach and creates two subgames,
which are relatively easier to solve than the original
game. One subgame has a simple optimal solution
which can be represented in closed form. The other
subgame has some beneficial properties that the orig-
inal game lacks. In many cases, the minimum cost
incurred by each coalition in the subgames is rela-
tively easier to calculate than in the original game. In
some cases, the optimal cost allocations of the sub-
games are polynomially solvable, though that of the
original game is not.

Finally, the LRB algorithm rests on a large amount
of research developed over decades to efficiently solve
the Lagrangian dual. In applying it to the OCAP, we
can take advantage of various techniques that have
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been developed to speed up convergence and pro-
duce sharper bounds. Such results can be incorpo-
rated in the LRB algorithm in its first step.

2. Literature Review
The research on cooperative games has been exten-
sive ever since the seminal work of Shapley (1953).
Some of the most prominent examples related to
OR applications include assignment games (Shapley
and Shubik 1971, Martínez-de Albéniz et al. 2013),
bin packing games (Faigle and Kern 1993, Liu 2009),
linear production games (Owen 1975), minimum
spanning tree games (Granot and Huberman 1981),
traveling salesman games (Tamir 1989, Potters et al.
1992), vehicle routing games (Göthe-Lundgren et al.
1996, Engevall et al. 2004), inventory games (Hartman
et al. 2000, Chen 2009, Chen and Zhang 2009, He et al.
2012, Zhang 2009), production outsourcing games
(Aydinliyim and Vairaktarakis 2010, Cai and Vairak-
tarakis 2012), and some packing and covering games
on graphs (Deng et al. 1999), to name just a few. The
major interest in studying these games is usually the
existence of the core.

Since this paper uses facility location games for
illustration purposes, we now discuss the work on
cooperative facility location games. An early impor-
tant result is given by Kolen (1983), who showed that
for uncapacitated facility location (UFL) games, the
maximum shared cost among players is equal to the
classic LP relaxation cost for the grand coalition opti-
mization problem. Later, Goemans and Skutella (2000)
extended this result, and proved nonemptiness of the
core for several special facility location games where
facility locations are on a line, a cycle, and a tree.
Others have also studied variants of the problem. For
example, Puerto et al. (2011, 2012) introduced the min-
imum radius location game and the minimum diam-
eter location game, respectively. Xu and Yang (2009),
Mallozzi (2011), and Li et al. (2013) studied facility
location games with various cost components, such
as service installation costs, regional fixed costs, and
concave facility location costs.

As previously mentioned, the least core is one type
of relaxation that can be used to deal with games
with empty cores. Faigle et al. (2000) showed that
computing the least core allocation for the minimum
spanning tree game is NP-hard. Kern and Paulusma
(2003) studied the nucleolus based on a polynomial
description of the least core for the cardinality match-
ing game. Schulz and Uhan (2010) showed that com-
puting the least core value for a single machine
scheduling game with supermodular cost is weakly
NP-hard, and provided a framework in Schulz and
Uhan (2013) for a three-approximation algorithm for
computing the least core value. With respect to the

�-core and �-approximate core, there has been more
research using the latter concept. For example, Faigle
et al. (1998) developed an LP-based algorithm that
generates a 1

3 -approximate core for the Euclidean
TSP. Bläser and Ram (2008) provided a polynomial-
time algorithm that finds cost allocations lying in a
4log24n− 15− 15-approximate core for the asymmetric
TSP game. We refer the reader to Jain and Mahdian
(2007) for a more comprehensive review on the prior
concepts.

Only a few papers directly address the OCAP.
Bachrach et al. (2009) raised the problem of stabilizing
the grand coalition of a cooperative game at a value
that minimizes the subsidy, and derived appropri-
ate upper and lower bounds for the minimum value.
Following Bachrach et al. (2009), a similar study on
restricted cooperation in coalitional games was under-
taken by Meir et al. (2011). The only algorithmic work
on solving OCAP is by Caprara and Letchford (2010),
who proposed a comprehensive framework for opti-
mally solving a large class of problems based on
LP relaxation and duality theory. In their approach,
it is usually necessary to reformulate the optimiza-
tion problems by introducing constraints with spe-
cial structures. The details are presented in the next
section.

3. Preliminaries
A cooperative game with transferable utilities is de-
scribed by a pair 4V 1 c5, where V = 81121 0 0 0 1 v9
denotes a set of players, and c2 S → � denotes
the characteristic function, with S = 2V \� indicat-
ing the set of nonempty coalitions of players. The
characteristic function assigns to every coalition s ∈ S
a value c4s5, representing the minimum total cost
that the members in s need to pay when they cooper-
ate. The problem of cost allocation studied here is to
share the grand coalition cost c4V 5 among the players
in V in such a way that for any smaller coalition s of
players, there is no incentive for them to break away
from the grand coalition and form their own coalition.

A (coalitional) stable cost allocation for a game
4V 1 c5 is a vector � ∈ �v, which satisfies coalitional
stability:

∑

k∈s �4k5 ≤ c4s51 ∀ s ∈ S. An ideal cost allo-
cation additionally satisfies the budget balance con-
straint:

∑

k∈V �4k5 = c4V 5. The core of game 4V 1 c5 is
defined as:

Core4V 1 c5 =

{

� ∈�v2
∑

k∈s

�4k5≤ c4s51 ∀ s ∈ S1

and
∑

k∈V

�4k5= c4V 5

}

0

It is known that not every game 4V 1 c5 has a non-
empty core. To address games with an empty core,
our goal is to find a stable cost allocation that cov-
ers the grand coalition cost c4V 5 as much as possible,
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which motivates the optimal cost allocation problem
4OCAP5 defined as

max
�

∑

k∈V

�4k5

s.t.
∑

k∈s

�4k5≤ c4s51 ∀ s ∈ S0 (1)

Solving 415 directly is often intractable, because it
consists of an exponential number of constraints, and
the values of characteristic functions c4s5 can even be
NP-hard to compute. The focus of this paper is to
compute good stable cost allocations for a class of
games called OR games whose core may be empty
and whose characteristic functions are defined by an
integer program (IP). The OR game is a generalization
of the integer minimization (IM) game investigated in
Caprara and Letchford (2010). Unlike the IM game,
which can only use ILP to define characteristic func-
tions, the OR game allows using nonlinear integer
programming to define characteristic functions. For
easy comparison, our formulation follows Caprara
and Letchford (2010) as much as possible.

Definition 1. A cooperative game 4V 1 c5 is called
an OR game if there exist

• positive integers r , r ′, and t,
• left-hand side matrices A ∈�r×t and A′ ∈�r ′×t ,
• right-hand side matrices B ∈�r×v and B′ ∈�r ′×v,
• nonnegative right-hand side column vectors

D ∈�r and D′ ∈�r ′ ,
• an objective function f 4x5, which can be either

linear or nonlinear in x, and
• an incidence column vector �s ∈ 80119v with

�s
k = 1 if k ∈ s and �s

k = 0, otherwise, ∀k ∈ V , such that
for all s ∈ S, the characteristic function c4s5 is given by
the following IP:

c4s5 = min
x

{

f 4x52 Ax ≥ B�s
+D1

A′x ≥ B′�s
+D′1x ∈ 80119t×1

}

0 (2)

Note that in 425, the constraints are partitioned into
two parts to facilitate the use of Lagrangian relaxation
later. Following Caprara and Letchford (2010), it is
easy to show that every OR game with nonnegative D
and D′ is subadditive, i.e., c4s1 ∪ s25 ≤ c4s15+ c4s25 for
all s11 s2 ∈ S with s1 ∩ s2 = �. This defines a proper
game where it makes sense for the players to cooper-
ate, and such games are the focus of our analyses in
this paper.

For an IM game, a special case of the OR game, its
characteristic function c4s5 is given by ILP:

c4s5 = min
x

{

Cx2 Ax ≥ B�s
+D1

A′x ≥ B′�s
+D′1x ∈ 80119t×1

}

1 (3)

where C is a row vector of dimension t. We use cLP4V 5
to denote the LP lower bound of c4V 5 defined in (3),
where x ∈ 80119t×1 is relaxed to 0≤ x ≤ 1.

Caprara and Letchford (2010) explained how OCAP
for IM games can be solved by using column gen-
eration, row generation, or both. To make the paper
self-contained, we summarize a few highlights of
these methods in the online supplement. Roughly
speaking, the column-generation approach has a
straightforward formulation; however, the associated
pricing problem is usually difficult to handle because
it needs to do optimization over a very large solution
space. The row-generation approach, which is more
promising, needs to reformulate ILP (3) by identify-
ing a set of so-called assignable constraints 8Ex ≥ F�9.
Then, a cost allocation can be obtained by solving the
LP relaxation cEFLP4V 5 = min8Cx2 Ex ≥ F�9 with only
assignable constraints, and the total cost allocated is
equal to cEFLP4V 5, a lower bound of c4V 5. Note that
cEFLP4V 5 might be different from cLP4V 5, the LP lower
bound of c4V 5 under the original formulation 435.

For IM games, the quality of the LPB cost allo-
cation greatly depends on the assignable constraints
that have been identified. Theoretically speaking, the
LPB algorithm can find the optimal stable cost allo-
cation for an IM game if all assignable constraints
can be identified and added. However, for different
IM games, the ways of identifying assignable con-
straints are often different, as no general approaches
are known. For some assignable constraints, no poly-
nomial separation algorithms are known, raising
another difficulty in computing the LPB cost alloca-
tions. Despite these difficulties, the LPB algorithm can
be used as an effective heuristic to find good stable
cost allocations when only a subset of assignable con-
straints are added.

4. LRB Cost Allocation Algorithm
In this section, we present our LRB cost allocation
algorithm. In general, for an OR game 4V 1 c5, when
the objective function f 4x5 in 425 is linear in x, LPB
and LRB algorithms are possible alternatives in com-
puting good stable cost allocations, but only the LRB
algorithm can be used if f 4x5 is nonlinear. We first
explain the framework of the LRB algorithm and
show its effectiveness, and then give more details of
the algorithm implementation.

4.1. Lagrangian Relaxation and
Game Decomposition

In a Lagrangian relaxation procedure, by relaxing con-
straints 8A′x ≥ B′�s +D′9 in (2) and bringing them into
the objective function with nonnegative Lagrangian
multiplier �, we can derive the resulting Lagrangian
characteristic function cLR4 · 3�5 for an OR game as

cLR4s3�5 = min
x

{

f 4x5−�A′x+�B′�s
+�D′2

Ax≥B�s
+D1x∈80119t×1

}

1 ∀s∈S1 (4)
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where � is a nonnegative row vector of dimension r ′,
i.e., � ∈ �1×r ′

+
. In particular, for the grand coalition V ,

its Lagrangian characteristic function is

cLR4V 3�5 = min
x

{

f 4x5−�A′x+�B′1+�D′2

Ax ≥ B1+D1x ∈ 80119t×1
}

0

As is typical with Lagrangian relaxation, constraints
8A′x ≥ B′�s + D′9 can be carefully chosen such that
cLR4s3�5 is relatively easy to solve, e.g., in polyno-
mial or pseudopolynomial time for any s ∈ S. It is
known that cLR4V 3�5 is a lower bound of c4V 5 for any
nonnegative �. To achieve the sharpest lower bound,
the Lagrangian dual problem dLR4V 5 finds the best
Lagrangian multiplier � that maximizes cLR4V 3�5, i.e.,

dLR4V 5 = max
�

{

min
x

{

f 4x5−�A′x+�B′1+�D′2

Ax ≥ B1+D1x ∈ 80119t×1
}

2 �≥ 0
}

0 (5)

By the subgradient method (e.g., see Ahuja et al.
1993), we can compute the optimal Lagrangian mul-
tiplier �∗ for dLR4V 5.

Under any nonnegative Lagrangian multiplier �,
we can decompose the Lagrangian characteristic
function cLR4 · 3�5 into two subcharacteristic func-
tions cLR14 · 3�5 and cLR24 · 3�5, such that cLR4s3�5 =

cLR14s3�5+ cLR24s3�5 for any s ∈ S, where

cLR14s3�5= �B′�s1 and (6)

cLR24s3�5 = min
x

{

f 4x5−�A′x+�D′2

Ax ≥ B�s +D1x ∈ 80119t×1
}

0 (7)

We define subgame 1 as 4V 1 cLR14 · 3�55, with its
characteristic function being cLR14s3�5, and subgame 2
4V 1 cLR24 · 3�55 similarly. In some specific implementa-
tions, we can further decompose cLR24 · 3�5 into more
subcharacteristic functions to make the LRB algorithm
more efficient. One example is given in Section 5.2.1.

Theorem 1. Given any nonnegative Lagrangian mul-
tiplier �, if ��

LR1 and ��
LR2 are stable cost allocations for

subgames 4V 1 cLR14 · 3�55 and 4V 1 cLR24 · 3�55, respectively,
then ��

LR = ��
LR1 + ��

LR2 is a stable cost allocation for OR
game 4V 1 c5.

Proof. For any s ∈ S, the stability of ��
LR1 and ��

LR2
implies that

∑

k∈s

6��
LR14k5+��

LR14k57

≤ cLR14s3�5+ cLR24s3�5= cLR4s3�5≤ c4s50

Therefore we have
∑

k∈s �
�
LR4k5 =

∑

k∈s6�
�
LR14k5 +

��
LR14k57≤ c4s5. This completes the proof. �
By Theorem 1, we can design an LRB algorithm to

obtain a good stable solution to OCAP by finding a

good stable cost allocation for each of the subgames.
In fact, we are able to find an optimal stable cost allo-
cation for each subgame under a specific �. Before
introducing the details of handling the two subgames,
we first have the following result regarding the effec-
tiveness of the LRB algorithm compared to the LPB
algorithm. To be specific, for an IM game, different
ILP formulations of the characteristic function might
lead to different LPB and LRB cost allocations. The-
orem 2 gives a sufficient condition for the LRB cost
allocation algorithm to be better than or as good as
the LPB one.

Theorem 2. For an IM game, under the same ILP
formulation for the characteristic function c4s5, the LRB
cost allocation value

∑

k∈V ��
LR4k5 is no less than the

LPB cost allocation value
∑

k∈V �LP4k5, when the fol-
lowing two conditions hold: (1) the Lagrangian multi-
plier is optimal for dLR4V 5, i.e., � = �∗ and (2) ��∗

LR1
and ��∗

LR2 lie in the core of the subgames 4V 1 cLR14 · 3�
∗55

and 4V 1 cLR24 · 3�
∗55, respectively.

Proof. It is well known that, for the same formula-
tion, the lower bound obtained by Lagrangian relax-
ation is no worse than that obtained by LP relaxation
(e.g., see Ahuja et al. 1993), i.e., cLR4V 3�∗5 ≥ cLP4V 5.
From condition (2), we have
∑

k∈V

��∗

LR4k5 =
∑

k∈V

6��∗

LR14k5+��∗

LR24k57

= cLR14V 3�∗5+ cLR24V 3�∗5= cLR4V 3�∗50

In addition, the LPB cost allocation value
∑

k∈V �LP4k5
is clearly no larger than the LP lower bound cLP4V 5.
Therefore we have

∑

k∈V ��∗

LR4k5 = cLR4V 3�∗5 ≥ cLP4V 5
≥
∑

k∈V �LP4k5. �
We have the following remarks about Theorem 2.

Remark 1. Theorem 2 implies the competitiveness
of the LRB algorithm against the LPB algorithm. LPB
and LRB cost allocations can be improved by adding
more constraints to the conventional ILP formulation
of characteristic function c4s5. However, as shown in
Theorem 2, when applied to the same ILP formulation
of c4s5, the LRB cost allocation value is no smaller
than the LPB one if conditions (1) and (2) hold. Even
if the LPB algorithm can be proven optimal for some
cases, our LRB algorithm can still be valuable in that it
can provide alternative cost allocations with different
features. An example of this is given in Section 5.1.3.

Remark 2. The conditions given in Theorem 2 to
ensure that the LRB cost allocation value

∑

k∈V ��
LR is

no less than the LPB cost allocation value
∑

k∈V ��
LP are

sufficient, but not necessary. In fact, even without con-
dition (1), for a nonoptimal Lagrangian multiplier �̄,
as long as cLR4V 3 �̄5≥ cLP4V 5, the result still holds.
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Remark 3. Condition (2) requires that both sub-
games have a nonempty core. As will be shown in
the following Lemma 1, subgame 1 4V 1 cLR14 · 3�55
always has a nonempty core. However, subgame 2
4V 1 cLR24 · 3�55 may have an empty core. Therefore the
effectiveness of the LRB algorithm depends on sub-
game 2, specifically on the value of

∑

k∈V ��
LR24k5, the

cost that can be allocated for game 4V 1 cLR24 · 3�55. Our
numerical results show that, even in cases where sub-
game 2 does not have a nonempty core, the LRB algo-
rithm can still be competitive. Examples are given in
Section 5.2.2.

Remark 4. In the situation where c4V 5 is relaxed
in such a way that dLR4V 5 has the integrality prop-
erty, i.e., dLR4V 5 is not increased by removing the
integrality restriction on x from the constraints of
the Lagrangian problem (see, Geoffrion 1974), the
Lagrangian lower bound cLR4V 3�∗5 is equal to the LP
lower bound cLP4V 5. In addition, if all the constraints
in cLP4V 5 are assignable, then our LRB algorithm can-
not obtain a solution better than the LPB algorithm
since

∑

k∈V �LP4k5= cLP4V 5= cLR4V 3�∗5≥
∑

k∈V ��∗

LR4k5.

Remark 3 is also related to the convergence of the
LRB algorithm when subgame 2 may have an empty
core. In such a case, we first need a tight Lagrangian
lower bound cLR24V 3�5, which can be achieved by a
large number of iterations in solving the Lagrangian
dual problem; however, there is no guarantee that a
tighter bound cLR24V 3�5 will also lead to a larger cost
allocation value

∑

k∈V ��
LR24k5. In other words, the final

optimal Lagrangian multiplier �∗ may not necessarily
correspond to the best cost allocation. Computational
examples are shown in Section 5.2.2. As such, we pro-
pose the following algorithm.

Algorithm 1. The LRB cost allocation algorithm
for an OR game 4V 1 c5.

Step 1. For problem (2), design a Lagrangian relax-
ation as shown in (4). Compute the optimal solu-
tion �∗ for the Lagrangian dual problem dLR4V 5
defined by (5) with the subgradient method, where
we save a set of Lagrangian multipliers å = 8�11�21
0 0 0 1�p9 at some intermediate iterations.

Step 2. For each � ∈ å, decompose the Lagrangian
characteristic function cLR4 · 3�5 into two subcharac-
teristic functions cLR14 · 3�5 and cLR24 · 3�5 according to
(6) and (7).

Step 3. Compute the optimal stable cost alloca-
tions ��

LR1 and ��
LR2 for subgames 4V 1 cLR14 · 3�55 and

4V 1 cLR24 · 3�55, respectively. Details are given by Lem-
mas 1 and 2 in the next two subsections.

Step 4. Let ��
LR = ��

LR1 + ��
LR2 be a stable cost allo-

cation for game 4V 1 c5. Find the best stable cost allo-
cation with the maximal shared cost among ��

LR for
� ∈å.

Note that if subgame 2 has a nonempty core for
the optimal Lagrangian multiplier �∗, we only need
to use the final Lagrangian multiplier �∗ in å to cal-
culate a cost allocation. Otherwise, we can consider
using more Lagrangian multipliers, due to the above
discussion prior to Algorithm 1. While there is no the-
oretical study on choosing the � values, our experi-
ence shows that it is useful to select five or six values
from different iterations.

4.2. Solving Subgame 1
We now show how to calculate a cost allocation in
the core of subgame 1 4V 1 cLR14 · 3�55. In this game,
any player k ∈ V will induce a cost 4�B′5k, which rep-
resents the value of the kth element in vector �B′.
Accordingly, we have the following lemma.

Lemma 1. For subgame 1 4V 1 cLR14 · 3�55, a vector ��
LR1

defined by equalities 8��
LR14k5 = 4�B′5k2 ∀k ∈ V 9 lies in

its core.

Proof. The proof is straightforward: for any coali-
tion s ∈ S, by the definition of game 4V 1 cLR14 · 3�55,
the total induced cost will be cLR14s3�5 =

∑

k∈s4�B
′5k

which is equal to the total cost allocated to s under
cost allocation ��

LR14s5. �
Lemma 1 shows that we can directly compute a

core cost allocation for game 4V 1 cLR14 · 3�55.

4.3. Solving Subgame 2
Different from subgame 1, subgame 2 4V 1 cLR24 · 3�55
may have an empty core. Therefore we aim to calcu-
late the optimal stable cost allocation, which lies in
the core if it is nonempty.

We first provide a generic column-generation-based
(CGB) algorithm (see Barnhart et al. 1998 for an
introduction on column generation) to compute the
optimal stable cost allocation for game 4V 1 cLR24 · 3�55
in general cases. Note that the CGB algorithm here
is more computationally tractable than the one de-
scribed in Caprara and Letchford (2010). Specifically,
we propose treating each coalition as a column in the
master problem defined by the following LP (9), but
Caprara and Letchford (2010) suggests reformulating
the master problem by treating each feasible solution
of the optimization problem as a column (see LP (A.2)
in the online supplement for details). The reformula-
tion is necessary there to avoid the strong NP-hard-
ness of evaluating c4s5 for each coalition s, but it
makes the search space much larger in column gener-
ation. We can directly treat each coalition as a column,
since compared with c4s5, cLR24s3�5 is much easier to
solve after Lagrangian relaxation.
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Recall that an optimal stable cost allocation ��
LR2 for

subgame 2 is the optimal solution to the correspond-
ing OCAP,

max
��

LR2

∑

k∈V

��
LR24k5

s.t.
∑

k∈s

��
LR24k5≤ cLR24s3�51 ∀ s ∈ S0 (8)

Under the assumption that the Lagrangian relaxations
will be easy to solve, cLR24s3�5 would be computa-
tionally tractable for all s ∈ S.

To solve the OCAP in (8), consider its dual problem
as follows:

min
�

∑

s∈S

cLR24s3�5�s

s.t.
∑

s∈S

�s
k�s = 11 ∀k ∈ V 1

�s ≥ 01 ∀ s ∈ S1 (9)

where 8�s2 ∀ s ∈ S9 ∈ �42v−15×1 are decision variables.
Based on the strong duality, we know that the OCAP
in (8) is equivalent to the LP in (9). By following the
standard column-generation framework, we propose
that Algorithm 2 can solve (9) to optimality and gen-
erate an optimal cost allocation for subgame 2.

Algorithm 2. A CGB algorithm to compute the op-
timal stable cost allocation��

LR2 for game 4V 1 cLR24 · 3�55
includes the following four steps:

Step 1. Start from a restricted master problem of (9)
where the restricted coalition set S ′ ⊂ S contains a
polynomial number of elements, and compute its
optimal dual solution �∗.

Step 2. Find an optimal coalition s∗ to the pricing
problem

min
s∈S\S′

{

cLR24s3�5−
∑

k∈V

�s
k�

∗

k

}

0 (10)

Step 3. If there exists an s∗ with a negative value
of (10), then add s∗ into S ′, and go back to Step 1; oth-
erwise, the dual problem (9) is solved to optimality,
therefore go to Step 4.

Step 4. According to the updated restricted coali-
tion family S ′ and its corresponding characteristic
function values 8cLR24s3�52 ∀ s ∈ S ′9, the following LP
gives the optimal stable cost allocation ��

LR2 for game
4V 1 cLR24 · 3�55:

max
��

LR2

∑

k∈V

��
LR24k5

s.t.
∑

k∈s

��
LR24k5≤ cLR24s1�51 ∀ s ∈ S ′0

In the CGB algorithm, the most difficult and essen-
tial part is solving the pricing problem (10), which is

specific to each game. We will give an example of this
in Section 5.2.

To conclude, we present the following lemma on
the CGB algorithm.

Lemma 2. Vector ��
LR2 computed by the CGB algo-

rithm is an optimal stable cost allocation for subgame 2
4V 1 cLR24 · 3�55.

The CGB algorithm above provides a general
approach to computing an optimal stable cost alloca-
tion for subgame 2. However, for some special cases,
it is possible to obtain an optimal or core cost alloca-
tion for subgame 2 by using certain simpler or faster
approaches. For example, we consider the following
two special cases.

First, if the LP relaxation of cLR24V 3�5 contains
the complete assignable constraint set, one can apply
the LPB method proposed by Caprara and Letchford
(2010) to compute an optimal cost allocation for
4V 1 cLR24 · 3�55.

Second, when subgame 2 turns out to be submod-
ular, we can solve a core cost allocation by a greedy
algorithm, i.e., by sorting the players and comput-
ing the marginal cost vector (see, Edmonds 1970,
Shapley 1971).

Definition 2. Denote a and b as two players in the
grand coalition V . A characteristic function cLR24 · 3�5
is submodular if cLR24s ∪ 8a93�5 + cLR24s ∪ 8b93�5 ≥

cLR24s3�5 + cLR24s ∪ 8a1 b93�5 holds for any coalition
s ∈ V \8a1 b9.

We emphasize these two cases because subgame 2
may include all assignable constraints or have the
submodularity property even though the original
game 4V 1 c5 does not. This is actually a potential
advantage of the LRB algorithm, and one such exam-
ple is given in Section 5.1. However, it often requires
sophisticated analysis to detect the completeness of
assignable constraints or to prove the submodularity
of subgame 2.

5. Implementations for Facility
Location Games

We will illustrate the LRB cost allocation algorithm
on two different facility location games, namely, the
UFL game and the nonlinear single source capacitated
facility location (NLCFL) game. The UFL game rep-
resents the case where LPB and LRB algorithms can
be used to compute optimal cost allocations; in addi-
tion, the resulting UFL subgame 2 is submodular, and
its core cost allocation can be obtained in polynomial
time. The NLCFL game has a different coalition def-
inition and nonlinear cost function, showing the full
power of our LRB algorithm.
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Table 1 Notation Used in the UFL Game

M The set of potential facility sites, M = 81121 0 0 0 1m9.
N The set of customer points as well as game players, N = 81121 0 0 0 1 n9.
cij Transportation cost from facility i to customer j , ∀ i ∈M1 j ∈ N .
fi Fixed opening cost of facility i, ∀ i ∈M.
s Player coalition, s⊆ N.
�s Incidence vector 6�s

1 1 �
s
2 1 0 0 0 1 �

s
n 7

T , where �s
j = 1 if player j is in

coalition s and �s
j = 0 otherwise.

vi Decision variable, where vi = 1 if facility i will be opened and
vi = 0 otherwise, ∀ i ∈M.

uij Decision variable, where uij = 1 if customer j will be served by facility
i and uij = 0 otherwise, ∀ i ∈M and j ∈ N.

5.1. The UFL Game
In a UFL game, there is a bipartite network defined
by G = 4M1N1E5, with M being the set of potential
sites where facilities can be opened, N being the set of
customer points that must be served, and E being the
set of edges, which link the facility sites and customer
points. Each potential site i ∈ M has a fixed opening
cost fi, and each edge 4i1 j5 ∈ E has a transportation
cost cij . In a UFL game, the customers share the facil-
ity opening and transportation costs, i.e., the players
in the game are customers. We list the notation used
in the UFL game in Table 1.

Definition 3. A UFL game 4N1 cUFL5 is defined
with the players being the customers in N and the
characteristic function cUFL4s5 determined by the fol-
lowing ILP:

cUFL4s5 = min
v1u

{

∑

i∈M

fivi +
∑

i∈M

∑

j∈N

cijuij

}

(11)

s.t.
∑

i∈M

uij ≥ �s
j 1 ∀ j ∈N1 (12)

uij − vi ≤ 01 ∀ i ∈M1j ∈N1 (13)

vi1 uij ∈ 801191 ∀ i ∈M1 j ∈N0 (14)

In the previous ILP, the objective function (11) is
to minimize the total facility opening and transporta-
tion cost for a coalition s; constraints (12) require that
every customer in coalition s must be served, and con-
straints (13) ensure that only an opened facility can
serve customers.

ILP (11)–(14) is the conventional formulation for a
UFL problem. In view of Definition 1, we see that
the UFL game 4N1 cUFL5 is an OR game 4V 1 c5 with
V =N and c = cUFL. Specifically, decision variables x
in c are now 6v3u7 in cUFL, and the specific expressions
of matrices C, A, A′, B, B′, D, D′ can be obtained by
writing cUFL using matrices. In particular, D and D′

are now 0, therefore the game 4N1 cUFL5 is subadditive.
This is also true for the NLCFL game, which we study
in Section 5.2.

5.1.1. LPB Cost Allocation for the UFL Game.
Kolen (1983) and Goemans and Skutella (2000) proved
that, for a UFL game, the maximum stable cost allo-
cation value coincides with the LP lower bound of
cUFL4N 5. To perform some in-depth analysis, we give
more details on using the LPB algorithm to calculate
the optimal stable cost allocation.

In cUFL4s5, constraints 4125 and 4135 are already
assignable. By adding assignable constraints 8uij ≥ 02
i ∈ M1j ∈ N9 to relax the binary constraints (14), we
can obtain an LP relaxation for the grand coalition
optimization problem cUFL4N 5 as follows:

cLP_UFL4N 5 = min
v1u

{

∑

i∈M

fivi +
∑

i∈M

∑

j∈N

cijuij

}

s.t.
∑

i∈M

uij ≥ �N
j 1 ∀ j ∈N1 (15)

vi −uij ≥ 01 ∀ i ∈M1 j ∈N1 (16)

uij ≥ 01 ∀ i ∈M1 j ∈N0 (17)

We sequentially label constraints (15)–(17) from 1 to
n, n+ 1 to n+mn and n+mn+ 1 to n+ 2mn, respec-
tively. For cLP_UFL4N 5, we consider its dual LP. Let �k

be the dual variable corresponding to the k-th con-
straint of cLP_UFL4N 5, and �∗ an optimal solution to the
dual LP. According to the row-generation approach in
the online supplement, we have the following lemma.

Lemma 3. For a UFL game, the LPB cost allocation
�LP_UFL given by

�LP_UFL4j5=�∗

j 1 ∀ j ∈ 81121 0 0 0 1n91

is optimal, with total shared cost cLP_UFL4N 5.

We note that a simpler way to obtain one opti-
mal stable cost allocation to the UFL game is to
solve cLP_UFL4N 5 directly and obtain the optimal dual
variables by calculating the shadow prices of the
constraints. However, solving the dual LP facilitates
finding alternative optimal solutions, because in the
event that the dual LP has multiple optimal solu-
tions, not all of them correspond to a shadow price of
the primal.

5.1.2. LRB Cost Allocation for the UFL Game.
We next demonstrate how to apply the LRB algo-
rithm to obtain optimal cost allocations for the UFL
game. We will prove that the subgame 2 of the UFL
game is submodular. We will also show by a computa-
tional study that the optimal cost allocation obtained
by the LRB algorithm for this game can be different
from those obtained by the LPB algorithm, thus giv-
ing more choices for evaluation and comparison.

In cUFL4s5, we add a set of new constraints

8uij ≤ �s
j 2 ∀ i ∈M1j ∈N91 (18)
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and then bring constraints 8
∑

i∈M uij ≥ �s
j 2 j ∈ N9 into

the objective function with nonnegative Lagrangian
multiplier � to derive the UFL Lagrangian character-
istic function,

cLR_UFL4s3�5 = min
v1u

{

∑

i∈M

fivi+
∑

i∈M

∑

j∈N

4cij −�j5uij +
∑

j∈N

�j�
s
j

}

s.t. uij −vi ≤01 ∀ i∈M1 j ∈N1

uij ≤�s
j 1 ∀ i∈M1 j ∈N1

vi1 uij ∈801191 ∀ i∈M1 j ∈N0

The augmentation of constraints (18) is to
strengthen the Lagrangian lower bound of cUFL4s5,
which may accordingly lead to a better LRB cost allo-
cation. It prohibits setting uij ′ = 1 for any player j ′ not
in coalition s, even though the coefficient cij ′ −�j ′ < 0
when computing cLR_UFL4s3�5. It is easy to see that the
augmentation of (18) is simply equivalent to replacing
term

∑

i∈M

∑

j∈N 4cij −�j5uij by
∑

i∈M

∑

j∈s4cij −�j5uij in
the objective function of cLR_UFL4s3�5.

Under Algorithm 1, the generic LRB cost allo-
cation algorithm for any s ∈ S and nonnega-
tive Lagrangian multiplier � , we can decompose
cLR_UFL4s3�5 into cLR1_UFL4 · 3�5 and cLR2_UFL4 · 3�5 such
that cLR_UFL4s3�5 = cLR1_UFL4s3�5 + cLR2_UFL4s3�5, and
define UFL subgame 1 4N1 cLR1_UFL4 · 3�55 and UFL
subgame 2 4N1 cLR2_UFL4 · 3�55.

For the UFL subgame 1, its characteristic function is

cLR1_UFL4s3�5=
∑

j∈N

�j�
s
j 0 (19)

According to Lemma 1, the optimal stable cost allo-
cation ��

LR1_UFL, which lies in the core of game
4N1 cLR1_UFL4 · 3�55 is given by ��

LR1_UFL4j5 = �j for all
j ∈N .

For the UFL subgame 2, its characteristic function
is as follows:

cLR2_UFL4s3�5

= min
v1u

∑

i∈M

fivi +
∑

i∈M

∑

j∈N

4cij −�j5uij

s.t. uij − vi ≤ 01 ∀ i ∈M1 j ∈N1

uij ≤ �s
j 1 ∀ i ∈M1 j ∈N1

vi1 uij1∈ 801191 ∀ i ∈M1 j ∈N0

(20)

To solve cLR2_UFL4s2 �5, we can decompose it by facili-
ties and derive a closed-form optimal objective func-
tion value given by cLR2_UFL4s3�5 =

∑m
i=1 min801 fi +

∑

j∈s min801 cij −�j99.

Lemma 4. UFL subgame 2 4N1 cLR2_UFL4 · 3�55 is sub-
modular.

Proof. Denote a and b as two players in N . To
show the submodularity, we need to prove that, for
any coalition s ∈N\8a1 b9,

cLR2_UFL4s ∪ 8a93�5− cLR_UFL24s3�5

≥ cLR2_UFL4s ∪ 8a1 b93�5− cLR2_UFL4s ∪ 8b93�50 (21)

For each i ∈ M , use notation ãi4s3�5 = min801 fi +
∑

j∈s min801 cij − �j99. To show (21), it is sufficient to
show

ãi4s3�5+ãi4s∪8a1b93�5

≤ãi4s∪8a93�5+ãi4s∪8b93�51 ∀s∈N\8a1b90 (22)

Let �4x5=min801x9 and xŝ =fi+
∑

j∈ŝmin
{

01cij −�j

}

for each ŝ ∈ 8s1 s ∪ 8a91 s ∪ 8b91 s ∪ 8a1 b99. It can
be seen that xs + xs∪8a1 b9 = xs∪8a9 + xs∪8b9, and
xs∪8a1 b9 ≤ min8xs∪8a91xs∪8b99 ≤ max8xs∪8a91xs∪8b99 ≤ xs .
Thus, since �4x5 is a concave function of x, we have

�4xs5+�4xs∪8a1 b95≤ �4xs∪8a95+�4xs∪8b951

from which we can obtain (22) directly, and complete
the proof of Lemma 4. �

Due to the submodularity of UFL subgame 2, one
can easily compute its core cost allocation, denoted as
��

LR2_UFL, by the greedy algorithm mentioned in Sec-
tion 4.3. Under the optimal Lagrangian multiplier �∗,
we can derive the optimal UFL LRB cost allocation
given by ��∗

LR_UFL = ��∗

LR1_UFL +��∗

LR2_UFL. Since UFL sub-
games 1 and 2 have nonempty cores, by Theorem 2,
the optimal LRB cost allocation value achieves the
Lagrangian lower bound cLR_UFL4N3�∗5, which is no
less than the LP lower bound cLP_UFL4N 5.

The following theorem shows the optimality of the
UFL LRB cost allocation, and reveals the equivalence
of the LRB and LPB cost allocations.

Theorem 3. For a UFL game, the LRB cost allocation
��∗

LR_UFL = �∗ + ��∗

LR2_UFL is optimal. In addition, the LRB
cost allocation set and the LPB cost allocation set consist
of all the optimal UFL cost allocations.

Proof. For the UFL game, we first show that
the LRB cost allocation is optimal. As stated ear-
lier, the optimal LRB cost allocation value achieves
the Lagrangian lower bound cLR_UFL4N3�∗5, which is
not less than the LP lower bound cLP_UFL4N 5. It is
known that the LP lower bound equals the maxi-
mum total shared cost for the UFL game (Kolen 1983,
Goemans and Skutella 2000). Thus the LRB cost allo-
cation must be an optimal UFL cost allocation, and
cLR_UFL4N3�∗5= cLP_UFL4N 5.

We next prove that both the LRB and LPB cost
allocation sets consist of all the optimal UFL cost
allocations. It is known that the LPB cost allocation
set consists of all the optimal UFL cost allocations
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(Goemans and Skutella 2000). This implies that each
LRB cost allocation must belong to the LPB cost allo-
cation set. Therefore, it remains to show that each
LPB cost allocation belongs to the LRB cost allocation
set.

Consider each LPB cost allocation �LP_UFL4j5 = �∗
j

for j ∈ N , where �∗ together with some �∗ form an
optimal solution to the following dual problem of
cLP_UFL4N 5:

max
�1�

∑

j∈N

�j

s.t.
∑

j∈N

�ij = fi1 ∀ i ∈M1

�j − �ij ≤ cij1 ∀ i ∈M1 j ∈N1

�j ≥ 01 �ij ≥ 01 ∀ i ∈M1 j ∈N0

For each i ∈ M , it can be seen that fi =
∑

j∈N �∗
ij ,

and that �∗
ij ≥ max801�∗

j − cij9 for j ∈ N , which imply
that fi ≥

∑

j∈N max801�∗
j −cij9= −

∑

j∈N min801 cij −�∗
j 9.

Thus

min
{

01 fi +
∑

j∈N

min801 cij −�∗

j 9

}

= 01

for each i ∈M . (23)

Since cLR2_UFL4N3�5 =
∑m

i=1 min801 fi +
∑

j∈N min801
cij − �j99 for any nonnegative � , by (23), we have
cLR2_UFL4N3�∗5= 0. This, together with cLR1_UFL4N3�∗5
=
∑

j∈N �∗
j , implies that cLR_UFL4N3�∗5 =

∑

j∈N �∗
j =

cLP_UFL4N 5 = cLR_UFL4N3�∗5. Hence �∗ is an optimal
Lagrangian multiplier. The resulting LRB cost alloca-
tion is then given by ��∗

LR_UFL4j5 = �∗
j + ��∗

LR2_UFL4j5 for
j ∈ N . Note that for each s ∈ S, since cLR2_UFL4s3�

∗5
≤ 0 and cLR2_UFL4s3�

∗5 ≥ cLR2_UFL4N3�∗5 = 0, we have
cLR2_UFL4s3�

∗5 = 0, which leads to ��∗

LR2_UFL4j5 = 0 for
j ∈ N . Therefore we obtain that ��∗

LR_UFL = �∗, imply-
ing that each LPB cost allocation �∗ belongs to the
LRB cost allocation set. This completes the proof of
Theorem 3. �

5.1.3. Alternative Optimal Stable Cost Alloca-
tions. For a UFL game, it is known that every opti-
mal cost allocation corresponds to an LPB solution,
which must be a convex combination of all basic
optimal solutions to the dual of cLP_UFL4N 5. However,
by applying only common LP solvers to the dual
of cLP_UFL, it is hard to obtain all the basic optimal
solutions.

By Theorem 3, we know that the LRB algorithm
provides an alternative optimal cost allocation for
the UFL game. It is possible that the LRB solution
obtained can be excluded from those LPB solutions
produced by the common LP solvers. We illustrate
this by the following example.

1 42

2 3 4

10101010

3

3

1
3 2 4 3 2

4

1

3

1

Figure 1 (Color online) An Example of a UFL Game

In the UFL game shown in Figure 1, there are four
facilities and four customers (players). Each facility
has a fixed opening cost 10. The numbers on the
links are the transportation costs from facilities to cus-
tomers. An optimal decision for the grand coalition is
to open facilities 3 and 4, and the links in bold are
the optimal paths. Therefore the grand coalition cost
is 10 + 10 + 3 + 3 + 2 + 1 = 29.

For this example, we use two LP solvers, the “sim-
plex” and “interior point” methods, in MATLAB
Release 2011a to compute the LPB allocations, respec-
tively. Table 2 shows the cost assigned to each player
under different approaches.

The example reveals that the LRB algorithm can
generate optimal stable cost allocations that are differ-
ent from those generated by common LP solvers. The
LRB solution is beyond the range of convex combina-
tion of the two LPB solutions. This demonstrates the
value of the LRB algorithm in providing alternative
cost allocations.

To investigate the capability of the LRB algorithm
under a general setting, we tested 30 UFL bench-
mark instances developed by Beresnev et al. (2006),
all with m= n= 100. We conducted all computational
experiments on a Windows 7 PC with an Intel Core
i7-2600 running at 3.4 GHz and 16 GB RAM. All algo-
rithms were implemented in MATLAB Release 2011a.
Among the 30 instances, there are 22 for which the
LRB solution is beyond the range of convex combi-
nation of the two LPB solutions. Again, this shows

Table 2 Optimal Stable UFL Cost Allocations Under
Different Approaches

Total shared
Method Player 1 Player 2 Player 3 Player 4 cost

LPB with simplex 5.00 6.50 8.50 6.50 26.5
LPB with 6.58 6.50 8.50 4.92 26.5

interior point
LRB 6.87 6.50 8.50 4.63 26.5
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Table 3 New Notation Used in the NLCFL Game

Notation Meaning

Qi The capacity of facility i, ∀ i ∈M, Qi ∈�+.
qj The demand of customer j , ∀ j ∈ N, qj ∈�+.
s A player coalition, s= sf ∪ sc .
sf Facility player set in coalition s, sf ⊆M.
sc Customer player set in coalition s, sc ⊆ N.
�s Incidence vector 6�sf

1 1 �
sf
2 1 0 0 0 1 �

sf
m 1 �

sc
1 1 �

sc
2 1 0 0 0 1 �

sc
n 7T , where

�
sf
i = 1, if i ∈ sf and �

sf
i = 0, otherwise; �sc

j = 1 if j ∈ sc and
�
sc
j = 0 otherwise, ∀ j ∈ N1sf ⊆M1sc ⊆ N .

the value of the LRB algorithm in terms of computa-
tionally finding alternative optimal stable cost alloca-
tions even in cases where the LPB cost allocations are
shown to be optimal.

5.2. The NLCFL Game
In an NLCFL game, there is a bipartite network G =

4M1N1E5 defined similarly to the UFL game. Each
potential facility site i ∈M now has a capacity Qi, and
each customer point j ∈ N has a demand qj . Every
customer can only be served by a single facility. In
addition to the opening cost, each facility i also has an
operational cost that is increasing with the number of
customers it is serving. To model the economy of scale
effect, we use a quadratic function �i6hini − li4ni5

27 to
measure the operational cost, where ni is the number
of customers served by facility i, and �i, hi, and li are
appropriate parameters ensuring the cost is concave
and increasing for ni ∈ 601n7.

Unlike the UFL game in which players are only the
customers in N , the player set of the NLCFL game
includes facility players in M and customer players
in N . Similar settings of the players can also be found
in the bin packing games (e.g., see Faigle and Kern
1993, Liu 2009). Our LRB algorithm can also handle
the case where only customer players are involved.
However, by including facility players, together with
a nonlinear cost function, we can demonstrate the
broad range of applications to which our LRB algo-
rithm can be applied.

We need the additional notation shown in Table 3
in defining the NLCFL game.

Definition 4. An NLCFL game 4M ∪N1cNLCFL5 is
defined with players in M ∪N , where M is the facility
player set, N is the customer player set, and the char-
acteristic function cNLCFL4s5 is determined by NLP:

cNLCFL4sf ∪sc5 = min
v1u

{

∑

i∈M

fivi+
∑

i∈M

∑

j∈N

cijuij

+
∑

i∈M

�i

[

∑

j∈N

hiuij −li

(

∑

j∈N

uij

)2]}

(24)

s.t.
∑

i∈M

uij ≥�
sc
j 1 ∀ j ∈N1 (25)

∑

j∈N

qjuij −Qivi ≤01 ∀ i∈M1 (26)

vi ≤�
sf
i 1 ∀ i∈M1 (27)

vi1 uij1∈801191

∀ i∈M1 j ∈N0 (28)

Compared with cUFL4s5, cNLCFL4sf ∪ sc5 has a few
new constraints. Constraints (26) represent the capac-
ity restrictions of the facilities; constraints (27) ensure
that only if a facility player is in the coalition can the
corresponding facility be used to serve customers.

Since the objective function of cNLCFL4sf ∪ sc5 has
a nonlinear term to measure the facility operational
cost, the LPB algorithm is no longer applicable to
computing cost allocations. Next, we will illustrate the
implementation of the LRB algorithm on the NLCFL
game.

5.2.1. LRB Cost Allocation for the NLCFL Game.
In the NLCFL characteristic function cNLCFL4sf ∪ sc5, by
adding a new set of constraints

uij ≤ �
sf
i 1 uij ≤ �

sc
j 1 ∀ i ∈M1 j ∈N1 (29)

and then bringing constraints 8
∑

i∈M uij ≥ �
sc
j 2 ∀ j ∈N9

into the objective function with nonnegative Lagran-
gian multiplier� , we can derive the NLCFL Lagrangian
characteristic function,

cLR_NLCFL4s3�5 =
∑

i∈M

fivi +
∑

i∈M

∑

j∈N

4cij −�j + �ihi5uij

−
∑

i∈M

�ili

(

∑

j∈N

uij

)2

+
∑

j∈N

�j�
sc
j

s.t.
∑

j∈N

uijqj −Qivi ≤ 01 ∀ i ∈M1

uij ≤ �
sf
i 1 ∀ i ∈M1 j ∈N1

vi ≤ �
sf
i 1 ∀ i ∈M1

uij ≤ �
sc
j 1 ∀ i ∈M1 j ∈N1

vi1 uij ∈ 801191 ∀ i ∈M1 j ∈N0

Similar to constraints 4185 for cUFL, the augmentation
of constraints (29) is to strengthen the Lagrangian
lower bound for cNLCFL4sf ∪ sc5.

Following the LRB algorithm, we can decompose
cLR_NLCFL4·3�5 into cLR1_NLCFL4·3�5 and cLR2_NLCFL4·3�5
such that cLR_NLCFL4sf ∪sc3�5=cLR1_NLCFL4sf ∪sc3�5+
cLR2_NLCFL4sf ∪sc3�5, for all sf ⊆M and sc ⊆N , and
define NLCFL subgame 1 4M∪N3cLR1_NLCFL4·3�55 and
NLCFL subgame 2 4M∪N3cLR2_NLCFL4·3�55, respec-
tively.

For NLCFL subgame 1, the characteristic function is

cLR1_NLCFL4sf ∪ sc1�5=
∑

j∈N

�j�
sc
j 0 (30)
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According to Lemma 1, we can derive the core cost
allocation for game 4M ∪ N1cLR1_NLCFL4 · 3�55, where
each customer player j ∈ N is assigned a cost exactly
equal to the Lagrangian dual price of serving her, and
no facility players are assigned any cost because they
do not need to be served. The cost allocation is given
by ��

LR1_NLCFL4j5= �j for all j ∈N , and ��
LR1_NLCFL4i5= 0

for all i ∈M .
For NLCFL subgame 2, the characteristic function is

cLR2_NLCFL4sf ∪ sc3�5

= min
v1u

{

∑

i∈M

fivi +
∑

i∈M

∑

j∈N

4cij −�j + �ihi5uij

−
∑

i∈M

�ili

(

∑

j∈N

uij

)2}

s.t.
∑

j∈N

uijqj −Qivi ≤ 01 ∀ i ∈M1

uij ≤ �
sf
i 1 ∀ i ∈M1 j ∈N1

vi ≤ �
sf
i 1 ∀ i ∈M1

uij ≤ �
sc
j 1 ∀ i ∈M1 j ∈N1

vi1 uij ∈ 801191 ∀ i ∈M1 j ∈N0

To solve cLR2_NLCFL4sf ∪ sc3�5, we can decompose it
by facilities, i.e., cLR2_NLCFL4sf ∪ sc3�5 =

∑

i∈sf
�i4sc3�5,

where for each i ∈ sf ,

�i4sc3�5 = min
vi1uij

{

fivi +
∑

j∈sc

4cij −�j + �ihi5uij

− �ili

(

∑

j∈sc

uij

)2}

s.t.
∑

j∈sc

qjuij −Qivi ≤ 01

vi1 uij ∈ 801191 ∀ j ∈ sc0 (31)

It can be seen that each problem �i4sc3�5 corre-
sponds to a variant of the knapsack problem with an
objective of minimizing a nonlinear total value func-
tion, where Qi is the knapsack capacity, and sc is a set
of items with each item j ∈ sc having a weight qj and
a value 4cij − �j + �ihi5. In addition to the total value
of the items packed into the knapsack, one can obtain
an extra value −�ili4

∑

j∈sc
uij5

2, which is quadratic in
the number of the items packed. When all weights qj
are integers, we can solve �i4sc3�5 by a dynamic pro-
gram in pseudopolynomial time O4Qin

25. To be spe-
cific, we define F

sc
i 4j1 k1 q5 as the minimum value of

∑

j ′∈sc1 j
′≤j4cij ′ − �j ′ + �ihi5uij ′ such that

∑

j ′∈sc1 j
′≤j uij ′ = k

and
∑

j ′∈sc1 j
′≤j qj ′uij ′ ≤ q. In other words, F sc

i 4j1 k1 q5 rep-
resents the minimum item value packed by including

exactly k items from set 81121 0 0 0 1 j9 within capacity q.
The dynamic programming recursion is as follows:

F
sc
i 4j1 k1 q5=















F
sc
i 4j1 k1 q5 if j 6∈ sc1

min
{

F
sc
i 4j − 11 k1 q51

F
sc
i 4j − 11 k− 11 q − qj5

}

if j ∈ sc1

with initial conditions F
sc
i 40101 q5 = 0 for q ≥ 0, and

boundary conditions F
sc
i 4j1 k1 q5= +� for q < 0. Then,

�i4sc3�5 can be found by �i4sc3�5 = mink≤�sc �

{

01 fi +

F
sc
i 4n1k1Qi5 − �ilik

2
}

, and we have cLR2_NLCFL4sf ∪

sc3�5=
∑

i∈sf
�i4sc3�5.

Now, we are ready to compute the optimal stable
cost allocation ��

LR2_NLCFL for NLCFL subgame 2 by
the CGB algorithm, where we need to solve a pricing
problem. In this particular case, the pricing problem
is to find a coalition (or column) s = sf ∪ sc with the
smallest reduced cost, where the reduced cost for each
s = sf ∪ sc is given by

min
v1u

∑

i∈sf

{

fivi +
∑

i∈sf

∑

j∈sc

4cij −�j + �ihi5uij

−
∑

i∈sf

�ili

(

∑

j∈sc

uij

)2

−
∑

k∈M∪N

�s
k�

∗

k

}

s.t.
∑

j∈sc

qjuij ≤Qivi1 ∀ i ∈ sf 1

vi1 uij ∈ 801191 ∀ i ∈ sf 1 j ∈ sc1 (32)

with �∗ being the optimal dual of the corresponding
master problem for NLCFL subgame 2.

For each given s = sf ∪ sc, one can obtain the
optimal objective value of (32) directly, as it equals
∑

i∈sf
�i4sc3�5−

∑

k∈M∪N �s
k�

∗

k , where each �i4sc3�5, as
shown earlier, can be computed by dynamic program-
ming. However, due to the exponential number of
coalitions, it is computationally intractable to find a
column s with the most negative reduced cost by enu-
meration. We therefore attempt to first identify a col-
umn s̄ with a negative reduced cost by considering
the following two cases:

Case 1. There exists at least one k such that �∗

k > 0.
In this case, a coalition s̄ can be defined by including k
with �∗

k > 0 for k ∈ M ∪N . The reduced cost for s̄ is
negative because it is at most −

∑

k∈M∪N max801�∗

k 9 by
setting all u and v to be zero.

Case 2. For all k ∈M ∪N , �∗

k ≤ 0. This case is more
complicated. To efficiently find a coalition s̄ = s̄f ∪ s̄c
with a negative reduced cost, we can consider the
following ILP where binary variables vi and �j indi-
cate whether s̄ includes facility players i and customer

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

20
2.

14
1.

17
6.

9]
 o

n 
12

 M
ay

 2
01

8,
 a

t 0
5:

00
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Liu, Qi, and Xu: Cost Allocation Framework by Lagrangian Relaxation
INFORMS Journal on Computing 28(4), pp. 687–702, © 2016 INFORMS 699

player j with f ′
i = fi −�∗

i , c′
ij = cij − �j + �ihi, l′i = �ili,

and � ′
j = −�∗

j .

min
v3u3�

R4v1u1�5 = min
v1u

{

∑

i∈M

f ′

i vi+
∑

i∈M

∑

j∈N

c′

ijuij

−
∑

i∈M

l′i4
∑

j∈N

uij5
2
+
∑

j∈N

�j�
′

j

}

s.t.
∑

j∈N

qjuij ≤Qivi1 ∀ i∈M1

uij ≤�j1 ∀ i∈M1 j ∈N1

vi1 uij1 �j ∈801191
∀ i∈M1 j ∈N0 (33)

Therefore, it can be seen that feasible solutions to ILP
of negative objective values are one-to-one correspon-
dence with coalitions s̄ = s̄f ∪ s̄c of negative reduced
costs. Moreover, such a coalition s̄ can be obtained
efficiently by exploiting the following properties.

Lemma 5. For 4335, without changing the optimal ob-
jective value, one can sequentially fix some variables to zero
by the following steps:

(1) For each 4i1 j5 ∈M×N , if c′
ij − l′i6n

2
i −4ni −1527 > 0,

then uij = 0, where ni is the number of elements in set
8c′

ij <�2 ∀ j ∈N9. After that, set c′
ij = �.

(2) For each j ∈ N , if � ′
j +

∑

i∈M min8c′
ij − l′i6n

2
i −

4ni − 1527109≥ 0, then �j = 0, uij = 0, ∀ i ∈M .
(3) For each i ∈M , solve a nonlinear knapsack problem

similar to (31), where Qi is the knapsack capacity, and N is
the item set, with each item j ∈N having a weight qj and a
value c′

ij . Let �i be the optimal objective function value of
this knapsack problem. If �i + f ′

i ≥ 0, then set vi = 0 and
uij = 0 for all j ∈N .

Proof. First, if there exists a pair of indices 4i1 j5
such that uij = 1 and c′

ij − l′i6n
2
i − 4ni − 1527 > 0 in a fea-

sible solution of ILP (33), one can directly set uij = 0,
and derive another feasible solution under which the
objective function value is reduced by at least c′

ij −

l′i6n
2
i − 4ni − 1527.

Second, if there exists a customer j such that �j = 1
and � ′

j +
∑

i∈M min8c′
ij − l′i6n

2
i − 4ni − 1527109 ≥ 0 in a

feasible solution of ILP (33), then setting �j = 0 and
uij = 0 for all i ∈M results in another feasible solution,
where the objective function value is reduced by at
least � ′

j +
∑

i∈M min8c′
ij − l′i6n

2
i − 4ni − 1527109.

Third, if there exists a facility i such that vi = 1 and
�i + f ′

i ≥ 0 in a feasible solution of ILP (33), then the
resulting solution by setting vi = 0 and uij = 0 for all
j ∈N is also feasible and the objective function value
is reduced by at least �i + f ′

i . �
Suffice it to say that making the above changes does

not increase the value of minv3u3� R4v1u1�5. Though
not theoretically ensuring polynomial-time complex-
ity, the steps in Lemma 5 can indeed greatly reduce
the problem size when solving (33).

After deriving the optimal stable cost allocations
��

LR1_NLCFL and ��
LR2_NLCFL for NLCFL subgames 1

and 2, respectively, we can compute a stable cost
allocation ��

LR_NLCFL = ��
LR1_NLCFL + ��

LR2_NLCFL for an
NLCFL game according to Theorem 1. Furthermore,
by Theorem 2, the corresponding LRB cost allocation
value

∑

k∈M∪N ��∗

LR_NLCFL4k5 is equal to the Lagrangian
relaxation lower bound cLR_NLCFL4M ∪ N3�∗5 if �∗

is the optimal Lagrangian multiplier and 4M ∪ N3
cLR2_NLCFL4 · 3�

∗55 has a nonempty core.

5.2.2. Computational Results for the NLCFL
Game. To conduct the computational experiments,
we use 20 single source facility location benchmark
instances developed by Beresnev et al. (2006). Each
instance has a bipartite network G = 4M1N1E5 with
m = n = 100 and fi = 100 for all i ∈ M . For each
instance, there are three capacity levels 10, 20, and 30.
In addition, we use h1 = h2 = · · · = hm = n2, l1 = l2 =

· · · = lm = 1, and �1 = �2 = · · · = �m = � to measure the
operational cost, where � indicates the relative weight
of the operational cost. When solving the Lagrangian
dual problem by the subgradient method, we set the
number of maximal iterations to be 2,500.

To show the effectiveness of the LRB cost alloca-
tion, ideally we need to compare the total shared cost
against the grand coalition cost cNLCFL4M ∪N5. How-
ever, the grand coalition cost is only available in the
benchmark data set for instances with � = 0. There-
fore, for a general comparison, we need to compro-
mise by replacing the centralized optimum with a
heuristic solution, called the best found centralized
solution (BFCS), which is defined as the better of
the following two feasible solutions. The first feasible
solution is simply the optimal solution to the origi-
nal benchmark instances of the NLCFL problems with
� = 0, which is available in Bachrach et al. (2009). The
second feasible solution is derived from the optimal
solution of cLR2_NLCFL4M ∪ N3�5. Note that this opti-
mal solution might be infeasible for the centralized
problem cNLCFL4M ∪ N5, since some customers may
not be served. If so, to derive a feasible solution out
of the given infeasible solution, we can proceed as
follows. For each unserved customer, we choose an
opened facility with enough remaining capacity and
the smallest transportation cost to serve this customer;
if there is no such facility, we open a new feasible
facility with the minimum transportation cost to serve
this customer.

Table 4 shows the performance and computational
efficiency of the LRB cost allocation algorithm imple-
mented on the 20 instances under situations where
the facility capacities are identically equal to 10, 20,
and 30, respectively.

In Table 4, “LRCA” represents the best found LRB
cost allocation value

∑

k∈M∪N ��
LR_NLCFL4k5 under dif-

ferent � , and “LRB” represents the best Lagrangian
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Table 4 Performance of LRB Cost Allocation Algorithm for the NLCFL Game

LRCA/BFCS (%) LRCA/LRB (%) Total time(s)

Capacity � Average Max Min Average Max Min Average Max Min

Q= 10 0000 98.79 99.12 98.33 100.00 100 100.00 — — —
0001 99.64 99.70 99.55 100.00 100 100.00 51683 61838 4,987
0010 99.87 99.89 99.78 100.00 100 100.00 51690 61834 4,980
0050 99.90 99.92 99.87 100.00 100 100.00 51742 61814 5,036
1000 99.91 99.95 99.89 100.00 100 100.00 51822 61983 4,764

Q= 20 0000 98.32 99.30 97.66 100.00 100 99.95 — — —
0001 99.61 99.76 99.48 100.00 100 100.00 91925 101478 9,485
0010 99.83 99.85 99.82 100.00 100 100.00 91835 101458 9,322
0050 99.85 99.88 99.84 100.00 100 99.99 91825 101487 9,315
1000 99.89 99.92 99.87 100.00 100 100.00 91973 111154 9,812

Q= 30 0000 95.25 96.95 93.93 100.00 100.00 100 — — —
0001 99.02 99.15 98.82 100.00 100 99.99 111686 121831 10,410
0010 99.72 99.77 99.63 99.99 100 99.95 111755 121816 10,421
0050 99.81 99.87 99.78 100.00 100 100.00 111485 131064 10,277
1000 99.88 99.92 99.86 100.00 100 100.00 121621 141371 11,955

lower bound cLR_NLCFL4M ∪N3�∗5 obtained using the
subgradient method. For each capacity, we list the
computational results under different values of �.
From column “LRCA/BFCS,” it can be seen that for
all the examined instances, our LRB cost allocation
algorithm can produce stable cost allocations that
share at least 93093% of BFCS. When � increases so
that the facility operational cost gains more weight,
our LRB cost allocations can share more than 99% of
BFCS. These findings demonstrate the high quality of
the LRB cost allocations. Moreover, although NLCFL
subgame 2 is not submodular, in general, column
“LRCA/LRB” suggests that almost every NLCFL sub-
game 2 has a nonempty core. This indicates that even
in cases where condition (2) of Theorem 2 does not
hold, the LRB cost allocation still has a great chance to
achieve the Lagrangian lower bound. As for time effi-
ciency, we can see that the computational time tends
to increase with Q and �. Among all instances, the
longest computation time is around four hours.

For instances with � = 0, where the NLCFL game
has no nonlinear term in its characteristic func-
tion, we compare the LPB and LRB cost alloca-
tions, by showing in Table 5 the percentage ratios
of the cost allocation values against the grand coali-
tion costs given by the benchmarks. Here, the LPB
and LRB cost allocations are computed based on the
same ILP formulation for the characteristic function
cNLCFL4sf ∪ sc5 augmented by constraints (29).

To study the impact of constraints 4295, we com-
pare LRB and LRCA with a new Lagrangian lower
bound LRB′ and a new LRB cost allocation value
LRCA′, where LRB′ and LRCA′ are obtained from
a revised characteristic function of cLRNLCFL

4s3�5 with
constraints 4295 being relaxed. Moreover, since the
LPB cost allocation value and the LP lower bound
are equal, they are both presented in column “LPCA”

of Table 5. From the table, we have the following
observations.

First, the Lagrangian lower bound is tighter than the
LP lower bound, on average, as shown in the first two
columns under “Average.” This implies the potential
advantage of the LRB cost allocation over the LPB cost
allocation. In addition, as indicated by the columns
under “LRCA − LPCA,” the LRB cost allocation is
indeed superior to the LPB, on average, especially for
cases with a lower capacity.

Second, as shown in columns “LRB, LRCA, LRB′,
LRCA′,” adding constraints 4295 to cNLCFL4sf ∪ sc5 can
indeed improve the Lagrangian lower bounds, as well
as the LRB cost allocation values. In addition, by
comparing columns “LPCA” and “LRCA′,” we find
that even with no additional constraints, the resulting
LRB cost allocation still beats the LPB one, on aver-
age. This further implies the competitiveness of our
LRB algorithm.

We next investigate the convergence of the LRB
algorithm on the NLCFL game. This was not an issue
for the UFL game. As long as the subgradient method
for the Lagrangian dual problem converges to �∗ in
a UFL game, Theorem 2 ensures the optimality of
the stable cost allocation corresponding to �∗ because
UFL subgame 2 has a nonempty core. However, the
NLCFL subgame 2 may have an empty core, implying
a possible gap between the Lagrangian lower bound
and the total cost that can be allocated. Although we
may expect a general trend where a tighter Lagrangian
lower bound leads to a better cost allocation, there is
no guarantee of the strict increase of cost allocation
value when the Lagrangian lower bound increases.

To examine this, we apply Algorithm 1 to the
NLCFL game on instances with � = 0, and compare
LRB cost allocations that are obtained by using differ-
ent å sets of Lagrangian multipliers. Table 6 reports
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Table 5 LPB vs. LRB Cost Allocations for the NLCFL Game with � = 0 (in %)

Average LRCA− LPCA

Capacity LPCA LRB LRCA LRB′ LRCA′ Max Min

10 97.15 98.79 98.79 98.79 98.79 2.38 1000
20 97.20 98.32 98.31 98.29 98.25 1.51 0088
30 94.70 95.25 95.25 95.21 95.21 0.75 0038
40 94.11 94.25 94.25 94.25 94.25 0.28 0007
50 93.87 93.88 93.88 93.88 93.88 0.04 −0002

Table 6 Comparisons of LRB Cost Allocations Derived from
Different å Sets of Lagrangian Multipliers

Pairs of å sets

å1 å2 (as baseline) Improved Declined Unchanged

8� 8009 8� 5009 95 4 1
8� 10009 8� 5001 � 8009 51 6 43
8� 15009 8� 5001 � 8001 � 10009 24 6 70
8� 20009 8� 5001 � 8001 � 10001 � 15009 1 6 93
8� 25009 8� 5001 � 8001 � 10001 � 15001 � 20009 0 7 93

the number of instances whose LRB cost allocations
are improved, declined, and unchanged, respectively,
when å is changed from a baseline set å2 to another
set å1. Each � i represents the best Lagrangian mul-
tiplier found within i iterations of the subgradient
method in Step 1 of Algorithm 1. The results show
that it is possible that the cost allocation may become
worse as the Lagrangian bound improves, though the
chance of getting worse is very small in later itera-
tions. For example, out of the one hundred instances,
there are seven instances whose LRB cost allocations
decline in quality when å is chosen to be 8�25009
instead of 8�5001�8001�10001�15001�20009. This finding
confirms the need for using multiple Lagrangian mul-
tipliers in Algorithm 1.

In summary, from the computational experiments,
we can conclude that the LRB algorithm is effective
and efficient in solving the OCAP for the NLCFL
game.

6. Conclusion
The focus of this paper is on cooperative games
whose core may be empty. We propose a generic
framework to calculate a good stable cost alloca-
tion that satisfies coalitional stability and recovers
the grand coalition cost as much as possible. In the
literature, such a problem is usually treated by LP
relaxation and duality techniques. We take the dif-
ferent approach of investigating Lagrangian relax-
ation techniques. Besides the competitiveness of the
Lagrangian bound over the LP bound, our algorithm
is not restricted to solving problems with assignable
constraints and linear objective functions.

We demonstrate our new algorithm on two differ-
ent facility location games, each representing a typical
type of cooperative game that may be encountered.

The computational experiments show that our algo-
rithm can produce near-optimal cost allocations for
all these games, outperforming the existing LP-based
algorithm. In fact, we have also successfully imple-
mented our algorithm on other typical games, such as
TSP games, e.g., see Liu (2015).

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287/ijoc.2016.0707.
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