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Abstract—For an arc-disrupted network, we investigate the
problem of partially recovering this network by given budget
resource such that the total weighted transportation cost for all
the origin-destination pairs is minimized. To obtain the solutions,
we propose two heuristic algorithms based on Lagrangian re-
laxation, which both can generate good feasible solutions for
the network disruption recovery problem. Accordingly, we are
able to study how the marginal efficiency changes of providing
additional resource and then decide the appropriate amount of
budget resource to achieve the optimal social welfare.
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I. INTRODUCTION

With the development of technology and economy, soci-
ety is more and more demanding the reliability of various
infrastructures such as transportation and telecommunication
networks. However, disruptions do happen from time to time
which damage the infrastructures, deteriorate services to users,
and threat human lives. Such damages need to be repaired as
quickly as possible, a process known as disruption recovery.

In the context of network disruption, both nodes and arcs
may be disrupted. Here we consider the case of arc disruption.
Specifically, a disrupted arc has an unusual high cost than
its normal cost. Network disruption recovery is the problem
for a set of origin-destination pairs. The central authority is
to assign finite resource over some disrupted arcs to restore
their functions and minimize the total transportation cost. One
additional concern of the central authority is to decide the
amount of budget resource used in recovery. This concern is
of practical significance since higher budget resource, although
leading to a lower total transportation cost, means a higher
social opportunity cost.

In the last decade, on the research of disruption recovery
management, different strategies have been proposed to fight
the negative impact of unexpected disruptions through both
proactive planning and aftermath rescheduling. The work is
too extensive to review here. We refer to Clausen et al. (2010),
Yu and Qi (2004), Kleindorfer and Saad (2005), Snyder and
Daskin (2005) and Tomlin (2006) for some typical models and
applications. Suffice it to say that, to the best of our knowledge,
no previous work has specifically focused on the network arcs
disruption recovery.

Lagrangian relaxation procedure is adopted here to solve
the network recovery problem. Since first applied by Held

and Karp (1970) to solve the travelling salesman problem,
Lagrangian relaxation has been shown to be a very effective
approach for solving integer linear programmings, such as
scheduling problem in Muckstadt and Koenig (1977), assign-
ment problem in Jörnsten and Näsberg (1986), vehicle routing
problem in Kohl and Madsen (1997), facility location problem
in Jain and Vazirani (2001) and lot sizing problem in Zhang
et al. (2012), to name a few.

In this paper, we will develop two heuristic algorithms
based on LR procedure and examine the effectiveness and
efficiency by implementing them on large network recovery
problems. Based on the feasible solutions given by the two
heuristic algorithms, we then investigate the relationship be-
tween the total transportation cost and the amount of budget
resource to check the marginal efficiency of providing addi-
tional resource.

The remainder of this paper is organised as follows. Section
II describes the network recovery problem in a mathemati-
cal way and formulates this problem into an integer linear
programming. Section III presents the Lagrangian relaxation
framework and gives the details of the two Lagrangian re-
laxation based heuristic algorithms. Section IV reports the
computational results.

II. PROBLEM DESCRIPTION AND MODEL

In a network recovery problem (NRP), there is an undi-
rected disrupted network defined by G = (N,E) with N being
the set of nodes and E the set of disrupted arcs. Each arc
(i, j) ∈ E has a positive disrupted transportation cost ci j and
can be recovered to its normal transportation cost c′i j with

0 ≤ c′i j ≤ ci j by consuming certain resource ri j.

In total, there are m pairs of weighted origin-destination
(OD) pairs. The goal of the decision maker is to minimize
the total weighted transportation cost ∑

m
k=1 wkφ k with budget

resource R, where wk is a positive weight and φ k is the
shortest distance to be determined for OD pair (ok

,dk) after
the recovery.

Apparently, more available resource will lead to lower total
weighted transportation cost. However, in some cases, for the
central authority, it may not pay to provide too much resource
since, although the total weighted transportation cost is re-
duced, the social opportunity cost is increased. In this paper,
besides provide heuristic algorithms to compute good feasible
solutions for NRP, we will also investigate how ∑

m
k=1 wkφ k
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changes as R increases, and then try to give instructions of
providing appropriate amount of resource in the view of central
authority to maximize the social welfare, i.e., to minimize the
summation of transportation and opportunity costs.

We formally list the notation used in NRP as follows.

TABLE I. NOTATION USED IN THE NETWORK RECOVERY PROBLEM

N : The set of nodes, N = {1,2, ...,n}.
M : Indication set of OD pairs, M = {1,2, ...,m}.
ci j : Disrupted unit transportation cost from node i to j.
c′i j : Normal unit transportation cost from node i to j.

ri j : Amount of resource consumed to recover arc (i, j).
ok : Origin of OD pair (ok

,dk), ∀k ∈ M.

dk : Destination of OD pair (ok
,dk), ∀k ∈ M.

wk : Weight of OD pair (ok
,dk), ∀k ∈ M.

R : Total available resource for the recovery.

xk
i j : Decision variable. xk

i j = 1, if arc (i, j) is a recovered

arc on the shortest path of pair (ok
,dk) and xk

i j = 0,

otherwise, ∀(i, j) ∈ E,k ∈ M.

yk
i j : Decision variable. yk

i j = 1, if arc (i, j) is a disrupted

arc on the shortest path of pair (ok
,dk) and yk

i j = 0,

otherwise, ∀(i, j) ∈ E,k ∈ M.
zi j : Decision variable. zi j = 1, if arc (i, j) is recovered

and zi j = 0, otherwise, ∀(i, j) ∈ E,k ∈ M.

The network recovery problem can be written as the
following integer linear programming (P),

ΩP := min ∑
k∈M

wk ∑
(i, j)∈E

(
c′i jx

k
i j + ci jy

k
i j

)
(1)

s.t. ∑
j:(i, j)∈E

(
xk

i j + yk
i j

)
− ∑

j:( j,i)∈E

(
xk

ji + yk
ji

)

=





1, if i = ok

−1, if i = dk

0, if i 6∈ {ok
,dk}

∀i ∈ N,k ∈ M (2)

∑
(i, j)∈E

ri jzi j ≤ R (3)

xk
i j ≤ zi j, ∀(i, j) ∈ E,k ∈ M (4)

xk
i j,y

k
i j,zi j ∈ {0,1}, ∀(i, j) ∈ E,k ∈ M. (5)

In the above formulations, (1) is the objective to minimize
the total weighted transportation cost for the central authority;
(2) are the flow conservation constraints which identify a
unique path from origin ok to destination dk for each OD
pair (ok

,dk); (3) is budget balance constraint which means the
total consumed resource ∑(i, j)∈E ri jzi j cannot exceed budget

R; constraints (4) ensure the fact that only if an arc (i, j) is
recovered can this arc be used as a normal arc on some shortest
paths; constraints (5) are binary requirements for the decision
variables.

The network recovery problem is hard to solve directly,
since constraint (3) itself already leads to a knapsack problem
which is pseudo polynomial solvable.

III. HEURISTIC ALGORITHMS FOR NRP

In this section, we will develop two heuristic algorithms,
based on Lagrangian relaxation procedure, to obtain good fea-
sible solutions for the network recovery problem in reasonable
computational time.

A. The Lagrangian Relaxation Procedure

Based on the formulation of NRP, we relax constraints (4)
to the objective function with Lagrangian multiplier λ . The
resulting Lagrangian function (LF) is,

L(λ ) = min{
xk

i j ,y
k
i j ,zi j

} ∑
k∈M

wk ∑
(i, j)∈E

(
c′i jx

k
i j + ci jy

k
i j

)

+ ∑
k∈M

∑
(i, j)∈E

λ k
i j

(
xk

i j − zi j

)

subject to (2),(3) and (5)

= min{
xk

i j ,y
k
i j ,zi j

} ∑
k∈M

wk ∑
(i, j)∈E

[(
c′i j +

λ k
i j

wk

)
xk

i j + ci jy
k
i j

]

− ∑
k∈M

∑
(i, j)∈E

λ k
i jzi j

subject to (2),(3) and (5). (6)

According to Lagrangian duality theory, for any non-
negative Lagrangian multiplier λ , L(λ ) gives a lower bound
on its primal optimal objective value ΩP. To obtain the
sharpest lower bound, we need to optimize the corresponding
Lagrangian dual problem (LDP) given by,

L∗ =max
λ≥0

L(λ )

subject to (2),(3) and (5).
(7)

Before solving (7), we first need to give a way of com-
puting L(λ ). In ILP (6), since constraints (2) and (3) are
independent, Lagrangian function can be decomposed into a
shortest path problem (SP) with optimal objective value Ls(λ )
and a knapsack problem (KP) with optimal objective value
Lk(λ ) such that L(λ ) = Ls(λ )+Lk(λ ).

The specific expression of the shortest path problem is

Ls(λ ) := min ∑
k∈M

wk ∑
(i, j)∈E

(
c′′i jx

k
i j + ci jy

k
i j

)

s.t. ∑
j:(i, j)∈E

(
xk

i j + yk
i j

)
− ∑

j:( j,i)∈E

(
xk

ji + yk
ji

)

=





1, if i = ok

−1, if i = dk

0, if i 6∈ {ok
,dk}

∀i ∈ N,k ∈ M

xk
i j,y

k
i j ∈ {0,1}, ∀(i, j) ∈ E,k ∈ M.

(8)

where c′′i j = c′i j +
λ k

i j

wk .

The SP (8) can be solved in polynomial time by, first,
choosing the smaller value between c′′i j and ci j as the new

transportation cost, for each arc (i, j) ∈ E, and second, using
Dijkstra’s algorithm (see, Skiena 1990) to obtain the short-
est distance lk(λ ) for each OD pair (ok

,dk). Then, L(λ ) =
∑k∈M lk(λ ).



The specific expression of the knapsack problem is

Lk(λ ) := min− ∑
k∈M

∑
(i, j)∈E

λ k
i jzi j

s.t. ∑
(i, j)∈E

ri jzi j ≤ R

zi j ∈ {0,1}, ∀(i, j) ∈ E.

(9)

where λi j = ∑k∈M λ k
i j.

ILP (9) is a standard knapsack problem where there is a
bag with capacity R and a set of items

{
(i, j) : ∀(i, j) ∈ E

}

each with volume ri j and profit λi j. Therefore, this knapsack
problem can be solved in pseudo polynomial time by dynamic
programming (see, Andonov et al. 2000).

Note that the optimal solution zk for (9) is, although
not optimal, a feasible resource assignment solution for the
network recovery problem. We will utilize zk to develop good
feasible solutions for NRP, the detailed operations will be
described in the design of Lagrangian heuristic algorithms.

To find the optimal Lagrangian multipliers λ ∗ that max-
imizes L(λ ), we apply subgradient method (see, Held et al.
1974) to update Lagrangian multiplier λ at each iteration. The
recursive formula is, for any (i, j) ∈ E,k ∈ M,

λ
k(t+1)
i j =

{
λ

k(t)
i j +θ (t)

[
x

k(t)
i j − z

(t)
i j

]}+
. (10)

In (10), notation {a}+ denotes the positive part of a, that

is, {a}+ = max{0,a}; λ (t) and λ (t+1) represent the values of
Lagrangian multiplier λ at iterations t and t +1, respectively;

vector
[
x1(t)− z(t),x2(t)− z(t), ...,xmp(t)− z(t)

]
indicates the gra-

dient at point
(

λ (t)
,L(λ (t))

)
; θ (t) is the step size at iteration

t given by,

θ (t) =
ρ(t)

[
UB−L(λ (t))

]

∑
m
k=1 ‖ xk(t)− z(t) ‖2

,

where UB is an upper bound on ΩP, i.e., the smallest objective

value of P found by iteration t; L(λ (t)) is the Lagrangian func-

tion value at iteration t which is equal to Ls(λ
(t))+Lk(λ

(t));
ρ(t) is a scalar initially set to 2 and reduced to half whenever

the maximal Lagrangian function value L ˜(λ ) found so far has
failed to increase in a specified number of iterations, or a larger

L ˜(λ ) is found.

In general, in a standard Lagrangian relaxation procedure,

at each iteration t, we put in Lagrangian multipliers λ (t)

derived by subgradient method; after solving two sub-problems
SP and KP, we can generate a feasible resource assignment

solution z(t) for the network recovery problem and compute
the corresponding objective value to update UB; recursively

derive Lagrangian multipliers λ (t+1). Repeat this process until
the gap between UB and the maximal Lagrangian function

value L ˜(λ ) is close to zero or the number of iterations reaches
to a limit.

B. The Lagrangian Relaxation Heuristics

According to the Lagrangian relaxation procedure, for the
network recovery problem, we can generate a good lower

bound L ˜(λ ) called Lagrangian lower bound (LRB) from s-
tandard LR procedure. A by-product of this procedure is a
resource assignment solution, obtained by solving the knapsack
problem, which is feasible for NRP.

To be specific, in LR procedure, the iterative solution[
x(t);y(t);z(t)

]
for Lagrangian function might not be feasible

for network recovery problem due to the relaxation of con-

straints xk
i j ≤ zi j, however, z(t) itself is its feasible resource

assignment solution. Unfortunately, z(t) is not necessarily rea-
sonable, since in some situations, arcs are recovered but not
used in shortest paths of any OD pairs. To this end, we will

develop two heuristic algorithms to improve z(t) and obtain
better feasible solutions for the network recovery problem.

Algorithm 1. Lagrangian heuristic algorithm one: in the tth

iteration of Lagrangian relaxation procedure, based on z(t),

an improved resource assignment solution z′(t) is developed as
follows.

Step 1: According to solution z(t), recover the net-

work, and determine the shortest path SP
(t)
k for each OD

pair (ok
,dk). Denote the shortest paths set as SP(t) ≡{

SP
(t)
1 ,SP

(t)
2 , ...,SP

(t)
m

}
.

Step 2: Among all the recovered arcs, some appear in

SP(t) and some do not. Select the arcs which do not appear
in any shortest paths and release the corresponding resource

consumed in recovery. Denote the selected arcs as z̃(t) and the

total released resource as R′(t).

Step 3: Among all the arcs which appear in shortest paths

set SP(t), denote the unrecovered arcs as E ′, recover some
arcs in E ′ with resource R′(t) such that the total weighted
transportation cost is maximally reduced by following shortest

paths set SP(t). We call the newly recovered arcs z̄(t) the
complemented resource assignment solution. The improved

solution z′(t) is equal to z(t)− z̃(t)+ z̄(t).

In Algorithm 1, the shortest paths in step 1 are determined
by Dijkstra’s algorithm. Finding the complemented resource

assignment solution z̄(t) is equivalent to solving a knapsack

problem where there is a bag with capacity R′(t) and a set
of items

{
(i, j) : (i, j) ∈ E ′

}
each with volume ri j and profit

∑
m
k=1 wkγk

i j(ci j −c′i j). Here, γk
i j is a binary incidence parameter

which is equal to 1 if arc (i, j) is on path SP
(t)
k and 0, otherwise.

After Lagrangian relaxation procedure, we choose a re-
source assignment solution z′∗ with the minimal total weighted

transportation cost among the iterative solutions z′(t) as the
final solution. Denote the sharpest Lagrangian lower bound
and the smallest total weighted transportation cost found in
Algorithm 1 as LRB1 and Ω1, respectively.

We use Figure 1 to illustrate Lagrangian heuristic one.
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Fig. 1. Lagrangian heuristic one



In the first heuristic algorithm, we improved iterative solu-

tion z(t) to z′(t) at each LR iteration, and obtain final solution
z′∗ out of all iterative solutions z′(t). In the second heuristic
algorithm, rather than release resource at each iteration, we
release the wasted resource of the best iterative solution z∗

among z(t) after a complete LR procedure. Instead of using
the released resource to solve a knapsack problem, we turn
to solve a reduced network recovery problem with updated
parameters R, ci j, and c′i j. The detailed descriptions of this
algorithm are as follows.

Algorithm 2. Lagrangian heuristic algorithm two.

Step 1: After a complete Lagrangian relaxation procedure,
according to the best resource assignment solution z∗ selected

from z(t) given at each iteration, recover arcs ẑ appearing in
the corresponding shortest paths set SP∗ of z∗ and obtain the
released resource R′ by using similar method described in steps
1 and 2 of the first heuristic.

Step 2: For each arc (i, j) ∈ E, if it is recovered, let ci j =
c′i j. Under the new settings, treat the original problem P as a

reduced netwrok recovery problem with total resource R′ and
resolve this problem.

Step 3: Repeat steps 1 and 2 until we find an enough
good solution or the released resource R′ is no longer helpful
to reduce the transportation cost. The final recovery decision
is just the summation of all best resource assignment solutions
z∗ for each problem solved in steps 1 and 2.

Denote the sharpest Lagrangian lower bound and the s-
mallest total weighted transportation cost found in Algorithm
2 as LRB2 and Ω2, respectively. Lagrangian heuristic two can
be explained by Figure 2.
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Fig. 2. Lagrangian heuristic two

In general, both of the two heuristic algorithms can gener-
ate good feasible solutions for the network recovery problem
in reasonable computing time. We will show the computational
results in next section.

IV. COMPUTATIONAL RESULTS

We conduct all computational experiments on a Windows
7 PC with an Intel Core i7-2600 and 16G RAM, 3.4GHz CPU.
All algorithms are implemented by Matlab 2011a.

We now show the effectiveness and efficiency of the
proposed Lagrangian heuristic algorithms. In the experiments,
we randomly construct 3 types of networks which all contain
50 OD pairs and 100 nodes while have different densities, to
be specific, they contain 500, 1500 and 4500 undirected arcs,
respectively. The normal transportation costs

{
c′i j : ∀(i, j)∈ E

}

are integers uniformly distributed in interval
[
10,30

]
. The

disrupted transportation cost ci j is equal to the product of

c′i j and a real value uniformly distributed in interval
[
1,2
]
.

The amount of resource ri j to recover arc (i, j) is an integer
uniformly distributed in interval [10,30]. The weights of OD
pairs w are integers uniformly distributed in interval

[
5,15

]
.

We analyse the results where the total available resource are
500, 1000 and 1500, respectively. In other words, the total
available resource can recover 25, 50 and 75 arcs, respectively,
on average.

The detailed results are presented in Tables II, III and IV.

TABLE II. NRP WITH 100 NODES AND 500 UNDIRECTED ARCS

R
Heuristic one (%) Heuristic two (%)

Avg. Max. Min. Avg. Max. Min.

500 86.42 89.30 82.51 86.25 88.05 84.07
1000 89.78 91.67 87.46 90.03 91.95 87.88
1500 95.96 98.06 93.36 96.12 98.16 93.54

R
Heuristic (%)

T1 (s) T2 (s)
Avg. Max. Min.

500 86.89 89.47 84.07 1416 1325
1000 90.04 91.95 87.88 1319 1311
1500 96.12 98.16 93.54 1305 1303

TABLE III. NRP WITH 100 NODES AND 1500 UNDIRECTED ARCS

R
Heuristic one (%) Heuristic two (%)

Avg. Max. Min. Avg. Max. Min.

500 86.92 89.43 84.52 86.80 88.62 84.22
1000 92.65 94.51 90.49 92.76 94.70 90.58
1500 98.66 99.79 97.13 98.73 99.79 97.40

R
Heuristic (%)

T1 (s) T2 (s)
Avg. Max. Min.

500 87.22 89.61 84.52 1346 1327
1000 92.76 94.70 90.59 1353 1432
1500 98.73 99.79 97.40 1313 1306

TABLE IV. NRP WITH 100 NODES AND 4500 UNDIRECTED ARCS

R
Heuristic one (%) Heuristic two (%)

Avg. Max. Min. Avg. Max. Min.

500 87.08 89.00 84.91 87.21 89.35 85.35
1000 95.87 99.19 93.86 96.00 99.36 94.06
1500 99.93 100 98.85 99.94 100 99.08

R
Heuristic (%)

T1 (s) T2 (s)
Avg. Max. Min.

500 87.39 89.36 85.61 1259 1264
1000 96.00 99.36 94.06 1247 1250
1500 99.94 100 99.08 291 1253

In these tables, columns “T1” and “T2” separately represent
the computational time of carrying out Lagrangian heuristic
algorithms one and two on the network recovery problem.
The values under column “Heuristic one”, “Heuristic two”
and “Heuristic” are the percentage ratios of LRB1 over Ω1,
LRB2 over Ω2 and LRB∗ = max

{
LRB1,LRB2

}
over Ω∗ =

min
{

Ω1,Ω2

}
, respectively. From the above computational

results, we have the following observations.

First, both Lagrangian heuristic algorithms are effective and
efficient in solving network recovery problem. The average
effectivenesses are larger than 85% under all situations. All
problems can be solved within 25 minutes.



Second, both algorithms become more effective when the
budget resource is increasing. As the budget resource is large
enough, we even can find the optimal solution for the network
recovery problem which leads to the corresponding percentage
ratio being 100%.

Third, the first heuristic algorithm is more effective when
the total resource is small while the second one can do better
when the total resource is relatively large. These two algorithm
can be good alternatives for each other when solving network
recovery problem.

Forth, as the network is denser, both heuristic algorithms
become more effective. This in turn shows the good applicabil-
ity of our heuristic algorithms on larger and denser networks.

In Tables II, III and IV, we have shown the effectivenesses
and efficiencies of our two Lagrangian heuristic algorithms
implemented under various situations for network recovery
problem. However, for the central authority, the main concern
also includes deciding the amount of resource, when facing
a particular disrupted network, such that the social welfare is
maximized. To this end, we construct 20 different disrupted
networks, each with 100 nodes and 1500 undirected arcs. For
each network, the parameter settings are the same as those
introduced at the beginning of this section, the only difference
is that the available resource here is a series of integer
values from 100 to 2000 with interval 100. We present the
computational results, called “R-Ω∗ curve”, in the following
diagram where the horizontal and vertical axes represent the
input amount of resource and the average best found total
weighted transportation cost, respectively, for the 20 instances.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75
x 10

4

Budget Resource

T
ra

n
s
p
o
rt

a
ti
o
n
 C

o
s
t

Fig. 3. Average R-Ω∗ curve of 20 NRPs

According to Figure 3, denote the 20 highlighted
sampling points as

{
s1,s2, · · · ,s20

}
with coordi-

nates
{
(R1,Ω

∗
1),(R2,Ω

∗
2), · · · ,(R20,Ω

∗
20)
}

. For any
k ∈ {2,3, · · · ,20}, let the marginal efficiency at Rk be
equal to ∆Ω∗

k = Ω∗
k − Ω∗

k−1 which means the reduced
transportation cost by additionally providing 100 units
of budget resource. Table V shows the detailed marginal
efficiency at each sampling point.

TABLE V. NRP WITH 100 NODES AND 4500 UNDIRECTED ARCS

R 100 200 300 400 500 600 700

∆Ω∗ N.A. 655 603 533 457 366 330

R 800 900 1000 1100 1200 1300 1400

∆Ω∗ 290 266 220 204 202 140 129

R 1500 1600 1700 1800 1900 2000 -

∆Ω∗ 74 60 37 14 2 0 -

Based on Figure 3 and Table V, we can conclude that the
marginal efficiency of providing additional budget resource
is decreasing for the network recovery problem. When the
budget resource is high enough, e.g., larger than 2000 in our
case, the marginal efficiency even drops to 0 which indicates a
potential waste of providing more resource. If given the exact
marginal social opportunity cost of the budget resource, the
central authority can decide the amount of resource used to
recover the network.

V. CONCLUSION

The focus of this paper is on the network recovery problem.
We have proposed two Lagrangian relaxation based heuristic
algorithms which, as shown in the computational results part,
both can generate good feasible solutions for network recovery
problem. Besides, we have also provided the “R-Ω∗ curve” to
help the central authority decide the appropriate amount of
budget resource.

An interesting extension of this paper is taking the recovery
time into consideration. Usually disruption recovery takes cer-
tain duration of time, e.g., several days or even longer, before
the arcs can fully recover. Meanwhile, partially recovered arcs
can provide partial services to users. Different sequence of
recovery will lead to different service levels to users during the
recovery process. Further study can focus on the problem that
how a disrupted network can be gradually recovered during
the transition period of recovery.
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