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Abstract

Even distribution is a normal profit allocation mechanism for investment-based crowdfunding projects

on many platforms. In other words, the investors with the same pledging funds will be paid evenly when

the investment ends. The even allocation mechanism works well under the assumption that the investors

arrive at the platform simultaneously. However, in practice, the investors are sequential, therefore, the

stories are different. In this paper, we study ways to design appropriate profit allocation mechanisms to

enhance the success rate of an investment-based crowdfunding project. The basic model focuses on the

two-investor case, where only two sequential investors are considered. The profit allocation mechanism

is shown to have great impacts on the pledging probabilities of investors, as well as the success rate of

a project. After that, we shift our focus to the two-cohort case, where investors are assumed to arrive

at the platform as two sequential cohorts. By taking the sizes of each cohort into consideration, we are

able to analyze the success rate of a project under various practical situations.

Keywords: decision analysis, profit allocation, success rate, investment-based crowdfunding

1. Introduction

It is well recognized that small start-ups and entrepreneurs encounter great difficulties while seeking

finance from banks or venture capitalists (Cassar 2004; Cosh et al. 2009), especially during their initial

stages. Complementing traditional financing options, crowdfunding emerged as an innovative form of

seeking finance from people and networks, with a low-barrier (Mollick & Nanda 2015; Bouncken et al.

2015 ).

Among various types of crowdfunding options, investment-based crowdfunding, through which in-

vestors can receive financial returns (e.g., equity, interest, revenue, and loyalty) rather than appreciation

or specific products, has experienced rapid growth since the Jumpstart Our Business Start-ups (JOBS)

Act was passed in the USA in 2012. As reported in Massolution (2013), the average funding size in

investment-based crowdfunding is more than 100 times larger than the size in donation-based crowd-
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funding. In addition, the World Bank has also estimated that the total funding size of investment-based

crowdfunding would reach $90 billion by 2020 and surpass the size of venture capital (Barnett 2015).

Crowdfunding platforms make it possible for small firms and entrepreneurs to simplify and decen-

tralize their funding processes. By communicating with potential investors directly through the internet,

entrepreneurs can introduce their proposals in a better manner and raise funds from a large number of

individuals (Schwienbacher & Larralde 2010).

On an investment-based crowdfunding platform, a typical crowdfunding project will announce a

funding target, along with a unit pledging price, a funding deadline, a proposal that specifies how the

funds will be used, and a profit allocation mechanism. The funding part succeeds only when the total

amount of investment exceeds the target within the given period. If the project fails, all the funds raised

will be returned to the investors. After raising enough funds, the entrepreneur will execute the proposal

and final earnings will be allocated to investors, according to the profit allocation mechanism, in return.

During the period of crowdfunding, investors make their decisions based on their pledges to the project

and their valuations of the financial return from the proposal.

It is clear that successful crowdfunding projects can benefit all participants: entrepreneurs can get

enough funds to start their businesses; investors can make use of spare cash for promising investments;

and the platform can earn commission fees from the organization. However, because of uncertainty and

asymmetric information, about two-thirds of the total number of projects have failed at the crowdfunding

stage1. This indicates the urgent necessity of investigations on enhancing success rates of investment-

based crowdfunding projects.

It is shown that the success rate of a project is significantly affected by its performance in the early

stage. On the one hand, lesser investment in the early stage not only puts more funding pressure on the

later stages, but also weakens the investing willingness of later investors. Many existing studies(see, e.g.,

Li & Duan 2016; Belleflamme et al. 2015) have suggested the existence of positive network externality

and negative time effect in crowdfunding, that is, the portion of the target already reached has a positive

influence, while the time remaining has a negative influence on later investors. On the other hand,

investors arriving in the early stages are usually less willing to participate since they incur higher waiting

costs. Du et al. (2017) concludes that, among all the failed projects, 88.34% ended up raising lesser than

20% of their original targets. Similarly, Mollick & Kuppuswamy (2014) observes that the crowdfunding

projects either succeed or fail by large margins, and the average percentage of raised funds is only 8%

among all the failed projects.

1Source:https://www.entrepreneur.com/article/269663
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In the past, to motivate early investors to improve success rates of crowdfunding projects, en-

trepreneurs were encouraged to make some sacrifice, including offering free gifts and lowering pledging

prices. However, first, due to the lack of initial capital, entrepreneurs usually cannot afford to give free

gifts. Second, the competition in investment-based crowdfunding is so intense that each entrepreneur

prefers to set the pledging price at the lowest level. Once the initial pledging price is lowered further,

the total amount of funds raised decreases, and the proposal is more likely to fail.

In this paper, instead of sacrificing the entrepreneur’s profits, we are interested in motivating early

investors by reallocating final profits earned from the proposal. Intuitively, we assign more profits to

early investors so that their waiting costs are balanced out and the resulting pledging probabilities are

raised. Note that more profits allocated to (higher pledging probabilities of) early investors means less

profits remain for (lower pledging probabilities of) the late ones. To enhance the overall success rate of

a crowdfunding project, it is of utmost importance to provide the entrepreneur with appropriate profit

allocation mechanisms. Our main contributions are summarized as follows.

First, to the best of our knowledge, this paper is the first attempt to analytically study the profit

allocation mechanism to enhance the success rates of investment-based crowdfunding projects. Most

literature on crowdfunding, especially investment-based crowdfunding, is empirical and existing efforts

on motivating investors focus on offering additional benefits and price discounts. Our study helps the en-

trepreneur design an optimal profit allocation mechanism to maximize the success rate without sacrificing

the profits of the entrepreneur.

Second, we develop static models to analyze the pledging behavior of investors, and we characterize

the “waiting cost” to explain the inequity between investors at different stages in crowdfunding projects.

The main results show that because of the waiting cost, investors who arrive early are less willing to

pledge money. It also shows that the entrepreneur should motivate early investors to enhance the success

rate of the project. In addition, the extra return given to early investors as an incentive should increase

with the waiting cost.

Third, as a generalization, we consider the difference in the number of investors who group as cohorts,

arriving at different points in time. We find that investors in different-sized cohorts are not equally

sensitive with changes in profit allocation, and the entrepreneur should motivate investors in smaller

cohorts to enhance the success rate of his crowdfunding project. This property, together with the effect

of the waiting cost, decides the profit allocation strategy of the entrepreneur. In addition, we also provide

managerial guidance on how the entrepreneur should adjust the optimal profit allocation mechanism when

other factors in the market change.

The rest of this paper is structured as follows. The following section reviews relevant literature. We
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describe the basic problem in Section 3. In Section 4, we analyze the profit allocation mechanism using a

primary model where there are only two potential investors. Section 5 generalizes the results of Section

4 by studying a two-cohort model where there are two cohorts of investors. The conclusions are shown

in Section 6.

2. Literature Review

Although crowdfunding is a relatively new phenomenon with nascent related research, the rapid

growth of all kinds of crowdfunding platforms, as well as enormous economic benefits brought by them

every year, have intrigued more and more researchers.

Most of the existing research studies focus on the empirical side. Researchers have studied many

characteristics of crowdfunding mechanisms that might influence the success rate, including geographic

distance among investors (Mollick 2014; Agrawal et al. 2015, 2011), types of projects (Belleflamme et al.

2013), choices of return offered in projects (Wang et al. 2016), dynamic process of investing behavior

(Kuppuswamy & Bayus 2015; Chung & Lee 2015), choices of market mechanisms (Wei & Lin 2016), the

existence of home bias (Lin & Viswanathan 2015), long-term benefits for entrepreneurs after successfully

launching a project (Mollick & Kuppuswamy 2014), comparison between “Keep-It-All” and “All-Or-

Nothing” (Cumming et al. 2014), perverse incentives in crowdfunding (Hildebrand et al. 2016), social

capital (Zheng et al. 2014; Colombo et al. 2015) and network externalities (Li & Duan 2016; Belleflamme

et al. 2015).

On the analytical side, Ellman & Hurkens (2015) and Strausz (2016) analyze how crowdfunding

projects ameliorate the uncertainty of demand and deal with moral hazards. Belleflamme et al. (2014)

gives instructions on choosing between pre-order crowdfunding and equity crowdfunding under different

conditions, but they focus on the condition that the entrepreneur is tapping into a certain crowd with

known valuations, and the equity crowdfunding works as an alternative to finance for a certain product.

Different from our study, there is no uncertainty of success and the project will either definitely fail

or definitely succeed, depending on the price and target. Chakraborty & Swinney (2016) reveals that

entrepreneurs may behave differently under the objectives of maximizing success rates or the expected

return. Chen et al. (2017) investigates whether entrepreneurs who essentially need to convince angel

investors for venture capital should launch a crowdfunding project in advance to prove the market size

and customer valuations, or not. Du et al. (2017) studies the optimal time in a reward-based crowdfunding

project, and finds that the entrepreneur should contingently add a stimulus, such as offering free samples

or updating project features, for success. Hu et al. (2015) develops a two-period model to study how

pricing and product design strategies in crowdfunding differ from traditional financing. Our work studies
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investment-based crowdfunding that has seldom been studied analytically. It is well recognized that a

good success rate lies at the core of crowdfunding. We focus on enhancing the success rate by designing

a profit allocation mechanism without reducing profits in crowdfunding proposals.

As a supplement, crowdfunding is related to many fields of literature. For example, the “All-Or-

Nothing” mechanism, in which money is refunded when the entrepreneur fails to collect enough within a

certain period, is similar to the common provision-point mechanism used by researchers to study private

provisions of public goods (see, e.g., Palfrey & Rosenthal 1988; Bagnoli & Lipman 1989). However,

everyone can benefit from the provision of public goods once a project is built, while in crowdfunding,

people must invest in the project to receive their return, thereby making the free-riding effect in the

provision of public goods less essential.

Another stream of research similar to crowdfunding is group buying, wherein a qualified number

of committed purchasers can get special discount on products. Anand & Aron (2003) compares the

group buying mechanism with conventional-posted price mechanism. Liang et al. (2014) shows that

an improvement in information quality has positive effects on customer surplus and the success rate.

Tran & Desiraju (2017) and Yan et al. (2017) study the impact of asymmetric information on group

buying from the perspective of the manufacturer and the retailer. Hu et al. (2013) suggests that sellers

disclose the cumulative sign-up information to later customers to increase success rates. Moreover, Wu

et al. (2015) reveals the threshold effect that the sign-up behavior of customers accumulates right before

and after the target is reached. This is consistent with the discovery that we have underlined, namely,

that pledging probabilities of investors are higher in the later stages, where the threshold is about to

be reached and the risk is much lower. A study on group buying that is similar to ours is Kauffman

et al. (2010). They introduced demand externalities and concluded that motivating early consumers to

join in on group buying efficiently improves the performance of projects. However, they explored the

incentive mechanisms based on offering an extra and attractive discount to the first few participants or

those who arrived within a short period of time, as soon as the project began. Group buying shares

more similarities with reward-based crowdfunding than with investment-based crowdfunding. Group

buying projects are often offered by well-established companies that launch these projects to advertise

their brands and expand market share. It is easy for these large companies to give up profit to attract

customers. But investment-based crowdfunding projects are always associated with new ventures and

small start-ups that are in urgent need of initial funds and therefore, offering discounts and samples may

not be feasible for them.
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3. Problem Description

On an investment-based crowdfunding platform, an entrepreneur will launch a project with a detailed

proposal, a target amount of funds, an unit pledging price for each investor, and a specified profit

allocation mechanism when the proposal is implemented. Then, the investors will arrive at the platform

sequentially, and decide whether to pledge or not by maximizing their own expected utilities. After that,

the project closes. If the project succeeds (i.e., the target is achieved), the entrepreneur will implement

his proposal, and the investors will get paid according to the preset profit allocation mechanism after the

implementation. Otherwise, the entrepreneur will return the pledged money to the investors.

Owing to the refunding policy, the objective of the entrepreneur is to increase the success rate of

the crowdfunding project as far as possible. In particular, once the target amount of funds and the unit

pledging price are predetermined, the profit allocation mechanism would be the remaining key factor

that would affect the success rate of a project. This is the main focus of our paper.

As a first attempt to tackle the profit allocation mechanism in investment-based crowdfunding, this

paper will restrict itself to the two-cohort situation, that is, the investors group as two cohorts, arriving in

two specific periods. This two-period assumption is widely used to study the crowdfunding process (see,

e.g., Hu et al. 2015; Jing & Xie 2011; Liang et al. 2014). In fact, many of our results can be generalized

to the case of multiple cohorts. For example, in subsection 4.3 we conclude that the entrepreneur should

motivate investors in the early cohort, and the return given to this cohort increases with the waiting

cost. This conclusion can be generalized to multiple-cohort cases that the return given to each cohort

decreases with its waiting cost, that is, the later this cohort of investors arrives, the less return they

receive. In the basic model that is presented in Section 4, we focus on the two-investor case, where each

cohort contains only one investor. In Section 5, we generalize our results to the two-cohort model.

The project is launched 
with P and p

𝐼1 arrives   𝐼2 arrives

𝑡2𝑡1 𝑡3

The project closes

Investors receive 
their return

Implementation of the proposal

Figure 1: Procedures of the two-investor case

Figure 1 shows the basic procedures involved in two-investor crowdfunding. To be specific, the unit
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pledging price is p, the target amount of funds is P = 2p, and there are two potential investors I1 and

I2. In each period ti (i = 1, 2), investor Ii arrives and makes his pledging decision. At the end of period

t2, the project closes. If either I1 or I2 chooses not to pledge, the project fails. Otherwise, the project

succeeds and the entrepreneur implements the proposal during the period t3. After the implementation

of the proposal, the investors get their return at the end of period t3. Note that t3 is usually much longer

than t1 and t2.

While making pledging decisions, each investor would maximize his own utility by comparing the

expected return from pledging (ERP) with the expected return from not pledging (ERNP). To measure

the ERP, we denote the valuation of Ii (i = 1, 2) on the proposal as Vi × P , where Vi can be regarded

as the valuation rate of return of the proposal estimated by Ii. Then, the ERP of Ii is simply his share

of Vi × P under some given profit allocation mechanism. For the valuation rate Vi, we assume that

Vi (i = 1, 2) are i.i.d., with a uniform distribution over interval
[
0, A

]
to tackle the heterogeneity of

different investors. Furthermore, the valuation rates of the investors are assumed to be private, while

their distributions are known to each other and the entrepreneur. Such assumptions are widely used in

crowdfunding studies (see, e.g., Belleflamme et al. 2014).

To measure the ERNP, by denoting the risk-free rate of return of the market during period t3 as R,

each investor can get a risk-free return of R× p during period t3 with fixed investment p. Besides, note

that I1 pledges earlier and waits t2 longer than I2 until the project closes. Let ∆ = 1 + δ be the risk-free

rate of return of the market during period t2, where δ can be viewed as the rate of waiting cost for I1.

Thus, the risk-free return of I1 would be (1 + δ) × R × p during periods t2 and t3 if he chooses not to

pledge. By comparing the ERP with ERNP, an investor can make his own pledging decision. We now

formally summarize the notations described above in Table 1.

Table 1: Notations used in the problem description

P The target amount of funds in the project

p The unit pledging price for each investor

ti The pledging period of the crowdfunding project, i ∈ {1, 2}

Ii The investor arriving at period ti, i ∈ {1, 2}

t3 The implementing period of the proposal in the crowdfunding project

Vi The rate of return from this proposal estimated by investor Ii, i ∈ {1, 2}

∆ The risk-free rate of return of the market during period t2

R The risk-free rate of return of the market during period t3
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4. Analyses of the Profit Allocation Mechanism

It is clear that different profit allocation mechanisms lead to different pledging strategies for investors,

and in turn, decide the success rates of crowdfunding projects. In this section, we will focus on the two-

investor case where there are only two potential investors.

In most existing research, the profit allocation mechanism is simply even distribution among all

investors, which is referred to as an even allocation mechanism in our paper. We will generalize the

results by allocating the profits among the investors unevenly. To be formal, for a given profit allocation

mechanism
(
α, 1− α), we let the share of return allocated to I1 be α (0 < α < 1), and consequently, the

share of return allocated to I2 can be written as 1− α.

4.1. Pledging Strategies of the Investors

We first study the impacts of the profit allocation mechanism on the pledging strategies of investors

by backward induction. The details are shown as follows.

When I2 arrives during period t2, he can observe the pledging decision made by I1. If I1 did not

pledge, I2 will walk away directly, since the target P cannot be met and the project will definitely fail.

Otherwise, the project will succeed as long as I2 pledges. On the one hand, since the valuation rate of

return of I2 on the proposal is V2, the resulting ERP is given by (1− α)× V2 × P = 2p× (1− α)× V2.

On the other hand, the ERNP of I2 with investment p is simply R× p during period t3. In this case, I2

will pledge only when his ERP surpasses ERNP, that is,

2p× (1− α)× V2 > R× p, which is equivalent to V2 > R/2(1− α).

By noting that V2 is uniformly distributed over interval
[
0, A

]
, we can claim that when I1 pledged, the

pledging probability of I2, denoted as q2, is 1−R/2A(1− α).

When I1 arrives during period t1, although he has no information on the pledging decision of I2, he

can speculate the pledging strategy of I2 due to the awareness of the distribution of V2. To be specific,

the pre-condition for I2 to pledge is that I1 pledges and the pledging probability is q2. In this case, on one

hand, the ERP of I1 can be written as q2×α×V1×P+(1−q2)×R×p = q2×2α×V1×p+(1−q2)×R×p,

where the former part is the expected return when I2 pledges, and the latter part is the expected return

when I2 does not pledge and I1 is refunded. On the other hand, the ENRP of I1 with investment p is

R× (1 + δ)× p, which includes risk-free returns during both periods t2 and t3. Thus, I1 will pledge only

when

2α× V1 × p× q2 + (1− q2)×R× p > R× (1 + δ)× p,
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which is equivalent to

V1 > (δ + q2)×R/(2α× q2).

Therefore, we can claim that the pledging probability of I1, denoted as q1, is 1−(δ+q2)×R/(2α×q2×A).

Since the (crowdfunding) project succeeds only when both investors pledge, the success rate of the

project, denoted as S, is q1 × q2. By letting r = R/A, we can express the pledging probabilities of the

investors and the success rate of the project as

q1 = 1− δr(1− α)

2α(1− α)− αr
− r

2α
, q2 = 1− r

2(1− α)
, and S = q1 × q2, respectively.

The ratio r = R/A can be regarded as a factor reflecting the competitiveness of the risk-free market

over the proposal provided by the entrepreneur. When r is high, the risk-free market is so competitive

that the investors are not interested in the proposal in the crowdfunding project, and when r is low, the

results reverse.

4.2. Feasibility of a Project

One of the most important steps for an entrepreneur before starting a crowdfunding project on a

platform is to check the feasibility of his crowdfunding project, that is, the positivity of the success rate

of a project. From the expressions of q1 and q2, we can see that the success rate is decided by r, δ, and

α, where r and δ are exogenous, while α can be adjusted by the entrepreneur.

It is important to remember that r = R/A reflects the competitiveness of the risk-free market over

the proposal in the crowdfunding project. We now study the feasibility of a project from the perspective

of r. Lemma 1 shows that there exists a tolerance bound on r, above which the project is destined for

failure with given δ and α.

Lemma 1. Under a given profit allocation mechanism
(
α, 1 − α

)
, the project is feasible only when

r < r̄(α, δ), where r̄1(α, δ) = 1 + (1− α)δ − [1 + (1− α)2δ2 + 2(1− α)(δ − 2α)]1/2.

Lemma 1 indicates that the entrepreneur will start a crowdfunding project only when r < r̄(α, δ).

To enhance this tolerance bound, it is desired to study the monotonicity of r̄(α, δ) in δ and α,

respectively. For the sake of simplicity, we will write r̄(α, δ) as r̄ in short when the context is not

confusing, and the same operations are applied to all other functions throughout this paper.

Proposition 1. For any given α, function r̄ decreases in δ.

The intuition behind the decreasing of r̄ in δ is that a higher waiting cost rate δ results in higher

pledging unwillingness of I1, and in turn, reduces the tolerance bound of r.
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Although the tolerance bound is monotonic in δ, it is hard to enhance r̄ by simply decreasing δ, since

the length of the pledging period t2 (i.e., the value of δ) is hard to reduce in practice. In this case, we

turn to study how α will affect r̄, and the results are shown in Proposition 2.

Proposition 2. For given δ, function r̄ is unimodal in α and reaches its maximum at ᾱ, where ᾱ is

equal to (2 + δ(1 + δ −
√
δ))/(4 + δ2).

The unimodality of r̄ in α can be interpreted as follows. Regardless of the dependence of the pledging

decisions, the pledging probabilities of I1 and I2 are increasing in α and 1−α, respectively. However, since

the feasibility (positivity of the success rate) of a project is decided by the product of the two pledging

probabilities, a straightforward result is that the monotonicity of r̄ coincides with the monotonicity of

α(1 − α) in α, that is, r̄ is an unimodal function of α. Apparently, the tolerance bound r̄ reaches its

maximum when α = ᾱ.

Corollary 1. For a given δ, the maximum tolerance bound, denoted as r̄∗, is equal to 2(δ+2−2
√
δ)

4+δ2
.

Corollary 1 shows that, for any given δ, if r > r̄∗1, crowdfunding is infeasible, no matter how the

entrepreneur will allocate the profits to the investors. In particular, when δ = 0, the maximum tolerance

bound is equal to 1. This indicates that when period t2 is so short that the waiting cost of I1 is close to

0, the necessary condition for a positive success rate is simply R < A (r < 1), that is, the return rate of

the proposal has a chance to surpass the return rate of the risk-free market.

4.3. Success Rate of a Project

The previous subsection provides a necessary condition (a tolerance bound r̄∗1 on r) under which a

project has a chance to succeed. In this part, we will focus on the case where r < r̄∗1, that is, the project

is feasible under some allocation mechanism, and study how the success rate of a project will change

with different profit allocation mechanisms.

It is important to remember that in Section 4.1 we have shown that the pledging probabilities of the

two investors and the success rate of the project are

q1 = 1− δr(1− α)

2α(1− α)− αr
− r

2α
, q2 = 1− r

2(1− α)
, and S = q1 × q2, respectively.

From the expressions of q1 and q2, we can find that q2 decreases in α while the monotonicity of q1, as

well as S, in α is unknown. To this end, we have Theorem 1 showing the monotonicity of S in α.

Theorem 1. The success rate S is unimodal in α and reaches its maximum at α∗, where α∗ is equal to

(2 + 2δ − r − [(2− r)(2 + 2δ − r)]1/2)/2δ and larger than 1/2.
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The unimodality of S is expected. We can interpret this in a manner similar to what we did after

Proposition 2. Suffice to say that the monotonicity of S is consistent with the monotonicity of α(1−α) in

α. For any given pair of δ and r, the entrepreneur is able to maximize the success rate of his crowdfunding

project by letting α equal α∗. In addition, the intuition behind α∗ > 1/2 is that the entrepreneur should

compensate I1 for his waiting cost during period 2. Compared with α = 1/2, which maximizes α(1−α),

the entrepreneur should motivate investor I1 with a greater return. Therefore, we can claim that the

entrepreneur should always take sides with the first investor to maximize S.

We now use a numerical example to illustrate how α affects the pledging probabilities of the investors

and the success rate of the project. The results are shown in Figure 2, where δ = 0.05, r = 0.7, the

horizontal axes represent α, and the vertical axes represent the pledging probability and the success rate,

respectively.
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0.1

0.15

0.2
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(b) Success rate

Figure 2: Pledging probability of investors and success rate in the profit allocation mechanism

As we can see from Theorem 1, the optimal α∗ to maximize the success rate S is decided by both, r

and δ. We now show the monotonicity of α∗ in r and δ in Proposition 3.

Proposition 3. The optimal α∗ for S increases in both, δ and r.

It is important to bear in mind that the risk-free return of I1 and I2 are
(
1 + δ

)
×R× p and R× p,

respectively. Compared with I2, investor I1 suffers an additional waiting cost of δ×R× p, therefore, the

entrepreneur is suggested to allocate more return to I1 when δ or r increases. We refer to the increasing

of α∗ in δ as the effect of waiting cost, and the δ-effect for short.
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5. Two-Cohort Model

In Section 4, we studied the basic case, where there are only two potential investors arriving at the

platform sequentially. In this section, we will extend our investigations to a general case where there are

two cohorts of potential investors.

The main changes of the two-cohort model can be concluded as follows. We denote the two sequential

cohorts arriving at the platform during periods t1 and t2 as C1 and C2, respectively. Let α1 = α and

α2 = 1 − α be the respective shares of return allocated to C1 and C2 by the entrepreneur. For each

cohort Ci (i = 1, 2), there are Ni identical investors: each of whom (1) has the same valuation rate of

V N
i on the proposal, which is uniformly distributed over

[
0,A
]
; (see, e.g. Hu et al. 2015) and (2) expects

an average share of return of αi × V N
i × P/Ni.

It is expected that the two-cohort model shares some similar results with the two-investor model.

For example, the δ-effect still holds, that is, when δ increases, the entrepreneur needs to compensate the

first cohort by allocating them more shares of return. However, the optimal profit allocation mechanism

might change because of the emergence of the scale-effect of the cohorts.

We can interpret the scale-effect in the two-cohort model as follows. Suppose that there are two

cohorts C1 and C2 containing N1 and N2 investors, respectively. When the entrepreneur decides to

motivate C1 by allocating them an extra return of x, the average return allocated to each investor in C1

is increased by x/N1, while the average return of each investor in C2 is decreased by x/N2. Thus, the

investors in different cohorts are not equally sensitive with the same change of α. To take advantage of

such unequal sensitivity, the scale-effect suggests that the entrepreneur should take sides with the smaller

cohort while maximizing the success rate of his crowdfunding project. The scale-effect, together with the

δ-effect, decides the incentive strategy of the entrepreneur in the two-cohort case.

From the problem setting, it is clear that the pledging strategies of different investors within the

same cohort are identical. Similar to the two-investor model, to investigate the optimal profit allocation

mechanism in the two-cohort case, we first analyze the pledging strategies of each cohort by backward

induction.

When C2 arrives, the investors in this cohort only pledge if C1 has pledged. One the one hand, if C1

pledged, since the valuation rate of return of C2 on the proposal is V N
2 , the ERP for each investor in

C2 is given by (N1 +N2)× p× (1− α)× V N
2 /N2. On the other hand, the ERNP of each investor in C2

with investment p is R× p during period t3. In this case, investors in C2 will pledge only when the ERP

surpasses ERNP, that is,

V N
2 > N2 ×R/[(N1 +N2)(1− α)].

12



To conclude, when C1 pledged, the pledging probability of C2, denoted as qN2 , is equal to 1 − N2 ×

R/[(N1 +N2)(1− α)A].

When C1 arrives in period t1, investors in C1 know that the pre-condition for C2 to pledge is that

C1 pledges and the pledging probability is qN2 . On the one hand, the ERP of each investor in C1 can be

written as qN2 × p × (N1 + N2)α × V N
1 /N1 + (1 − qN2 ) × R × p, where the former part is the expected

return when C2 pledges, and the latter part is the expected return when C2 does not pledge. On the

other hand, the ERNP of each investor in C1 with investment p is R × (1 + δ) × p, which includes the

risk-free returns in both periods t2 and t3. Thus, investors in C1 will pledge only when the ERP is larger

than the ERNP, that is,

V N
1 > N1 × (δ + qN2 )R/[(N1 +N2)× qN2 × α]

To conclude, the pledging probability of C1, denoted as qN1 , is equal to 1−N1× (δ+ qN2 )R/[(N1 +N2)×

qN2 × α×A].

Let ρ = N1/(N1 +N2) and denote the success rate of the project in the two-cohort situation as SN .

Then, we have

qN1 = 1− (1− α)δρr

α((1− α)− (1− ρ)r)
− ρr

α
, qN2 = 1− (1− ρ)r

(1− α)
, and SN = qN1 × qN2 .

Note that the two-investor model is a special case of the two-cohort model where ρ = 1/2. The results

are consistent with what we derived in the basic model.

There also exists a tolerance bound r̄N on r, above which the crowdfunding project is infeasible. It is

clear that r̄N is decided by r, δ, ρ and α. By changing the value of α, we are able to adjust the tolerance

bound. In addition, we can still show that function r̄N is unimodal in α. The detailed explanations are

omitted for the sake of simplicity. We present Corollary 2 as a conclusion.

Corollary 2. In the two-cohort model, the tolerance bound r̄N is unimodal in α, and the maximum

tolerance bound is r̄∗N = (1 + δ × ρ− 2
√
δ × ρ(1− ρ))/[(1− δ × ρ)2 + 4δ × ρ2].

When a crowdfunding project is feasible (r < r̄∗N ), we can maximize its success rate by choosing an

optimal profit allocation mechanism. By denoting the optimal share of return allocated to C1 as α∗N , we

have Theorem 2 which shows the profit allocation strategy of the entrepreneur.

Theorem 2. To maximize the success rate SN in the two-cohort model, when ρ 6= 1/(2 + δ), we have

that

α∗N =
(1 + δ)ρ− (1− ρ)ρr

(2 + δ)ρ− 1
− 1

(2 + δ)ρ− 1

[
(1− 2ρ+ ρ2)ρ2r2 − (1− ρ)(δρ+ 1)ρr + (1 + δ)(1− ρ)ρ

]1/2
.

When ρ = 1/(2 + δ), α∗N = 1/2.
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Proposition 4. The entrepreneur should adjust the optimal profit allocation mechanism when ρ, δ and

r changes:

(i) The optimal share of return α∗N allocated to C1 increases in ρ.

(ii) The optimal share of return α∗N allocated to C1 increases in δ.

(iii) The optimal share of return α∗N allocated to C1 increases in r when ρ > 1/(2 + δ), and decreases in

r when ρ < 1/(2 + δ).

As we can see from Theorem 2, the optimal α∗N is jointly decided by ρ, δ, and r. Propositions 4

describes the monotonicity of α∗N in δ, r and ρ. Intuitively, Proposition 4 (i) indicates that when there

are more investors in C1, the optimal share α∗N allocated to the first cohort is increased. However, as

shown later in Theorem 3, due to the scale-effect, when ρ is large, the average return of C1 is smaller

than the average return of C2, that is, α∗N < ρ. The result of Proposition 4 (ii) coincides with the δ-effect.

It is straightforward that the entrepreneur needs to compensate investors in the first cohort with more

return when their waiting cost increases.

Unlike the basic model, where the optimal share of return allocated to the first investor is simply

increasing in r, the monotonicity of α∗N in r is complicated in the two-cohort case. We can explain the

result of Proposition 4 (iii) as follows. First, when ρ is large, the cumulated δ-effect of C1 is massive

due to its large size. It is important to remember that the δ-effect results in an additional waiting cost

of δ × R × p for each investor in the first cohort, and thus, if r increases, the entrepreneur tends to

compensate the first cohort with more return to enhance the success rate of the project, and therefore,

α∗N is increased. Second, when ρ is small, the cumulated δ-effect of C1 is minor. If r increases, since the

proposal is less attractive to all the investors, the entrepreneur prefers to give more return to C2 (the

cohort with more investors) to enhance the success rate, therefore, α∗N is decreased.

Following Proposition 4 (iii), we can investigate the detailed profit allocation strategy of the en-

trepreneur under different values of ρ. The results are shown in Theorem 3.

Theorem 3. There exists a cohort ratio threshold ρ∗ =
(
1 + δ − r

)
/
(
2 + δ − 2r

)
> 1/2 such that:

(i) If ρ = ρ∗, then α∗N = ρ, that is, the entrepreneur will not motivate any cohort;

(ii) If 0 < ρ < ρ∗, then α∗N > ρ, that is, the entrepreneur should motivate C1;

(iii) If ρ∗ < ρ < 1, then α∗N < ρ, that is, the entrepreneur should motivate C2.

It is important to remember that the δ-effect indicates that the entrepreneur takes sides with the

first cohort. Furthermore, due to the scale-effect, the entrepreneur tends to motivate the smaller cohort.

Thus, we can claim that there exists a ratio threshold ρ∗ at which the effects of scale and waiting cost

cancel each other out, and ρ∗ is larger than 1/2. When ρ < ρ∗, the entrepreneur will motivate the
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first cohort, while when ρ > ρ∗, the entrepreneur will motivate the second cohort. In particular, when

ρ = 1/2 < ρ∗, we have that α∗N > ρ = 1/2, which is consistent with the result in Theorem 1.

We now illustrate the results of Proposition 4 (iii) and Theorem 3 through a numerical example in

Figure 3. In the rectangular coordinates, the vertical axis represents the share of return allocated to C1,

and the horizontal axis represents the ratio of cohort C1. The diagonal dotted line represents the straight

line of α = ρ on which the entrepreneur motivates neither cohort, and the return is evenly distributed to

each investor. The solid curve associates with the optimal α∗N for different values of ρ. It is clear that if

ρ < ρ∗, the solid line is above the dotted line, that is, α∗N > ρ, thus, the entrepreneur should motivate

C1 to maximize the success rate of the project. On the contrary, if ρ > ρ∗, we have that α∗N < ρ and

the entrepreneur should motivate C2. According to Figure 3, one can easily decide the optimal profit

allocation mechanism to maximize the success rate for a given crowdfunding project.
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Figure 3: The optimal α to maximize the success rate with different values of ρ

As we can see from Theorems 1 and 3, the profit allocation strategies in the two-investor and two-

cohort models are different due to the existence of the scale-effect. In order to eliminate the impacts of

scales, we now study how the extra return received by each investor changes with ρ. The results are shown

in Proposition 5. For preparation, according to Theorem 3, when ρ < ρ∗, the first cohort is motivated

and each investor in C1 gets an extra incentive of ε1 = (α∗N (ρ, δ, r)− ρ)/ρ, while when ρ > ρ∗, the second

cohort is motivated and each investor in C2 gets an extra incentive of ε2 = (ρ− α∗N (ρ, δ, r))/
(
1− ρ

)
.

Proposition 5. Let ρ∗ be the ratio threshold given in Theorem 3, we have that the following:

(i) if ρ < ρ∗, then ε1 > 0 and decreases in ρ; (ii) if ρ > ρ∗, then ε2 > 0 and decreases in 1− ρ.

Proposition 5 indicates that in order to maximize the success rate of the project, if cohort Ci is
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motivated, the average-extra return received by an individual investor in Ci always decreases in the size

of Ci. To be specific, it is shown that ε1 is decreasing in ρ and ε1 is decreasing in 1− ρ. This is exactly

the scale-effect that we introduced in the beginning of this section, that is, the entrepreneur takes sides

with a cohort of smaller size. In particular, when ρ = ρ∗, we have that ε1 = ε2 = 0, which indicates that

the entrepreneur will motivate neither cohort.

We still adopt the numerical example used in Figure 3 to illustrate the results of Proposition 5. In

Figure 4, the horizontal axis represents the size ratio of C1, and the vertical axis represents the average-

extra incentive received by an investor. The left-hand side and right-hand side curves denotes the “ρ ∼ ε′′1
and “ρ ∼ ε′′2 functions, respectively. These two functions intersect at point

(
ρ∗, 0

)
at which no incentive

mechanism is applied and the success rate of the project is maximized.
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Figure 4: Additional incentive allocated to each investor with different values of ρ

6. Conclusion

Crowdfunding is emerging as an important source of finance for small start-ups and new entrepreneurs,

and its market size has grown enormously in recent years. Note that success rate is the core problem in

crowdfunding, especially in investment-based crowdfunding, where investors receive financial return. It

is well recognized that performance in the early stage of a crowdfunding project is crucial to its success,

while investors are less willing to take on the higher risk of pledging earlier. Therefore it is intuitive to

offer an incentive to investors.

Instead of sacrificing the profits of the entrepreneur to motivate investors like in past literature, this

paper studies how an entrepreneur should maximize the success rate with the profit allocation mechanism
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in investment-based crowdfunding. In our study, we stressed the need to provide the appropriate profit

allocation mechanism to ensure the feasibility of the projects and enhance the success rate. Our main

results show that the existence of the waiting cost, that is, the δ-effect, encourages the entrepreneur to

motivate early investors in order to maximize the success rate. However, the entrepreneur also needs to

take into account the difference in the sizes of cohorts arriving at different points in time, that is, the

scale-effect. The smaller the cohort, the more suitable it is to be motivated. Our results suggest that the

entrepreneur takes both, the scale-effect and the δ-effect into consideration while deciding which cohort

to motivate. For example, different from the two-investor case, when too many investors arrive in the

early stages of crowdfunding, the entrepreneur may choose to motivate the investors coming in later,

instead.

Moreover, our analysis provides managerial guidance on how the entrepreneur should adjust his

optimal profit allocation mechanism according to changes in the market. First, no matter which cohort

is motivated, each investor in this cohort should receive more return as the incentive when this cohort

becomes smaller (the scale-effect becomes stronger). Second, the entrepreneur should give early investors

a greater return when their additional waiting cost increases (the δ-effect becomes stronger). Third,

when the risk-free market becomes more competitive over the crowdfunding proposal than before, if the

number of investors in the later cohort is very large, the entrepreneur should give them a greater return.

Crowdfunding, as an important source of finance, needs more attention in future research. One

limitation of our research is that we simplify the study by assuming that the valuations of investors are

distributed uniformly, while the valuations can be far more complex or even affected by the description and

advertisement of entrepreneurs. Further, we did not consider the occasion that investors may strategically

delay their pledges. Moreover, the arrival of investors can be stochastic, so the number of investors is

uncertain in reality, and there is also the possibility of overfunding, which can be analyzed in the future.
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Appendix A. Proof

Proof of Lemma 1.

The project is feasible only when the pledging probabilities of both investors are positive. Apparently,

1 > q2 > 0 holds when 0 < r < 2(1 − α). In addition, we find out that 1 > q1 > 0 holds when

r2− 2[(1−α)(1 + δ) +α]r+ 4α(1−α) > 0, this quadratic polynomial of r is equal to 4α(1−α) > 0 when

r = 0; and −4(1− α)2δ < 0 when r = 2(1− α), respectively, so there exists one root within (0, 2(1− α))

and this root is 1+(1−α)δ−[1+(1−α)2δ2+2(1−α)(δ−2α)]1/2 < 2(1−α). Suffice to say that the pledging
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probabilities of both investors are positive when r < 1 + (1−α)δ− [1 + (1−α)2δ2 + 2(1−α)(δ− 2α)]1/2.

Consequently, r̄(α, δ) = 1 + (1− α)δ − [1 + (1− α)2δ2 + 2(1− α)(δ − 2α)]1/2 and the project is feasible

when r < r̄(α, δ).

Proof of Proposition 1.

Taking the derivative of r̄(α, δ) with respect to δ yields:

∂r̄(α, δ)

∂δ
= (1− α)[1− (1− α)δ + 1√

(1− α)2δ2 + 2(1− α)δ + 1− α(1− α)
]

Since α ∈ [0, 1], (1− α)2δ2 + 2(1− α)δ + 1− α(1− α) = [(1− α)δ + 1]2 − (1− α)α < [(1− α)δ + 1]2 and

we have ∂r̄(α,δ)
∂δ < 0. For a given α, r̄(α, δ) always decreases in δ.

Proof of Proposition 2.

To analyze the monotonicity of r̄(α, δ) in α, we take the derivative of r̄(α, δ) with respect to α and yield:

∂r̄(α, δ)

∂α
=

(1− α)(δ2 + 2) + (δ − 2α)√
1 + (1− α)2δ2 + 2(1− α)(δ − 2α)

− δ

We set f1(α) = (1− α)(δ2 + 2) + (δ − 2α)− [1 + (1− α)2δ2 + 2(1− α)(δ − 2α)]1/2δ, then

∂r̄(α, δ)

∂α
= 0 ⇔ f1(α) = 0 ⇔ α = (2 + δ(1 + δ −

√
δ))/(4 + δ2)

We can prove that function f1(α) is strictly decreasing in α

df1(α)

dα
= −δ2 − 4 +

(1− α)(δ2 + 2) + (δ − 2α)√
1 + (1− α)2δ2 + 2(1− α)(δ − 2α)

< −δ2 − 4 +
δ2 + δ + 2

1 + δ
(because 0 < a < 1)

< −δ2 − 4 + 4 < 0

Define ᾱ = α = (2 + δ(1 + δ −
√
δ))/(4 + δ2), according to the monotonicity of f1(α) in α, we can

conclude that when α < ᾱ, f1(α) > 0, so ∂r̄(α,δ)
∂α > 0. In the same way, ∂r̄(α,δ)

∂α < 0 when α > ᾱ. Thus,

for a given δ, r̄ is unimodal in α and reached its maximum when α = ᾱ.

Proof of Corollary 1.

Just conclude r̄(ᾱ, δ) and we have the maximum tolerance bound r̄∗ = 1
4(2 + δr)− 1

4 [(δ2 + 4)r2 − 4(δ +

2)r + 4]1/2.

Proof of Theorem 1.

Taking the derivative of S with respect to α yields:

∂S

∂α
=

r

4α2(1− α)2
[2δα2 − (4 + 4δ − 2r)α+ 2 + 2δ − r]

Define f2(α) = 2δα2−(4+4δ−2r)α+2+2δ−r, df2(α)
dα = 2r−4 < 0. Note that f2(0) = 2+2δ−r > 0 and

f2(1) = r−2 < 0, then there exists a maximum point in (0, 1) and is equal to α∗ = (2+2δ−r)/2δ− [(2−
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r)(2 + 2δ− r)]1/2/2δ. We can conclude that function S is unimodal in α. In addition, f2(1/2) = δ/2 > 0,

so α∗ > 1/2.

Proof of Proposition 3.

Taking derivative of α∗ with respect to δ and r respectively yields:

∂α∗

∂δ
=

(2− r)(2 + δ − r −
√

(2− r)(2 + 2δ − r))
2δ2
√

(2− r)(2 + 2δ − r)
,
∂α∗

∂r
=

2 + δ − r −
√

(2− r)(2 + 2δ − r)
2δ
√

(2− r)(2 + 2δ − r)

Note that 2 + δ − r = [(2 − r) + (2 + 2δ − r)]/2, so (2 + δ − r)2 > (2 − r)(2 + 2δ − r) and 2 + δ − r −√
(2− r)(2 + 2δ − r) > 0. Apparently, ∂α∗

∂δ and ∂α∗

∂r are both positive, α∗ increases in δ and r.

Proof of Corollary 2.

To make the project feasible:

qN2 > 0 holds when r < (1− α)/(1− ρ)

qN1 > 0 holds when f3(r) = (1− ρ)ρr2 − [(1− ρ)α+ (1− α)δρ+ (1− α)ρ]r + α(1− α) > 0

f3(0) = α(1− α) > 0, f3(
1− α
1− ρ

) = −(1− α)δρr < 0

Therefore, there must be one left root of f3(r) in (0, (1 − α)/(1 − ρ)). The project is feasible when

r < r̄N = r̄N (α) = ((1−α)(1+δ)ρ+(1−ρ)α−[((1−α)(1+δ)ρ+(1−ρ)α)2−4α(1−α)ρ(1−ρ)]1/2/2(1−ρ)ρ.

Taking the derivative of r̄N with respect to α yields:

∂r̄N
∂α

=
1

2(1− ρ)ρ
× f4(α)

f4(α) = 1− (2 + δ)ρ−
α
(
1 + δ2 × ρ2 + 2ρ× δ (2ρ− 1)

)
− ρ (1− δ + δ × ρ (3 + δ))

α2 (1 + δ2 × ρ2 + 2ρ× δ (2ρ− 1))− 2α (1 + δ2 × ρ+ δ (3ρ− 1)) + (1 + δ)2 ρ2

df4(α)

dα
= − 4δ × (1− ρ)2 × ρ2

[α2 (1 + δ2 × ρ2 + 2δ × ρ(2ρ− 1))− 2α× ρ (1 + δ2ρ+ δ(3ρ− 1)) + (1 + δ)2ρ2]3/2
< 0

f4(0) =
2(1− ρ)

(1 + δ)
> 0, f4(1) = −2ρ < 0

Note that f4(α) is decreasing in α and there must exist a point satisfying f4(α) = 0, therefore r̄N is

unimodal in α. Since the expression of r̄N is very complex, we can conclude the maximum tolerance

bound in another way. Note that the project is feasible when f3 > 0, we transform f3 in the form of α and

f3(α) = −α2 +(1−r+2ρr+δρr)α+(1−ρ)ρr2−δρr−ρr. The project is feasible only when this function

has roots, that is, the discriminant ∆ = (1 + δ2ρ2 − 2δρ + 4ρ2δ)r2 − (2 + 2δρ)r + 1 is positive. (Note

that all the ∆ in our appendix is the discriminant of a polynomial instead of the risk-free factor ∆ in our

model.) The discriminant is positive only when r < (1 + δ× ρ− 2
√
δ × ρ(1− ρ))/[(1− δ× ρ)2 + 4δ× ρ2],

therefore the maximum tolerance bound if r̄∗N = (1 + δ×ρ−2
√
δ × ρ(1− ρ))/[(1− δ×ρ)2 + 4δ×ρ2].

Proof of Theorem 2.
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To maximize the success rate, we conclude S and the derivative of S with respect to α as follows:

SN = [α2 + ρr(1 + δ − (1− ρ)r)− α(1− (1− (2 + δ)ρ)) + (1 + δ − (1− ρ)r)ρr]/α(α− 1)

∂SN
∂α

=
r

α2(1− α)2
× f5(α)

f5(α) = ρ (1 + δ − (1− ρ) r)− 2ρ (1 + δ − (1− ρ) r)α+ ((2 + δ) ρ− 1)α2

f5(0) = ρ(1 + δ − (1− ρ)r) > 0, f5(1) = (1− ρr)(ρ− 1) < 0

There must exist roots of f5(α) in (0, 1) according to intermediate value theorem. When ρ = 1/(2 + δ),

f5(α) is linear and α = 1/2 is its only root, so α = 1/2 is the maximum point. When ρ < 1/(2 + δ),

f5(α) is concavely quadratic and maximize at its larger root:

α∗N =
(1 + δ)ρ− (1− ρ)ρr

(2 + δ)ρ− 1
− 1

(2 + δ)ρ− 1

[
(1− 2ρ+ ρ2)ρ2r2 − (1− ρ)(δρ+ 1)ρr + (1 + δ)(1− ρ)ρ

]1/2
When ρ > 1/(2 + δ), f5(α) is convexly quadratic and maximize at its smaller root, we can conclude that

it is also α∗N .

Proof of Proposition 4.

First, we prove (i) and take the derivative of α∗N with respect to ρ as follows:

∂α∗
N

∂ρ
=
−
[
(2 + δ)ρ2 − 2ρ+ 1

]
r + 1 + δ

2 [(2 + δ)ρ− 1]
2 ×

1 + δ × ρ− 2ρ(1− ρ)r − 2
√
ρ(1− ρ)(1− ρ× r) [1 + δ − (1− ρ)r]√

ρ(1− ρ)(1− ρ× r) [1 + δ − (1− ρ)r]

We first analyze the numerator of the first fraction. Note that (2+δ)ρ2−2ρ+1 is always positive for δ > 0

and ρ ∈ (0, 1), so −
[
(2 + δ)ρ2 − 2ρ+ 1

]
r+1+δ > −

[
(2 + δ)ρ2 − 2ρ+ 1

]
×1+1+δ = −(2+δ)ρ2 +2ρ+δ.

It is easy to prove that −(2 + δ)ρ2 + 2ρ+ δ > 0, so −
[
(2 + δ)ρ2 − 2ρ+ 1

]
r + 1 + δ > 0.

In the same way, we can also prove that 1+δ×ρ−2ρ(1−ρ)r > 1+δ×ρ−2ρ(1−ρ) > 0 always holds. In

addition, [1 + δ × ρ− 2ρ(1− ρ)r]2−4ρ(1−ρ)(1−ρ×r) [1 + δ − (1− ρ)r] = [(2 + δ)ρ− 1]2 > 0, therefore

the numerator of the second fraction 1+δ×ρ−2ρ(1−ρ)r−2
√
ρ(1− ρ)(1− ρ× r) [1 + δ − (1− ρ)r] > 0.

Consequently,
∂α∗

N
∂ρ > 0, α∗N increases in ρ.

Next, we prove (ii) and take the derivative of α∗N with respect to δ:

∂α∗N
∂δ

=
ρ(1− ρ)(1− ρr)
2 [(2 + δ)ρ− 1]2

×

[
−2 +

1 + δ × ρ− 2ρ(1− ρ)r√
ρ(1− ρ)(1− ρ× r) [1 + δ − (1− ρ)r]

]
We have proved in the proof of (i) that 1 + δ× ρ− 2ρ(1− ρ)r > 0 and [1 + δ × ρ− 2ρ(1− ρ)r]2− 4ρ(1−

ρ)(1−ρ×r) [1 + δ − (1− ρ)r] = [(2 + δ)ρ− 1]2 > 0, therefore, −2+ 1+δ×ρ−2ρ(1−ρ)r√
ρ(1−ρ)(1−ρ×r)[1+δ−(1−ρ)r]

is positive

and α∗N increases in δ.

Last, we prove (iii) and take the derivative of α∗N with respect to r:

∂α∗N
∂r

=
ρ(1− ρ)

2[(2 + δ)ρ− 1]
[−2 +

1 + δρ− 2ρr + 2ρ2r√
(1− ρ)(1− ρr)(1 + δ − (1− ρ)r)ρ

]
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It is obvious that−2+ 1+δ×ρ−2ρ(1−ρ)r√
ρ(1−ρ)(1−ρ×r)[1+δ−(1−ρ)r]

> 0, when 0 < ρ < 1/(2+δ),
∂α∗

N
∂r < 0. On the contrary,

when 1 > ρ > 1/(2 + δ),
∂α∗

N
∂r > 0.

Proof of Theorem 3.

We have proved in the proof of Theorem 2 that:

SN = [α2 + ρr(1 + δ − (1− ρ)r)− α(1− (1− (2 + δ)ρ)) + (1 + δ − (1− ρ)r)ρr]/α(α− 1)

∂SN
∂α

=
r

α2(1− α)2
× f5(α)

f5(α) = ρ (1 + δ − (1− ρ) r)− 2ρ (1 + δ − (1− ρ) r)α+ ((2 + δ) ρ− 1)α2

f5(ρ) = (1− ρ)× ρ× [(1 + δ − r)− (2 + δ − 2r)ρ]

Since α∗N is the only maximum point of function SN within (0, 1),
∂SN (α∗

N )
∂α = 0, therefore we can conclude

whether α∗N is larger than ρ with the positivity of ∂SN (ρ)
∂α . It is shown that when ρ = 1+δ−r

2+δ−2r , f5(ρ) = 0,

therefore ∂SN (ρ)
∂α = 0 and α∗N = ρ. When ρ < 1+δ−r

2+δ−2r , f5 > 0, ∂SN (ρ)
∂α > 0, ρ is on the left side of α∗N , so

α∗N > ρ; in the same way, when ρ > 1+δ−r
2+δ−2r , α∗N < ρ.

Proof of Proposition 5.

(i) When ρ < ρ∗ = 1+δ−r
2+δ−2r and the first cohort is motivated, that is, α∗N > ρ and ε1 > 0:

∂ε1
∂ρ

=
∂(α∗N − ρ)/ρ

∂ρ
=

A1 −B1 ∗ C1

2ρ[(2 + δ)ρ− 1]2
√
ρ(1− ρ)(1− ρr) [1 + δ − (1− ρ)r]

A1 = −1− 6ρ(−1 + r) + r − 2ρ3r2 + 2ρ2(−2 + 2r + r2)

+ δ2ρ
[
3 + ρ2r − 2ρ(1 + r)

]
− δ

[
1 + 3ρ(−3 + r) + 2ρ3(−1 + r)r + ρ2(6 + r − 2r2)

]
B1 =

[
δ2ρ+ (2− r)ρ+ δρ(3− r)

]
C1 = 2

√
ρ(1− ρ)(1− ρr) [1 + δ − (1− ρ)r]

Thus, we only need to proof A1−B1×C1 ≤ 0, We can write A1−B1×C1 as A1−B1×D1−B1×(C1−D1),

where D1 = 1 + δ × ρ − 2ρ × r + 2ρ2 × r, according to our proof in the earlier proposition, obviously

C1 ≤ D1, B1 > 0, so B1 × (C1 − D1) ≤ 0, and we can conclude A1 − B1 × D1 = − [−1 + (2 + δ)ρ]2 ×

[1 + δ + (−1 + ρ)r] ≤ 0 after simplification. So A1 − B1 × C1 ≤ 0 is equivalent to (A1 − B1 × D1)2 ≥

B2
1 × (C1 −D1)2.

(A1 −B1 ×D1)2 −B2
1 × (C1 −D1)2 = [−1 + (2 + δ)ρ]4 × [1 + δ + (−1 + ρ)r]2

− (1 + δ)2 × ρ2 × (2 + δ − r)2×[
1 + δ × ρ− 2ρ× r + 2ρ2 × r − 2

√
ρ(1− ρ)(1− ρr) [1 + δ − (1− ρ)r]

]2

Implementing the formula for the difference of squares:
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Since

[−1 + (2 + δ)ρ]2 × [1 + δ + (−1 + ρ)r] + (1 + δ)× ρ× (2 + δ − r)

×
[
1 + δ × ρ− 2ρ× r + 2ρ2 × r − 2

√
ρ(1− ρ)(1− ρr) [1 + δ − (1− ρ)r]

]
> 0

Thus, we only need to prove:

M = [−1 + (2 + δ)ρ]2 × [1 + δ + (−1 + ρ)r]− (1 + δ)× ρ× (2 + δ − r)

×
[
1 + δ × ρ− 2ρ× r + 2ρ2 × r − 2

√
ρ(1− ρ)(1− ρr) [1 + δ − (1− ρ)r]

]
= [−1 + (2 + δ)ρ]2×[
[1 + δ + (−1 + ρ)r]− (1 + δ)× ρ× (2 + δ − r)

1 + δ × ρ− 2ρ× r + 2ρ2 × r + 2
√
ρ(1− ρ)(1− ρr) [1 + δ − (1− ρ)r]

]
≥ 0

We divide our proof into two parts:

Part I When 0 < ρ < 1
2+δ , because (1+δ+(−1+ρ)r)−(1+δ)×ρ×(2+δ−r) = −(−1+(2+δ)ρ)(1+δ−r),

then (1 + δ + (−1 + ρ)r) > (1 + δ)ρ(2 + δ − r) under this condition.

To prove M > 0, we scale M as follow:

M ≥M1 = [−1 + (2 + δ)ρ]2×[
(1 + δ)× ρ× (2 + δ − r)− (1 + δ)× ρ× (2 + δ − r)

1 + δ × ρ− 2ρ× r + 2ρ2 × r + 2
√
ρ(1− ρ)(1− ρr) [1 + δ − (1− ρ)r]

]
= [−1 + (2 + δ)ρ]2 × (1 + δ)× ρ× (2 + δ − r)×[
1− 1

1 + δ × ρ− 2ρ× r + 2ρ2 × r + 2
√
ρ(1− ρ)(1− ρr) [1 + δ − (1− ρ)r]

]

M ≥ 0⇐M1 > 0⇐ 1 + δ × ρ− 2ρ× r + 2ρ2 × r + 2
√
ρ(1− ρ)(1− ρr) [1 + δ − (1− ρ)r] > 1

⇐ ρ(1− ρ)(1− ρr) [1 + δ − (1− ρ)r]− (δ × ρ− 2ρ× r + 2ρ2 × r)2 > 0

⇐ 4δ(−1 + ρ) + δ2 × ρ+ 4(−1 + ρ+ r − ρ× r) < 0

⇐ ρ <
4 + 4δ − 4r

(2 + δ)2 − 4r

⇐ 4 + 4δ − 4r

(2 + δ)2 − 4r
>

1

2 + δ

⇐ r < 1 <
(2 + δ)2

4(1 + δ)

Consequently M ≥ 0 and
∂(α∗

N−ρ)/ρ
∂ρ ≥ 0. Thus, we can conclude ∂ε1

∂ρ ≥ 0 when 0 < ρ < 1
2+δ .
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Part II When 1
2+δ < ρ < 1+δ−r

2+δ−2r , then we have (1 + δ+ (−1 + ρ)r) > ρ× (2 + δ− r) under this condition.

To prove M > 0, we scale M as follow:

M > M2 = [−1 + (2 + δ)ρ]2×[
ρ× (2 + δ − r)− (1 + δ)× ρ× (2 + δ − r)

1 + δ × ρ− 2ρ× r + 2ρ2 × r + 2
√
ρ(1− ρ)(1− ρr) [1 + δ − (1− ρ)r]

]
= [−1 + (2 + δ)ρ]2 × ρ× (2 + δ − r)×[
1− (1 + δ)

1 + δ × ρ− 2ρ× r + 2ρ2 × r + 2
√
ρ(1− ρ)(1− ρr) [1 + δ − (1− ρ)r]

]

M ≥ 0⇐M2 > 0⇐ 1 + δ × ρ− 2ρ× r + 2ρ2 × r + 2
√
ρ(1− ρ)(1− ρr) [1 + δ − (1− ρ)r] > 1 + δ

⇐ 4ρ(1− ρ)(1− ρr) [1 + δ − (1− ρ)r]− (ρ− 1)2(δ + 2ρ× r)2 > 0

⇐ δ2(ρ− 1) + 4ρ(1− r) + 4δ × ρ× (1− r) > 0

⇐ δ2

(4 + 4δ + δ2 − 4r − 4δ × r)
< ρ < 1

⇐ δ2

(4 + 4δ + δ2 − 4r − 4δ × r)
<

1 + δ − r
2 + δ − 2r

⇐ r < 1 <
4 + 8δ + 3δ2

4 + 4δ

Consequently M ≥ 0 and
∂(α∗

N−ρ)/ρ
∂ρ ≥ 0. Thus, we can conclude ∂ε1

∂ρ ≥ 0 when 1
2+δ < ρ < 1+δ−r

2+δ−2r . So far

we have proved that when C1 is motivated, ∂ε1
∂ρ ≥ 0, and we next prove the case when C2 is motivated.

(ii) When ρ > ρ∗ = 1+δ−r
2+δ−2r and the second cohort is motivated, that is, α∗N < ρ and ε2 > 0:

∂ε2
∂ρ

=
∂(ρ− α∗N )/(1− ρ)

∂ρ
= − A2 −B2 ∗ C2

2(1− ρ)[(2 + δ)ρ− 1]2
√
ρ(1− ρ)(1− ρr) [1 + δ − (1− ρ)r]

A2 = 1− r + 2ρ3r2 + δ2ρ(1− 2ρ+ ρ2r)− 4ρ2(1− r + r2)

− 2ρ(−1 + r − r2) + δ
[
1 + 3ρ2(−2 + r) + 2ρ3r + 3ρ(1− r)

]
B2 = (1− ρ)(2− r + δ)

C2 = 2
√
ρ(1− ρ)(1− ρr) [1 + δ − (1− ρ)r]

Thus, we only need to prove A2−B2×C2 ≤ 0, We can write A2−B2×C2 as A2−B2×D2−B2(C2−D2),

where D2 = 1 + δ × ρ − 2ρ × r + 2ρ2 × r, according to our proof in an earlier proposition, obviously

C2 ≤ D2, B2 > 0, so B2(C2−D2) ≤ 0, and we can conclude A2−B2×D2 = −[(2+δ)ρ−1]2(1−ρ×r) ≤ 0

after simplification. So A2 −B2 × C2 ≤ 0 is equivalent to (A2 −B2 ×D2)2 ≥ B2
2(C2 −D2)2.

(A2 −B2 ×D2)2 −B2
2(C2 −D2)2 = [(2 + δ)ρ− 1]4(1− ρr)2 − (1− ρ)2(2 + δ − r)2×[

1 + δ × ρ− 2ρ× r + 2ρ2 × r − 2
√
ρ(1− ρ)(1− ρr) [1 + δ − (1− ρ)r]

]2
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Implementing the formula for the difference of square:

Since

[(2 + δ)ρ− 1]2(1− ρr) + (1− ρ)(2 + δ − r)

×
[
1 + δ × ρ− 2ρ× r + 2ρ2 × r − 2

√
ρ(1− ρ)(1− ρr) [1 + δ − (1− ρ)r]

]
> 0

Thus, we only need to prove

M3 = [(2 + δ)ρ− 1]2 × (1− ρ× r)− (1− ρ)(2 + δ − r)

×
[
1 + δ × ρ− 2ρ× r + 2ρ2 × r − 2

√
ρ(1− ρ)(1− ρr) [1 + δ − (1− ρ)r]

]
= [(2 + δ)ρ− 1]2×[
(1− ρ× r)− (1− ρ)(2 + δ − r)

1 + δ × ρ− 2ρ× r + 2ρ2 × r + 2
√
ρ(1− ρ)(1− ρr) [1 + δ − (1− ρ)r]

]
≥ 0

When ρ > ρ∗ = 1+δ−r
2+δ−2r , we have (1− ρ)(2 + δ − r) < 1− ρ× r.

M3 > M4 = [(2 + δ)ρ− 1]2×[
(1− ρ)(2 + δ − r)− (1− ρ)(2 + δ − r)

1 + δ × ρ− 2ρ× r + 2ρ2 × r + 2
√
ρ(1− ρ)(1− ρr) [1 + δ − (1− ρ)r]

]
= [(2 + δ)ρ− 1]2 × (1− ρ)× (2 + δ − r)×[
1− 1

1 + δ × ρ− 2ρ× r + 2ρ2 × r + 2
√
ρ(1− ρ)(1− ρr) [1 + δ − (1− ρ)r]

]

M3 > 0⇐M4 > 0⇐ 1 + δ × ρ− 2ρ× r + 2ρ2 × r + 2
√
ρ(1− ρ)(1− ρr) [1 + δ − (1− ρ)r] > 1

⇐ 1 + δ × ρ− 2ρ× r + 2ρ2 × r + 2(1− ρ)
√
ρ(2 + δ − r) [1 + δ − (1− ρ)r] > 1

(Because (1− ρ)(2 + δ − r) < 1− ρ× r when ρ > ρ∗ =
1 + δ − r
2 + δ − 2r

)

⇐ 1 + δ × ρ− 2ρ× r + 2ρ2 × r + 2(1− ρ) [1 + δ − (1− ρ)r] > 1

(Because ρ(2 + δ − r) > [1 + δ − (1− ρ)r] when ρ > ρ∗ =
1 + δ − r
2 + δ − 2r

)

⇐ ρ < 1 <
2δ + 2− 2r

δ + 2− 2r

Consequently M3 ≥ 0 and
∂(ρ−α∗

N )/(1−ρ)
∂ρ ≥ 0. Thus, we can conclude that ∂ε2

∂ρ ≥ 0 when ρ > ρ∗ =

1+δ−r
2+δ−2r .
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