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Abstract. In this paper we propose a new instrument, a simultaneous penalization and
subsidization, for stabilizing the grand coalition and enabling cooperation among all play-
ers of an unbalanced cooperative game. The basic idea is to charge a penalty z from players
who leave the grand coalition, and at the same time provide a subsidy ω to players who
stay in the grand coalition. To formalize this idea, we establish a penalty-subsidy function
ω(z) based on a linear programming model, which allows a decision maker to quantify
the trade-off between the levels of penalty and subsidy. By studying function ω(z), we
identify certain properties of the trade-off. To implement the new instrument, we design
two algorithms to construct function ω(z) and its approximation. Both algorithms rely
on solving the value of ω(z) for any given z, for which we propose two effective solu-
tion approaches. We apply the new instrument to a class of machine scheduling games,
showing its wide applicability.
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1. Introduction
In many decision making problems that involve mul-
tiple players, minimizing total cost can be pursued by
centralized optimization, which essentially requires all
the players to form a grand coalition for cooperation.
To ensure that the grand coalition is stable, the min-
imal total cost incurred must be entirely allocated to
all the players so that no player or coalition of players
can be better off by leaving the grand coalition. This is
one of the central themes in cooperative game theory,
which has wide applications. See, for example, facility
location games (Goemans and Skutella 2000, Mallozzi
2011), inventory games (Anily and Haviv 2007, Chen
2009, Zhang 2009, Chen and Zhang 2016), and out-
sourcing games (Aydinliyim and Vairaktarakis 2010,
Cai and Vairaktarakis 2012), to name a few. The set of
such cost allocations is known as the core of a coopera-
tive game (Shapley and Shubik 1969). If the core is not
empty, the grand coalition’s stability is guaranteed.
However, there aremany situations where the core is

empty, implying that the grand coalition is not stable;
in the literature, these are known as unbalanced cooper-
ative games (see Bondareva 1963, Shapley and Shubik
1969). In this paper, we study how a central authority,

such as the government, can stabilize the grand coali-
tion for an unbalanced cooperative game.

The central authority wishes to stabilize the grand
coalition in two common situations. One is where the
cooperation of the grand coalition helps the central
authority minimize the total cost for all the players
to complete their tasks. See, for example, facility loca-
tion games (Goemans and Skutella 2000, Puerto et al.
2011), and bin packing games (Faigle and Kern 1993,
Liu 2009). The other is where the total cost can be min-
imized only by partitioning the players into subcoali-
tions, but the grand coalition helps the central author-
ity reduce certain negative social externalities, such
as the number of machines used in machine schedul-
ing games (Schulz and Uhan 2010, 2013), and the
number of trucks used in travelling salesman games
(Tamir 1989, Caprara and Letchford 2010, Kimms and
Kozeletskyi 2016).

To stabilize the grand coalition, there are two known
instruments that can be applied, i.e., penalization and
subsidization. By penalization, the central authority can
penalize players who leave the grand coalition. By sub-
sidization, the central authority can subsidize players
who stay in the grand coalition. However, applying
either instrument alone has some drawbacks, as charg-
ing a penalty causes players to be dissatisfied, while
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providing a subsidy to the grand coalition injects exter-
nal resources.
To ease these drawbacks of the two known afore-

mentioned instruments, we propose and study a new
instrument, i.e., simultaneous penalization and subsidiza-
tion, which is based on a “stick-and-carrot” method
that simultaneously charges penalties and provides
subsidies. To illustrate application of this new instru-
ment, let us consider its potential application to awater
resource allocation problem in a region with a water
shortage (e.g., see Fredericks et al. 1998, Van der Zaag
et al. 2002, Sadegh and Kerachian 2011), where each
water user owns a water supply source, but has to pay
a shortage cost if the water consumption cannot be sat-
isfied. The government, as a central authority, can pool
all water resources together, and re-allocate them to
different users to minimize the total shortage cost for
the best social welfare of the entire region. However, it
is possible that, no matter how the total cost is trans-
ferred, there is always a certain group of unsatisfied
users who pay costs higher than they would have paid
if they had stayed outside the grand coalition. In such
a situation, the central government can implement a
policy to charge a penalty to any group of users who
are unwilling to cooperate. When the penalty is suffi-
ciently large, no users will be better off by paying the
penalty to leave the grand coalition, so that the grand
coalition is enforced and stable with the best social wel-
fare achieved. At the same time, though, a high penalty
often causes such users to be dissatisfied. To avoid such
dissatisfaction, the central government can lower the
penalty, and simultaneously subsidize the grand coali-
tion by injecting certain external resources, albeit at
some additional cost. For instance, new water diver-
sion projects can be constructed to bring in an external
water supply from outside regions. When the external
water supply is sufficient, the grand coalition for coop-
eration can then be stabilized, with all the water users
satisfied.

The previous illustration indicates that the basic
idea of our newly proposed instrument is to charge
some penalty that may be insufficient to totally stabi-
lize the grand coalition, but can nevertheless help to
reduce the subsidy that needs to be provided. In other
words, the penalty and subsidy become complemen-
tary. As a result, the subsidy can be reduced if the
penalty increases, and vice versa, enabling the central
authority to evaluate awhole spectrum of options. This
is the motivation behind our study on the trade-off
between penalty and subsidy.

Despite its practical relevance and theoretical inter-
est, stabilizing the grand coalition of an unbalanced
cooperative game has not been given adequate atten-
tion in the literature. Following the concept of core,
which has been extensively studied (e.g., see Curiel
2013), two relaxed concepts, i.e., the least core and the

γ-core, have been proposed for allocating costs to play-
ers in an unbalanced cooperative game to form a grand
coalition. Under the concept of the least core (e.g., see
Maschler et al. 1979), the cost allocated to each coali-
tion must be no more than the minimum cost of the
coalition plus the minimum value of z that allows the
cost allocation to be stable. The minimum value of
z is called the least core value. Under the concept of
the γ-core (e.g., see Faigle and Kern 1993), the total
cost allocated to all players is relaxed to be no smaller
than γ times the cost of the grand coalition, where
0 < γ < 1. Although not often explicitly mentioned,
these concepts are relevant to the use of penalization
and subsidization for stabilizing the grand coalition of
an unbalanced cooperative game. For penalization, the
central authority can charge a penalty to each coalition
that wants to leave the grand coalition. The penalty
can be set at the least core value. Alternatively, with a
nonempty γ-core, the penalty for each coalition can be
set at (1/γ−1) times its own cost. For subsidization, the
central authority can provide a particular subsidy to
all the players if they all choose to cooperate together.
With a nonempty γ-core, the subsidy can be set at
(1− γ) times the cost of the grand coalition. Although
there are other relaxed concepts, such as the concept
of restricted coalition structures (Yi 1997, Demange
2004), that can be used to stabilize the grand coalition,
we focus on those relevant to penalization and subsi-
dization, using them to develop and study our new
instrument.

The concept of γ-core has been extensively studied,
but mainly for the design of cross-monotonic cost shar-
ing methods, not for stabilizing the grand coalition
(e.g., see Jain and Vazirani 2001, Könemann et al. 2005,
Immorlica et al. 2008). Bachrach et al. (2009) were the
first to formally propose the concept of cost of stability,
i.e., the minimum external subsidy that can stabilize
the grand coalition of an unbalanced cooperative game.
In their work, although various bounds on the cost of
stability were derived for several classes of unbalanced
cooperative games, no general algorithms were pro-
vided to calculate the cost of stability. Following this
work, Resnick et al. (2009) derived tight bounds on the
cost of stability under various restrictions, and Meir
et al. (2011) studied how to approximate the cost of sta-
bility for network flow games. Recently, Caprara and
Letchford (2010) and Liu et al. (2016) developed vari-
ous algorithms that can be applied to compute the cost
of stability for unbalanced cooperative games.

Existing studies on the instrument of penalization
are mainly based on the concept of the least core. For
example, Faigle et al. (2001), and Kern and Paulusma
(2003) studied how to compute the least core value for
some special unbalanced cooperative games. Recently,
Schulz and Uhan (2010, 2013) showed how to approxi-
mate the least core value for games with supermodular
costs, particularly, for machine scheduling games.
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As we have shown, most of the existing work on
stabilizing the grand coalition uses the instrument
of penalization or the instrument of subsidization.
Although the newly proposed idea of simultaneously
using both of these instruments is easy to under-
stand, it is unclear how one can quantify the trade-
off between the levels of penalty and subsidy. This
raises the following research question: What is the
appropriate amount of penalty that a central authority
needs to charge so that the required amount of external
resources is affordable? As the first (to our knowledge)
to address this question, our studymakes the following
contributions.

First, we introduce a penalty-subsidy function (PSF)
to characterize the relationship between any given
penalty and its corresponding minimum subsidy
needed for stabilizing the grand coalition. We prove
that the PSF is strictly decreasing, piecewise linear, and
convex in the penalty, which reveals the diminishing
effect of increasing the penalty to reduce the subsidy
required to achieve the grand coalition’s stability.

Second, we develop an algorithm to iteratively con-
struct the exact PSF on its effective domain, with the
number of iterations bounded by four times the num-
ber of breakpoints on the effective domain of the PSF.
For a case where the PSF has an exponential num-
ber of breakpoints, we develop another algorithm to
iteratively construct an ε-approximation of the PSF,
with the number of iterations bounded by a polyno-
mial function of the number of players, and with the
cumulative error approaching zero as the parameter ε
approaches zero.
Third, the two algorithms to construct the PSF and

its approximation rely on solving the value of the PSF
for any specific penalty, for which we derive its com-
putational complexity and propose two effective solu-
tion approaches. The first approach follows a cutting
plane method; the second is based on the theory of lin-
ear programming and its duality. Both approaches can
be applied to a broad class of unbalanced cooperative
games.

Fourth, we apply our new model, algorithms, and
solution approaches to a class of parallel machine
scheduling games. This not only demonstrates thewide
applicability of our newly proposed instrument of
simultaneous penalization and subsidization for stabi-
lizing the grand coalition but also reveals some interest-
ing properties of these games.

The paper is organized as follows. In Section 2 we
introduce some preliminaries, and define the PSF to
formulate the new instrument of simultaneous penal-
ization and subsidization. In Section 3 we study its
properties and present the construction algorithms for
the PSF. In Section 4 we illustrate the two approaches
for solving the value of the PSF for any given penalty.
In Section 5 we demonstrate the applications of the

proposedmodel, algorithms, and solution approaches.
In Section 6 we conclude with a discussion of direc-
tions for future research. All proofs are provided in the
electronic companion.

2. Formulation for Simultaneous
Penalization and Subsidization

2.1. Preliminaries
A cooperative game with transferable utilities can be
described by a pair (V, c), where V � {1, 2, . . . , v} de-
notes a set of v players with v > 2, and c: 2V → �
denotes a characteristic function. A coalition is defined
as a nonempty subset of players, and V is the grand
coalition. Let S � 2V\{�} denote the set of all coali-
tions. For each coalition s ∈ S, the characteristic func-
tion specifies a value c(s) that indicates the minimum
total cost for themembers in s to accomplish their work
when they cooperate. The game requires a cost alloca-
tion vector θ � [θ1 , θ2 , . . . , θv] ∈ �v with θk being the
cost allocated to each player k ∈ V . By slightly abusing
the notation for convenience, we use θ(s) � ∑

k∈s θk to
denote the total cost allocated to each coalition s ∈ S.
One of themost important concepts for a cooperative

game (V, c) is the core, denoted by Core(V, c), which is
defined as the set of cost allocation vectors θ ∈ �v that
satisfy a budget balance constraint, i.e., θ(V)� c(V), as
well as coalition stability constraints, i.e., θ(s)6 c(s) for
each s ∈ S\{V}. In other words, we have

Core(V, c)
� {θ: θ(V)� c(V), θ(s)6 c(s) for all s ∈ S\{V}, θ ∈�v}.
A cooperative game (V, c) is balanced if∑s∈S λs c(s)>

c(V) holds for every balanced collection of weights
(λs)s∈S with 0 6 λs 6 1 for s ∈ S and ∑

s∈S: k∈s λs � 1 for
k ∈ V (Osborne and Rubinstein 1994). It is well known
that Core(V, c) is not empty if and only if the coopera-
tive game (V, c) is balanced (Bondareva 1963, Shapley
and Shubik 1969). Thus, if (V, c) is balanced, there is no
incentive for any coalition s ∈ S\{V} to deviate from
the grand coalition V .

However, as mentioned earlier, many cooperative
games are unbalanced. To stabilize the grand coalition
for an unbalanced cooperative game (V, c), a central
authority can use two instruments known in the litera-
ture. One is penalization, by which the central author-
ity charges a penalty z to any coalition that wants to
leave the grand coalition. Because a high penalty often
causes high player dissatisfaction, the central authority
needs to find the minimum penalty z∗, along with a
cost allocation β∗ ∈ �v , such that, for any coalition s ∈
S\{V}, the assigned cost β∗(s) is no larger than its own
cost c(s) plus the penalty z∗. This can be formulated as
the following linear program (LP):

z∗ � min
β, z
{z: β(V)� c(V), β(s) 6 c(s)+ z

for all s ∈ S\{V}, z ∈ �, β ∈ �v}. (1)
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Theminimumpenalty z∗ is the least core value, and the
optimal solution, denoted by β∗, is called the least core
cost allocation (Maschler et al. 1979). It can be seen that
setting z � c(V) and βk � c(V)/v for all k ∈ V forms a
feasible solution to LP (1), which implies that z∗ 6 c(V),
and so z∗ is bounded from above by c(V).

The other common instrument is subsidization, by
which the central authority provides a certain subsidy
to all the players in V if they choose to cooperate as
a grand coalition, so that the actual total cost shared
among the players can be less than c(V). The central
authority is committed to finding the minimum sub-
sidy ω∗, along with a cost allocation α∗ ∈ �v , that satis-
fies the coalition stability constraints. This can also be
formulated as the following LP:

ω∗ � min
α
{c(V) − α(V): α(s) 6 c(s)

for all s ∈ S, α ∈ �v}. (2)

The optimal objective value ω∗ is called the minimum
subsidy, or the cost of stability as defined by Bachrach
et al. (2009). The optimal solution, denoted by α∗ ∈ �v ,
is called the optimal cost allocation. Note that ω∗ is
non-negative, and it is positive if and only if game (V, c)
is unbalanced (i.e., it has an empty core).
By definition it can be seen that the LP (2) for the

instrument of subsidization is equivalent to the fol-
lowing optimal cost allocation problem introduced in
Caprara and Letchford (2010),

max
α
{α(V): α(s) 6 c(s) for all s ∈ S, α ∈ �v}, (3)

as well as being equivalent to the following γ-core
problem (see Jain and Mahdian 2007),

γ∗ � max
α, γ
{γ: α(V)� γc(V), α(s) 6 c(s)

for all s ∈ S, α ∈ �v , γ ∈ �}. (4)

This is because every optimal cost allocation α∗ of (2) is
also optimal to (3) and to (4).

2.2. Penalty-Subsidy Function
To formulate the new instrument of simultaneous pe-
nalization and subsidization, we now state our defini-
tion of the penalty-subsidy function, z-penalized opti-
mal cost allocation, and z-penalizedminimum subsidy
for a cooperative game.
Definition 1. In a cooperative game (V, c), for any
penalty z ∈ �, consider the following LP:

ω(z)� min
β
{c(V) − β(V): β(s) 6 c(s)+ z

for all s ∈ S\{V}, β ∈ �v}. (5)

Its optimal solution, denoted by β( · , z), is called a z-
penalized optimal cost allocation, and its optimal objective
value ω(z) is called the z-penalized minimum subsidy. In
addition, ω(z) as a function of z is referred to as the
penalty-subsidy function (PSF).

FromDefinition 1 it can be seen that by capturing the
trade-off between penalty and subsidy, the PSF ω(z)
formulates the concept of simultaneous penalization
and subsidization for stabilizing the grand coalition.
For any penalty z that is not sufficient to prevent play-
ers from deviating from the grand coalition, the cen-
tral authority needs to provide a subsidy of at least
ω(z) to make the grand coalition cooperate. Under the
joint effect of penalty z and subsidy ω(z), no player or
coalition of players can be better off by deviating from
the grand coalition, and hence the grand coalition is
stabilized.

Lemma 1. The penalty-subsidy function ω(z) is strictly
decreasing in z for z ∈ [0, z∗]. In addition, ω(0) � ω∗,
ω(z∗)� 0, and 0 < ω(z) < ω∗ for any z ∈ (0, z∗).
Lemma 1 reveals the monotonicity of the new instru-

ment, where z∗, as defined in (1), is the minimum
penalty needed to stabilize the grand coalition by
penalization alone, and ω∗, as defined in (2), is the
minimum subsidy needed to stabilize the grand coali-
tion by subsidization alone. It implies that the instru-
ment of penalization on its own and the instrument of
subsidization on its own are two extreme cases of the
new instrument, and that a central authority can evalu-
ate a spectrum of options provided by penalty-subsidy
pairs (z , ω(z)) for z ∈ [0, z∗].

In this paper, we restrict the penalty value z in an
effective domain [0, z∗] of ω(z), so that the penalty
and subsidy are non-negative. In fact, the main results
derived in this paper, such as the algorithms in Sec-
tion 3 to construct function ω(z), and the solution
approaches in Section 4 to compute the value of ω(z)
for any given z, can be directly applied to other cases
where z < 0 or z > z∗. Although these cases are outside
the scope of this paper, they may have some meaning-
ful implications. For example, if z > z∗, then ω(z) < 0,
implying that the central authority is charging a high
penalty so as to extract some profit from the grand
coalition.

We now illustrate the instruments of penalization,
subsidization, and simultaneous penalization and sub-
sidization, by using the following game instance of
single machine scheduling with weighted jobs (SMW)
introduced by Schulz and Uhan (2010, 2013).

Example 1. Consider an SMW game with V � {1, 2,
3, 4} of four players. Each player k ∈ V has a job with
weight wk and processing time tk , where w1 � 4, w2 � 3,
w3 � 2, w4 � 1, t1 � 5, t2 � 6, t3 � 7, and t4 � 8. Each
coalition s ∈ S aims to minimize the total weighted
completion time by processing all their jobs on a single
machine.

For the grand coalition in Example 1, its optimal job
processing sequence is 1→ 2→ 3→ 4 with a mini-
mum total weighted completion time of 115. However,
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Table 1. z-Penalized Minimum Subsidies and z-Penalized
Optimal Cost Allocations for Example 1

z 0 5 10 15 19.5
ω(z) 55 35 20 9 0

β(1, z) 20.00 25.00 29.29 31.62 34.70
β(2, z) 18.00 23.00 28.00 31.45 34.12
β(3, z) 14.00 19.00 24.00 27.38 28.80
β(4, z) 8.00 13.00 13.71 15.55 17.38

the coalition stability constraints in (2) imply that the
total cost that can be shared among the players cannot
exceed ∑

k∈V wk tk � 60 < 115. Thus, the game is unbal-
anced. To stabilize the grand coalition by penalization,
we can solve LP (1) to obtain the minimum penalty z∗ �
19.5. To stabilize the grand coalition by subsidization,
we can solve LP (2) to obtain the minimum subsidy
ω∗ � 55.
To demonstrate our new instrument of simultane-

ous penalization and subsidization, we set the penalty
z at some discrete values, and then compute the cor-
responding z-penalized minimum subsidy ω(z) and
z-penalized optimal cost allocations β( · , z) by solving
LP (5). The results, shown in Table 1, indicate that the
PSF ω(z) and the rate of decrease are decreasing in z.
Later, in Figure 2 of Section 3.2.1, we fully characterize
the PSF ω(z) for z in the effective domain [0, 19.5].

3. Analyses of Simultaneous Penalization
and Subsidization

In this section, we first derive some structural proper-
ties of the PSF ω(z), which helps us to understand the
trade-off between penalty and subsidy for an unbal-
anced cooperative game. Based on these properties, we
then analyze how to construct the function ω(z) and its
approximation on the effective domain [0, z∗].

3.1. Structural Properties
Webegin by exploring the properties of the new instru-
ment from the players’ perspective. For any penalty z,
consider any z-penalized optimal cost allocation β( · , z)
determined by LP (5). It can be seen that there must
exist some coalitions s ∈ S\{V} of players who have
to overpay for their deviation from the grand coalition
with c(s) 6 β(s , z) 6 c(s)+ z. In particular, for any coali-
tions s with β(s , z) � c(s) + z, their overpaid amount
is the highest, which, to a certain extent, indicates that
they are themost unsatisfied coalitions.We define such
coalitions as maximally unsatisfied coalitions. In Exam-
ple 1, for z � 5, players in {1, 4} form a maximally
unsatisfied coalition, since β(1, 5) + β(4, 5) � 25 + 13 �

38 � w1t1 + w4(t1 + t4)+ z � c({1, 4})+ z.
Let Sβz � {sβz

1 , s
βz
2 , . . . , s

βz
h(β, z)} denote the collec-

tion of all maximally unsatisfied coalitions, where

h(β, z)� |Sβz |. Taking the dual of LP (5), by strong dual-
ity we have:

ω(z)�max
ρ

{
c(V)+

∑
s∈S\{V}

−ρs[c(s)+ z]:
∑

s∈S\{V}: k∈s

ρs �1,

∀ k ∈V, ρs > 0, ∀ s ∈ S\{V}
}
. (6)

From this, we can establish Theorem 1, showing that
the union of coalitions in Sβz has a complete coverage
of players.
Theorem 1. Consider any penalty z, and any z-penalized
optimal cost allocation β( · , z). The union of all maximally
unsatisfied coalitions in Sβz equals the grand coalitionV , i.e.,

sβz
1 ∪ sβz

2 ∪ · · · ∪ sβz
h(β, z) � V. (7)

By Theorem 1 we know that every player k ∈ V ,
regardless of its specific role in the game, must appear
in at least one of the maximally unsatisfied coalitions,
i.e., the coalitions of players who overpaid the most.
This suggests a sense of fairness in the cost allocation to
all players under β( · , z). In addition, by Theorem 1 we
can develop bounds on the derivatives of points on the
PSF curve, which will be shown later in this section.

Next, by examining the PSF ω(z), we explore some
properties of the new instrument from the perspective
of the central authority, so as to gain a greater under-
standing of the trade-off between penalty and subsidy.
The results are presented in Theorems 2 and 3.
Theorem 2. The PSF ω(z) is strictly decreasing, piecewise
linear, and convex in penalty z for z ∈ [0, z∗].

The properties of the PSF ω(z) shown in Theo-
rem 2 have the following implications: First, the strictly
decreasing property of ω(z) implies a strong comple-
mentarity between the penalty z and the correspond-
ing minimum subsidy ω(z) desired; when z increases
ω(z) strictly decreases. Second, the piecewise linear-
ity of ω(z) implies that the derivative at point (z , ω(z))
only changes a finite number of times when z increases
from 0 to z∗. This allows us to fully characterize the PSF
by evaluating ω(z) at only a finite number of values
of z. Third, the convexity of ω(z) reveals a diminishing
effect of increasing the penalty to reduce the minimum
subsidy desired. When no penalty is charged, the cen-
tral authority needs to provide the highest subsidy to
stabilize the grand coalition. As the penalty increases,
the minimum subsidy desired is reduced. However,
as each additional unit of the penalty is charged, the
reduction in the minimum subsidy desired decreases.
Because penalization is at the cost of dissatisfaction of
the players, Theorem 2 sheds light on how to make the
best use of the penalty.

To further understand the trade-off between penalty
and subsidy, we now study the derivatives of each lin-
ear segment of the PSF ω(z). Theorem 3 shows that the
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derivatives of ω(z)may have large variations, depend-
ing on the number of players v, which implies the chal-
lenges involved in developing efficient algorithms for
the construction of ω(z) and the importance of using
the properties of ω(z) in the construction.

Theorem 3. For each linear segment of ω(z), its derivative
ω′(z) is in the range [−v ,−v/(v − 1)].
For any given penalty z, consider the derivative ω′(z)

of the PSF ω(z). From LP (6), we know that ω(z)
is the point-wise maximum of a set of straight lines
whose slopes are given in the set {∑s∈S\{V}(−ρs):∑

s∈S\{V}:k∈s ρs � 1, ∀ k ∈V ; ρs > 0, ∀ s ∈ S\{V}}. There-
fore, at any point (z , ω(z)) on the PSF curve, the left and
right derivatives, Kz

l and Kz
r , can be obtained by com-

puting the respective minimum and maximum slopes
of the corresponding straight lines that pass through
point (z , ω(z)). To formalize this, let Πz denote the set
of all optimal solutions ρ to LP (6), so that every value
in {∑s∈S\{V}(−ρs): ρ ∈Πz} corresponds to the slope of a
straight line that passes through point (z , ω(z)). Thus,
we obtain that

Kz
l � min

{ ∑
s∈S\{V}

(−ρs): ρ ∈Πz

}
and

Kz
r � max

{ ∑
s∈S\{V}

(−ρs): ρ ∈Πz

}
.

(8)

Moreover, it can be seen that if and only if Kz
l ,Kz

r , point
(z , ω(z)) is a breakpoint on the PSF curve, i.e., a point
that connects two adjacent linear segments of ω(z).

However, computing the left and right derivatives
by (8) can be very difficult since it requires obtaining
the set Πz of all optimal solutions ρ to LP (6). To avoid
such difficulty, in Section 3.2 we use a weak left deriva-
tive Kz

l′ and a weak right derivative Kz
r′ in the construc-

tion of ω(z). These are defined as follows:

Definition 2. We refer to (Kz
l′ ,K

z
r′) as a pair of weak

derivatives at point (z , ω(z)) on the curve of the
PSF ω(z) if and only if Kz

l 6 Kz
l′ 6 Kz

r′ 6 Kz
r . In addition,

Kz
l′ is called a weak left derivative, and Kz

r′ is called a
weak right derivative.

Definition 2 implies that if (z , ω(z)) is not a break-
point on the curve of ω(z), there exists a unique pair
of weak derivatives (Kz

l′ ,K
z
r′) that satisfies Kz

l′ � Kz
l � Kz

r′

� Kz
r . Thus, (z , ω(z)) is a breakpoint on the curve ofω(z)

if and only if there exists a pair of weak derivatives
(Kz

l′ ,K
z
r′)with Kz

l′ , Kz
r′ .

Compared with Kz
l and Kz

r , the computation of weak
derivatives Kz

l′ and Kz
r′ is more tractable. For example,

we can first compute a collection Sβz of all the maxi-
mallyunsatisfied coalitionsunder any β( · , z)optimal to
LP (5). Define Πβz � {ρ: ∑

s∈S\{V}: k∈s ρs � 1 for all k ∈V ,
ρs � 0 for all s < Sβz , and ρs > 0 for all s ∈ Sβz}. By the
complementary slackness conditions, we obtain that

every ρ ∈ Πβz is an optimal solution to LP (6). Thus, it
can be verified that Kβz

l′ and Kβz
r′ , as defined by

Kβz
l′ � min

{ ∑
s∈S\{V}

−ρs : ρ ∈Πβz

}
and

Kβz
r′ � max

{ ∑
s∈S\{V}

−ρs : ρ ∈Πβz

}
,

(9)

areweak left andweak right derivatives, respectively, at
point (z , ω(z)) because Πβz is only a subset of the com-
plete setΠz of optimal solutions to LP (6).
There are also other approaches to obtaining weak

derivatives, such as those based on the computation of
the z-penalizedminimum subsidy,whichwe explain in
Section 4.

3.2. Construction of the PSF ω(z) and
Its Approximation

3.2.1. Construction of the Exact PSF. According to
Theorem 2, the PSF ω(z) is piecewise linear on its effec-
tive domain [0, z∗]. Thus, to constructω(z)weonly need
to construct a set P∗ of values from [0, z∗] that cover
all the breakpoints of ω(z), and then connect points
(z , ω(z)) for all z ∈ P∗.
Following the previous idea, we develop an Intersec-

tion Points Computation (IPC) algorithm to construct
the PSF ω(z). It iteratively updates P∗ by adding new
values from [0, z∗]. The update of P∗ is done along with
an update of � , which is a set of intervals that may con-
tain new breakpoints of ω(z) not yet covered by P∗. Ini-
tially, the algorithm sets P∗ � {0, z∗}, and � � {[0, z∗]},
and then it iteratively updates P∗ and � until � is empty.
In each iteration, the IPC algorithm attempts to find

for P∗ a new value z′ from an interval in � by comput-
ing an intersection point of two constructed linear func-
tions. More specifically, as illustrated in Figure 1, it first
relabels values in P∗ by z0 < z1 < · · · < zq , where z0 � 0,
zq � z∗ and q � |P∗ | − 1, and then selects any interval
from � , denoted by [zk−1 , zk]with 1 6 k 6 q. To examine
whether [zk−1 , zk] contains any new breakpoint of ω(z),
it constructs two linear functions, denoted by Rk−1(z)
and Lk(z), so that Rk−1(z) passes (zk−1 , ω(zk−1)) with a
slope equal to a right weak derivative Kzk−1

r′ of ω(z) at
zk−1, and that Lk(z) passes (zk , ω(zk))with a slope equal
to a left weak derivative Kzk

l′ of ω(z) at zk . By the defi-
nition of left and right weak derivatives, and due to the
convexity of ω(z), we have that

Rk−1(z)6ω(z) and Lk(z)6ω(z),
for each z∈[0, z∗]. (10)

WithRk−1(z) and Lk(z) the IPCalgorithm then examines
the following two cases:

Case 1. If Rk−1(z) passes (zk , ω(zk)) or Lk(z) passes
(zk−1 , ω(zk−1)), then Rk−1(z) or Lk(z) passes points
(zk−1 , ω(zk−1)) and (zk , ω(zk)) of ω(z). Thus, by (10) and
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Figure 1. Illustration of the Construction of the PSF ω(z) by the IPC Algorithm
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the convexity of ω(z) we obtain that ω(z) � Rk−1(z) for
z ∈ [zk−1 , zk] or ω(z)� Lk(z) for z ∈ [zk−1 , zk], thus imply-
ing that ω(z) has no breakpoint in (zk−1 , zk). Therefore,
for this case, noupdateofP∗ is required, and the interval
[zk−1 , zk] needs to be removed from � .

Case 2. If neither Rk−1(z) passes (zk , ω(zk)), nor
Lk(z) passes (zk−1 , ω(zk−1)), then since Rk−1(z) passes
(zk−1 , ω(zk−1)) and Lk(z) passes (zk , ω(zk)), by (10) and
the convexity of ω(z) we obtain that Rk−1(z) and Lk(z)
must have a unique intersection point at z � z′ for some
z′ ∈ (zk−1 , zk) (see Figure 1). This implies that z′ may be
a breakpoint ofω(z). Therefore, for this case, we update
P∗ by adding the new value z′, and update � by remov-
ing [zk−1 , zk] and adding two new intervals [zl , z′] and
[z′, zr].

Finally, when � is empty, implying that P∗ has cov-
ered all breakpoints of ω(z), the iteration stops. A lin-
ear piecewise function is obtained by connecting points
(z , ω(z)) for all z ∈ P∗.
We summarize the IPCalgorithm inAlgorithm1, and

establish Theorem 4 to show the effectiveness and effi-
ciency of the algorithm, which indicates that the func-
tion obtained equals the PSFω(z) for z ∈ [0, z∗], and that
the number of iterations is less than four times the num-
ber of breakpoints of ω(z).

Algorithm 1 (Intersection Points Computation (IPC) algo-
rithm to construct the PSF)

Step 1. Initially, set P∗ � {0, z∗} and � � {[0, z∗]}.
Step 2. If � is not empty, update P∗ and � by the fol-

lowing steps:
Step 2.1. Relabel values in P∗ by z0 < z1 < · · · < zq ,

where z0 � 0, zq � z∗ and q � |P∗ | − 1.
Step 2.2. Select any interval from � , denoted by

[zk−1 , zk]with 1 6 k 6 q.
Step 2.3. Construct two linear functions Rk−1(z)

and Lk(z) so that Rk−1(z) passes (zk−1 , ω(zk−1)) with a

slope equal to a right weak derivative Kzk−1
r′ of ω(z) at

zk−1, and that Lk(z) passes (zk , ω(zk))with a slope equal
to a left weak derivative Kzk

l′ of ω(z) at zk .
Step 2.4. Consider the following two cases:
Case 1. If Rk−1(z) passes (zk , ω(zk)) or Lk(z)

passes (zk−1 , ω(zk−1)), then update � by removing
[zk−1 , zk].

Case 2. Otherwise, Rk−1(z) and Lk(z)must have a
unique intersectionpoint at z � z′ for some z′ ∈ (zk−1 , zk).
Update P∗ by adding z′, and update � by removing
[zk−1 , zk] and adding [zl , z′] and [z′, zr].

Step 2.5. Go to step 2.
Step 3. Returnapiecewise linear functionby connect-

ing points (z , ω(z)) for all z ∈ P∗.

Theorem 4. (i) The function returned by the IPC algorithm
equals the PSF ω(z) for z ∈ [0, z∗]. (ii) If function ω(z) has
q̂ > 2 linear segments (or equivalently, q̂ + 1 breakpoints),
then the IPC algorithm will terminate after at most 4q̂ − 1
iterations.

Figure 2 illustrates how the IPC algorithm iteratively
constructs the PSF ω(z) for the instance in Example 1.
The algorithmupdates set P three times by adding new
breakpoints z′ equal to 8, 5, and 11, respectively, as
shown in Figure 2(a)–(c). Accordingly, set � is updated
from {[0, 19.5]}, to {[0, 8], [8, 19.5]}, to {[8, 19.5]}, and
then to an empty set (when the algorithm stops). Fig-
ure 2(d) shows the curve of the final function obtained
for ω(z), on which there are four breakpoints, i.e.,
(0, 55), (5, 35), (11, 17), and (19.5, 0).
In Figure 2(d), the PSF ω(z) is strictly decreasing,

piecewise linear, and convex in z, as stated in Theo-
rem 2. The slopes of its linear segments, from left to
right, are −4, −3 and −2, respectively, which are all in
the interval [−4,−4/3], as stated in Theorem 3. More-
over, to illustrate the computation of weak derivatives,
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Figure 2. Applying the IPC Algorithm to Constructing the PSF ω(z) for Example 1
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consider the case of z � 5 as an example. By solv-
ing (5), we obtain a z-penalized optimal cost alloca-
tion [25, 23, 19, 13] with the corresponding collection
ofmaximally unsatisfied coalitions being {{1}, {2}, {3},
{4}, {1, 4}}. According to LP (9) and the definition of
Πβz in Section 3.1, we can obtain a pair of weak deriva-
tives at point z � 5, denoted by (K5

l′ ,K
5
r′) with K5

l′ � −4
and K5

r′ � −3, which, in fact, equal the actual deriva-
tives (see Figure 2(d)). Since K5

l′ , K5
r′ , we know that

(z1 , ω(z1))� (5, 35) is a breakpoint of ω(z).
Remark 1. When the PSF ω(z) has a large number of
breakpoints, it is time consuming for the IPC algorithm
to construct function ω(z) exactly. In this situation, we
can force the algorithm to stop after a number of itera-
tions in step 2 (evenwhen � is not empty), and then use
values currently in P∗, denoted by 0 � z0 < z1 < · · · < zq

� z∗, to construct an upper bound function UB(z) and a
lower bound function LB(z) of ω(z) for z ∈ [0, z∗]:

• To construct UB(z), we simply connect points
(z , ω(z)) for all z ∈ P∗ to obtain a piecewise linear func-
tion. By the convexity of ω(z) we obtain that for each
k ∈ {1, 2, . . . , q}, UB(z) > ω(z) for z ∈ [zk−1 , zk], implying
that UB(z) > ω(z) for z ∈ [0, z∗]. Thus, UB(z) is an upper
bound function of ω(z).

• To construct LB(z), we need to use the linear
functions Rk−1(z) and Lk(z) defined in step 2.3 of the
IPC algorithm for 1 6 k 6 q. By (10), we have that
Rk−1(z) 6 ω(z) and Lk(z) 6 ω(z) for z ∈ [0, z∗] and 1 6
k 6 q. Define LB(z)� max{R0(z), L1(z),R1(z), L2(z), . . . ,
Rq−1(z), Lq(z)}. We obtain that LB(z) 6 ω(z) for z ∈
[0, z∗]. Thus, LB(z) is a lower bound function of ω(z).
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3.2.2. ε-Approximation of the PSF. Remark 1 shows
that, by forcing it to stop after a number of iterations
in step 2, the IPC algorithm can be modified to obtain
upper and lower bound functions, UB(z) and LB(z), as
approximations of thePSFω(z).However, such approx-
imationsmaysignificantlydeviate fromω(z), especially
if� still contains large intervalswhen the IPCalgorithm
is forced to stop.
Next, we present an efficient algorithm to construct

an upper bound function as an ε-approximation of
function ω(z). It converges to function ω(z) when the
parameter ε approaches zero. Under the joint effect of
any penalty-subsidy pair on the curve of this upper
bound function, the grand coalition is stabilized.

Algorithm2 (Approximationalgorithm to construct an ε-ap-
proximation of the PSF)
Step 1. Divide [0, z∗] into d2v/εe subintervals de-

noted by [z0 , z1), [z1 , z2), . . . , [zdv/εe−2, zd2v/εe−1), and
[zd2v/εe−1 , zd2v/εe], such that each segment has the same
length of (z∗/d2v/εe), where z0 � 0 and zd2v/εe � z∗.
Step 2. For each 0 6 k 6 d2v/εe, compute the z-penal-

izedminimum subsidy ω(z) for z � zk .
Step 3. Obtain an upper bound Uε(z) for the PSF

ω(z)by connectingpoints in {(z0 , ω(z0)), (z1 , ω(z1)), . . . ,
(zd2v/εe−1 , ω(zd2v/εe−1)), (zd2v/εe , ω(zd2v/εe))}.
To construct an ε-approximation of functionω(z), we

propose an approximation algorithm in Algorithm 2
that connectspoints (z , ω(z)) for only (d2v/εe+1)differ-
ent values of z in [0, z∗]. Following an argument similar
to that for UB(z) in Remark 1, by the convexity of ω(z)
we can obtain that Uε(z) returned by Algorithm 2 is an
upper bound function of ω(z).

To show the effectiveness of Algorithm 2, we now
evaluate the cumulative error Ec and the maximum
errorEmax between functionsUε(z)andω(z),whereEc �

∫ z∗
0 |Uε(z) −ω(z)|dz, and Emax � max{|Uε(z) −ω(z)|: z ∈
[0, z∗]}. As shown in Section 2.1, z∗ is bounded by c(V).
Theorem 5 shows that when ε approaches zero, the
cumulative error Ec and the maximum error Emax also
approach zero, implying that Uε(z) converges to func-
tion ω(z). It also shows that the relative cumulative
error, Ec/∫ z∗

0 ω(z)dz, is bounded by ε. Thus, Uε(z) is an
ε-approximation of function ω(z).
Theorem 5. For the two types of errors, we have that Ec 6
(ε/2)(z∗)2 6 ε ∫ z∗

0 ω(z)dz, andEmax 6 (εz∗)/2, for any given
ε > 0.

4. SolutionApproaches toComputing the
z-PenalizedMinimumSubsidy

In this section, we present two solution approaches to
computing the value of ω(z) for any given z, which can
be further used to compute weak derivatives of ω(z).
With these, we apply the algorithms proposed in Sec-
tion 3.2 to construct thePSFω(z) and its approximation.

Our solution approaches are applicable to a broad
class of cooperative games, i.e., integer minimization
(IM) games. As introduced by Caprara and Letchford
(2010), the class of IM games includes many well
knownunbalancedcooperativegames, suchasmachine
scheduling games, facility location games, travelling
salesman games, etc.

Definition 3. A cooperative game (V, c) is an IM game if
there exist (i) positive integers e and t; (ii) a left hand
side (LHS) matrix A ∈ �e×t ; (iii) a right hand side (RHS)
matrix B ∈ �e×v ; (iv) an RHS vector D ∈ �e ; (v) an objec-
tive function vector c ∈ �t ; and (vi) for each coalition
s ∈ S, an incidence vector ys ∈ {0, 1}v , with ys

k � 1 if k ∈ s,
and with ys

k � 0 otherwise, for all k ∈ V , such that the
coalition cost c(s) equals the optimal objective value of
the following integer linear program:

c(s)� min
x
{cx: Ax > Bys

+D , x ∈ �t}. (11)

As we show in Section EC.2 of the electronic com-
panion, computing ω(z) for any z and for any IM game
is NP-hard, even for some special cases where c(s) for
each s ∈ S is polynomially solvable. Therefore, it is of
interest for us to develop solution approaches that can
efficiently compute the exact value ofω(z) for some spe-
cial IM games, or produce bounds on the value of ω(z)
for any IM game in general.

Let π(z) denote the optimal objective value of the fol-
lowing LP:

π(z)� max
β
{β(V): β(s) 6 c(s)+ z
for all s ∈ S\{V}, β ∈ �v}. (12)

From (5) it can be seen that ω(z) � c(V) − π(z). Thus,
instead of directly computingω(z), we can compute the
valueofπ(z)first, andobtainω(z)byω(z)� c(V)−π(z).
When c(V) or π(z) is hard to obtain, we can compute
their bounds to obtain a bound on ω(z).

The value of π(z) can be interpreted as themaximum
total cost that canbe shared stablyby thegrandcoalition
V , given that the penalty for deviation by any subcoali-
tion is z. Thus, we refer to LP (12) as the z-penalized
optimal cost allocation problem. Although important,
this problem is rarely studied in the literature. Only its
special case π(0), where penalty z is zero, has recently
been studied by Caprara and Letchford (2010) and Liu
et al. (2016).

Following the previous discussion, we develop two
solution approaches to compute the exact value of ω(z)
for IM games by solving π(z) of LP (12). The first
approach, presented in Section 4.1, is a cutting plane
method. The second approach, presented in Section 4.2,
is based on the theory of linear programming and its
duality. Both approaches can also be adopted to effi-
ciently derive lower or upper bounds on the value of
ω(z) for all IM games.
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4.1. Cutting Plane Approach
For any IM game (V, c) and any z to obtain the value of
π(z), we can solve LP (12), which contains an exponen-
tial number of constraints. Thus, a natural way to solve
it is to follow a cutting plane (CP) approach (see Bertsi-
mas and Tsitsiklis 1997). As described in Algorithm 3,
the CP approach starts with a restricted coalition set
S′ ⊆ (S\{V}), and finds an optimal solution β̄( · , z) to
a relaxation of LP (12) with only constraints β(s , z) 6
c(s)+z for s ∈ S′ included. It then checkswhether β̄( · , z)
violates any constraints β(s , z) 6 c(s) + z not included,
with s ∈ S\{V}\S′. For this, it needs to find an opti-
mal solution s∗ to a separation problem δ � min{c(s) +
z − β̄(s , z): ∀ s ∈ S\{V}}. If δ < 0, then β̄( · , z) violates
the constraint β(s∗ , z) 6 c(s∗) + z, and we add s∗ to S′.
We then solve the relaxation of LP (12) again, with con-
straints based on the new S′; otherwise, we know that
β̄( · , z) is also an optimal solution to LP (12), implying
thatω(z)� c(V)− β̄(V, z), and that apair ofweakderiva-
tives (K β̄z

l′ ,K
β̄z
r′ ) can be computed by solving (9) withΠβz

replaced byΠβ̄z .

Algorithm 3 (Cutting Plane (CP) approach to computing
ω(z) for a given z)
Step 1. Let S′ ⊆ S\{V} indicate a restricted coali-

tion set, which includes some initial coalitions, e.g.,
{1}, {2}, . . . , and {v}.
Step 2. Find an optimal solution β̄( · , z) to a relaxed

LP of (12) defined as maxβ{β(V, z): β(s , z) 6 c(s)+ z, for
all s ∈ S′, β ∈ �v}.
Step 3. Find an optimal solution s∗ to the separation

problem δ � min{c(s)+ z − β̄(s , z): ∀ s ∈ S\{V}}.
Step 4. If δ < 0, then add s∗ to S′, and go to step 2;

otherwise, return (i) the z-penalizedminimum subsidy
ω(z) � c(V) − β̄(V, z); and (ii) a pair of weak derivatives
(K β̄z

l′ ,K
β̄z
r′ ) computed by solving (9) with Πβz replaced

byΠβ̄z .

The critical part of the CP approach is how to effi-
ciently solve the separation problem in step 3 to find a
violated constraint β(s∗ , z) 6 c(s∗)+ z, and this depends
on the specific gamebeing studied. In fact, ifwe can sep-
arate the constraints β(s , z) 6 c(s) + z for all s ∈ S\{V}
in (pseudo-)polynomial time, then by the equivalence
between optimization and separation we can solve LP
(12) to obtain π(z) in (pseudo-)polynomial time by the
well known ellipsoid method, which follows a more
complicated cutting plane approach (see Grötschel
et al. 2012).
When the separation problem is hard to solve, we can

compute a lower bound ωl(z) for ω(z) by revising the
CP approach as follows: In step 3, we solve the sep-
aration problem simply by using a heuristic method,
which implies that when the CP approach stops, the
obtained β̄(V, z)may be greater than π(z), and thus the
returned value c(V) − β̄(V, z), denoted by ωl(z), is a

lower bound of ω(z). Moreover, if the coalition prob-
lem c(s) is also hard to solve, we can further replace c(s)
with its upper bound cu(s) in step 2 to compute β̄( · , z).
Using any lower bound c l(V) of c(V), we can compute
ωl(z) � c l(V) − β̄(V, z), which is also a lower bound of
ω(z). In this situation, since the exact value ofω(z) is not
known, we cannot compute weak derivatives.

4.2. Linear Programming Approach
For any IM game (V, c) and any z to obtain the value of
π(z), we can follow another solution approach, which
is inspired by the approach that Caprara and Letchford
(2010) proposed to compute π(z)with z � 0. We refer to
it as the LP approach since it is based on the theory of
linear programming and its duality.

Let Qx y denote the overall set of feasible solutions to
(11) of c(s) for all s ∈ S\{V}:

Qx y
� {(x , y): Ax > By +D , y � ys for some

s ∈ S\{V}, x ∈ �t , y ∈ {0, 1}v}, (13)

and extend Qx y to Qxµy as follows by introducing a new
decision variable µ, but fixing µ � 1:

Qxµy
� {(x , µ, y): Ax > By +Dµ, y � ys for some

s ∈ S\{V}, µ � 1, x ∈ �t , y ∈ {0, 1}v}. (14)

Let cone Qxµy represent the conic hull of Qxµy . By inter-
secting cone Qxµy with {(x , µ, y) ∈ �t+1+v : y � 1}, and
projecting the intersection onto (x , µ)-space, we define
Cxµ as follows:

Cxµ
�projxµ({(x , µ, y)∈�t+1+v : y�1}∩cone Qxµy). (15)

To this end, we can establish Lemma 2, showing that
π(z)� min{cx + zµ: (x , µ) ∈ Cxµ}.
Lemma 2. The optimal objective value π(z) of LP (12)
equals min{cx + zµ: (x , µ) ∈ Cxµ}.

Although by Lemma 2 we can obtain ω(z) � c(V) −
π(z) � c(V) −min{cx + zµ: (x , µ) ∈ Cxµ}, it is not easy
to solve min{cx + zµ: (x , µ) ∈ Cxµ} directly, especially
when explicit expressions defining the facets of the fea-
sible region Cxµ (which is a convex polyhedron) are not
known. Thus, we turn to finding a lower bound of π(z)
by relaxingQx y to some convexpolyhedronPx y that can
be represented in the form {(x , y): A′x > B′y+D′}. Note
that one intuitive way to obtain such Px y is to relax the
integral constraints in Qx y .

We then solve min{cx + zµ: A′x > B′1 + D′µ}, and
denote its optimal solution by [x∗ , µ∗]. According to
Lemma 3, we know that cx∗ + zµ∗ provides a lower
bound of π(z), which equals π(z) if Px y equals the con-
vex hull of Qx y .

Lemma 3. If Px y � {(x , y) : A′x > B′y +D′} is a relaxation
ofQx y , thenmin{cx+ zµ : A′x > B′1+D′µ} 6 π(z), which
holds with equality if Px y equals the convex hull of Qx y .
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By Lemma 3 and our earlier argument, the value
c(V) − (cx∗ + zµ∗) provides an upper bound of ω(z).
When c(V) is computationally intractable, we can also
apply the LP approach to obtain an upper bound ωu(z)
of ω(z) by replacing c(V) with its upper bound cu(V).
Under subsidy ωu(z) and penalty z, the grand coalition
of the IM game (V, c) can still be stabilized.
Furthermore, if polyhedron Px y equals the convex

hull of Qx y , then by Lemma 3, the value c(V) − (cx∗ +
zµ∗) equals ω(z), and [x∗ , µ∗] is also an optimal solution
to min{cx + zµ: (x , µ) ∈ Cxµ}. Thus, in this case, it can
be verified that setting Kz

l′ � −µ∗ and Kz
r′ � −µ∗ forms a

pair ofweak derivatives of ω(z) at point z, which can be
used in the IPC algorithm of Section 3.1.
We summarize the LP approach in Algorithm 4, and

show its effectiveness and efficiency by establishing
Theorem 6, which is based on Lemma 3 and the previ-
ous discussion.

Algorithm 4 (Linear Programming approach to computing
ω(z) for a given z)
Step 1. Denote the overall set of solutions to pro-

grams c(s) for all s∈S\{V} by Qx y�{(x , y): Ax>By+D ,
y�ys for some s∈S\{V},x∈�t , y∈{0,1}v}.
Step 2. Relax Qx y to some convex polyhedron Px y �

{(x , y): A′x > B′y +D′}.
Step 3. Find an optimal solution [x∗ , µ∗] to min{cx +

zµ: A′x > B′1+D′µ}.
Step 4. Return the value of c(V)− (cx∗+ zµ∗) as an ap-

proximation of ω(z), and return a pair of Kz
l′ � −µ∗ and

Kz
r′ �−µ∗.

Theorem 6. Consider any Px y � {(x , y): A′x > B′y + D′}
that is a relaxation of Qx y , where the dimensions of A′,
B′, and D′ are polynomially bounded. Then, we have the
following:

(i) the LP appr/oach runs in polynomial time with an
upper bound of ω(z) returned for any given penalty z, which
equals ω(z) if Px y equals the convex hull of Qx y;
(ii) there exists a polynomial time algorithm that can pro-

duce a z-penalized feasible cost allocation β( · , z)with a total
shared value of min{cx + zµ: A′x > B′1 + D′µ}, which is
optimal if Px y equals the convex hull of Qx y .

5. Applications toParallelMachine
SchedulingGames

To demonstrate their wide applicability, we apply
our newly proposed model, algorithms, and solution
approaches for the instrument of simultaneous penal-
ization and subsidization to a class of parallel machine
scheduling games. The results also reveal some inter-
esting properties of these games. Next, we present
the results for a game arising from identical parallel
machine scheduling of unweighted jobs, which we call
the IPU game. Results for other games are provided in
Section EC.3 of the electronic companion.

In an IPU game, each player k in V � {1, 2, . . . , v} has
a job k that needs to be processed on one of m identical
machines in M � {1, 2, . . . ,m}, where m ∈ �+. Each job
k ∈V has aprocessing timedenotedby tk . Each coalition
s ∈ S, where S � 2V\{�}, aims to schedule the jobs in s
on the machines in M so that the total completion time
of the jobs in s is minimized, i.e., to minimize ∑

k∈s Ck ,
where Ck is the completion time of job k ∈ s. Thus,
the value of the characteristic function for s, denoted
by cIPU(s), equals the minimum value of ∑k∈s Ck . Using
the notation in the scheduling literature, cIPU(s) corre-
sponds to problem P‖∑Ck , which can be solved by the
shortest processing time first (SPT) rule (Pinedo 2015).

Consider any instance (V, cIPU) of the IPU game. It
can be formulated as the following IM game: Let O �

{1, 2, . . . , v}. For k ∈V and j ∈O, define xk j to be abinary
variable, where xk j � 1 if and only if job k is sched-
uled on a machine as the jth to last job, contributing
jtk to the total completion time. Thus, for each coali-
tion s ∈ S, the total completion time to be minimized
for cIPU(s) equals

∑
k∈s

∑
j∈O( jtk)xk j , which can be writ-

ten as ∑
k∈s

∑
j∈O ck j xk j by setting each ck j � jtk . To this

end, cIPU(s) can be formulated as the following integer
linear program:

cIPU(s) � min
∑
k∈V

∑
j∈O

ck j xk j

s.t.
∑
j∈O

xk j− ys
k �0, ∀k∈V,∑

k∈V

xk j6m , ∀ j∈O ,

06xk j61, xk j ∈�, ∀k∈V, ∀ j∈O. (16)

Constraints ∑
j∈O xk j − ys

k � 0, ∀ k ∈ V , are equivalent
to ∑

j∈O xk j − 1 � 0, ∀ k ∈ s, indicating that only jobs
in s are included and are processed only once. Con-
straints ∑

k∈V xk j 6 m for all j ∈ O indicate that at most
m machines can be used, and no jobs are processed on
the samemachine at the same time. Each decision vari-
able xk j is binary. Thus, (V, cIPU) is an IM game.

For game (V, cIPU), as we will illustrate in Sections 5.1
and 5.2 that the CP approach and the LP approach
can be efficiently applied to computing the z-penalized
minimum subsidy for any penalty z. Based on this, we
will show in Section 5.3 that the IPC algorithm can
be applied to constructing the PSF ω(z) in polynomial
time.

5.1. Computing the z-PenalizedMinimumSubsidy
for Game (V, cIPU) by the CPApproach

For game (V, cIPU),we can apply theCPapproach in Sec-
tion 4.1 to computing the z-penalized minimum sub-
sidy, i.e., the value of ω(z), for any penalty z. For this,
we need to solve the following separation problem for
any given cost allocation β ∈ �v :

δIPU � min
s∈S\{V}

{
cIPU(s)+ z −

∑
k∈s

βk

}
. (17)
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The separation problem is devoted to finding an opti-
mal coalition s∗ amongall coalitions s ∈ S\{V} thatmin-
imizes the difference between z plus theminimum total
completion time cIPU(s) for jobs in s and the total cost
β(s) assigned to players in s. Thus, if δIPU < 0, then con-
straint β(s∗) 6 cIPU(s∗)+ z is violated.

As mentioned earlier, for each s ∈ S\{V}, cIPU(s) can
be solved by the SPT rule. Thus, it is optimal to process
jobs in s with the shortest processing time first, which
is equivalent to processing jobs in s with the longest
processing time last. This results in the largest m jobs
in s each being processed on different machines as the
last processing jobs, the second m largest jobs in s each
being processed on different machines as the second to
last processing jobs, and so on. In other words, for u �

1, 2, . . . , |s |, it is optimal to process the uth largest job in
s onmachine [(u − 1)mod m + 1] as the du/meth to last
processing job.
To this end, we can show how to solve the separation

problem (17) by dynamic programming (DP). Without
loss of generalities, let us assume that t1 > t2 > · · · > tv .
For each (k , u)with k ∈ {1, 2, . . . , v} and u ∈ {0, 1, . . . , v},
let P(k , u) indicate the minimum objective value of a
restricted problem of (17), subject to the additional con-
straints that coalition s is a subset of {1, 2, . . . , k}, and
that s contains exactly u players. Fromourprevious dis-
cussion, we know that if an optimum s∗ to P(k , u) con-
tains player k, it is optimal to process job k on machine
[(u − 1) mod m + 1] as the du/meth to last processing
job, contributing du/metk to the total completion time.
Thus, it can be verified that P(k , u) satisfies the follow-
ing recursion:

P(k ,u)�min


P(k−1,u), for the case when

s∗ does not contain k,
P(k−1,u−1)+ du/metk−βk , for
the case when s∗ contains k.

(18)

The initial conditions for the recursion are P(1, 0) � z
andP(1, 1)� t1−β1+z, and theboundary conditions are
P(k , u) �∞ if u > k, for all k ∈ V . It can be seen that the
optimal objective value δIPU of the separation problem
(17) is given by

δIPU � min{P(v , u): u ∈ {1, 2, . . . , v − 1}}.

We can now establish Lemma 4 which, together with
Algorithm 3, implies that, for any given penalty z, the
CP approach efficiently returns the value and the weak
derivatives ofω(z) for game (V, cIPU) in polynomial time
if the ellipsoidmethod is adopted.

Lemma 4. For game (V, cIPU), the separation problem (17)
can be solved in O(v2) time.

5.2. Computing the z-PenalizedMinimumSubsidy
for Game (V, cIPU) by the LP Approach

For game (V, cIPU), we can also apply the LP approach
in Section 4.2 to computing the z-penalized minimum
subsidy, i.e., the value ofω(z), for anypenalty z. Follow-
ing (13), we use Qx y

IPU to denote the overall set of feasible
solutions to cIPU(s) for all s ∈ S\{V}. Let yk be a binary
variable, where yk � 1 if and only if k is in some coali-
tion s ∈ S\{V}. From (13) it can be seen that (x , y) ∈Qx y

IPU
if and only if (x , y) satisfies (i) constraints in (16) with
ys

k replaced by yk , (ii) constraints 1 6 ∑
k∈V yk 6 v − 1

(to exclude empty and grand coalitions), and (iii) con-
straints 0 6 yk 6 1 and yk ∈ � for all k ∈V .
Let Px y

IPU indicate the polyhedron defined by the LP
relaxation of Qx y

IPU, with the integral constraints, yk ∈ �
and xk j ∈ � for k ∈ V and j ∈ O, being relaxed. We can
establish Lemma 5.

Lemma 5. The polyhedron Px y
IPU equals the convex hull

of Qx y
IPU.

It can be seen that the polyhedron Px y
IPU can be repre-

sented as {(x , y): A′x > B′y+D′},where thedimensions
of matrices A′, B′, and D′ are polynomially bounded.
Thus, min{cx + zµ: A′x > B′1 + D′µ} is an LP model
whose optimal solution [x∗ , µ∗] can be solved in poly-
nomial time. Hence, since cIPU(V) can be computed in
polynomial time by the SPT rule, by Lemma 5, Theo-
rem 6, and Algorithm 4we obtain that the LP approach
runs in polynomial time for game (V, cIPU), and that for
any penalty z, it returns the exact value of ω(z) equal to
cIPU(V)−(cx∗+ zµ∗), aswell as apair ofweakderivatives
Kz

l′ �−µ∗ and Kz
r′ �−µ∗.

5.3. Construction of the PSF ω(z) for
Game (V, cIPU)

For game (V, cIPU), since both the CP approach and the
LP approach can be used to compute the exact value of
ω(z) in polynomial time for any given z, we can follow
Algorithm 2 to obtain an ε-approximation of the PSF
ω(z) for z ∈ [0, z∗] in polynomial time.
Moreover, as indicated by Theorem 7, for game
(V, cIPU), the number of breakpoints of ω(z) is polyno-
mially bounded; therefore, we can obtain the exact PSF
ω(z) in polynomial time by the IPC algorithm.

Theorem 7. For game (V, cIPU), the PSF ω(z) has O(v4)
breakpoints, and it can be exactly constructed in polynomial
time by the IPC algorithm.

6. Conclusion
In this paper, we proposed a novel instrument for
enabling a central authority to stabilize the grand coali-
tion in an unbalanced cooperative game, which is of
theoretical value and practical importance. The novelty
lies in linking two previously unconnected concepts,
i.e., penalization and subsidization, and using them
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simultaneously, which provides more flexibility for the
central authority. To formulate the trade-off between
the levels of penalty and subsidy for this new instru-
ment, we introduced a penalty-subsidy function ω(z),
and characterized its structural properties. To provide
an overall picture of the trade-off, we proposed two
algorithms to construct the curve of ω(z). Both algo-
rithms rely on solving the value of ω(z), i.e., the mini-
mumsubsidyneeded to stabilize the grand coalition for
any given penalty z, for which we developed solution
approaches based on the cutting plane method and the
theory of linear programming and its duality. Our algo-
rithms and solution approaches for the new instrument
can be applied to a broad class of unbalanced coopera-
tive games. We demonstrated their applicability using
several parallel machine scheduling games, which in
turn revealed some interesting new properties of these
games.
Our work has opened several directions for future

studyon this new instrumentof simultaneouspenaliza-
tion and subsidization. First, when the penalty-subsidy
function ω(z) has a large number of breakpoints, it
would be interesting to further investigate how to
obtain an even better ε-approximation of functionω(z),
in terms of smaller approximation errors, shorter run-
ning time, and faster convergence speed. Second, as we
have shown, it is challenging to find the value of ω(z)
for any given penalty z. We have revealed that find-
ing ω(z) is equivalent to optimizing a linear function
over a specific convex polyhedron. The LP approach
we proposed can find ω(z) if we can obtain all the
inequalities of the convex polyhedron, which, however,
can be exponentially many. To efficiently find ω(z) in
such situations will require new solution approaches
and techniques. Third, when applying the new instru-
ment to various unbalanced cooperative games, such
as machine scheduling games, facility location games,
travelling salesman games, etc., a considerable num-
ber of new and interesting research questions arise for
future study. For example, in these games, how many
breakpoints does the function ω(z) have? Also, can the
value of ω(z) be fully solved or approximated in poly-
nomial time under given z? The results obtained in this
work have laid a solid foundation for addressing such
questions.
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