
第六章：振动与波动

§ 1. 简谐振动 (simple harmonic motion)

简谐振动是指在线性回复力作用下的质点的运动，这是物理学中一类最重要的运动。例
如，根据胡克定律，弹簧的弹性力与其长度变化成正比：𝐹 = −𝑘𝑥。

简谐振动在物理中具有普遍性。考虑一个质点在一般势场 𝑈(𝑥) 中平衡位置 𝑥0 附近的
运动:

𝑚 ̈𝑥 = 𝐹 = −𝑈 ′(𝑥) (1)

在平衡位置 𝑥0 力平衡，即满足 𝐹(𝑥0) = −𝑈 ′(𝑥0) = 0，做泰勒展开，

𝑈(𝑥) = 𝑈(𝑥0) +�����:0𝑈 ′(𝑥0)(𝑥 − 𝑥0) + 1
2!𝑈

″(𝑥0)(𝑥 − 𝑥0)2 + 1
3!𝑈

‴(𝑥0)(𝑥 − 𝑥0)3 + ⋯ (2)

当质点在平衡位置 𝑥0 附近运动时，|Δ𝑥| ≡ |𝑥 − 𝑥0| ≪ 1，高阶项可以忽略，因此，

𝑈(Δ𝑥) ≈ 𝑈(𝑥0) + 1
2𝑈″(𝑥0)Δ𝑥2 (3)

所对应的力为：
𝐹(Δ𝑥) = −𝑈″(𝑥0)Δ𝑥 (4)

如果 𝑈″(𝑥0) > 0，当质点偏离平衡位置受到恢复力的作用，因此该平衡位置是个稳定平
衡，力还近似线性恢复力。因此简谐振动具有普遍性：

稳定平衡点附近的微小运动是简谐振动。

上面的观点在物理学中有着深刻的应用。例如在标准模型中的希格斯粒子可以视为希格斯
势极值点附近的微小振动，如图 1。

1. 简谐振动的解 质点在弹性回复力的作用下的运动，根据牛顿第二定律，

𝑚d2𝑥
d𝑡2 = −𝑘𝑥 (5)

̈𝑥 + 𝑘
𝑚𝑥 = 0 (6)

可以验证，这个方程的通解为，

𝑥(𝑡) = 𝐴 cos(𝜔𝑡 + 𝜑) (7)
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图 1. 左：一维势能曲线与简谐振动。右：希格斯势与希格斯。

其中，𝜔 = √𝑘/𝑚，𝐴, 𝜑 是两个常数，由两个初始条件决定：初始位置和初始速度。质点
的运动速度，

𝑣(𝑡) = ̇𝑥(𝑡) = −𝜔𝐴 sin(𝜔𝑡 + 𝜑) (8)

加速度，

𝑎(𝑡) = ̈𝑥(𝑡) = −𝜔2𝐴 cos(𝜔𝑡 + 𝜑) = − 𝑘
𝑚𝑥 (9)

因此初始位置和速度为，

𝑥0 ≡ 𝑥(0) = 𝐴 cos 𝜑 (10)
𝑣0 ≡ 𝑣(0) = −𝜔𝐴 sin 𝜑 (11)

因此，简谐振动的解也可以写成，

𝑥(𝑡) = 𝑥0 cos 𝜔𝑡 + 𝑣0
𝜔 sin 𝜔𝑡 (12)

⇒ tan 𝜑 = −𝑣0/𝜔𝑥0, 𝐴 = √𝑥2
0 + 𝑣2

0/𝜔2 (13)

图 2展示了简谐振动的函数图像。简谐振动是一种周期性运动 (periodic motion): 其周
期 (period) 为，

𝑇 = 2𝜋
𝜔 = 2𝜋√𝑚

𝑘 (14)

与振幅无关——因此可以用来计时。频率 (frequency)：单位时间内振动的次数，

𝜈 = 1
𝑇 = 𝜔

2𝜋 = 1
2𝜋

√ 𝑘
𝑚 (15)

角频率/圆频率 (angular frequency)：

𝜔 = √ 𝑘
𝑚 (16)
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图 2. 简谐振动的图像以及其与圆周运动的关系

谐振子的总能量守恒：

𝐸 = 1
2𝑚 ̇𝑥2 + 1

2𝑘𝑥2 = 1
2𝑘𝐴2 (17)

其中动能与势能分别为：

𝐸𝑘 = 1
2𝑚 ̇𝑥2 = 1

2𝑚𝜔2𝐴2 sin2(𝜔𝑡 + 𝜑) (18)

𝐸𝑝 = 1
2𝑘𝑥2 = 1

2𝑚𝜔2 cos2(𝜔𝑡 + 𝜑) (19)

平均能量：

̄𝐸𝑘 = 1
𝑇 ∫

𝑇

0
𝐸𝑘(𝑡)d𝑡 = 1

2𝐸 (20)

̄𝐸𝑝 = 1
𝑇 ∫

𝑇

0
𝐸𝑝(𝑡)d𝑡 = 1

2𝐸 (21)

图 3. 简谐振动的能量

如图 4所示，在以 𝑥 − 𝑣 为坐标的空间（在合适的单位下）简谐振动是个圆，圆的面积
𝑆 正比于总能量 𝐸 = 1

2𝑘𝐴2，即

𝑆 = 𝜋𝜔𝐴2 = 2𝜋
𝜔𝑚𝐸 = 𝑇 𝐸

𝑚 (22)

叫做相空间 (phase space)1。在哈密顿形式理论、统计力学中相空间，具有核心的地位。

1 严格地讲，相空间是指坐标-动量所构成的空间
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图 4. 简谐振动在相空间的图像

图 5. 单摆

2. 单摆 (pendulum) 单摆是历史上最重要的计时工具，对于物理学和现代科学的
发展具有重要意义。根据如图 5所示的受力分析，可以得到单摆的运动方程为，

𝑇 − 𝑚𝑔 cos 𝜃 = 𝑚𝑙 ̇𝜃2 (23)
−𝑚𝑔 sin 𝜃 = 𝑚𝑙 ̈𝜃 (24)

这里选择了以单摆指点为原点的极坐标。在摆角 𝜃 ≪ 1 很小的时候，可以引入近似
sin 𝜃 ≈ 𝜃，因此切向运动方程为，

𝑚𝑙 ̈𝜃 + 𝑚𝑔𝜃 = 0 ⇒ ̈𝜃 + 𝑔
𝑙 𝜃 = 0 (25)

这是一个谐振子方程，其做简谐振动的角频率为 𝜔 = √𝑔/𝑙，周期为，

𝑇 = 2𝜋√ 𝑙
𝑔 (26)

注意，单摆的周期与单摆摆锤质量无关。在一般角度下，根据量纲分析，单摆的周期为，

𝑇 = 2𝜋√ 𝑙
𝑔𝑓(𝜃0) (27)
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图 6. 一般情况下单摆在相空间的图形。不同曲线表示不同的单摆振幅。在小振幅下，相空间的图
形接近圆，在大振幅下，相空间的图形与圆出现偏离。

其中，𝑓(𝜃0)是一个任意的函数，𝜃0为单摆的最大摆角。根据单摆小角度周期公式，𝑓(0) = 1。
另外 𝑓(−𝜃0) = 𝑓(𝜃0)，因此，𝑓(𝜃0) 是最大摆角 𝜃0 的偶函数。分析表明，

𝑓(𝜃0) = 1 + 1
16𝜃2

0 + ⋯ (28)

可见，单摆在角度不是特别大时，简谐振动周期公式是相当好的近似。当摆角为 𝜃0 = 15∘

时，误差不超过 5%。

单摆的能量守恒可以写成，

1
2𝑚𝑙 ̇𝜃2 − 𝑚𝑔 cos 𝜃 = −𝑚𝑔 cos 𝜃0 (29)

1
2𝑙 ̇𝜃2 − 𝑔 cos 𝜃 = −𝑔 cos 𝜃0 (30)

在小角度近似下，cos 𝜃 ≈ 1 − 1
2𝜃2，因此

1
2𝑙 ̇𝜃2 + 1

2𝑔𝜃2 = 1
2𝑔𝜃2

0 (31)

这是一个谐振子能量守恒方程。角频率为 𝜔 = √𝑔/𝑙。当摆角较大时，如图 6所示，单摆
在相空间的图形与圆偏离。

图 7展示了谐振子、大角度单摆、径向开普勒运动在相空间的图形。注意到，曲线围住
的面积与含时演化的具体形式无关，叫做作用量变量 𝐼。作用量是总机械能 𝐸 的函数，即
𝐼(𝐸)，可以证明2，

𝑇 = d𝐼
d𝐸 (32)

其中 𝑇 是系统运动的轨道周期。

2 这个式子在坐标-动量所构成的相空间中成立。如果是坐标-速度空间，这个式子还差一个起到质量作用的
常数。
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图 7. 谐振子、大角度单摆、径向开普勒运动在相空间的图形。曲线围住的面积与含时演化的具体
形式无关，叫做作用量变量。

图 8. 复摆的受力分析

3. 复摆 (compound pendulum) 单摆运动可以推广到一般刚体摆动。一个刚体
绕某一个固定轴垂直悬挂，并在平衡位置附近自由做小角度摆动叫做复摆 (compound
pendulum) 又叫做物理摆（相应的单摆叫做数学摆）。如图 8所示，设 𝑃 与质心 𝐶 之间的
距离为 𝑙，刚体绕 𝑃 轴转动时的转动惯量为 𝐼，则刚体偏离平衡位置角度为 𝜃 时，动力学
方程为：

𝑚𝑔𝑙 sin 𝜃 = −𝐼 ̈𝜃 (33)

在小角度极限下，sin 𝜃 ≈ 𝜃，上述方程简化为，

̈𝜃 + 𝑚𝑔𝑙
𝐼 𝜃 = 0 (34)

这是一个谐振子运动方程，角频率为 𝜔 = √𝑚𝑔𝑙/𝐼，周期为

𝑇 = 2𝜋√ 𝐼
𝑚𝑔𝑙 (35)

可以利用复摆来测量刚体的转动惯量 𝐼。注意，转动惯量正比于质量 𝑚，因此复摆的周期
实际上与刚体质量无关。定义，

𝐼𝑐 ≡ 𝑚𝑅2 (36)
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其中，𝐼𝑐 为过质心的转动惯量，𝑅 叫做刚体的回旋半径。根据平行轴定理，过 𝑃 轴的转
动惯量为，

𝐼 ≡ 𝑚(𝑙2 + 𝑅2) (37)

复摆的周期可以写成，

𝑇 = 2𝜋√ 𝑙
𝑔 + 𝑅2

𝑔𝑙 (38)

当 𝑙 = 𝑅 时复摆的周期最小，为

𝑇min = 2𝜋√2𝑅
𝑔 (39)

图 9. 稳定平衡位置附近的运动

4. 在稳定平衡位置附近的运动 根据前面讲的，在一维运动中，稳定平衡位置
附近的运动近似为简谐振动，其总能量为，

𝐸 = 1
2𝑚 ̇𝜉2 + 1

2𝑈″(𝑥0)𝜉2 + 𝑈(𝑥0) + ⋯ (40)

其中，𝜉 = 𝑥 − 𝑥0 为偏离平衡位置的位移。稳定平衡要求，𝑈″(𝑥0)。因此，简谐振动的周
期为，

𝑇 = 2𝜋√ 𝑚
𝑈″(𝑥0) (41)

§ 2. 阻尼振动 (damped oscillation)

谐振子的运动没有能力损失。在实际应用中，谐振子在运动过程中，往往由于摩擦影响
损失能量。与此同时，在生活实践中也往往需要增加阻尼来“减震”。

例子：汽车减震、摩天大厦阻尼器、闭门器、减震台⋯⋯
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图 10. 阻尼振动的应用

如果摩擦力为常数，则谐振子的运动仍然为简谐振动，只不过振幅减小。比较实际的情
况是摩擦阻尼为速度的函数，特别是在速度不是特别大时，阻尼正比于速度，

𝑓 = −𝐶𝑣 (42)

质点在弹性回复力和阻尼的作用下的运动，根据牛顿第二定律，

𝑚d2𝑥
d𝑡2 = −𝑘𝑥 − 𝐶𝑣 (43)

⇒ ̈𝑥 + 2𝛽 ̇𝑥 + 𝜔2
0𝑥 = 0 (44)

其中，𝜔0 = √𝑘/𝑚 叫做自然角频率，𝛽 = 𝐶/(2𝑚) 是一个正实数。这个微分方程的解如
下：

1. 欠阻尼 (underdamped oscillator) 当阻尼较小时 𝛽 < 𝜔0，这个方程的解为，

𝑥(𝑡) = 𝐴0𝑒−𝛽𝑡 cos(𝜔𝑡 + 𝜑) (45)

其中，𝜔 = √𝜔2
0 − 𝛽2。这个解叫做欠阻尼解。

欠阻尼解的特点是振幅随时间成指数衰减，如图 11所示。注意，欠阻尼振动的周期发
生了改变，从 𝑇0 = 2𝜋√𝑚/𝑘 改变为 𝑇 = 2𝜋√4𝑚2/(4𝑚𝑘 − 𝐶2)。

图 11. 左：欠阻尼解；右：阻尼 𝛽 越大，振幅的衰减越快

欠阻尼振子的速度为，

𝑣(𝑡) = ̇𝑥(𝑡) = −𝐴0𝑒−𝛽𝑡[𝜔 sin(𝜔𝑡 + 𝜑) + 𝛽 cos(𝜔𝑡 + 𝜑)] (46)
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因此也可以根据初始条件将欠阻尼振子解写成，

𝑥(𝑡) = 𝑒−𝛽𝑡[𝑥0 cos 𝜔𝑡 + (𝑣0 + 𝛽𝑥0)
𝜔 sin 𝜔𝑡] (47)

图 12. 欠阻尼振子的能量

如图 12所示，一般情况下欠阻尼振子的能量较为复杂。在阻尼非常小时 𝛽 ≪ 𝜔0，可以
求得欠阻尼振子的能量近似为

𝐸(𝑡) ≈ 1
2𝑚𝜔2𝐴2

0𝑒−2𝛽𝑡 = 𝐸0𝑒−𝛽𝑡 (48)

可以定义品质因子为一个周期内谐振子损失的能量在总能量中的占比乘以 2𝜋：

𝑄 = 2𝜋𝐸
Δ𝐸 ≈ 𝜔

2𝛽 (49)

图 13. 欠阻尼振子在相空间的图像

在相空间，如图所示 13，欠阻尼振子的曲线持续衰减，并不构成闭合图形。
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2. 过阻尼 (over-damped oscillator) 与临界阻尼 (critically damped oscil-
lator) 当阻尼较大时 𝛽 > 𝜔0，这个方程的解为，

𝑥(𝑡) = 𝐴+𝑒𝜆+𝑡 + 𝐴−𝑒𝜆−𝑡 (50)

其中，𝜆± = −𝛽 ± √𝛽2 − 𝜔2
0 ≤ 0。这个解叫做过阻尼解。过阻尼运动的速度为，

𝑣(𝑡) = 𝜆+𝐴+𝑒𝜆+𝑡 + 𝜆−𝐴−𝑒𝜆−𝑡 (51)

因此，如果知道初始速度与初始位置，过阻尼解也可以写成，

𝑥(𝑡) = 𝑒−𝛽𝑡[𝑥0 cosh 𝛾𝑡 + (𝑣0 + 𝛽𝑥0)
𝛾 sinh 𝛾𝑡] (52)

= 𝐴𝑒−𝛽𝑡 cosh(𝛾𝑡 + 𝜂) (53)

其中，𝛾 = √𝛽2 − 𝜔2
0, 𝜂 = arctanh[(𝑥0𝛽 + 𝑣0)/(𝛾𝑥0)]，𝐴 = 𝑥0/ cosh 𝜂 = √𝑥2

0 − (𝑣0+𝛽𝑥0
𝛾 )2

。
而过阻尼振子的速度为，

𝑣(𝑡) = 𝑒−𝛽𝑡[𝑣0 cosh 𝛾𝑡 − 𝑣0𝛽 + 𝑥0𝛾2

𝛾 sinh 𝛾𝑡] (54)

过阻尼解的特点是振幅随时间成指数衰减且不存在振荡，如图 14所示。

图 14.

对于临界阻尼的情况 𝛽 = 𝜔0，方程的解为，

𝑥(𝑡) = (𝐴 + 𝐵𝑡)𝑒−𝛽𝑡 (55)

常数 𝐴, 𝐵 可以通过初始条件定下来：

𝑥(𝑡) = [𝑥0 + (𝑣0 + 𝛽𝑥0)𝑡]𝑒−𝛽𝑡, (56)
𝑣(𝑡) = [𝑣0 − (𝑣0 + 𝛽𝑥0)𝛽𝑡]𝑒−𝛽𝑡 (57)
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临界阻尼解的振幅同样随时间衰减且不存在振荡，但是其衰减的形式不是纯粹指数的。

下图 15比较了三种不同振子 (𝛽 不同，其他参数不变) 在相同初始条件下的运动。可见，
比起过阻尼振子来说，临界阻尼振子能够更快地恢复到平衡位置。在实践中，经常使用略
微欠阻尼的振子来实现更快的恢复到平衡位置。

图 15. 不同阻尼振子的比较

图 16. 不同阻尼振子相空间轨迹的比较
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图 17. 小提琴在演奏时琴弦作受迫振动

§ 3. 受迫振动 (driven oscillator)

在有阻力时，振子的振动能量是衰减的；因此为了使阻尼振子系统保持运行需要补充
能量，也就是增加外力。这种振动运动形式叫做受迫振动；用于驱动振子运动的外力叫做
驱动力或策动力 (pandermotive force)。常数形式的策动力，如重力，在一个完整的振动周
期内的做功近似为零，因此无法直接向系统馈入能量。为了有效馈入能量，策动力也应该
是随时间改变的。为了明确起见，我们考虑一个周期性策动力，

𝐹(𝑡) = 𝐹0 cos(Ω𝑡 + 𝜙) (58)

其中，Ω 是策动力的周期。考虑受迫振子在回复力、阻尼和策动力共同作用下的运动，

𝑚 ̈𝑥 = −𝑘𝑥 − 𝐶𝑣 + 𝐹(𝑡) (59)

⇒ ̈𝑥 + 2𝛽 ̇𝑥 + 𝜔2
0𝑥 = 𝐹0

𝑚 cos(Ω𝑡 + 𝜙) (60)

为了简单起见，仅考虑欠阻尼的情况 (𝛽 < 𝜔0)。这个方程的解为，

𝑥(𝑡) = 𝐴−𝛽𝑡 cos(𝜔𝑡 + 𝜑) + 𝐹0/𝑚
√(𝜔2

0 − Ω2)2 + 4𝛽2Ω2 cos(Ω𝑡 + 𝜙 − 𝛿) (61)

其中，𝐴, 𝜑 为两个待定常数，可由初始位置和速度确定，驱动相位 𝛿 满足，

tan 𝛿 = 2𝛽Ω
𝜔2

0 − Ω2 (62)

可见振子的运动分为两部分: 一部分是带阻尼的谐振子运动，这一部分随着时间的推移逐
渐衰减为零，因此又称为暂态解。另一部分是策动力驱动的解，系统经过长时间演化以后
收敛到策动解，因此又称为稳态解。如图 18所示。
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图 18. 受迫阻尼振动

我们主要关心稳态解，其形式为：

𝑥(𝑡) = 𝐹0/𝑚
√(𝜔2

0 − Ω2)2 + 4𝛽2Ω2 cos(Ω𝑡 + 𝜙 − 𝛿) (63)

稳态解的频率与策动力频率一致，并且存在一个相位的移动 𝛿，即位移落后于力——原因
是阻尼，不是惯性！振幅与策动力的振幅 𝐹0 有关，但也跟策动频率以及谐振子的自然频
率 𝜔0 也有关。定义振幅

𝐵(Ω) = 𝐹0/𝑚
√(𝜔2

0 − Ω2)2 + 4𝛽2Ω2 , 𝐵0 = 𝐵(Ω = 0) = 𝐹0
𝑚𝜔2

0
(64)

如图 19所示，在阻尼 𝛽 较小时，稳态解的振幅 𝐵 作为策动频率的函数存在一个极大值，
出现在 Ω𝑅 = √𝜔2

0 − 2𝛽2 时，此时称策动力与振子系统发生了共振 (resonance)，该频率
叫做共振频率。此时最大振幅为，

𝐵max = 𝐵0
𝜔2

0
2𝛽√𝜔2

0 − 𝛽2 (65)

可见，如果振子阻尼趋于零，则最大振幅发散，即策动力可以不断馈入能量从而振子系统
无法达到稳态。注意，速度极大值出现在 Ω = 𝜔0。

为了刻画共振的特征，还可以引入锐度的概念。锐度定义为共振曲线的共振频率比上
共振宽度，

𝑆 = Ω𝑅
ΔΩ (66)

其中，共振宽度定义为 2𝛽，为共振曲线上振幅讲到峰值 1/
√

2 (能量降到 1/2) 时的频率范
围。不难发现，锐度恰好等于品质因子 𝑄，因此也常常直接用品质因子来刻画共振系统的
共振特征。

如图 21所示，总能量在稳态区域呈振荡趋势，平均值基本保持不变。平均动能与平均
势能不一定相等，与策动频率有关。在相空间，受迫振动在长时间以后趋于一个极限环。
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图 19. 受迫阻尼振动稳态解的振幅与频率

图 20. 受迫阻尼振动的锐度

策动力做功的平均功率为，

̄𝑃 = 1
𝑇 ∫

𝑇

0
𝐹0 cos(Ω𝑡 + 𝜙)𝑣(𝑡) (67)

= 1
2

𝐹0/𝑚
√(𝜔2

0 − Ω2)2 + 4𝛽2Ω2 Ω sin 𝛿 (68)

= 𝐹 2
0

𝑚2
𝛽Ω2

(Ω2 − 𝜔2
0)2 + 4𝛽2Ω2 (69)

一个特殊的情形是阻尼为 0 时，此时，振子系统的解为两个正弦函数的叠加。为了明确
起见，考虑一个初始时刻速度为零、停留在平衡位置的谐振子，在策动力的作用下运动。
其解为，

𝑥(𝑡) = 𝐹0
𝑚(𝜔2

0 − Ω2)(cos Ω𝑡 − cos 𝜔0𝑡) = 𝐹0
𝑚(𝜔2

0 − Ω2) sin (Ω + 𝜔0)𝑡
2 sin (Ω − 𝜔0)𝑡

2 (70)

函数图像如下，这样的现象叫做拍，拍的频率为 𝑓𝑏 = 1/𝑇𝑏 = Δ𝜔
2𝜋。当策动力频率与振子产
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图 21. 左：受迫阻尼振动的能量；右：受迫阻尼振动在相空间图像

图 22. 共振的无阻尼谐振子

生共振时，系统解为，

𝑥(𝑡) = 𝐹0
𝑚𝜔0

𝑡 sin 𝜔0𝑡 (71)

即振子的振幅线性增加，直到弹簧达到偏离线性弹性区间甚至断裂。

§ 4. 振动的叠加 (superposition)

简谐振动是一种最简单的周期运动，也是最基本的周期运动。傅立叶在研究热传导理
论的过程中提出，一般周期运动可以视为简谐振动的叠加，这种方法叫做傅立叶分析，在
现代数学物理、信息处理中有着非常核心的地位。

首先考虑两个相同频率振动的叠加。考虑一个质点同时参与两个振动，方程分别为，

𝑥1 = 𝐴1 cos(𝜔𝑡 + 𝜑1) (72)
𝑥2 = 𝐴2 cos(𝜔𝑡 + 𝜑2) (73)
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图 23. 两个相同频率振动的叠加

则，质点的总位移为：

𝑥 = 𝑥1 + 𝑥2 (74)
= 𝐴1 cos(𝜔𝑡 + 𝜑1) + 𝐴2 cos(𝜔𝑡 + 𝜑2) (75)

= 𝐴1 cos 𝜔𝑡 cos 𝜑1 − 𝐴1 sin 𝜔𝑡 sin 𝜑1 + 𝐴2 cos 𝜔𝑡 cos 𝜑2 − 𝐴2 sin 𝜔𝑡 sin 𝜑2 (76)
= (𝐴1 cos 𝜑1 + 𝐴2 cos 𝜑2) cos 𝜔𝑡 − (𝐴1 sin 𝜑1 + 𝐴2 sin 𝜑2)𝐴1 sin 𝜔𝑡 (77)

= 𝐴(cos 𝜑 cos 𝜔𝑡 − sin 𝜑 sin 𝜔𝑡) (78)
= 𝐴 cos(𝜔𝑡 + 𝜑) (79)

其中，𝐴 = √𝐴2
1 + 𝐴2

2 + 2𝐴1𝐴2 cos(𝜑1 − 𝜑2), tan 𝜑 = (𝐴1 sin 𝜑1 + 𝐴2 sin 𝜑2)/(𝐴1 cos 𝜑1 +
𝐴2 cos 𝜑2)。可见，两个频率相同的简谐振动的叠加仍然为一个简谐振动。上面的推导使用
了三角函数和差化积，也可以采用旋转矢量方法，如图 23所示，将 𝑥1, 𝑥2 视为一个旋转
矢量的投影，这样以来可以采用矢量加法计算叠加以后的振动。

考虑振幅相位相同、频率接近 (|𝜔1 − 𝜔2| ≪ 𝜔1) 的两个振动相加：

𝑥 = 𝐴(𝜔1𝑡 + 𝜑) + 𝐴(𝜔2𝑡 + 𝜑) (80)

= 2𝐴 cos (𝜔1 − 𝜔2)𝑡
2 cos ((𝜔1 + 𝜔2)𝑡

2 + 𝜑) (81)

≈ 2𝐴 cos (𝜔1 − 𝜔2)𝑡
2 cos(𝜔1𝑡 + 𝜑) (82)

得到的结果为一个振幅随时间缓慢地做周期性变化的振动，叫做拍 (beat)。如图 25所示，
拍的周期为，

𝑇 = 𝜋
|𝜔1 − 𝜔2|/2 = 2𝜋

|𝜔1 − 𝜔2| (83)

拍频为两个振动的频率之差：

𝜈 = 1
𝑇 = |𝜈1 − 𝜈2| (84)
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图 24. 左：两个相同振幅相位、不同频率振动的叠加形成的拍；右：两个不同振幅、不同频率振动
的叠加形成的拍

图 25. 左：不同频率比值与相位差的李萨如图形；右：𝜔𝑥 ∶ 𝜔𝑦 = 17 ∶ 23，𝜑 = 𝜋
2 的李萨如图形。

如果两个简谐振动频率接近 (|𝜔1 − 𝜔2| ≪ 𝜔1)、但振幅不同时，利用三角函数的加法，

𝑥 = 𝐴1 cos(𝜔1𝑡 + 𝜑) + 𝐴2 cos(𝜔2𝑡 + 𝜑) (85)
= 𝐴1 cos(𝜔1𝑡 + 𝜑) − 𝐴2 cos(𝜔1𝑡 + 𝜑) + 𝐴2 cos(𝜔2𝑡 + 𝜑) + 𝐴2 cos(𝜔1𝑡 + 𝜑) (86)

= (𝐴1 − 𝐴2) cos(𝜔1𝑡 + 𝜑) + 2𝐴2 cos (𝜔1 − 𝜔2)𝑡
2 cos ((𝜔1 + 𝜔2)𝑡

2 + 𝜑) (87)

≈ cos(𝜔1𝑡 + 𝜑)[𝐴1 − 𝐴2 + 2𝐴2 cos (𝜔1 − 𝜔2)𝑡
2 ] (88)

如图 25所示，得到的结果仍然为一个拍 (beat)，只不过拍的最小振幅不为零。

根据运动独立性原理，互相垂直的振动也可以叠加，得到的结果在 𝑋 − 𝑌 平面看是一
组形状复杂的曲线，叫做李萨如图形 (Lissajous figure)

𝑥 = 𝐴 cos(𝜔𝑥𝑡 + 𝜑𝑥) (89)
𝑦 = 𝐴 cos(𝜔𝑦𝑡 + 𝜑𝑦) (90)

所得到的曲线的形状与振动的频率比值 𝜔𝑥 ∶ 𝜔𝑦、相对相位 𝜑 ≡ 𝜑𝑦 − 𝜑𝑥 都相关。如果
𝜔𝑥 ∶ 𝜔𝑦 = 1 ∶ 1，曲线的形状为椭圆（包含圆和直线）。如果频率之比为有理数，得到的曲
线为封闭曲线。如果频率比值不是有理数，则得到的曲线不封闭会填满整个二维平面，如
图所示。利用李萨如图形的这些特点，可以在示波器上精确比较不同频率的信号。
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§ 5. 多质点耦合体系

上一节我们通过研究一维势能曲线，揭示了简谐振动的普遍性。那么，这一结论是否可
以推广到相互作用的多个质点体系呢？𝑁 质点体系的总能量为，

𝐸 = ∑
𝑖

1
2𝑚𝑖𝑣2

𝑖 + 𝑈(𝑟1, 𝑟2, ⋯ , 𝑟𝑁) (91)

将势能在平衡位置做泰勒展开，

𝑈 = 𝑈(0) + ∑
𝑖

����*
0

𝑈 ′
𝑖 (0)𝜉𝑖 + ∑

𝑖,𝑗

1
2𝑈″

𝑖𝑗(0)𝜉𝑖𝜉𝑗 + ⋯ (92)

这里，𝜉𝑖 = 𝑟𝑖 − 𝑟𝑖0 为偏离平衡位置的位移。对应的力为，

𝐹𝑖 = −𝑈 ′
𝑖 = −1

2 ∑
𝑗

𝑈″
𝑖𝑗(0)𝜉𝑖 (93)

这是 𝑁 个线性回复力之和，因此我们仅需要考虑 𝑁 个弹簧耦合的质点的运动。换句话
说，对于在平衡态附近做微小振动的 𝑁 质点体系，其运动可以近似视为线性回复力。这
一图像也解释了为什么弹性体会广泛存在。进一步地，在这一节，我们将看到对于弹簧耦
合的 𝑁 质点体系，其运动可以视为 𝑁 个独立的简谐振动的叠加

首先考虑一个 𝑁 质点体系，其中所有质点质量相等为 𝑚。任意两个质点 𝑖 与
𝑗 之间的相互作用力为，

⃗𝐹𝑖𝑗 = −𝑘( ⃗𝑟𝑖 − ⃗𝑟𝑗) (94)

对应的总能量为，

𝐸 = ∑
𝑖

1
2𝑚𝑣2

𝑖 + ∑
𝑖,𝑗(𝑖<𝑗)

1
2𝑘( ⃗𝑟𝑖 − ⃗𝑟𝑗)2 (95)

= ∑
𝑖

1
2𝑚𝑣2

𝑖 + 1
2 ∑

𝑖,𝑗

1
2𝑘(𝑟2

𝑖 + 𝑟2
𝑗 + 2 ⃗𝑟𝑖 ⋅ ⃗𝑟𝑗) (96)

= ∑
𝑖

(1
2𝑚𝑣2

𝑖 + 𝑁
2 𝑘𝑟2

𝑖 ) + 𝑁
2 𝑘𝑟2

cm (97)

这是 𝑁 个独立运动的谐振子的总能量，谐振子频率为 𝜔2 = 𝑁𝑘/𝑚。
也可以从力的角度，

𝑚 ⃗𝑎𝑖 = − ∑
𝑗

𝑘( ⃗𝑟𝑖 − ⃗𝑟𝑗) = −𝑁𝑘( ⃗𝑟𝑖 − ⃗𝑟cm) (98)
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图 26. 耦合弹簧质点系统

根据质心定理， ⃗𝑟cm 保持静止。取质心为原点，上述方程可以写成，

𝑚 ⃗𝑎𝑖 = −𝑁𝑘 ⃗𝑟𝑖 (99)

因此，每个质点以 𝜔2 = 𝑁𝑘/𝑚 的频率做简谐振动。
在这个例子中，其他质点对第 𝑖 个质点的作用类似于一个平均场的作用。最终
所有质点做独立简谐振动。这里的模型叫做壳层模型 (shell model)，是原子核
的基本模型。对于质点之间的弹性系数不同的情形，这里的方法不再适用，我
们需要寻找新的解耦系统的方法。

我们首先以如图 26所示两个质点组成的弹簧-质点体系为例来讨论弹簧耦合体系的运
动。注意这个例子与上面例子的区别。如图设 𝑥1,2 为两个质点偏离平衡位置的位移，体系
总能量为，

𝐸 = 1
2𝑚 ̇𝑥2

1 + 1
2𝑚 ̇𝑥2

2 + 1
2𝑘𝑥2

1 + 1
2𝑘(𝑥1 − 𝑥2)2 + 1

2𝑘𝑥2
2 (100)

对应的动力学方程为，

𝑚 ̈𝑥1 = −𝑘𝑥1 − 𝑘(𝑥1 − 𝑥2) = 𝑘(𝑥2 − 2𝑥1) (101)
𝑚 ̈𝑥2 = −𝑘𝑥2 + 𝑘(𝑥1 − 𝑥2) = 𝑘(𝑥1 − 2𝑥2) (102)

这一组耦合的方程比较难直接求解。但是注意到，如果我们引入新的变量

𝑦1 = 𝑥1 + 𝑥2 (103)
𝑦2 = 𝑥1 − 𝑥2 (104)

即将上面两式相加、相减可以得到两个解耦合的谐振子方程，

𝑚 ̈𝑦1 = −𝑘𝑦1, (105)
𝑚 ̈𝑦2 = −2𝑘𝑦2 (106)

这两个坐标的物理意义是明确的，它们分别描述了两个振子中心和两个振子之间的相对距
离之间的运动。其解为 (𝜔2 = 𝑘/𝑚)，

𝑦1 = 2𝐴1 cos(𝜔𝑡 + 𝜑1), (107)
𝑦2 = 2𝐴2 cos(

√
3𝜔𝑡 + 𝜑2) (108)
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图 27. 耦合弹簧质点系统的两组解

原始质点的运动可以通过线性组合得到，

𝑥1 = 𝐴1 cos(𝜔𝑡 + 𝜑1) + 𝐴2 cos(
√

3𝜔𝑡 + 𝜑2) (109)
𝑥2 = 𝐴1 cos(𝜔𝑡 + 𝜑1) − 𝐴2 cos(

√
3𝜔𝑡 + 𝜑2) (110)

当 𝐴1 ≠ 0, 𝐴2 = 0 时，体系的两个质点都以相同的频率做简谐振动，且相位相同；当
𝐴1 = 0, 𝐴2 ≠ 0 时，体系的两个质点都以相同的频率做简谐振动，且相位相反。一般情况
下，体系的两个质点的振动比较复杂 (非简谐振动)，即振动的合成。

从这个例子可以看到，对于耦合振子体系，可以通过对坐标进行线性组合，寻找到
合适的坐标，使得体系解耦为若干个独立的谐振子运动，这样的一组坐标叫做简正坐标
(normal coordinates)，相应的振动模式叫做简正模 (normal modes)。体系在某一简正模下，
所有的坐标以相同的频率振动，即相位同步 (in phase)。对于一般的弹簧耦合的 𝑁 质点体
系，可以利用线性代数的方法证明，可以找到 𝑁 组简正坐标，使得体系解耦为 𝑁 个独立
的简谐振子的运动，即存在 𝑁 组简正模。对于任意一个简正模式的振动，所有质点的相
位同步，即以相同的频率振动。这里的概念还可以推广到连续介质。在连续介质中，简正
模叫做简谐波。简正模的概念在现代物理中扮演着重要的角色。根据这一概念，体系的物
理自由度未必是描述体系所引入的基本坐标。通过自由度的变换，可将复杂的动力学问题
分解为简单的问题——这正是现代量子场论的基础。

【例子】考虑如图一个 𝐴2𝐵 型三原子分子的模型，求其简正频率。
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图 28. 三原子分子的振动

解：牛顿第二定律，

⎧{{
⎨{{⎩

𝑚𝐴 ̈𝑥1 = −𝑘(𝑥1 − 𝑥2)
𝑚𝐵 ̈𝑥2 = −𝑘(𝑥2 − 𝑥1) − 𝑘(𝑥2 − 𝑥3)
𝑚𝐴 ̈𝑥3 = −𝑘(𝑥3 − 𝑥2)

(111)

已知存在三组简正模。可以直接考虑简正模形式的解 𝑥𝑖 = 𝐴𝑖 cos 𝜔𝑡，并代入
上式得到

⎧{{
⎨{{⎩

−𝜔2𝑚𝐴𝐴1 cos 𝜔𝑡 = −𝑘(𝐴1 cos 𝜔𝑡 − 𝐴2 cos 𝜔𝑡)
−𝜔2𝑚𝐵𝐴2 cos 𝜔𝑡 = −𝑘(𝐴2 cos 𝜔𝑡 − 𝐴1 cos 𝜔𝑡) − 𝑘(𝐴2 cos 𝜔𝑡 − 𝐴3 cos 𝜔𝑡)
−𝜔2𝑚𝐴𝐴3 cos 𝜔𝑡 = −𝑘(𝐴3 cos 𝜔𝑡 − 𝐴2 cos 𝜔𝑡)

(112)
整理可以得到：

⎧{{
⎨{{⎩

(𝑘 − 𝜔2𝑚𝐴)𝐴1 − 𝑘𝐴2 = 0,
−𝑘𝐴2 + (2𝑘 − 𝜔2𝑚𝐵)𝐴2 − 𝑘𝐴3 = 0
−𝑘𝐴2 + (𝑘 − 𝜔2𝑚𝐴𝐴3) = 0

(113)

𝐴1 = 𝐴2 = 𝐴3 = 0 是这个方程的一个解，表示不发生振动。我们关心有振动
的情况，即非零解的情形，也就是 𝐴1,2,3 不完全为零的情形。

• 如果 𝐴2 = 0, 上面的方程可以化简为：(𝑘 − 𝜔2𝑚𝐴)𝐴1 = 0, 𝐴1 = 𝐴3。这
个方程存在非零解的条件是：𝜔2 = 𝑘/𝑚。

• 如果 𝐴2 ≠ 0，根据第一个方程，𝐴1 = 𝑘/(𝑘 − 𝜔2𝑚𝐴) 𝐴2，根据第三个方
程，𝐴3 = 𝑘/(𝑘 − 𝜔2𝑚𝐴) 𝐴2。将这两个条件代入第二个方程可以得到，

− 2𝑘2

(𝑘 − 𝜔2𝑚𝐴)𝐴2 + (2𝑘 − 𝜔2𝑚𝐵)𝐴2 = 0 (114)

这个方程具有非零振幅解的条件是，

𝜔2(2𝑘𝑚𝐴 + 𝑘𝑚𝐵 − 𝜔2𝑚𝐴𝑚𝐵) = 0 (115)
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图 29. 简正模式二

图 30. 简正模式三

因此，我们一共得到了三个解（简正模）：

• 𝜔 = 0：表示无振动，分子整体静止或者平动；
• 𝜔 = √ 𝑘

𝑚𝐴
：表示 B 原子不动，A 原子运动，如图 29所示；

• 𝜔 = √𝑘(2𝑚𝐴+𝑚𝐵)
𝑚𝐴𝑚𝐵

：表示 A、B 原子同时运动，如图 30所示；

二氧化碳分子是个典型的 𝐴2𝐵 型三原子分子。其非平凡简正模可以通过红外
光谱学测量得到。如图 31所示，可以看到若干个明显的吸收峰，表明相应的简
正模振动模式。简正模式三的吸收峰可以明显的看到，并且代入分子数据以后
可以发现与吸收峰的位置接近。简正模式二的吸收峰在红外光谱上并不可见。
这是因为该振动模式是非极性的，因此无法通过红外光谱学得到。此外红外谱
上还有一个共振峰，代表的是二氧化碳分子垂直于分子链方向的振动。

【例子】求无限长 1 维弹簧-质点链的简正频率与简正模，设弹簧弹性系数为 𝜅，

图 31. 二氧化碳分子的红外光谱
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图 32. 1 维弹簧-质点链

质点平衡位置之间的距离为 𝑎，质点质量为 𝑚。
解：动力学方程，

𝑚 ̈𝜉𝑖 = 𝜅(𝜉𝑖+1 − 2𝜉𝑖 + 𝜉𝑖−1) (116)

考虑简正模 𝜉𝑖 = 𝐴𝑖 cos 𝜔𝑡,

−𝜔2𝑚𝐴𝑖 = 𝜅(𝐴𝑖+1 − 2𝐴𝑖 + 𝐴𝑖−1) (117)

⇒ 𝐴𝑖+1 + (𝜔2

𝜔2
0

− 2)𝐴𝑖 + 𝐴𝑖−1 = 0 (118)

这里，𝜔0 = 𝜅/𝑚。在连续极限下弹簧质点链成为 1 维弹性体，其上传播简谐
波形如 cos(𝜔𝑡 − 𝑘𝑥)，这里 𝑘 为波数。因此我们可以猜测简正模的形式为

𝜉𝑛(𝑡) = 𝐴 cos(𝜔𝑡 ± 𝑛𝑎𝑘) = 𝐴 cos 𝑛𝑎𝑘 cos 𝜔𝑡 ∓ 𝐴 sin 𝑛𝑎𝑘 sin 𝜔𝑡 (119)

换句话说，有两组简正模，其振幅分别满足，

𝐴𝑖 = 𝐴 cos 𝑖𝑘𝑎, 𝐴′
𝑖 = 𝐴′ sin 𝑖𝑘𝑎 (120)

其中，𝐴, 𝐴′ 是常数，𝑘 是某个待定实数。两组解实际上是同一组解，因为它
们只差一个共同的起始相位。带入原差分方程可以得到，

cos [𝑘(𝑖 + 1)𝑎] + (𝜔2

𝜔2
0

− 2) cos(𝑘𝑖𝑎) + cos [𝑘(𝑖 − 1)𝑎] = 0 (121)

通过三角函数化简以后可以得到：

2 cos 𝑘𝑎 + (𝜔2

𝜔2
0

− 2) = 0 (122)

⇒ 𝜔2 = 2𝜔2
0(1 − cos 𝑘𝑎) (123)

⇒ 𝜔 = 2𝜔0 sin 𝑘𝑎
2 (124)

这个方程叫做色散关系，如图 33所示。换句话说，只要满足这个关系（叫做色散
关系）的所有的 𝑘都给出一组简正模。其中，简正频率需要满足 0 ≤ 𝜔 ≤

√
2𝜔0。

图 34展示了若干组 1 维弹簧-质点链的简正模振动模式。可以看到，在连续极



24

图 33. 1 维弹簧-质点链的色散关系

图 34. 1 维弹簧-质点链的若干个简正模

限 𝑘𝑎 ≪ 1 下的简正模正是 1 维弹性体的简谐波。

上面我们找到了一组解，但没有证明这是全部的解。对于 𝑁 个质点来说，一
共有 𝑁 个简正模。如果有 𝑁 个质点，不难验证上面构造的简正模一共是 𝑁
个，𝑘𝑛 = 𝑛𝜋/𝑁𝑎, (𝑛 = 1, 2, 3, ⋯ , 𝑁)。在连续极限下 𝑎 → 0 或者 𝑘𝑎 ≪ 1 时，
𝜔 = 𝜔0𝑘𝑎 = 𝑐𝑘，这正是简谐波的色散关系。因此简谐波正是连续极限下的简
正模。

§ 6. 波动 (wave)

波动现象在物理学中广泛存在，例如：水波、弹性波、声波、电磁波 (光)、物质波
（图 35）。当空间某处发生扰动，并以一定的速度向其他地方传播时便形成波。因此波是能
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图 35. 波动现象在自然界中广泛存在

图 36. 波的特点

量和动量传递的一种方式，不同形式的波起因和传播机制不同，但物理规律上具有共同之
处，例如波具有干涉、衍射等效应。

以机械波为例，如图 36所示，波的特点如下：每个质点在平衡位置附近做振动，时间
周期性 𝑇 = 2𝜋

𝜔 = 1
𝜈 ——由波源决定。波一般还具有空间周期性，其中空间重复的最小长

度叫做波长 (wavelength) 𝜆。波上质点的振动状态叫做相位 (phase)，相位传播的速度叫做
相速度 (phase velocity)，𝑣 = 𝜈𝜆。等相位的面叫做波阵面，其中最前面的波阵面叫做波前
(wavefront)。波传播的方向叫做波线。

1. 机械波 (mechanical wave) 机械波是机械振动在介质中的传播。例如：弹性
波、声波、弦波。机械波形成的条件是：存在扰动 (disturbance)，即波源和介质 (medium)：
即可以发生形变的物质（弹性体、流体⋯⋯）。图 37展示了几种常见的机械波，以及其对
应的波动方程。
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图 37. 几种常见的机械波

图 38. 行波

可见，机械波满足波动方程：
̈𝜉 + 𝑐2𝜉″

𝑥 = 0 (125)

其中，𝜉(𝑥, 𝑡) 为介质中质点的位移，𝑐 为一个常数，由介质性质决定，后面可以看到，𝑐 是
波的相位传播的速度，即相速度。不难证明，下面的一组解是上述波动方程的一组解，

𝜉(𝑥, 𝑡) = 𝑓(𝑥 ± 𝑐𝑡) (126)

其中，𝑓(𝑥) 为任意二阶可导的函数，正负号分别表示沿反向和正向传播的波。这组解叫做
行波解又叫做达朗贝尔解。行波解相位传播的速度为 𝑐。图 38展示了一个行波解。

2. 简谐波 简谐波是一类特殊形式的行波解，它满足

𝜉(𝑥, 𝑡) = 𝐴 cos(𝜔𝑡 ± 𝑘𝑥) (127)

其中，𝑘 叫做波数。在多质点耦合体系一节我们看到，简谐波是体系的简正模，因此具有
重要的意义。在简谐波模式下，体系所有的质点的振动相位同步，即以相同的频率振动。

简谐波的波列上任意一个质点都做简谐振动，频率 𝜔 由波源决定。任意一个瞬间，简
谐波的波列具有空间周期性，𝜆 = 2𝜋/𝑘。波数 𝑘 与角频率 𝜔 的关系叫做色散关系，对于
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图 39. 简谐波

简谐波来说 𝜔 = 𝑐𝑘，因此 𝑐 = 𝜔/𝑘 = 𝜆/𝑇 为波的相速度。简谐波的色散关系由介质性质
决定。任意行波可以视为简谐波的线性叠加。

简谐波的能量与能流：以一维质点-弹簧链为例 (𝑐 = 𝑎√𝜅𝑚, 𝜔 = 𝑐𝑘)，每个质点的动能
和势能为，

𝑇 = 1
2𝑚 ̇𝜉2

𝑖 = 1
2𝑚𝜔2𝐴2 sin2(𝜔𝑡 − 𝑘𝑥) (128)

𝑈 = 1
2𝜅(𝜉𝑖 − 𝜉𝑖−1)2 = 1

2𝑚𝜔2𝐴2 sin2(𝜔𝑡 − 𝑘𝑥) (129)

因此总能量为，
𝐸 = 𝑇 + 𝑈 = 𝑚𝜔2𝐴2 sin2(𝜔𝑡 − 𝑘𝑥) (130)

注意势能与动能相等且同相位——与简谐振动不同。而且总能量是不守恒的，说明波可以
传递能量，其能量的来源是波源。

定义能量密度为单位体积的波的能量：

𝑤 = Δ𝐸
Δ𝑉 = 𝜌𝜔2𝐴2 sin2(𝜔𝑡 − 𝑘𝑥) (131)

其中，𝜌 为弹性体体密度。平均能量密度为，

𝑤̄ = 1
𝑇 ∫

𝑇

0
𝑤(𝑡)d𝑡 = 1

2𝜌𝜔2𝐴2 (132)

定义能流密度为单位时间内通过垂直于波线的单位面积的能量：

𝐼 = 𝑤𝑐 = 𝜌𝑐𝜔2𝐴2 sin2(𝜔𝑡 − 𝑘𝑥) (133)

这里 𝑐 是简谐波的波速。平均能流能流密度又叫做波的强度可以证明为：

̄𝐼 = 1
𝑇 ∫

𝑇

0
𝐼(𝑡)d𝑡 = 1

2𝜌𝑐𝜔2𝐴2 = 𝑐𝑤̄ (134)
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图 40. 行波的叠加

在声学中用对数表示声音（声波）的强度，叫做声强级，单位为贝尔 (Bel)

𝐼𝐿 = log(𝐼/𝐼0) (135)

其中，𝐼0 为参考声强为 (临界听觉)𝐼0 = 1.0 × 10−12 W ⋅ m−2。更常用的单位是分贝 (dB)，
即 10 dB = 1 Bel。声强是对数坐标，因此，增加 10db，声音的强度增加 10 倍。图 ??列
出了不同声强的场景。除此之外，平均声压为 ̄𝑃 = 𝜌𝑐𝜔𝐴。

3. 波的叠加 考虑两列波同时在介质中行进并相遇，如果介质的扰动为线性的，则
两列波相遇以后的振幅为两列波振幅的线性叠加。

考虑两列简谐波的叠加，设其振幅相同频率接近 |𝜔1 − 𝜔2| ≪ 𝜔1，

𝜉(𝑥, 𝑡) = 𝐴 cos(𝜔1𝑡 − 𝑘1𝑥) + 𝐴 cos(𝜔2𝑡 − 𝑘2𝑥) (136)

= 2𝐴 cos [(𝜔1 + 𝜔2)𝑡
2 − (𝑘1 + 𝑘2)𝑥

2 ] (137)

≈ 2𝐴 cos(𝜔1𝑡 − 𝑘1𝑥) cos(1
2Δ𝜔𝑡 − 1

2Δ𝑘𝑥) (138)

得到的结果为振幅受到调制的波（图 41），叫做波包。波包传播的速度为

𝑣𝑔 = Δ𝜔
Δ𝑘 = d𝜔

d𝑘 (139)

频率单一的波叫做单色波，真正的单色波必须是无穷长的。实际的波都是有限长的，可
以视为不同单色波的叠加，即波包。波包传播速度叫做群速度 𝑣𝑔 = d𝜔/d𝑘。群速度与相
速度在没有色散的情况 𝜔 = 𝑐𝑘 下两者相同，在有色散时 𝜔 = 𝜔(𝑘) 两者未必相同。波的相
速度代表波的相位传播的速度，而波的群速度代表信号和能量传播的速度。
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图 41. 简谐波的叠加

图 42. 方波可以通过简谐波的叠加而成

4. 驻波 (standing wave) 前面主要讨论了波动方程： ̈𝜉 + 𝑐2𝜉″
𝑥 = 0 的行波解

𝜉(𝑥, 𝑡) = 𝑓(𝑥 ± 𝑐𝑡),特别是简谐波解，并未考虑边界问题。在很多实际应用中，边界条件对
于解的形式也有较大影响，这尤其在乐器中有比较重要的应用，例如琴弦的振动（图 43）。
行波解允许各种频率的波通过，而乐器则有不同的频率。

首先考虑一端固定的弦上的正弦函数波的传播。设固定点位置为 𝑥 = 𝐿, 因此边界条件
要求

𝜉(𝐿, 𝑡) = 0 (140)

简谐波本身无法满足这个边界条件，但是如果将正反方向行进的简谐波进行组合，得到可
以得到满足边界条件的解，

𝜉(𝑥, 𝑡) = 𝐴 cos [𝜔𝑡 − 𝑘(𝑥 − 𝐿)] − cos [𝜔𝑡 + 𝑘(𝑥 − 𝐿)] (141)
= 2𝐴 sin 𝜔𝑡 sin [𝑘(𝑥 − 𝐿)] (142)

得到的解在半个周期内的运动如图所示，可见弦的振动不再传播，这样的波叫做驻波。

图 43. 驻波的应用
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图 44. 单边固定边界条件下的驻波

图 45. 两边固定边界条件下的驻波

驻波可以视为沿正反方向传播的两列简谐波的叠加。驻波上的质点的最大振幅由质点
位置决定。其中最大振幅为 0 的点叫做波节 (node)，最大振幅为驻波的极大值的点叫做波
腹 (antinode)。墙 (边界) 的位置为波节。相邻波节或波腹的距离为半个波长，因此波节的
位置为，

sin 𝑘(𝑥 − 𝐿) = 0 ⇒ 𝑥 = 𝐿 − 𝑛𝜆
2 (143)

这里，𝑛 = 0, ±1, ±2, ⋯。类似地，波腹的位置为，𝑥 = 𝐿 − (𝑛 + 1
2)𝜆

2。

现在考虑波的两端的边界条件。令两个端坐标分别为 𝑥 = 0, 𝐿。如果弦的两端都是固定
的，如琴弦，则两端都是波节，即

0 = 𝐿 − 𝑛𝜆
2 ⇒ 𝐿 = 𝑛𝜆

2 , 𝑛 = ±1, ±2, ⋯ (144)

换句话说，只有特定波长的驻波才能在弦上传播，这些振动模式叫做本征模又叫做简正
模。其中频率最低 (𝑛 = 1) 的驻波 𝐿 = 𝜆/2, 在声学里这一模式叫做基频。弦的实际振动
可能是不同简正模的叠加，不过一般而言，频率越低越容易被激发。

如果弦的一端都是自由的，则该处应为波腹，即

0 = 𝐿 − (𝑛 + 1
2)𝜆

2 ⇒ 𝐿 = (𝑛 + 1
2)𝜆

2 , 𝑛 = 0, ±1, ±2, ⋯ (145)

其中频率最低 (𝑛 = 0) 的驻波满足 𝐿 = 𝜆/4。如果弦的两端都是自由的，则两端皆为波腹。

【例子】一只试管高 𝐻 = 10 cm，对着管口吹气试管会发出声音。求发声的最
低频率。

求解：空气振动，在试管中形成驻波。管底为固定端，因此为波节。管口为开
放端，因此为波腹。因此，最低频率对应的波长满足，𝜆 = 4𝐻 = 40 cm。
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图 46. 一端固定一端自由边界条件下的驻波

图 47.

频率：𝜈 = 𝑐𝑠/𝜆，其中 𝑐𝑠 = 330 m/s 为声速。可以得到 𝜈 = 825 Hz。

驻波的概念还可以推广到高维空间以及其他波动现象。不同的波满足不同的波动方程
和边界条件，但都有驻波现象。例如，在一个长宽高分别为 𝐿𝑥, 𝐿𝑦, 𝐿𝑧 的立方体导体中的
电磁波形成的驻波，允许的模式是：

𝜆𝑥 = 2𝐿𝑥
𝑛𝑥

, 𝜆𝑦 = 2𝐿𝑦
𝑛𝑦

, 𝜆𝑧 = 2𝐿𝑧
𝑛𝑧

, (146)

其中，𝑛𝑥, 𝑛𝑦, 𝑛𝑧 = ±1, ±2, ⋯。在量子力学中，束缚在外力势场中的物质波（德布罗意波）
的波函数同样形成驻波，其对应的模式也是分离的，也就是量子化的。实际上，在量子理
论中，物质就是基本粒子在各种复杂相互作用下的本征模。因此驻波这一想法在现代物理
中有着深刻的应用。

§ 7. 波在三维空间的传播

上面讨论的情形都是 1 维的。这些概念也可以直接推广到 3 维。例如波动方程推广到
三维，只需要将空间导数改为，

𝜉″
𝑥 → 𝜉″

𝑥 + 𝜉″
𝑦 + 𝜉″

𝑧 ≡ ∇2𝜉 (147)
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图 48. 驻波的例子。左：微波炉中的电磁波形成的驻波；中：鼓面形成的驻波；右：束缚在谐振子
势 𝑈(𝑥) = 1

2𝑘𝑥2 中的电子德布罗意波驻波，𝜔 = √𝑘/𝑚。

图 49.

从而，波动方程变成，
̈𝜉 + 𝑐2∇2𝜉 = 0 (148)

类似地，3 维简谐波为，
𝜉( ⃗𝑥, 𝑡) = 𝐴 cos(𝜔𝑡 ± 𝑘⃗ ⋅ ⃗𝑥) (149)

能量密度与能流密度等概念与 1 维类似。波在 3 维空间的传播时，还需要考虑波阵面的形
状。常见的波阵面的形状有：平面波、球面波、柱面波。由能量守恒，球面波的能流密度
按照距离平方反比衰减。

1. 惠更斯原理 当存在边界时，波的传播比较复杂。常见的边界包括：障碍物、小
孔、介质的交界面。原则上可以通过求解波动方程得到，这一步骤一般来说比较复杂。在
物理光学中，人们发展了一些近似理论，例如基尔霍夫定理、菲涅尔定理等等来处理有边
界情况下的波的传播。历史上，在波动理论建立很早之前，惠更斯提出了惠更斯原理来定
性描述波的传播。惠更斯原理可以解释波传播过程中的一些常见现象：衍射、干涉、反射、
折射。

惠更斯原理：在波的传播过程中，波前的每一个点均可以视为一个子波源，波
下一时刻的传播由所有子波源所发出的球面波叠加而成。
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图 50. 上：惠更斯原理示意图；下：惠更斯原理可以解释反射定律与折射定律

图 51. 惠更斯原理可以解释波的衍射

衍射是指波遇到障碍物时偏离原来直线传播的物理现象。用惠更斯原理同样可以解释
波的衍射。如图 51所示，波在遇到衍射孔以后，在孔面各点都会形成次级波源。孔面边缘
附近的波面是球面波，这可以解释波偏离直线传播、绕过障碍物的现象。同时，孔径越小，
球面波占的比例越大，衍射现象越明显

根据惠更斯原理，波通过狭缝时可以视为点源。空间某一点的振幅为两个点源发出的
波的叠加：

𝜉( ⃗𝑟, 𝑡) = 𝐴1
𝑟13 cos(𝜔𝑡 − 𝑘⃗ ⋅ ⃗𝑟13) + 𝐴2

𝑟23
cos(𝜔𝑡 − 𝑘⃗ ⋅ ⃗𝑟23) (150)

= 𝐴 cos(𝜔𝑡 + 𝜑) (151)
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图 52. 惠更斯原理可以解释波的干涉

其中，

𝐴 = √ 𝐴2
1

𝑟2
13

+ 𝐴2
2

𝑟2
23

+ 2𝐴1𝐴2
𝑟13𝑟23

cos [𝑘(𝑟13 − 𝑟23)] (152)

波的强度 𝐼 ∝ 𝐴2，因此在远处屏幕上会观察到干涉花样。考虑双缝干涉的情形（图 52），
𝐴1 = 𝐴2, 𝑑 ≪ 𝐿, 𝑦 ≪ 𝐿，因此屏幕上干涉极大峰满足 𝑘Δ𝑟 = 2𝜋𝑛。考虑到 Δ𝑟/𝑑 ≈ 𝑦/𝐿，
观测到的干涉条纹的间距为 Δ𝑦 = (𝐿/𝑑)𝜆。

§ 8. 多普勒效应（Doppler effect）

当观察者与波源做相对运动时，所观测到的波的频率会发生改变，这个效应首先是由
奥地利科学家多普勒注意到并研究的，称为多普勒效应。一个很显著的现象是当汽车从轰
鸣而过的过程中，能够明显感受到汽车声调由高到低的变化。

设波速为 𝑐，波长为 𝜆，波的周期为波传播一个波长的时间：𝑇 = 𝜆/𝑐，波的频率为单
位时间内接收到的波长的数目：𝑁 = 𝜈Δ𝑡 = Δ𝑡/𝑇 = 𝑐Δ𝑡/𝜆。

图 53. 多普勒效应。左：波源不动，观察者运动；中：波源运动，观察者不动；右：波源与观察者
同时运动。

首先考虑波源不动 𝑢 = 0、观察者运动的情况：设观察者相对于波源运动，速度为 𝑣。
那么 Δ𝑡 时间内观察者接收到的波长的数目为

𝑁 = (𝑐 + 𝑣)Δ𝑡
𝜆 = 𝜈′Δ𝑡 (153)
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图 54. 多普勒效应的应用

考虑到 𝜈 = 𝑐/𝜆，可以得出，
𝜈′ = 𝜈(1 + 𝑣

𝑐 ) (154)

可见，当观察者相对于波源运动时，观测到的波的频率会增加; 反过来，当观察者远离波
源运动时，观测到的波的频率会降低。

观察者不动 𝑣 = 0、波源运动的情况：设波源运动速度为 𝑢，此时由于波源的运动，其
发出的波的波长变短为，

𝜆′ = 𝜆 − 𝑢𝑇 (155)

考虑到 𝜈 = 𝑐/𝜆, 𝑇 = 1/𝜈，可以得到，

𝜈′ = 𝑐
𝜆 − 𝑢/𝜈 = 𝜈

1 − 𝑢
𝑐

(156)

可见，当波源相对于观察者运动时，观测到的波的频率会增加；反过来，当波源远离观察
者时，观测到的波的频率会降低。

观察者与波源都运动时：观测到的波的频率为两个效应的叠加：

𝜈′ = 𝑐 + 𝑣
𝑐 − 𝑢𝜈 (157)

如果运动速度不在波源与观察者的连线上，则只需要考虑连线方向的速度分量。注意如果
波源与观察者的相对速度是变化的，则还需要考虑波传播的延迟效应。波源与观察者速度
的不对称性是由于波本身是相对于介质运动的。

在生活实践中多普勒效应具有广泛的应用。例如，多普勒超声（彩超）利用多普勒效应
测血液流动速度；超声测速仪利用多普勒效应检测车辆速度。在天体物理、宇宙学，多普
勒效应可以用来测量天体的移动速度。在宇宙学中更是藉此建立了宇宙演化的基本定律哈
勃定律。在等离子体物理中，可以利用多普勒效应诊断等离子体的问题。其原理是，高温
气体中的分子做高速运动，方向杂乱无章，其发射的谱会由于多普勒效应发生移动展宽，
通过测量展宽可以确定温度。在气象、军事、辅助驾驶和自动驾驶中，动目标显示雷达和
脉冲多普勒雷达利用多普勒效应，从强背景杂波中提取运动目标的信号。

当波源的速度大于波速时，上面的公式不再适用。当波源速度达到波速时，波阵面在介
质中堆积，形成激波 (shockwave)，又叫冲击波。当波源速度进一步增加时，质点的激波的
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图 55. 马赫锥

图 56. 激波现象

波阵面呈圆锥形，且以运动的物体为圆锥的顶点，叫做马赫锥。马赫锥的顶角 sin 𝜑 = 𝑐/𝑢，
其中 Ma = 𝑢/𝑐 叫做马赫数。在电磁学中，这一现象产生的波叫做切连科夫辐射可以用来
测量粒子速度。
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