
第七章：弹性力学

§ 1. 弹性体模型

在刚体模型中，我们忽略了物体的形变。但自然界不存在绝对的刚体，物体在外力的作
用下会发生形变，并且有些情况下，这些形变还有重要的应用。例子：弹簧、鼓、水、空
气、足球、泥巴、沙子。在这一节，我们首先讨论物体在外力作用下发生形变，但形变比
较小的情况。

图 1. 物体的形变

如果物体在外力下发生小的形变，当撤去外力时，物体将恢复其原有大小和形状。这种
性质叫做弹性。但自然界不存在完全的弹性体，一般物体既有弹性又有塑性：即撤去外力
后不能完全恢复其大小和形状。但是通常的固体材料在外力不超过某个限度时，可以近似
看出完全弹性体。物体发生弹性形变时抵抗外力作用所产生的反作用力叫做应力，又叫做
弹性力。弹性体的形变叫做应变。

典型弹性体的应变-应力曲线如图 2所示。在应变较小时，产生的应力与应变呈线性关
系；在应变继续增大时，产生的应力与应变将偏离线性关系，但此时弹性体仍然处在弹性
区间，即外力撤除时，弹性体仍能恢复其大小和形状。应变继续增大，弹性体将进入塑性
区间，并最终发生断裂。可见，当物体外力不是特别大时，应变与应力呈线性关系，称此
时物体的行为为线性弹性（线弹），线性弹性满足叠加原理。本章主要关注线性弹性体。

图 2. （左）典型的应变-应力曲线。（右）不同材料的应变-应力曲线。
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1. 弹簧质点模型 考虑一个弹性体的简单模型：将弹性体视为很多质点的集合，
相邻质点之间由轻弹簧相连，这样的模型叫做弹簧-质点模型（spring-mass model），如
图 3所示。

图 3. 线性弹性体的弹簧-质点模型

设弹簧之间的弹性系数为 𝑘，每个质点质量为 𝑚，质点之间的距离为 𝑎。这三个量是微
观量，我们需要将其与宏观的可以观测的量联系起来。例如，通过物质密度 𝜌，𝑎 与 𝑚 满
足，

𝜌 = 𝑚
𝑎3 (1)

在线性弹性区域，弹簧满足胡克定律，即弹簧的弹性力与其长度变化成正比：

𝐹 = −𝑘Δ𝑥 (2)

弹簧-质点模型需要考虑多个弹簧组合的情况。其中，

• 弹簧串联：𝐹1 = 𝐹2 = 𝐹 , Δ𝑥 = Δ𝑥1 + Δ𝑥2，因此串联弹簧的等效弹簧弹性系数，

𝑘−1 = −Δ𝑥/𝐹 = −(Δ𝑥1 + Δ𝑥2)/𝐹 = 𝑘−1
1 + 𝑘−1

2 (3)

𝑛 个弹簧串联：𝑘𝑛 = 𝑘/𝑛。

• 弹簧并联：Δ𝑥1 = Δ𝑥2 = Δ𝑥, 𝐹 = 𝐹1 + 𝐹2，因此并联弹簧的等效弹簧弹性系数，

𝑘 = − 𝐹
Δ𝑥 = 𝑘1 + 𝑘2 (4)

2. 线应变 (linear strain) 在此基础上考虑线性应变。考虑一根弹性杆，长宽高
分别为 𝑙, 𝑤, ℎ，在其两端施加拉力 𝐹，现在计算杆的伸长。将弹性杆视为弹簧质点模型，
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图 4. 线性应变。

根据胡克定律，杆的长度变化正比于拉力，Δ𝑙 ∝ 𝐹，

𝐹 = 𝑘effΔ𝑙 (5)

这里的有效弹簧系数为可以通过弹簧串并联得到，

𝑘eff = 𝑘𝑎
𝑙

ℎ𝑤
𝑎2 (6)

可见，杆的伸长与杆的原长 𝑙 有关, Δ𝑙 ∝ 𝑙。同样地，类比于弹簧并联的例子杆的伸长也
与杆的横截面积 𝑆 = ℎ𝑤 有关，Δ𝑙 ∝ 𝑆−1。因此，

𝐹 = 𝑘𝑎
𝑙

𝑆
𝑎2 Δ𝑙 ⇒ 𝐹 = 𝑌 𝑆Δ𝑙

𝑙 (7)

其中，比例系数 𝑌 叫做杨氏模量 (Young’s modulum)，单位为帕斯卡 (Pasca)，简称帕
(Pa)。它仅与材料性质有关，与材料形状无关。在弹簧质点模型中，

𝑌 = 𝑘
𝑎 (8)

定义应力为单位面积的力 𝜎 = 𝐹
𝑆 , 定义应变为单位长度的伸长 𝜀 = Δ𝑙/𝑙，胡克定律可以写

成，
𝜎 = 𝑌 𝜖 (9)

当物体在一个方向拉伸时，在与此垂直的方向上将会收缩，

Δ𝑤
𝑤 = Δℎ

ℎ = −𝜈 Δ𝑙
𝑙 (10)

比例系数 𝜈 叫做泊松比，是表征物体性质的另一个参数。

线性弹性体满足的一个重要特征是：

叠加原理：不同外力的合外力产生的作用等于各个外力单独作用时产生的作
用之和。
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图 5. 叠加原理

图 6. 体应变

3. 体应变 (bulk strain) 考虑一个立方体在三对面都存在应力 𝑝 时应变，如图所
示 6。定义体应变 (bulk strain)：

Θ = Δ𝑉
𝑉 , (11)

以及体积模量 𝐾,
𝑝 = 𝐾Θ (12)

下面计算 𝐾。根据叠加原理，可以单独考虑每一对应力存在时的应变。当单独存在 𝑝1
时，

Δ𝑥1
𝑥1

= 𝑝1
𝑌 , (13)

Δ𝑥2
𝑥2

= −𝜈 Δ𝑥1
𝑥1

= −𝜈 𝑝1
𝑌 , (14)

Δ𝑥3
𝑥3

= −𝜈 Δ𝑥1
𝑥1

= −𝜈 𝑝1
𝑌 (15)
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当单独存在 𝑝2 时，

Δ𝑥2
𝑥2

= 𝑝2
𝑌 , (16)

Δ𝑥1
𝑥1

= −𝜈 Δ𝑥2
𝑥2

= −𝜈 𝑝2
𝑌 , (17)

Δ𝑥3
𝑥3

= −𝜈 Δ𝑥2
𝑥2

= −𝜈 𝑝2
𝑌 (18)

当单独存在 𝑝3 时，

Δ𝑥3
𝑥3

= 𝑝3
𝑌 , (19)

Δ𝑥1
𝑥1

= −𝜈 Δ𝑥3
𝑥3

= −𝜈 𝑝3
𝑌 , (20)

Δ𝑥2
𝑥2

= −𝜈 Δ𝑥3
𝑥3

= −𝜈 𝑝3
𝑌 (21)

因此，当所有应力都存在时，物体的形变为，

Δ𝑥
𝑥 = ∑

𝑖

Δ𝑥𝑖
𝑥𝑖

= 𝑝1
𝑌 − 𝜈 𝑝2

𝑌 − 𝜈 𝑝3
𝑌 , (22)

Δ𝑦
𝑦 = ∑

𝑖

Δ𝑦𝑖
𝑦𝑖

= 𝑝2
𝑌 − 𝜈 𝑝1

𝑌 − 𝜈 𝑝3
𝑌 , (23)

Δ𝑧
𝑧 = ∑

𝑖

Δ𝑧𝑖
𝑧𝑖

= 𝑝3
𝑌 − 𝜈 𝑝1

𝑌 − 𝜈 𝑝2
𝑌 (24)

现考虑应变，即体积的变化，

Δ𝑉
𝑉 = (𝑥 + Δ𝑥)(𝑦 + Δ𝑦)(𝑧 + Δ𝑧) − 𝑥𝑦𝑧

𝑥𝑦𝑧 (25)

≈ Δ𝑥
𝑥 + Δ𝑦

𝑦 + Δ𝑧
𝑧 (26)

= 1 − 2𝜈
𝑌 (𝑝1 + 𝑝2 + 𝑝3) (27)

= 31 − 2𝜈
𝑌 𝑝 (28)

因此，体积模量与杨氏模量之间的关系为，

𝐾 = 𝑌
3(1 − 2𝜈) (29)

一般材料受压力时，体积会减小，因此 𝐾 ≥ 0。对应的泊松比满足，𝜈 ≤ 1/2。
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图 7. 剪切应变

图 8. 剪切应变与线性应变的关系

4. 剪切应变 (shear strain) 弹性体在剪切力的作用也会发生形变，如图 7所示，
剪切应变定义为，

𝜃 = 2Δ𝑙
𝑙 (30)

剪切应力定义为单位面积的剪切力 𝜏 = 𝐹/𝑆。线性弹性体的剪切应变正比于剪切应力，

𝜏 = 𝐺𝜃 (31)

其中，𝐺 叫做剪切模量。

为了计算该剪切力可以将这个立方体嵌入到同样材料的大立方体中，如图 8所示。如果
对与大立方体一个面提供压力另一个面提供拉力，则大立方体余下的部分对于原立方体的
力等于原先的剪切力，

√
2Δ𝑙√
2𝑙

= 1
𝑌

√
2𝐹√
2𝑆

+ 𝜈 1
𝑌

√
2𝐹√
2𝑆

(32)

⇒ Δ𝑙
𝑙 = 1 + 𝜈

𝑌
𝐹
𝑆 (33)

⇒ 𝐺 = 𝑌
2(1 + 𝜈) (34)

可见，泊松比 𝜈 必须大于 −1 否则可以通过剪切变形的物体获得能量。

【例子】考虑圆棒在扭转作用下的力矩。设圆棒长度为 𝐿, 端面半径为 𝑅，若圆
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图 9. 均匀圆棒在力矩作用下的扭变

棒外力矩 𝑀 的作用下发生小角度扭曲。求圆棒的扭曲角 𝜑。

解：扭力的本质是剪切力，如图所示 9，在外力矩的作用下圆棒不同部分发生
不同程度的剪切应变，其中中心轴的形变为 0。可以将圆棒视为一系列同轴圆
柱形薄壳的叠加，每一根柱形薄壳贡献力矩 Δ𝑀 = 𝑟Δ𝐹。在这一个力的作用
下，薄壳上的小立方体发生剪切形变，

𝜃 = 𝜑𝑟/𝐿 (35)

对应的应力为，𝜏 = Δ𝐹/Δ𝑆 = 𝐺𝜃, 其中 Δ𝑆 = Δ𝑟Δ𝑙。因此薄壳上的力矩为，

Δ𝑀 = 𝑟 ∑ Δ𝐹 (36)

= 𝑟 ∑ Δ𝐹
Δ𝑙Δ𝑟Δ𝑟Δ𝑙 (37)

= 𝑟 ∑ 𝐺𝜃Δ𝑟Δ𝑙 (38)

= 𝑟𝐺𝜃Δ𝑟2𝜋𝑟 (39)

= 2𝜋𝑟2 𝐺𝜑𝑟
𝐿 Δ𝑟 (40)

因此总力矩为，

𝑀 = ∑
𝑟

Δ𝑀 (41)

= 𝐺𝜑
𝐿 ∫ 2𝜋𝑟3d𝑟 (42)

= 𝐺𝜋𝑅4

2𝐿 𝜑 (43)

⇒ 𝜑 = 2𝐿
𝐺𝑅4 𝑀 (44)

即，对于圆柱形棒来说，转矩与半径的 4 次方成正比。因此为了测量非常微小
的力，卡文迪什采用了非常细的金属扭丝。扭丝目前也是精密测量的主要工具
之一。
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图 10. 纵波的弹簧-质点链模型

§ 2. 弹性波 (elastic wave)

1. 纵波 考虑一个一维弹簧-质点链，如图 10所示。第 𝑖 个质点的运动根据牛顿第
二定律为，

𝑚 ̈𝜉𝑖 = −𝑘(𝜉𝑖 − 𝜉𝑖−1) + 𝑘(𝜉𝑖+1 − 𝜉𝑖) (45)

其中，𝜉𝑖 为第 𝑖 个质点偏离平衡位置的位移。 ̈𝜉𝑖 = 𝑎𝑖 为该质点的加速度。在质点非常稠
密时，可以用质点的平衡位置 𝑥 来标记质点，上述方程变成，

𝑚 ̈𝜉(𝑥, 𝑡) = −𝑘[𝜉(𝑥, 𝑡) − 𝜉(𝑥 − 𝑎, 𝑡)] + 𝑘[𝜉(𝑥 + 𝑎, 𝑡) − 𝜉(𝑥, 𝑡)] (46)

当 𝑎 ≪ 𝑥 时，可以取连续统极限，
𝑚
𝑎 𝜉″

𝑡 (𝑥, 𝑡) = 𝑎𝑘𝜉″
𝑥(𝑥, 𝑡) (47)

这里，𝜉″
𝑡 = ̈𝜉 是关于时间的二阶导数，𝜉″

𝑥 为关于坐标的二阶导数。需要将微观量 𝑎, 𝑘, 𝑚
与宏观可观测量 𝑌 , 𝜈, 𝜌 联系起来。注意，这里的弹簧链是 1 维的，根据杨氏模量的定义，

𝐹 = −𝑆𝑌 Δ𝑙
𝑙 (48)

另一方面，一维弹簧-质点链为 𝑁 = 𝑙/𝑎 个弹簧串联，因此，

𝐹 = − 𝑘
𝑁 Δ𝑙 = −𝑘𝑎

𝑙 Δ𝑙 (49)

比较两式可以得到，𝑘 = 𝑆𝑌 /𝑎。同时，系统密度为，𝜌 = 𝑚/𝑎𝑆。因此，弹性体中的质点
满足的方程为，

𝜌𝜉″
𝑡 (𝑥, 𝑡) = 𝑌 𝜉″

𝑥(𝑥, 𝑡) (50)

这个方程描述了在弹性材料由于内部质点偏离平衡位置所引起的运动。这样形式的方程叫
做波动方程，其中波的速度为，

𝑣𝑃 = √𝑌
𝜌 (51)
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图 11. 弹性体中的纵波

图 12. 横波的弹簧-质点链模型

由于质点运动方向与波的传播方向一致，因此这种波叫做纵波 (P-wave)，又叫做胀缩波
(compressional wave)。固体中的声波 (acoustic wave) 就是这种波的的一种表现。

2. 横波 除了纵波之外，弹性体内部还可以传播横波 (S-wave)，又叫做剪切波 (shear
wave)。如图 12所示，1 维弹簧链中，质点可以垂直于链的方向运动。根据牛顿第二定律，
第 � 个质点的垂直位移，

𝑚 ̈𝜉𝑖 = −𝐺𝑆 𝜉𝑖 − 𝜉𝑖+1
𝑎 − 𝐺𝑆 𝜉𝑖 − 𝜉𝑖−1

𝑎 (52)

其中剪切力提供恢复力 𝐹 = −𝐺𝑆𝜃，𝜃𝑖 = 𝜉𝑖−𝜉𝑖+1
𝑎 。其中剪切力提供了恢复力。取连续统极

限，
𝜌𝜉″

𝑡 (𝑥, 𝑡) = 𝐺𝜉″
𝑥(𝑥, 𝑡) (53)

其中，𝜌 是体密度。这个波动方程所对应的波速为，

𝑣𝑆 = √𝐺
𝜌 (54)

对比弹性体中的两种波：

图 13. 弹性体中的纵波与横波
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图 14. B 超的发展趋势

• 纵波 (P-波)：胀缩波，密度变化，波速 𝑣𝑃 = √𝑌
𝜌

• 横波 (S-波)：剪切波，密度不变，波速 𝑣𝑆 = √𝐺
𝜌

由于一般固体剪切模量比压缩模量小的多，P-波比 S-波要快很多。刚体可以视为 𝑌 → ∞,
𝐺 → ∞ 的弹性体。

3. 弹性波的应用 应用：地震波、超声扫描（B-超）、超声无损探伤等等

超声扫描的原理：声波穿透弹性体内部，遇到界面会发生反射。在医学中 B 型（B 超）
和多普勒超声（彩超）是当代医学诊断不可或缺的工具。新一代超声发展的方向是提供高
清的阵列式多角度扫描，并力求提供一段时间内的变化，从而为医学诊断提供可靠的影像
基础。
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