
第八章：流体力学

上一章我们讨论了弹性体模型。弹性体模型在刚体模型的基础上，允许物体有小的形
变。但自然界中的很多物质很容易发生大的形变。

图 1. 物质发生大的形变

例子：水、空气、泥巴、牙膏、沙子

为了描述这些物质的力学，有必要引入新的模型。其中最重要的模型是流体模型 (fluid
model)。流体与弹性体的主要区别在于不能维持剪切力，如果对流体施加一个切向力，它
将会沿着力的方向流动。即使是固体，在超过断裂极限以后也会发生大的形变；反过来，
有些流体，如沥青，在剪切力的作用下的流动非常缓慢，常常被视为固体。一般而言，物
质在不同温度和压强下可能呈现为不同的物质状态，叫做物相，如图 2，不同的相具有不
同的性质。现代物理用对称性和序来区分不同的相，尤其是固体相和流体相。

流体的密度在流体形变过程中可能会发生变化，据此可以将流体分为两类：

• 不可压缩流体：密度在运动过程中变化不大——液体

• 可压缩流体：密度在运动过程中可以改变——气体

图 2. 物质的相结构
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§ 1. 流体静力学 (hydrostatics)

我们首先讨论流体静力学。由于流体不能维持剪切，因此静止状态的流体不可能存在
任何的剪切力，否则流体将会流动（图 3）。换句话说，处于静止状态下的流体的应力总是
垂直于流体内任何一个面，叫做压强。

𝑝 = lim
Δ𝑆→0

Δ𝐹
Δ𝑆 (1)

流体的另外一个特点是，其静压强是各向同性的。

图 3. 处于静力平衡状态的流体

考虑在重力的作用下，液体的压强。如图 4取液体中如图薄圆片，由于静力学平衡，

Δ𝑝𝑆 = 𝜌𝑆Δℎ𝑔 + 𝑜(Δℎ) (2)
⇒ d𝑝 = 𝜌dℎ𝑔 (3)

⇒ 𝑝 − 𝑝0 = 𝑚𝑔ℎ (4)

其中，ℎ 是距离自然水平面的垂直距离，𝑝0 为液面处的压强，即大气压强。𝜌 是液体密度。

图 4. 重力作用下的液体压强

浸入液体中的物体会受到流体压强的作用，这个现象叫做浮力 (buoyancy)。液体的浮
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力满足阿基米德原理 (Archimedes principle)，

𝐹 = 𝜌𝑔𝑉 (5)

其中，𝜌 是液体密度，𝑉 是物体浸入的液体的体积，即物体排开液体的体积。

为了证明阿基米德原理，如图 5所示，可以将物体视为不同薄圆柱片组成，圆柱片两端
的压力差为，

𝐹 = ∑
𝑖

Δ𝐹𝑖 = ∑
𝑖

Δ𝑝𝑆𝑖 = 𝜌𝑔Δℎ𝑆𝑖 + 𝑜(Δℎ) (6)

⇒ 𝐹 = ∫ 𝜌𝑔d𝑉 = 𝜌𝑔𝑉 (7)

图 5. 浮力：阿基米德原理

如果将重力替换成一般的力 ⃗𝐹，如图 6所示，考虑 𝑥𝑖 方向 (𝑥1 = 𝑥, 𝑥2 = 𝑦, 𝑥3 = 𝑧) 流
体元的静力平衡，

Δ𝑝Δ𝑆𝑖 = Δ𝐹𝑖 + 𝑜(Δ𝑉 ) (8)

⇒ Δ𝑝
Δ𝑥𝑖

= Δ𝐹𝑖
Δ𝑆𝑖Δ𝑥𝑖

+ 𝑜(Δ𝑥𝑖) (9)

这里，Δ𝐹𝑖 是流体元受到的力。很显然，Δ𝐹𝑖 需要是正比于流体体积的微元（高阶小量），
这可以解释我们的记号。引入单位体积的力，

𝑓𝑖 = d𝐹𝑖
d𝑉 (10)

则流体静力平衡条件为，

𝑝′
𝑖 = d𝐹𝑖

d𝑉 (11)

其中 𝑖 = 1, 2, 3，𝑝′
𝑖 表示对 𝑥𝑖 求导数。1

1 在数学上，可以定义一个矢量，

∇𝑓(𝑥, 𝑦, 𝑧) =
3

∑
𝑖=1

𝑓′
𝑖(𝑥, 𝑦, 𝑧) ⃗𝑒𝑖 (12)
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图 6. 一般力作用下的流体静力平衡

对于保守力的情况，引入势能。令 𝑢 为单位体积的力 ⃗𝑓 所对应的势能，即,

𝑢( ⃗𝑟) − 𝑢( ⃗𝑟0) = − ∫
⃗𝑟

⃗𝑟0

⃗𝑓 ⋅ d ⃗𝑟 (13)

其中， ⃗𝑓 = d ⃗𝐹
d𝑉 为单位体积的力，如果知道单位体积的势能，可以求导得到单位体积的力

𝑓𝑖 = −𝑢′
𝑖。因此，流体的静力平衡方程 (11) 也可以写成，2

𝑝′
𝑖 + 𝑢′

𝑖 = 0 (14)

根据流体的静力平衡方程 (11)，势能与压强的条件还可以写成，

𝑢( ⃗𝑟) − 𝑢( ⃗𝑟0) = − ∫
⃗𝑟

⃗𝑟0

(𝑝′
𝑥d𝑥 + 𝑝′

𝑦d𝑦 + 𝑝′
𝑧d𝑧) = −𝑝( ⃗𝑟) + 𝑝( ⃗𝑟0) (15)

⇒ 𝑝 + 𝑢 = const (16)

在物理上更常用的是单位质量的物质所受到的力

⃗𝜏 = d ⃗𝐹
d𝑚, (17)

如重力、电磁力的情形。将其对应的势能记为 𝜑，即

𝜑( ⃗𝑟) − 𝜑( ⃗𝑟0) = − ∫
⃗𝑟

⃗𝑟0

⃗𝜏 ⋅ d ⃗𝑟 (18)

𝜏𝑖 = −𝜑′
𝑖 (19)

它与单位体积势能 𝑢 的关系为，
𝑢′

𝑖 = 𝜌𝜑′
𝑖 (20)

叫做函数 𝑓 的梯度 (矢量)，这里 𝑓′
𝑖 表示对 𝑥𝑖 求导数。同时为了区分不同方向的导数，将导数的莱布尼

茨微商形式改写成 𝑓′
𝑖 = 𝜕𝑓

𝜕𝑥𝑖
叫做偏微分。利用这个记号，流体静力平衡条件可以写成，d ⃗𝐹

d𝑉 = ∇𝑝。同样
地，利用梯度，保守力 ⃗𝐹 可以通过其势能函数 𝑈 得到： ⃗𝐹 = −∇𝑈。

2 利用梯度记号，势能与力的关系为， ⃗𝑓 = −∇𝑢 同样地，静力平衡方程可以写成，∇𝑝 + ∇𝑢 = 0。
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其中，𝜌 是流体的密度。如果流体密度不随空间改变而改变，则 𝑢 = 𝜌𝜑，流体的静力平衡
方程 (11) 可以写成，

𝑝 + 𝜌𝜑 = const (21)

根据流体的性质可以知道，压力一定垂直于液面，因此液体表面一定是一个等势面，也是
一个等压面。

【例子】证明旋转液面是一个抛物面

求解：在液体静止参考系，液体元受到两个力的作用，重力 Δ𝑚𝑔 ⃗𝑒𝑧 和惯性离
心力 Δ𝜔2 ⃗𝑟⟂（ ⃗𝑟⟂ = 𝑥 ⃗𝑒𝑥 + 𝑦 ⃗𝑒𝑦）。其对应的单位质量的力的势能分别为，

𝜑𝐺 = 𝑔𝑧, 𝜑𝐶 = −1
2𝜔2𝑟2

⟂ (22)

根据静力平衡，

𝑝 + 𝑔𝑧 − 1
2𝜔2𝑟2

⟂ = const. (23)

根据流体的性质可以知道，压力一定垂直于液面，即液体表面一定是一个等压
面，因此，旋转的液体表面形状为一个抛物面，

𝑧 = 𝜔2

2𝑔 𝑟2
⟂ − 𝑝0

𝑔 (24)

【例子】已知月球对地球表面潮汐力的表达式，

⃗𝐹tidal = −𝐺𝑀Δ𝑚
𝑅3 ( ⃗𝑟 − 3 ⃗𝑧) (25)

其中，𝑅 为地球和月球之间的距离 (𝑟 ≪ 𝑅)。𝑧 方向取地球和月球连线的方向。
求地球上海洋的形状。

求解：单位质量的潮汐力加引力为，

⃗𝑓 =
⃗𝐹tidal

Δ𝑚 = −𝐺𝑀
𝑅3 ( ⃗𝑟 − 3 ⃗𝑧) (26)

它所对应的势能 𝜑 满足，

𝜑′
𝑥 = 𝐺𝑀

𝑅3 𝑥 − 𝐺𝑀
𝑟3 𝑥, (27)

𝜑′
𝑦 = 𝐺𝑀

𝑅3 𝑦 − 𝐺𝑀
𝑟3 𝑦, (28)

𝜑′
𝑧 = −2𝐺𝑀

𝑅3 𝑧 − 𝐺𝑀
𝑟3 𝑧 (29)
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因此，

𝜑(𝑥, 𝑦, 𝑧) = 𝐺𝑀
2𝑅3 (𝑥2 + 𝑦2 − 2𝑧2) − 𝐺𝑀

𝑟 (30)

液面为等势面，即 𝜑(𝑥, 𝑦, 𝑧) = 𝑐。常数 𝑐 由其他边界条件（如海水的体积）决
定。对于不同的压强画出的曲线如下图所示。当压强小到一定程度，等压面开
始与外界连通。这表示地球表面的海水可以在潮汐力作用下脱离地球。

图 7. 洛希瓣

【例子】绝大多数恒星都是由流体构成的。考虑一个恒星质量为 𝑀，密度为 𝜌，
已知恒星的角动量为 𝐿，角速度为 Ω，不考虑其他天体的影响，分析恒星的形
状。

图 8. 旋转恒星的形状
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§ 2. 流体动力学 (fluid dynamics)

流体动力学研究流体流动时的动力学规律。尽管看起来流体更加复杂，实际上流体的
运动完全由守恒律确定，即：

• 物质守恒

• 动量守恒

• 能量守恒

这些守恒律揭示了流体模型的普适性，能够解释为什么流体模型从凝聚态物理到高能物理
再到工程物理具有广泛的应用。

描述流体运动的第一步是描述流体的速度。主要有两种方法，

• 拉格朗日方法 (Lagrangian)：将流体分割成许多无穷小的微元，然后追踪并研究它
们各自的运动规律;

• 欧拉方法 (Eulerian)：研究经过每个空间点 ⃗𝑥的流速 ⃗𝑣，寻求其随时间和空间的改变;

由于流体元的一般运动比较复杂，欧拉方法不需要追踪每一个流体元轨迹，因此数学形式
上较为简单，它也是流体、电磁学等的常用表述。拉格朗日方法能够追踪流体元的运动，
因此对于处理可变液体边界问题、各向异性材料比较方便。欧拉方法和拉格朗日方法的主
要区别在于用于描述物理量的坐标系不同：欧拉方法采用固定的坐标系；拉格朗日方法采
用随着物质点移动的坐标系（随体坐标系）。基于此，人们还开发了任意欧拉-朗格朗日
（AEL），结合两者的优缺点，采用独立演化的坐标系，在数值计算中比较有用。

图 9. 欧拉方法和拉格朗日方法

在欧拉方法中，每一时刻空间每一个点都存在一个流体速度，构成一个流速场，简称流
场。可以用一系列曲线来表示流场比较方便，其中曲线的切线方向是流速的方向。由于流
速场的速度是唯一的，流线不能交叉。相邻的一束流线形成一个管道叫做流管。由于流线
不能交叉，因此流体不会穿越流管壁。
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图 10. 流场、流线、流管

1. 定常流动 (steady flow) 定常流动是一种简单且常见的流动方式。所谓定常流
动，是指流场各处的流速 ⃗𝑣 不随时间变化的情形 ⃗𝑣 = ⃗𝑣( ⃗𝑥)。注意，流体做定常流动时，流
速仍然可能随着空间改变，即不同地点的流速可以不同。而另一方面，如果追踪一个流体
元的运动，其速度仍然会发生改变，因此定常流动时流体元仍然具有加速度。在定常流动
中，流线和流管是静止不动的，流体在流管中运动，如图 10所示。

连续性原理：考虑定常流动下的一段流管。设其两端的垂直截面积分别为 𝑆1, 𝑆2。流体
从 𝑆1 进入流管，从 𝑆2 穿出流管。如果流体没有损失，则单位时间内穿过 𝑆1, 𝑆2 的流体
质量不变：

𝜌1𝑣1𝑆1 = 𝜌2𝑣2𝑆2 (31)

即，沿着任意流管
𝜌𝑣𝑆 = const (32)

图 11. 连续性原理

图 12. 伯努利方程的推导

2. 伯努利方程 (Bernoulli equation) 考虑一段流管中的流体做定常流动。经
过 Δ𝑡 时间流体从 𝐴 + 𝐶 段运动到 𝐶 + 𝐵 段，根据动能定理，外力所做的功等于动能的
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改变：
Δ𝑇 = 𝑊 (33)

由于流体做定常流动，𝐶 段的流体分布不变因此差别在于 𝐴, 𝐵 两段，从而动能的改变为，

Δ𝑇 = 𝑇2 − 𝑇1 = 1
2𝜌2Δ𝑉2𝑣2

2 − 1
2𝜌1Δ𝑉1𝑣2

1 (34)

类似地，外力做功来自两部分：重力做功以及两端流体的压力 𝐹𝑖 = 𝑝𝑖𝑆𝑖 做功，

𝑊 = 𝑝1𝑆1Δ𝑙1 − 𝑝2𝑆2Δ𝑙2 − Δ𝑚𝑔(𝑧2 − 𝑧1) (35)
= 𝑝1Δ𝑉1 + 𝜌1Δ𝑉1𝑔𝑧1 − 𝑝2Δ𝑉2 − 𝜌2Δ𝑉2𝑔𝑧2 (36)

根据动能定理，

(1
2𝜌1𝑣2

1 + 𝜌1𝑔𝑧1 + 𝑝1)Δ𝑉1 = (1
2𝜌2𝑣2

2 + 𝜌2𝑔𝑧2 + 𝑝2)Δ𝑉2 (37)

再根据连续性方程，𝜌1Δ𝑉1 = 𝜌2Δ𝑉2 可以得到，

1
2𝑣2

1 + 𝑔𝑧1 + 𝑝1
𝜌1

= 1
2𝑣2

2 + 𝑔𝑧2 + 𝑝2
𝜌2

(38)

换句话说，在任意一个流管中，

1
2𝑣2 + 𝑔𝑧 + 𝑝

𝜌 = const. (39)

这个方程叫做伯努利方程。推导伯努利方程的过程中，我们忽略了流体内部摩擦所损耗的
能量，这样的流体叫做理想流体。如果流体密度不变，上面的方程还可以写成，

1
2𝜌𝑣2 + 𝜌𝑔𝑧 + 𝑝 = const. (40)

【例子】文丘里管 (Venturi tube) 是一种测量液体流量的装置。如图所示，当流
体流经较窄的管道 2 时，由于流量守恒速度会增大，

𝑣1𝐴1 = 𝑣2𝐴2 = 𝑄 (41)

根据伯努利原理，流体会在横管产生压力差，

𝑝1
𝜌 + 1

2𝑣2
1 = 𝑝2

𝜌 + 1
2𝑣2

2 (42)

而根据竖管的静压力平衡可以得到：

𝑝1 = 𝑝0 + 𝜌𝑔ℎ1, 𝑝2 = 𝑝0 + 𝜌𝑔ℎ2 (43)
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因此通过检测该压力差 ℎ ≡ ℎ1 − ℎ2 来确定流量：

𝑄 = √2𝑔ℎ 𝐴1𝐴2
√𝐴2

1 − 𝐴2
2

(44)

图 13. 文丘里管测量液体流量

文丘里管和科里奥利流量计是两种基于不同原理的流量计：

• 文丘里管：基于压力差，
– 优点：结构简单，机构牢固，性能稳定可靠
– 缺点：测量精度普遍偏低，测量范围窄

• 科里奥利流量计：基于科里奥利力
– 优点：测量精度高，重复性好，测量范围大，可以直接测量质量流量
– 缺点：重量和体积较大、噪声大、对外界振动比较敏感

【例子】托里拆利定理 (Torricelli’s law): 一个顶部开口的水箱中，水面的高度
为 ℎ，底部有一个小孔，求小孔中出水的速度。

图 14. 托里拆利定理

解：假设水箱足够大，小孔流出水时水位几乎没有影响。水箱的出水仍视为定
常流动。

取如图一个流管，伯努利方程为，

𝑝0 + 𝜌𝑔ℎ = 𝑝0 + 1
2𝜌𝑣2 (45)

⇒ 𝑣 = √2𝑔ℎ (46)
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【例子】一个喷泉由一根位于地下 5m 处的直径为 15cm 的水平管道供水。这
根管道在喷泉的位置弯曲向上，直径缩小为 5cm，最终在地面处水喷出形成喷
泉。现要求喷泉的高度为 4m。假定水在水管中做定常流动，不考虑水的粘滞
效应，喷泉出口处的压强取大气压 𝑝0 = 1.01 × 105 Pa。问需要在水平管道中
施加多大压强 𝑃 才能达到设计要求？

图 15. 喷泉

解：根据伯努利方程，

𝑃 + 1
2𝜌𝑣2 + 𝜌𝑔ℎ = 𝑝0 + 1

2𝜌𝑣2
0 + 𝜌𝑔ℎ0 (47)

等号左边是水平管道处的压强、速度等量，等号右边是喷泉出水口处的压强、
速度等。根据喷泉设计高度，出水口处的速度应该为

𝑣0 = √2𝑔ℎ = 8.8 m/s (48)

水平管道处的速度可以通过连续性方程求得：

𝜋𝑟2
0𝑣0 = 𝜋𝑟2𝑣2 ⇒ 𝑣 = 0.98 m/s (49)

将数据代入伯努利方程可以得到，

𝑃 = 189 kPa (50)

【例子】其他应用：

3. 粘滞流体 (viscous fluid) 上一节我们讨论了流体模型，但是忽略了流体内部
的摩擦，即所谓的理想流体。但是很多时候实际流体的内部摩擦不可忽略，流体的这些内
部摩擦效应叫做粘滞效应。粘滞流体的例子：

水、蜂蜜、机油、沥青⋯⋯
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图 16. 伯努利方程的其他应用

粘滞流体不仅仅是为了更精确地描述实际流体，它得到的很多定性结论与理想流体也是完
全不同的。例如，根据流体理论，理想流体无法对在其中匀速运动的固体施加任何力——
飞机无法在空中飞行、轮船无法在海中行驶！

粘滞 (viscosity) 的定义: 考虑一个 2 维的流体。假设我们对液体垂直于 𝑦 方向的表面
施加一个 𝑥方向的剪切力 𝐹，在这个力的作用下表面的流体将会流动，速度为 𝑣𝑥。由于层
与层之间存在摩擦，其他层的流体在摩擦力的作用下也会开始流动，最终不同层的流体会
维持一个速度差 Δ𝑣𝑥，层间距越大，速度差也越大。速度差还与单位面积的剪切力有关，

𝐹𝑥
𝐴𝑦

= 𝜂 lim
Δ𝑦→0

Δ𝑣𝑥
Δ𝑦 = 𝜂d𝑣𝑥

d𝑦 (51)

比例系数 𝜂 叫做粘滞系数 (coefficient of viscosity)。

图 17. 流体的粘滞

【例子】考虑如图测量液体粘滞系数的方法。装置包含半径分布为 𝑎, 𝑏 的两个
同轴桶其中 𝑏 > 𝑎。内桶悬挂在扭丝下，外桶以角速度 𝜔 旋转，两桶之间充满
待测液体，液体高度为 𝑙。在系统处于稳定状态时，通过扭丝测得内桶受到到
液体的力矩为 𝑀。求液体粘滞系数 𝜂。

4. 哈根-泊肃叶定律 (Hagen-Poiseuille’s law) 根据伯努利原理，理想流体不
需要压力即可流过均匀的水平管道。但是由于流体的粘滞效应，流体在管道中流动时会收
到管壁的粘滞力的拖拽（图 19），因此需要提供一定压力差。泊肃叶定理描述了充分长的
圆形管道中不可压缩流体的流量与管道两端压力差之间的关系，

𝑄 = 𝜋𝑅4

8𝜂
Δ𝑝
Δ𝑙 (52)
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图 18. 流体粘滞的测量

图 19. 水平圆管中的流速分布

其中，𝜂 为流体粘滞系数，𝑅 为管道半径，𝑙 为管道长度，Δ𝑝/Δ𝑙 为管道两端压强差梯度。
哈根-泊肃叶定律是法国物理学家泊肃叶与德国水利工程师哈根通过实验独立发现的。

泊肃叶定律的推导

考虑如图 20半径为 𝑟 处的流体，其受到外层流体的粘滞力为，

𝐹 = 𝜂2𝜋𝑟Δ𝑙𝑣′
𝑟 (53)

其中，𝑣′
𝑟 = d𝑣𝑟

d𝑟 。因此，对于 𝑟 处、厚度为 d𝑟 的流体元，内外两层流体的粘滞
力差为，

d𝐹 = 𝐹(𝑟 + d𝑟) − 𝐹(𝑟) = 𝜂2𝜋Δ𝑙(𝑟𝑣′
𝑟)′

𝑟d𝑟 = 𝜂2𝜋Δ𝑙(𝑟𝑣″
𝑟 + 𝑣′

𝑟)d𝑟 (54)

这一剩余的粘滞力需要两端的压强差 Δ𝑝 来平衡，其所对应的外力为，

d𝐹 = Δ𝑝2𝜋𝑟d𝑟 (55)
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联立两式可以得到，

𝜂2𝜋Δ𝑙(𝑟𝑣′
𝑟)′

𝑟d𝑟 = Δ𝑝2𝜋𝑟d𝑟 (56)

⇒ ∫ 𝜂2𝜋Δ𝑙(𝑟𝑣′
𝑟)′

𝑟d𝑟 = ∫ Δ𝑝2𝜋𝑟d𝑟 (57)

⇒ 𝜂2𝜋Δ𝑙𝑟𝑣′
𝑟∣𝑟0 = Δ𝑝2𝜋1

2𝑟2∣𝑟0 = Δ𝑝𝜋𝑟2 (58)

⇒ 2𝜂Δ𝑙𝑣′
𝑟 = Δ𝑝𝑟 (59)

⇒ 2𝜂Δ𝑙 ∫
𝑅

𝑟
𝑣′

𝑟d𝑟 = Δ𝑝 ∫
𝑅

𝑟
𝑟d𝑟 (60)

⇒ 2𝜂Δ𝑙[𝑣(𝑅) − 𝑣(𝑟)] = Δ𝑝1
2(𝑅2 − 𝑟2) (61)

最后一步从 𝑟 积分到 𝑅，是因为 𝑣(𝑅) = 0（管壁），从而可以得到管道中速度
的径向分布：

𝑣(𝑟) = −Δ𝑝
Δ𝑙

𝑅2 − 𝑟2

4𝜂 (62)

下一步计算通过管道的流量 𝑄:

𝑄 = ∫
𝑅

0
𝑣(𝑟)2𝜋𝑟d𝑟 (63)

= − 1
4𝜂

Δ𝑝
Δ𝑙 ∫

𝑅

0
(𝑅2 − 𝑟2)2𝜋𝑟d𝑟 (64)

= −𝜋𝑅4

8𝜂
Δ𝑝
Δ𝑙 (65)

图 20. 泊肃叶定律的推导

泊肃叶定律适用于流体粘滞比较大的情况。对于一般情况，我们可以进行量纲
分析得到三个无量纲的数：

𝑝𝑅3

𝑄𝜂 , 𝑅
𝑙 , 𝑝𝑅4

𝜌𝑄2 (66)
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由于管道充分长，𝑅/𝑙 → 0，仅剩两个无量纲常数，

Δ𝑝
Δ𝑙

𝐷
𝜌 ̄𝑣2 𝑅𝑒 = 𝜌𝐷 ̄𝑣

𝜂 (67)

这里引入了一组新的物理量 ̄𝑣 = 𝑄/(𝜋𝑅2), 𝐷 = 2𝑅, Δ𝑝/Δ𝑙 = 𝑝/𝑙 为压强差梯
度，𝑅𝑒 叫做雷诺数 (Reynolds number)。因此一般情况下圆形长管的压强梯度
为，

Δ𝑝
Δ𝑙 = 𝜌 ̄𝑣2

2𝑅 Φ(𝑅𝑒) (68)

其中，Φ(𝑅𝑒)是关于雷诺数的某个函数。在雷诺数很小的时候，Φ(𝑅𝑒) → 32/𝑅𝑒，
这正是泊肃叶定律。而在一般情况下，上述公式将管道的压强梯度写成流体动
压力 𝜌𝑣2/2 的形式。在工程实践中，单位面积的摩擦力

𝜏 = Δ𝐹
2𝜋𝑅Δ𝑙 = Δ𝑝𝑆

2𝜋𝑅Δ𝑙 (69)

叫做单位面积的管阻。因此，管阻

𝜏 = 𝑓 𝜌 ̄𝑣2

2 (70)

这个公式叫做范宁公式 (Fanning formula)，其中 𝑓 = 1
2Φ(𝑅𝑒) 叫做范宁摩擦系

数。它表示单位面积的管阻与流体动压之间的比例。这个公式可以将阀门、弯
角等限流装置的阻力统一结合起来考虑，在工程实践中具有重要意义。

泊肃叶定理的应用：

• 血液在血管中的流动

• 管道采暖

5. 斯托克斯定理 斯托克斯定理描述了低速运动的小球在粘滞流体中运动所受到
的阻力，

𝐹 = 6𝜋𝜂𝑟𝑣 (71)

其中，𝜂 为流体粘滞系数，𝑟 为小球半径，𝑣 为小球相对于流体的速度。

斯托克斯定理适用于相对速度比较低的情况，一般情况下的光滑小球在流体中受到的
阻力可以根据量纲分析得到两个无量纲的数，𝐹/𝜂𝑟𝑣 和 𝐹/𝑟2𝜌𝑣2，其中前者是斯托克斯公
式描述的粘滞阻力，后者是牛顿阻力公式的情况：

𝐹 = 1
2𝐶𝑑𝜋𝑟2𝜌𝑣2 (72)
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图 21. 泊肃叶定理的应用，左：血管与血压；右：地暖

其中 𝜌 是流体密度，𝐶𝑑 叫做阻力系数。牛顿阻力相当于是小球运动过程中单位时间内推
开其横截面上的流体所引起的力，因此又叫做惯性阻力。斯托克斯公式叫做粘滞阻力。两
者的比是一个无量纲的数，叫做雷诺数

𝑅𝑒 = 惯性阻力
粘滞阻力

= 𝜌2𝑟𝑣
𝜂 (73)

有时候也记做 𝑁𝑅，它描述了物体在流体中运动的动力学性质。一般情况下的阻力可以写
成

𝐹 = 1
2𝐶𝑑(𝑅𝑒)𝜋𝑟2𝜌𝑣2 (74)

的形式，其中阻力系数 𝐶𝑑 是雷诺数的函数。图 22展示了阻力系数作为雷诺数的关系。在
雷诺数比较低时（速度较低或粘滞系数较大），𝐶𝑑 与雷诺数成反比，即

𝐶𝑑 = 24
𝑅𝑒 (75)

阻力满足斯托克斯定理 (71)。在雷诺数 103 ∼ 105 时，阻力系数近似为常数，即牛顿阻力
（惯性阻力）主导。在雷诺系数超过 2 × 105 时，阻力系数会突然下降，这一现象叫做阻力
危机，又叫做埃菲尔现象，在运动、航空等领域具有重要的应用。

6. 层流与湍流 在上面的分析中，我们发现流体的运动与一个无量纲的量有关，

𝑅𝑒 = 𝜌𝑣ℓ
𝜂 (76)

其中，这里 𝜌 是流体密度，𝑣 是流体速度，ℓ 是体系的特征长度，𝜂 是流体粘滞系数。这
个量叫做雷诺数。雷诺数是控制流体运动的关键参量。相同雷诺数的流体不论其尺寸、速
度等，具有类似的性质，而不同雷诺数的流体具有截然不同的运动特征，如图 23所示。

• 雷诺数比较低时，流体的流动为层流 (laminar flow)，特征为各个流体层之间不会混
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图 22. 光滑球在流体中的阻力系数作为雷诺数 𝑁𝑅 ≡ 𝑅𝑒 = 2𝜌𝑣𝑟/𝜂 = 𝑣𝐷/𝜈 的函数，这里 𝐷 = 2𝑟，
𝜈 = 𝜂/𝜌

杂

• 当雷诺数增大时，会出现涡旋 (vortical flow)

• 当雷诺数进一步增大时，开始出现湍流现象 (turbulence)

图 23. 流体绕圆球流动时不同雷诺数下流体的特征
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