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胡克定律：弹簧的弹性⼒与其⻓度变化成正⽐：
𝐹 = −𝑘𝑥

质点在弹性回复⼒的作⽤下的运动，根据⽜顿第⼆定律，

𝑚
𝑑!𝑥
𝑑𝑡!

= −𝑘𝑥	 ⇒ 𝑥̈ +
𝑘
𝑚
𝑥 = 0

可以验证，这个⽅程的通解为，
𝑥 𝑡 = 𝐴 cos(𝜔𝑡 + 𝜑)

其中，𝜔 = 𝑘/𝑚。𝐴, 𝜑是两个常数，由两个初始条件决定：初始
位置和初始速度

§33. 简谐振动(simple harmonic motion)
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• 函数图像

• 周期性运动(periodic motion): 周期(period)为，𝑇 = !"
# = 2𝜋 $

% 与振幅⽆

关 —— 计时

• 频率(frequency)：单位时间内振动的次数，𝜈 = &
' =

#
!" =

&
!"

%
$

• ⻆频率/圆频率(angular frequency)：𝜔 = 𝑘/𝑚
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• 速度，𝑣 𝑡 = "#
"$
= −𝜔𝐴 sin(𝜔𝑡 + 𝜑)

• 加速度，𝑎 𝑡 = "%
"$
= "!#

"$!
= −𝜔!𝐴 cos 𝜔𝑡 + 𝜑 = − &

'
𝑥

• 初始位置和速度：
𝑥( ≡ 𝑥 0 = 𝐴 cos𝜑 ,	
𝑣( ≡ 𝑣 0 = −𝜔𝐴 sin𝜑

因此，简谐振动的解也可以写成，

𝑥 𝑡 = 𝑥( cos𝜔𝑡 +
𝑣(
𝜔
sin𝜔𝑡

⇒ tan𝜑 = −𝑣(/𝜔𝑥( , 𝐴 = 𝑥(! + 𝑣(!/𝜔!
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• 谐振⼦的能量：

• 动能：𝑇 = &
!𝑚𝑣

! = &
!𝑚𝜔

!𝐴! sin!(𝜔𝑡 + 𝜑)

• 势能： 𝑉 = &
!𝑘𝑥

! = &
!𝑚𝜔

!𝐴! cos!(𝜔𝑡 + 𝜑)

• 总能量：𝐸 = 𝑇 + 𝑉 = &
!𝑚𝜔

!𝐴! = &
!𝑘𝐴

!

• 平均能量：

8𝑇 =
1
𝜏
;
*

+
𝑇 𝑡 𝑑𝑡 =

𝐸
𝜏
;
*

+
sin!(𝜔𝑡 + 𝜑) 𝑑𝑡 =

1
2
𝐸

8𝑉 =
1
𝜏
;
*

+
𝑉 𝑡 𝑑𝑡 =

𝐸
𝜏
;
*

+
cos!(𝜔𝑡 + 𝜑) 𝑑𝑡 =

1
2
𝐸

5
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𝐸
𝑇

𝑉8𝑇 = 8𝑉 =
1
2
𝐸



a. 摆
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• 单摆 (pendulum)：

运动⽅程：
𝑇 −𝑚𝑔 cos 𝜃 = 𝑚𝑙𝜃̇!

−𝑚𝑔 sin 𝜃 = 𝑚𝑙𝜃̈

其中，𝐹, = −𝑚𝑔 sin 𝜃为切向回复⼒。在摆⻆𝜃 ≪ 1⾮常⼩的时候，可以引⼊近
似sin 𝜃 ≈ 𝜃，即𝐹, ≈ −𝑚𝑔𝜃。因此切向运动⽅程：

−𝑚𝑔𝜃 = 𝑚𝑙𝜃̈ 	 ⇒ 	 𝜃̈ +
𝑔
𝑙
𝜃 = 0

这是⼀个谐振⼦运动⽅程，⻆频率为𝜔 = 𝑔/𝑙，周期为，

𝑇 = 2𝜋 𝑙/𝑔

𝜃 𝑙

𝑚

𝑚𝑔
𝑚𝑔 sin 𝜃

𝑇

泰勒展开：

sin 𝜃 = 𝜃 −
1
2! 𝜃

! +
1
3! 𝜃

" +⋯
注意这个关系时在⻆度⽤弧
度表示时才成⽴。



注意，单摆的周期与质点的质量⽆关 —— 应⽤：钟摆

• 复摆 (compound pendulum)/物理摆：

复摆为⼀个刚体绕某⼀个固定轴垂直悬挂，并在平衡位置附近⾃由做⼩⻆度
摆动。设𝑃与质⼼𝐶之间的距离为𝑙，刚体绕𝑃轴转动时的转动惯量为𝐼，则刚体
偏离平衡位置⻆度为𝜃 ≪ 1时，动⼒学⽅程为：

𝑚𝑔𝑙 sin 𝜃 = −𝐼𝜃̈ ⇒ 𝜃̈ +
𝑚𝑔𝑙
𝐼
𝜃 = 0

这是⼀个谐振⼦运动⽅程，⻆频率为𝜔 = 𝑚𝑔𝑙/𝐼，周期为

𝑇 = 2𝜋
𝐼

𝑚𝑔𝑙
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注意，这个周期实际与刚体的质量⽆关，因为刚体的转动惯量正⽐于其质量。
若刚体过平⾏于P且过质⼼的转动惯量写成𝐼< = 𝑚𝑅!其中𝑅叫做刚体的回旋半
径。则复摆的周期可以写成，

𝑇 = 2𝜋
𝑙 + 𝑅

!

𝑙
𝑔

当𝑙 = 𝑅时，复摆的周期最⼩，为𝑇$ = 2𝜋 !=
>
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b. ⼀维势能曲线

9

考虑⼀个质点在外⼒作⽤下的运动，设外⼒对应的势能为𝑉(𝑥)，运动⽅程为，
𝑚𝑥̈ + 𝑉? 𝑥 = 0

总能量为，

𝐸 =
1
2
𝑚𝑥̇! + 𝑉(𝑥)

当外⼒为0时，质点处于平衡，即，
𝐹 𝑥* = −𝑉? 𝑥* = 0

其中，𝑥*是平衡点的位置

考虑质点在平衡位置附近的运动。此时可以将势能𝑉在𝑥*附近进⾏泰勒展开，

𝑉 𝑥 = 𝑉 𝑥* + 𝑉? 𝑥* 𝑥 − 𝑥* +
1
2
𝑉?? 𝑥* 𝑥 − 𝑥* ! +⋯

0



x

总能量可以写成，

𝐸 =
1
2
𝑚 ̇𝜉! + 𝑉 𝑥* +

1
2
𝑉?? 𝑥* 𝜉!

其中，偏离平衡位置的位移𝜉 = 𝑥 − 𝑥*， 𝑉 𝑥* , 𝑉′′ 𝑥* 都是常数。对应的⼒为
𝐹 𝜉 = −𝑉?? 𝑥* 𝜉

如果𝑉?? 𝑥* > 0，则该⼒为回复⼒，且质点处于稳定平衡。如果𝑉?? 𝑥* < 0，
则质点处于⾮稳定平衡。因此，在稳定平衡位置附近的运动，都可以近似为简
谐振动，其中的等效弹簧系数

𝑘 = 𝑉′′(𝑥*)

⻆频率：𝜔 = @'' A(
$ ，周期：𝑇 = 2𝜋 𝑚/𝑉′′(𝑥*)
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• 弹簧振⼦：

𝐸 =
1
2
𝑚𝑥̇! +

1
2
𝑘𝑥!

⻆频率：𝜔 = %
$，周期：𝑇 = 2𝜋 𝑚/𝑘

• 单摆：

𝐸 =
1
2
𝑚𝑙!𝜃̇! −𝑚𝑔𝑙 cos 𝜃

≈
1
2
𝑚𝑙!𝜃̇! +

1
2
𝑚𝑔𝑙𝜃! −𝑚𝑔𝑙

⻆频率：𝜔 = +
,
，周期：𝑇 = 2𝜋 𝑙/𝑔
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c. 相空间曲线
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单摆初始⻆度⽐较⼤时：

𝑚𝑔𝑙 𝑐𝑜𝑠 𝜃* =
1
2
𝑚𝑙!𝜃̇! −𝑚𝑔𝑙 cos 𝜃

解析解⽐较复杂，可以考虑相空间轨迹，其中周期𝑇与能量𝐸、相空间⾯积𝐼

𝑇 =
𝑑𝐼
𝑑𝐸



• 谐振⼦的运动没有能⼒损失。在实际应⽤中，谐振⼦在运动过程
中，往往由于摩擦影响损失能量
• 如果摩擦⼒为常数，则谐振⼦的运动仍然为简谐振动，只不过振幅减⼩

• 与此同时，在⽣活实践中也往往需要增加阻尼来“减震”
• 例⼦：汽⻋减震、摩天⼤厦阻尼器、闭⻔器、减震台……

§32. 阻尼振动与受迫振动
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• ⽐较实际的情况是摩擦阻尼为速度的函数，特别是在速度不是特
别⼤时，阻尼正⽐于速度，

𝑓 = −𝐶𝑣

• 质点在弹性回复⼒和阻尼的作⽤下的运动，根据⽜顿第⼆定律，

𝑚
𝑑!𝑥
𝑑𝑡!

= −𝑘𝑥 − 𝐶𝑣	

⇒ 	 𝑥̈ + 2𝛽𝑥̇ + 𝜔(!𝑥 = 0

其中，𝜔(! = 𝑘/𝑚， 𝛽 = -
!'

是⼀个正实数
14

a. 阻尼振动



• 当阻尼较⼩时（⽋阻尼）：即𝛽 < 𝜔(，这个⽅程的解为，
𝑥 𝑡 = 𝐴(𝑒./$ cos(𝜔𝑡 + 𝜑)

其中，𝜔! = 𝜔(! − 𝛽!

• 特点：振幅随时间指数衰减
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𝑡

2𝜋
𝜔

𝑒$%&



• 速度，

𝑣 𝑡 =
𝑑𝑥
𝑑𝑡

= 𝐴(𝑒./$ 𝜔 sin(𝜔𝑡 + 𝜑) − 𝛽cos(𝜔𝑡 + 𝜑)

• 相空间
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𝑥

𝑣
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阻尼振⼦



• 在阻尼⾮常⼩时𝛽 ≪ 𝜔(，可以求得能量近似为

𝐸 𝑡 ≈
1
2
𝑚𝜔!𝐴(!𝑒.!/$ = 𝐸(𝑒.!/$

• 品质因⼦：定义为⼀个周期内谐振⼦损失的能量在总能量中的占
⽐乘以2𝜋：

𝑄 = 2𝜋
𝐸
Δ𝐸

≈
𝜔
2𝛽
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𝐸(𝑡)

1
2
𝑚𝜔#𝐴!#𝑒$#%&

𝑡



• 当阻尼较⼤时（过阻尼）：即𝛽 > 𝜔(,	这个⽅程的解为，
𝑥 𝑡 = 𝐴4𝑒	6"$ + 𝐴.𝑒6#$

其中，𝜆± = −𝛽 ± 𝛽! −𝜔(! ≤ 0

• 速度
𝑣 𝑡 = 𝜆4𝐴4𝑒6"$ + 𝜆.𝐴.𝑒6#$

• 初始速度和初始位置：

𝑥 𝑡 = 𝑒./$ 𝐴( cosh𝜔𝑡 +
𝐴(𝛽 + 𝑣(

𝜔
sinh𝜔𝑡
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• 运动过程与初始振幅𝐴(和初始速度𝑣(有关
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不同初始振幅 不同初始速度

𝑡

𝑡

𝑥(𝑡)𝑥(𝑡)



• 速度：

𝑣 𝑡 = 𝑒./$ 𝑣( cosh𝜔𝑡 −
𝑣(𝛽 + 𝑥(𝜔(!

𝜔
sinh𝜔𝑡

• 能量：

20

𝑡

𝐸(𝑡)
不同初始速度

𝑥

𝑣
谐振⼦



• 临界阻尼，即𝛽 = 𝜔(，这个⽅程的解为，
𝑥 𝑡 = 𝐴 + 𝐵𝑡 𝑒./$

或者按照初始条件，
𝑥 𝑡 = 𝐴( + 𝑣( + 𝛽𝐴( 𝑡 𝑒./$
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对于复杂的动⼒学问题，相图是⼀个有⽤的⼯具



对于复杂的动⼒学问题，相图是⼀个有⽤的⼯具



对于复杂的动⼒学问题，相图是⼀个有⽤的⼯具



例⼦：⼤⻆度单摆的相图

吸引⼦

𝛽 = 0.2 𝛽 = 0.1

𝜃 𝑙

𝑚



• 在有阻⼒时，振⼦的振动能量是衰减的；因此为了使阻尼振⼦系
统保持运⾏需要补充能量，也就是增加外⼒。这种振动运动形式
叫做受迫振动；⽤于驱动振⼦运动的外⼒叫做驱动⼒或策动⼒

• 为了有效馈⼊能量，策动⼒也应该是随时间改变的；常数形式的
策动⼒，如重⼒，在⼀个完整的振动周期内的做功近似为零，因
此⽆法直接向系统馈⼊能量

• 为了明确起⻅，我们考虑⼀个周期性策动⼒，
𝐹 𝑡 = 𝐹( cos(𝜔𝑡 + 𝜙)

其中，𝜔是策动⼒的周期

b. 受迫振动

36

𝑘𝐹(𝑡) 𝑚



考虑受迫振⼦在回复⼒、阻尼和策动⼒共同作⽤下的运动，

𝑚𝑎 = −𝑘𝑥 − 𝐶𝑣 + 𝐹 𝑡 	⇒ 	 𝑥̈ + 2𝛽𝑥̇ + 𝜔*!𝑥 =
𝐹*
𝑚
cos(𝜔𝑡 + 𝜙)

这个⽅程的解为，

𝑥 𝑡 = 𝐴𝑒LM, cos 𝜔*𝑡 + 𝜑 +
𝐹*/𝑚

𝜔*! −𝜔! ! + 4𝛽!𝜔!
cos(𝜔𝑡 + 𝜙 − 𝛿)

其中，𝐴, 𝜑为两个待定常数，可由初始位置和速度确定，相位𝛿满⾜，

tan	𝛿 =
2𝛽𝜔

𝜔*! −𝜔!

37

𝑥(𝑡)

红⾊：全解
蓝⾊：策动解

𝑡



能量与相空间



• 可⻅振⼦的运动分为两部分:
• ⼀部分是带阻尼的谐振⼦运动，这⼀部分随着时间的推移逐渐衰减为零，

因此⼜称为暂态解

• 另⼀部分是策动⼒驱动的解，系统经过⻓时间演化以后收敛到策动解，因
此⼜称为稳态解

•稳态解：
𝐹*/𝑚

𝜔*! −𝜔! ! + 4𝛽!𝜔!
cos(𝜔𝑡 + 𝜙 − 𝛿)

• 稳态解的特点是它与策动⼒频率相同

• 并且存在⼀个相位的移动 𝛿 ，即位移落后于⼒——原因是阻尼，不是惯性！
• 稳态解的振幅与策动⼒的频率有关
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δ

𝐵 =
𝐹*/𝑚

𝜔*! −𝜔! ! + 4𝛽!𝜔!
, 𝐵* = 𝐵 𝜔 = 0 =

𝐹*
𝑚𝜔*!

• 若阻尼较⼩(𝛽 < 𝜔*)，稳态解的振幅极⼤值出现在𝜔 = 𝜔*! − 2𝛽!时，

此时称策动⼒与振⼦系统发⽣了共振(resonance)
• 速度极⼤值出现在𝜔 = 𝜔*

𝛽 = 0

𝛽 = 0.1

𝛽 = 0.2

𝛽 = 0.4

𝛽 = 1 𝛽 = 0

𝛽 = 0.1

𝛽 = 0.2

𝛽 = 0.4

𝛽 = 1



为了刻画共振的特征，还可以引⼊锐度的概念。锐度定义为共振曲线的
共振频率⽐上共振宽度，

𝑆 =
𝜔*
Δ𝜔

其中，共振宽度定义为2𝛽，为共振曲线上振幅讲到峰值1/ 2 (能量降到
1/2)时的频率范围。不难发现，锐度恰好等于品质因⼦𝑄，因此也常常直
接⽤品质因⼦来刻画共振系统的共振特征

0.0 0.5 1.0 1.5 2.0ω/ω00

2

4

6

8

10

B/B0

𝐵'()
2

𝐵'()

Δ𝜔
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• 能量：
• 总能量在稳态区域呈震荡趋势，平均值基本保持不变
• 平均动能与平均势能不⼀定相等，与策动频率有关

𝑡

动能

总能量

势能 𝑥

𝑣



⼀个特殊的情形是阻尼为0时，此时，振⼦系统的解为两个正弦函数的叠
加。为了明确起⻅，考虑⼀个初始时刻速度为零、停留在平衡位置的谐
振⼦，在策动⼒的作⽤下运动。其解为，

𝑥 𝑡 =
𝐹*/𝑚

𝜔*! −𝜔!
cos𝜔𝑡 − cos	𝜔*𝑡 =

2𝐹*/𝑚
𝜔*! −𝜔!

sin
𝜔 + 𝜔*
2

𝑡 sin
𝜔 − 𝜔*
2

𝑡

函数图像如下，这样的现象叫做拍，拍的频率为𝜈T =
&
'2
= U#

!"
。当策动⼒

频率与振⼦产⽣共振时，系统解为，

𝑥 𝑡 =
𝐹*
𝑚𝜔

𝑡 sin𝜔*𝑡
即振⼦的振幅线性增加，直到弹簧达到偏离线性弹性区间甚⾄断裂。

𝑇 =
2𝜋

𝜔 − 𝜔!



• 简谐振动是⼀种最简单的周期运动，也是最基本的周期运动

•傅⽴叶在研究热传导理论的过程中提出，⼀般周期运动可以视为
简谐振动的叠加，这种⽅法叫做傅⽴叶分析，在现代数学物理、
信息处理中有着⾮常核⼼的地位
• 例⼦：信息传输

•⾸先考虑两个相同频率振动的叠加。考虑⼀个质点同时参与两个
振动，⽅程分别为，

𝑥9 = 𝐴9 cos 𝜔𝑡 + 𝜑9 , 𝑥! = 𝐴! cos(𝜔𝑡 + 𝜑!)

则质点的总位移为，𝑥 = 𝑥9 + 𝑥!

c. 振动的叠加
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• 利⽤三⻆函数的关系，可以得到
𝑥 = 𝐴& cos(𝜔𝑡 + 𝜑&) + 𝐴! cos(𝜔𝑡 + 𝜑!)
= 𝐴& cos𝜔𝑡 cos𝜑& − 𝐴& sin𝜔𝑡 sin𝜑& + 𝐴! cos𝜔𝑡 cos𝜑! 	− 𝐴! sin𝜔𝑡 sin𝜑!
= 𝐴& cos𝜑& + 𝐴! cos𝜑! cos𝜔𝑡 − 𝐴& sin𝜑& +	𝐴! sin𝜑! 𝐴& sin𝜔𝑡
= 𝐴(cos𝜑 cos𝜔𝑡 − sin𝜑 sin𝜔𝑡) = 𝐴 cos 𝜔𝑡 + 𝜑

其中𝐴 = 𝐴&! + 𝐴!! + 2𝐴&𝐴! cos(𝜑& − 𝜑!) , tan𝜑 =
V3 WXY Z3[V4 WXY Z4
V3 \]W Z3[V4 \]W Z4

• 两个频率相同的简谐振动的叠加仍然为⼀个简谐振动

• ⽮量⽅法
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𝑡𝑥&
𝑥!

𝑥& + 𝑥!

𝑋

𝑌

𝑥!

𝑥*

𝑥

𝜑
𝜑*

𝜑!

cos 𝑎 cos 𝑏 − sin	𝑎	sin	𝑏 = cos	(𝑎 + 𝑏)



• 考虑振幅相位相同、频率接近( 𝜔& −𝜔! ≪ 𝜔&)的两个振动相加：
𝑥 = 𝐴 cos(𝜔&𝑡 + 𝜑) + 𝐴 cos(𝜔!𝑡 + 𝜑)

= 2𝐴 cos
𝜔& −𝜔!

2
𝑡 cos

𝜔& +𝜔!
2

𝑡 + 𝜑

≈ 2𝐴 cos
𝜔& −𝜔!

2
𝑡 cos 𝜔&𝑡 + 𝜑

得到的结果为⼀个振幅随时间缓慢地做周期性变化的振动，叫做拍(beat)。拍的

周期为，𝑇 = "
53654

4

= !"
#3L#4

，拍频为两个振动的频率之差：

𝜈 = 1/𝑇 = |𝜈& − 𝜈!|
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𝑇 =
2𝜋

𝜔) − 𝜔*



• 如果两个简谐振动频率接近( 𝜔& −𝜔! ≪ 𝜔&)、但振幅不同时，利⽤三⻆函数
的加法，
𝑥 = 𝐴& cos(𝜔&𝑡 + 𝜑) + 𝐴! cos(𝜔!𝑡 + 𝜑)
= 𝐴& cos(𝜔&𝑡 + 𝜑) − 𝐴! cos 𝜔&𝑡 + 𝜑 + 𝐴! cos 𝜔!𝑡 + 𝜑 + 𝐴! cos 𝜔&𝑡 + 𝜑

= (𝐴& − 𝐴!) cos 𝜔&𝑡 + 𝜑 + 2𝐴! cos
𝜔& −𝜔!

2
𝑡 cos

𝜔& +𝜔!
2

𝑡 + 𝜑

≈ cos 𝜔&𝑡 + 𝜑 𝐴& − 𝐴! + 2𝐴! cos
𝜔& −𝜔!

2
𝑡

得到的结果仍然为⼀个拍(beat)，只不过拍的最⼩振幅不为零
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𝑇 =
2𝜋

𝜔) − 𝜔*

⾳叉利⽤拍调⾳



• 根据运动独⽴性原理，互相垂直的振动也可以叠加，得到的结果在X-Y平⾯看
是⼀组形状复杂的曲线，叫做李萨如图形

g
𝑥 = 𝐴 cos𝜔A𝑡	
𝑦 = 𝐴 cos(𝜔f𝑡 + 𝜑)

• 曲线的形状与振动的频率⽐值、相对相位都相关
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𝜑 = 0 𝜋/4 𝜋/2 3𝜋/4 𝜋
𝜔+: 𝜔,
1: 1

2: 1

3: 2

• 如果𝜔!: 𝜔" = 1: 1，曲线的形状为椭圆（包含圆
和直线）

• 如果频率之⽐为有理数，得到的曲线为封闭曲线

𝜔+: 𝜔, = 17: 23,	
𝜑 = -

!
 



•上⼀节我们通过研究⼀维势能曲线，揭示了简谐振动的普遍性。
那么，这⼀结论是否可以推⼴到相互作⽤的多个质点体系呢？

• 𝑁质点体系的总能量

𝐸 =i
k

1
2𝑚k𝑣k! + 𝑉(𝑟&, 𝑟!, ⋯ , 𝑟l)

将势能𝑉在平衡位置做泰勒展开，

𝑉 = 𝑉 0 +i
k

𝑉k? 0 𝜉k +i
km

1
2
𝑉km?? 0 𝜉k𝜉m +⋯

这⾥，𝜉k = 𝑟k − 𝑟k*为偏离平衡位置的位移

§34. 多质点耦合体系的振动
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0



•对应的⼒为，

𝐹k = −𝑉k? = −
1
2
i
m

𝑉km?? 0 𝜉k

这是𝑁个线性回复⼒之和，因此我们仅需要考虑𝑁个弹簧耦合的质点的运动

•换句话说，对于在平衡态附近做微⼩振动的𝑁质点体系，其运动
可以近似视为线性回复⼒

• 这⼀图像也解释了为什么弹性体会⼴泛存在

•进⼀步，我们将看到对于弹簧耦合的𝑁质点体系，其运动可以视
为𝑁个独⽴的简谐振动的叠加
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•⾸先考虑⼀个𝑁质点体系，其中所有质点质量相等为𝑚。任意两
个质点𝑖与𝑗之间的相互作⽤⼒为，

𝐹⃗>? = −𝑘(𝑟> − 𝑟?)

对应的总能量为，

𝐸 =i
k

1
2
𝑚 𝑣⃗k! + i

k,m	(knm)

1
2
𝑘 𝑟k − 𝑟m

! 	

= i
k

1
2𝑚𝑣⃗k

! +
1
2i
k,m

1
2𝑘(𝑟k

! + 𝑟m! + 2𝑟k ⋅ 𝑟m) 	

=i
k

1
2
𝑚𝑣⃗k! +

𝑁𝑘
2
𝑟k! +

𝑁𝑘
2
𝑟\o!

这是N个独⽴运动的谐振⼦的总能量，谐振⼦频率为𝜔! = 𝑁𝑘/𝑚。
53



• 也可以从⼒的⻆度，

𝑚𝑎⃗k = −i
m

𝑘 𝑟k − 𝑟m = −𝑁𝑘(𝑟k − 𝑟\o)

根据质⼼定理，𝑟\o保持静⽌。取质⼼为原点，上述⽅程可以写成，
𝑚𝑎⃗k = −𝑁𝑘𝑟k

因此，每个质点以𝜔! = 𝑁𝑘/𝑚的频率做简谐振动

• 在这个例⼦中，其他质点对第𝑖个质点的作⽤类似于⼀个平均场的
作⽤。最终所有质点做独⽴简谐振动。这⾥的模型叫做壳层模型，
是原⼦核的基本模型

•对于质点之间的弹性系数不同的情形，这⾥的⽅

法不再适⽤，我们需要寻找新的解耦系统的⽅法
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• 我们下⾯⾸先以两个质点组成的弹簧-质点体系为例来讨论弹簧
耦合体系的运动。注意这个例⼦与上⾯例⼦的区别

• 如图𝑥9,!为两个质点偏离平衡位置的位移，体系总能量为，

𝐸 =
1
2
𝑚𝑥̇9! +

1
2
𝑚𝑥̇!! +

1
2
𝑘𝑥9! +

1
2
𝑘 𝑥9 − 𝑥! ! +

1
2
𝑘𝑥!!

对应的动⼒学⽅程为，
𝑚𝑥̈9 = −𝑘𝑥9 − 𝑘 𝑥9 − 𝑥! = 𝑘(𝑥! − 2𝑥9)
𝑚𝑥̈! = −𝑘𝑥! + 𝑘 𝑥9 − 𝑥! = 𝑘(𝑥9 − 2𝑥!)

•注意到，如果我们引⼊新的变量𝑦9 = 𝑥9 + 𝑥!, 𝑦! = 𝑥9 − 𝑥!，即将
上⾯两式相加、相减可以得到，
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𝑘 𝑘 𝑘𝑚 𝑚

𝑥* 𝑥!



对应的动⼒学⽅程为，
𝑚𝑦̈9 = −𝑘𝑦9, 𝑚𝑦̈! = −3𝑘𝑦!

• 我们得到了两个独⽴的谐振⼦⽅程。这两个坐标的物理意义是明
确的，它们分别描述了两个振⼦中⼼和两个振⼦之间的相对距离
之间的运动。其解为(𝜔! = 𝑘/𝑚)，

𝑦9 = 2𝐴9 cos(𝜔𝑡 + 𝜑9) , 𝑦! = 2𝐴! cos( 3𝜔𝑡 + 𝜑!)

原始质点的运动可以通过线性组合得到，
𝑥9 = 𝐴9	 cos(𝜔𝑡 + 𝜑9) + 𝐴!	 cos( 3𝜔𝑡 + 𝜑!)
𝑥! = 𝐴9	 cos(𝜔𝑡 + 𝜑9) − 𝐴!	 cos( 3𝜔𝑡 + 𝜑!)
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𝑘 𝑘 𝑘𝑚 𝑚

𝑥* 𝑥!



• ⼀般情况下，体系的两个质点的振动⽐较复杂(⾮简谐振动)

𝑡

𝑡

𝑡

𝑡

𝑦*

𝑦!

𝑥*

𝑥!

𝐴*	 ≠ 0, 𝐴! ≠ 0

𝑘 𝑘 𝑘𝑚 𝑚



• 当𝐴9	 ≠ 0, 𝐴! = 0时，体系的两个质点都以相同的频率做简谐振动，
且相位相同
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𝐴*	 ≠ 0, 𝐴! = 0

𝑡

𝑡

𝑡

𝑡

𝑦*

𝑦!

𝑥*

𝑥!



• 当𝐴9	 = 0, 𝐴! ≠ 0时，体系的两个质点都以相同的频率做简谐振动，
且相位相反
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𝐴*	 = 0, 𝐴! ≠ 0

𝑡

𝑡

𝑡

𝑡

𝑦*

𝑦!

𝑥*

𝑥!



•从这个例⼦可以看到，对于耦合振⼦体系，可以通过对坐标进⾏
线性组合，寻找到合适的坐标，使得体系解耦为若⼲个独⽴的谐
振⼦运动，这样的⼀组坐标叫做简正坐标	(normal	coordinates)，
相应的振动模式叫做简正模	(normal	modes)

•体系在某⼀简正模下，所有的坐标以相同的频率振动，即相位同
步(in	phase)
•对于⼀般的弹簧耦合的𝑁质点体系，可以利⽤线性代数的⽅法证

明，可以找到𝑁组简正坐标，使得体系解耦为𝑁个独⽴的简谐振
⼦的运动，即存在𝑁组简正模

•对于任意⼀个简正模式的振动，所有质点的相位同步，即以相同
的频率振动
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• 这⾥的概念还可以推⼴到连续介质。我们后⾯通过例⼦可以看到，
弹性体中的简谐波本质上就是弹性体体系的简正模

• 简正模的概念在现代物理中扮演着重要的⻆⾊。根据这⼀概念，
体系的物理⾃由度未必是描述体系所引⼊的基本坐标。通过⾃由
度的变换，可将复杂的动⼒学问题分解为简单的问题——这正
是现代量⼦场论的基础
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【例⼦】考虑如图⼀个A!B型三原⼦分⼦的模型，求其简正频率。
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𝑘 𝑘

𝑚/ 𝑚0𝑚0



【例⼦】考虑如图⼀个A!B型三原⼦分⼦的模型，求其简正频率。
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𝑘 𝑘

𝑚/ 𝑚0𝑚0

解：动⼒学⽅程：

n
𝑚V𝑥̈& = −𝑘 𝑥& − 𝑥! 	
𝑚r𝑥̈! = −𝑘 𝑥! − 𝑥& − 𝑘(𝑥! − 𝑥s)
𝑚V𝑥̈s = −𝑘 𝑥s − 𝑥! 	

考虑简正模𝑥k = 𝐴k cos𝜔𝑡，带⼊上式可以得到，

n
−𝜔!𝑚V𝐴& cos𝜔𝑡 = −𝑘 𝐴& cos𝜔𝑡 − 𝐴! cos𝜔𝑡 	
−𝜔!𝑚r𝐴! cos𝜔𝑡 = −𝑘 𝐴! cos𝜔𝑡 − 𝐴& cos𝜔𝑡 − 𝑘(𝐴! cos𝜔𝑡 − 𝐴s cos𝜔𝑡)
−𝜔!𝑚V𝐴s cos𝜔𝑡 = −𝑘 𝐴s cos𝜔𝑡 − 𝐴! cos𝜔𝑡 	

整理⼀下，消去cos𝜔𝑡，可以得到



【例⼦】考虑如图⼀个A!B型三原⼦分⼦的模型，求其简正频率。
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n
𝑘 − 𝜔!𝑚V 𝐴& − 𝑘𝐴! = 0	
−𝑘𝐴& + 2𝑘 − 𝜔!𝑚r 𝐴! − 𝑘	𝐴s = 0	
−𝑘𝐴! + (𝑘 − 𝜔!𝑚V)𝐴s = 0	

𝐴& = 𝐴! = 𝐴s是这个⽅程的⼀个解表示不发⽣振动的情况。我们关⼼有⾮零
解的情形，也就是𝐴&, 𝐴!, 𝐴s不完全为零的情形。

• 如果𝐴! = 0, 上⾯的⽅程可以化简为 𝑘 − 𝜔!𝑚V 𝐴& = 0, 𝐴& = 𝐴s。这个⽅
程有⾮零解的条件是，𝜔! = 𝑘/𝑚V。

• 如果𝐴! ≠ 0，根据第⼀个⽅程，𝐴& = 𝑘/(𝑘 − 𝜔!𝑚V)𝐴! ，根据第三个⽅程，
𝐴s = 𝑘/(𝑘 − 𝜔!𝑚V)𝐴!。将这两个条件带⼊第⼆个⽅程可以得到，



【例⼦】考虑如图⼀个A!B型三原⼦分⼦的模型，求其简正频率。
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−
2𝑘!

𝑘 − 𝜔!𝑚V
𝐴! + 2𝑘 − 𝜔!𝑚r 𝐴! = 0

这个⽅程具有⾮零振幅解的条件是，
−2𝑘! + 2𝑘 − 𝜔!𝑚r 𝑘 − 𝜔!𝑚V = 0

整理可以得到，
⇒ 𝜔! 2𝑘𝑚V + 𝑘𝑚r −𝜔!𝑚V𝑚r = 0

因此我们⼀共得到了三个解（简正模）：

• 𝜔 = 0：表示⽆振动，分⼦整体做平动

• 𝜔 = %
$7

：B不动，原⼦A运动
𝑘 𝑘

𝑚/ 𝑚0𝑚0



【例⼦】考虑如图⼀个A!B型三原⼦分⼦的模型，求其简正频率。
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• 𝜔 = % !$7[$8
$7$8

：A、B原⼦同时运动

注：

还有⼀种⽅法可以直接求解线性⽅程组有⾮平凡解的条件，即考虑其系数⾏
列式为零，因此，

det
𝑘 − 𝜔!𝑚V −𝑘 0

−𝑘 2𝑘 − 𝜔!𝑚r −𝑘
0 −𝑘 𝑘 − 𝜔!𝑚V

= 0	

从这个条件出发可以直接得到三个解满⾜的多项式。

𝑘 𝑘

𝑚/ 𝑚0𝑚0



【例⼦】考虑如图⼀个A!B型三原⼦分⼦的模型，求其简正频率。
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⼆氧化碳红外光谱

(nm)



【例⼦】求⽆限⻓1维弹簧-质点链的简正频率与简正模。
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𝑎

𝜅



【例⼦】求⽆限⻓1维弹簧-质点链的简正频率与简正模。

解：动⼒学⽅程，
𝑚 ̈𝜉k = 𝜅(𝜉k[& − 2𝜉k + 𝜉kL&)

考虑简正模𝜉k = 𝐴k cos𝜔𝑡，
	 −𝜔!𝑚𝐴k = 𝜅 𝐴k[& − 2𝐴k + 𝐴kL&

⇒ 𝐴k[& +
𝜔!

𝜔*!
− 2 𝐴k + 𝐴kL& = 0

这⾥，𝜔*! = 𝜅/𝑚。在连续极限下弹簧质点链成为1维弹性体，其上传播简谐
波形如cos(𝜔𝑡 − 𝑘𝑥)。因此我们可以猜测简正模的形式为

𝑥t 𝑡 = 𝐶 cos(𝜔𝑡 ± 𝑛𝑎𝑘) = 𝐶 cos 𝑛𝑎𝑘 cos𝜔𝑡 ∓ 𝐶 sin 𝑛𝑎𝑘 sin𝜔𝑡
69

𝑎

𝜅



70

换句话说，有两组简正模，其振幅分别满⾜，
𝐴k = 𝐶 cos 𝑖𝑘𝑎 , 𝐴k? = 𝐶′ sin 𝑖𝑘𝑎

其中，𝐶, 𝐶′是常数，𝑘是某个待定实数。两组解实际上是同⼀组解，因为它们
只差⼀个共同的起始相位。带⼊原差分⽅程可以得到，

cos 𝑘 𝑖 + 1 𝑎 +
𝜔!

𝜔*!
− 2 cos 𝑘𝑖𝑎 + cos 𝑘 𝑖 − 1 𝑎 = 0

这个⽅程可以通过三⻆函数的性质化简，例如cos 𝑘 𝑖 ± 1 𝑎 = cos 𝑘𝑖𝑎 cos 𝑘𝑎 ∓
sin 𝑘𝑖𝑎 sin 𝑘𝑎，可以得到：

π
4

π
2

3 π
4 π 5 π

4
3 π
2

7 π
4

ka

0.5

1.0

1.5

ω/ω0

𝜔 = 2𝜔# sin
𝑘𝑎
2

2 cos 𝑘𝑎 +
𝜔!

𝜔*!
− 2 = 0	

⇒ 𝜔! = 2𝜔*! 1 − cos 𝑘𝑎 = 4𝜔*! sin!
𝑘𝑎
2

𝜔
=
𝑐𝑘
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𝑖

𝑖

𝑖

𝑖

𝜉> 𝑡 = 0

𝑡 = 0.3𝑇#

𝑘𝑎 = 0.1𝜋

𝑘𝑎 = 1.0𝜋

𝑘𝑎 = 0.4𝜋

𝑘𝑎 = 0.2𝜋

𝜉1 𝑡 ≈ 𝐴 cos(𝜔𝑡 − 𝑘𝑥2)
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• 上⾯的差分⽅程

𝐴k[& +
𝜔!

𝜔*!
− 2 𝐴k + 𝐴kL& = 0

也可以直接通过差分⽅法求解。根据这⼀理论，差分⽅程的解为，
𝐴k = 𝜌 cos 𝑖𝜃 , 𝐴k? = 𝜌 sin 𝑖𝜃

其中，𝜌(cos 𝜃 ± 𝑖 sin 𝜃) = 𝑟±为特征⽅程的两个复数根: 𝑟! + #4

#(4
− 2 𝑟 + 1 = 0

• 上⾯我们找到了⼀组解，但没有证明这是全部的解。对于𝑁个质点来说，⼀
共有𝑁个简正模。如果有𝑁个质点，不难验证上⾯构造的简正模⼀共是𝑁个，

𝑘t𝑎 =
t"
l , (𝑛 = 1,2,⋯ ,𝑁)

• 在𝑘 ≪ 1/𝑎时，𝜔 = 𝜔*𝑘𝑎 = 𝑐𝑘，对应的解为：
𝜉 𝑡, 𝑥 ≈ 𝐴 cos(𝜔𝑡 ± 𝑘𝑥)

这样的解在连续极限下叫做简谐波



•波动现象在物理学中⼴泛存在
• 例⼦：⽔波、弹性波、声波、电磁波(光)、物质波
• 空间某处发⽣扰动，以⼀定的速度向其他地⽅传播

• 不同形式的波起因和传播机制不同，但物理规律上具有共同之处
• 波是能量和动量传递的⼀种⽅式

• 波具有⼲涉、衍射等效应

§35. 波动 (wave)
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•机械波(mechanical wave)：机械振动在介质中的传播
• 例⼦：弹性波、声波、弦波

•机械波形成的条件：
• 扰动(disturbance)，即波源

• 介质(medium)：即可以发⽣形变的物质（弹性体、流体……）
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•机械波的特点：
• 每个质点在平衡位置附近做机械振动，时间周期性𝑇 =
2𝜋/𝜔 = 1/𝜈 ——由波源决定

• 波的空间周期性：波⻓(wavelength)	𝜆
• 机械波上质点的振动状态叫做相位(phase)，相位传播

的速度叫做相速度(phase	velocity)：𝑣 = 𝜆/𝑇 = 𝜈𝜆
• 等相位的⾯叫做波阵⾯，其中最前⾯的波阵⾯叫做波
前(wavefront)
• 波传播的⽅向叫做波线

75

𝜆

波源
绳索上的质点

绳索上的质点在各⾃
平衡位置附近振动

⼀个振动周期的时间中
振动相位传播⼀个波⻓
的距离

波前



•波动⽅程：
𝜉$EE + 𝑐!𝜉#EE = 0

其中，𝜉(𝑥, 𝑡)为介质中质点的位移，𝑐为⼀个常数，由介质性质决定

• 例⼦：弹性波(S-波、P-波)、1维质点-弹簧链、表⾯波、弦波

• ⾏波解(达朗⻉尔解)：
𝜉 = 𝑓(𝑥 ± 𝑐𝑡)

其中， 𝑓(𝑥) 为任意⼆阶可导的函数，正负号分别表示沿反向和正向传播的波。

𝑐 = yA
y,
|相位为⾏波的相位传播的速度，即相速度
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𝑐
𝜉(𝑥, 𝑡)

𝑥

𝑡 + Δ𝑡
𝑡

a. 简谐波



【例⼦】弹性波（S-波）：
𝜌𝜃$EE = 𝐺𝜃#EE

【例⼦】弹性波（P-波）：
𝜌𝜉$EE = 𝑌𝜉#EE

【例⼦】声波：
𝜉$EE = 𝑃′(𝜌)𝜉#EE

【例⼦】弦波：
𝜇𝜉$EE = 𝑇𝜉#EE

【例⼦】1维质点-弹簧链：
𝑚𝜉$EE = 𝑎!𝜅𝜉#EE
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𝑣$ = 𝐺/𝜌

𝑣% = 𝑌/𝜌

𝑐& = 𝜕𝑃/𝜕𝜌

𝑐'() = 𝑇/𝜇

𝑎𝜅



• 简谐波：
𝜉 𝑡, 𝑥 = 𝐴 cos(𝜔𝑡 ± 𝑘𝑥)

其中，𝑘叫做波数

• 简谐波的波列上任意⼀个质点都做简谐振动，频率𝜔由波源决定

•任意⼀个瞬间，简谐波的波列具有空间周期性，𝜆 = 2𝜋/𝑘

•波数与⻆频率的关系叫做⾊散关系，对于简谐波来说𝜔 = 𝑐𝑘，因

此𝑐 = N
&
= 6

O
为波的相速度。⾊散关系由介质性质决定

•任意⾏波可以视为简谐波的线性叠加
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𝑐𝜉(𝑥, 𝑡)

𝑥



• 简谐波的能量与能流：
𝜉 𝑡, 𝑥 = 𝐴 cos(𝜔𝑡 ± 𝑘𝑥)

• 以⼀维质点-弹簧链为例(𝑐 = 𝑎 𝜅𝑚,𝜔 = 𝑐𝑘)，每个质点的能量，
𝐸 = 𝑇 + 𝑉 = 𝑚𝜔!𝐴! sin!(𝜔𝑡 − 𝑘𝑥)

其中，动能和势能分别为，

𝑇 =
1
2
𝑚 ̇𝜉>! =

1
2
𝑚𝜔!𝐴! sin!(𝜔𝑡 − 𝑘𝑥)

	𝑉 =
1
2
𝜅 𝜉> − 𝜉>.9 ! =

1
2
𝑚𝜔!𝐴! sin!(𝜔𝑡 − 𝑘𝑥)

•注意势能与动能相等且同相位——与简谐振动不同

• 总能量不守恒——波传递能量（能量来源：波源）
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• 定义能量密度为单位体积的波的能量：

𝑤 =
Δ𝐸
Δ𝑉

= 𝜌𝜔!𝐴! sin!(𝜔𝑡 − 𝑘𝑥)

其中，𝜌为弹性体体密度。平均能量密度，

y𝑤 =
1
𝑇
z
(

O
𝑤 𝑡 𝑑𝑡 =

1
2
𝜌𝜔!𝐴!

• 能流密度：单位时间内通过垂直于波线的单位⾯积的能量
𝐼 = 𝑤𝑐 = 𝜌𝑐𝜔!𝐴! sin!(𝜔𝑡 − 𝑘𝑥)

平均能流能流密度(强度)	： ̅𝐼 = y𝑤𝑐 = 9
!
𝜌𝑐𝜔!𝐴!
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𝑐
𝑤(𝑥, 𝑡)

𝑥

这⾥𝑐表示波的速度



• 在声学中⽤对数表示声⾳的强度，叫做声强级，单位为⻉尔(Bel)

𝐼𝐿 = log
𝐼
𝐼(

其中，参考声强为(临界听觉)𝐼( = 1.0×10.9!W ⋅ m.!。更常⽤的单
位是分⻉(dB)，即10dB	=	1 Bel。声强是对数坐标。因此，增加
10db，声⾳的强度增加10倍。

•声压： �𝑃 = 𝜌𝑐𝜔𝐴
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这⾥𝑐表示波的速度

dB



• 考虑两列波同时在介质中⾏进并相遇，如果介质的扰动为线性的，
则两列波相遇以后的振幅为两列波振幅的线性叠加
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b. 波的叠加

𝑡 = 0

𝑡 = 1

𝑡 = 2

𝑡 = 3

𝑡 = 4

𝑡 = 5

𝑡 = 6



• 考虑两列简谐波的叠加，设其振幅相同频率接近 𝜔9 −𝜔! ≪ 𝜔9 ，
𝜉 𝑡, 𝑥 = 𝐴 cos(𝜔9𝑡 − 𝑘9𝑥) + 𝐴 cos(𝜔!𝑡 − 𝑘!𝑥)

= 2𝐴 cos
𝜔9 +𝜔!

2
𝑡 −

𝑘9 + 𝑘!
2

𝑥 cos
𝜔9 −𝜔!

2
𝑡 −

𝑘9 − 𝑘!
2

𝑥

≈ 2𝐴 cos 𝜔9𝑡 − 𝑘9𝑥 cos
1
2
(Δ𝜔𝑡 − Δ𝑘𝑥)

• 得到的结果为振幅受到调制的波叫做波包，波包传播的速度为
𝑣+ = Δ𝜔/Δ𝑘 = 𝑑𝜔/𝑑𝑘
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cos 𝑎 + cos 𝑏

= 2 cos
𝑎 + 𝑏
2 cos

𝑎 − 𝑏
2

𝑥

𝑥

𝑥

𝜉&

𝜉!

𝜉& + 𝜉!



• 频率单⼀的波叫做单⾊波，真正的单⾊波必须是⽆穷⻓的

• 实际的波都是有限⻓的，可以视为不同单⾊波的叠加，即波包

•波包传播速度叫做群速度𝑣+ = 𝑑𝜔/𝑑𝑘

•群速度与相速度在没有⾊散的情况𝜔 = 𝑐𝑘下两者相同，在有⾊散
时𝜔 = 𝜔(𝑘)两者未必相同

•波的群速度代表信号和能量传播的速度
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𝜉(𝑥, 𝑡)

𝑥

𝜉(𝑥, 𝑡)

𝑥



•前⾯主要讨论了波动⽅程：𝜉$EE + 𝑐!𝜉#EE = 0的⾏波解𝜉 = 𝑓(𝑥 ± 𝑐𝑡),
特别是简谐波解，并未考虑边界问题

• 在很多实际应⽤中，边界条件对于解的形式也有较⼤影响，这尤
其在乐器中有⽐较重要的应⽤
• 例⼦：琴弦的振动

• ⾏波解允许各种频率的波通过，⽽乐器则有不同的频率
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c. 驻波 (standing wave)



•⾸先考虑⼀端固定的弦上的正弦函数波的传播。设固定点位置为
𝑥 = 𝐿，因此边界条件要求

𝜉 𝑡, 𝐿 = 0

简谐波本⾝⽆法满⾜这个边界条件，但是如果将正反⽅向⾏进的简
谐波进⾏组合，得到可以得到满⾜边界条件的解，

𝜉 𝑡, 𝑥 = 𝐴 cos[𝜔𝑡 − 𝑘 𝑥 − 𝐿 ] − cos[𝜔𝑡 + 𝑘 𝑥 − 𝐿 ]
= 2𝐴 sin𝜔𝑡 sin[𝑘(𝑥 − 𝐿)]

得到的解在半个周期内的运动如图所示，可⻅弦的振动不再传播，
这样的波叫做驻波

𝜉(𝑥, 𝑡)

𝑥

波源 𝑡 = 0

𝑡 = 𝑇/2

87



•驻波可以视为沿正反⽅向传播的两列简谐波的叠加

•驻波上的质点的最⼤振幅由质点位置决定。其中最⼤振幅为0的
点叫做波节(node)，最⼤振幅为驻波的极⼤值的点叫做波腹
(antinode)。墙(边界)的位置为波节

• 相邻波节或波腹的距离为半个波⻓，因此波节的位置为，
sin 𝑘(𝑥 − 𝐿) = 0 ⇒ 𝑥 = 𝐿 − 𝑛/2 𝜆, 𝑛 = 0,±1,±2,⋯

类似地，波腹的位置为，𝑥 = 𝐿 − 𝑛 + 9
!

6
!
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𝜉(𝑥, 𝑡)

波腹

波节

𝑥

波源

𝑡 = 0

𝑡 = 𝑇/2



现在考虑波的两端的边界条件。令两个端坐标分别为𝑥 = 0, 𝐿。

• 如果弦的两端都是固定的，如琴弦，则两端都是波节，即
0 = 𝐿 − 𝑛/2 𝜆	 ⇒ 𝐿 = 𝑛/2 𝜆, 𝑛 = ±1,±2,⋯

换句话说，只有特定波⻓的驻波才能在弦上传播，这些振动模式叫
做简正模

• 其中频率最低(𝑛 = 1)的驻波𝐿 = 𝜆/2,	在声学⾥这⼀模式叫做基频

•弦的实际振动可能是不同简正模的叠加，不过⼀般⽽⾔，频率越
低越容易被激发
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𝑡 = 0

𝑡 = 𝑇/2

𝜉(𝑥, 𝑡)

𝑥

𝑛 = 1

𝑛 = 10



• 如果弦的⼀端都是⾃由的，则该处应为波腹，即

0 = 𝐿 − 𝑛 +
1
2
𝜆
2
	⇒ 𝐿 = 𝑛 +

1
2
𝜆
2
, 𝑛 = 0,±1,±2,⋯

• 其中频率最低(𝑛 = 0)的驻波𝐿 = 𝜆/4	

• 如果弦的两端都是⾃由的，则两端皆为波腹
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𝑡 = 0

𝑡 = 𝑇/2

𝜉(𝑥, 𝑡)

𝑥



【例⼦】⼀只试管⾼𝐻 = 10	cm，对着管⼝吹⽓试管会发出声⾳。
求发声的最低频率。
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𝐻

求解：空⽓振动，在试管中形成驻波。管底为固
定端，因此为波节。管⼝为开放端，因此为波腹。

因此，最低频率对应的波⻓满⾜，
𝜆 = 4𝐻 = 40	cm

频率：𝜈 = 𝑣R/𝜆，其中𝑣R ≈ 330	m/s为声速，可以
得到，𝜈 = 825	Hz



•上⾯讨论的情形都是1维的。这些概念也可以直接推⼴到3维。例
如波动⽅程推⼴到三维，只需要将空间导数改为，

𝜉#EE 	→ 𝜉#EE + 𝜉SEE + 𝜉TEE ≡ ∇!𝜉

从⽽，波动⽅程变成，
𝜉$EE = 𝑐!∇!𝜉

•类似地，3维简谐波为，
𝜉 𝑡, 𝑥⃗ = 𝐴 cos(𝜔𝑡 ± 𝑘 ⋅ 𝑥⃗)

• 能量密度与能流密度等概念与1维类似

d. 波在3维空间的传播
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•波在3维空间的传播时，还需要考虑波阵⾯的形状
• 常⻅的波阵⾯的形状有：平⾯波、球⾯波、柱⾯波
• 由能量守恒，球⾯波的能流密度按照距离平⽅反⽐衰减

• 当存在边界时，波的传播⽐较复杂
• 常⻅的边界包括：障碍物、⼩孔、介质的交界⾯

• 原则上可以通过求解波动⽅程得到——⽐较复杂
• 近似理论：基尔霍夫定理、菲涅尔定理（物理光学讲）

• 定性描述：惠更斯原理

• 现象：衍射、⼲涉、反射、折射
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惠更斯原理：

• 在波的传播过程中，波前的每⼀个点均可
以视为⼀个⼦波源，波下⼀时刻的传播由
所有⼦波源所发出的球⾯波叠加⽽成

•反射与折射定律：
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初级波源

次级波源

次
级
波
源

波阵⾯
𝑡

𝑡 + Δ𝑡

𝑐Δ𝑡



⼲涉：

• 根据惠更斯原理，波通过狭缝时可以视为点源。空间某⼀点的振幅为两个点
源发出的波的叠加：

𝜉 𝑡, 𝑟	 =
𝐴&
𝑟&s

cos 𝜔𝑡 − 𝑘 ⋅ 𝑟&s +
𝐴!
𝑟!s

cos(𝜔𝑡 − 𝑘 ⋅ 𝑟!s) = 𝐴 cos 𝜔𝑡 + 𝜑

其中，𝐴 = V34

}394
+ V44

}494
+ !V3V4

}39}49
cos 𝑘 𝑟&s − 𝑟!s

• 波的强度𝐼 ∝ 𝐴!，在远处屏幕上会观察到⼲涉花样

• 考虑双缝⼲涉的情形，𝐴& = 𝐴!, 𝑑 ≪ 𝐿, 𝑦 ≪ 𝐿，因此

屏幕上⼲涉极⼤峰满⾜𝑘Δ𝑟 = 2𝜋𝑛。考虑到U}
y
= f

~
，

观测到的⼲涉条纹的间距为Δ𝑦 = ~
y 𝜆
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𝑑

𝐿

𝑦
1

2

3



• 利⽤三⻆函数的关系，可以得到
𝑥 = 𝐴& cos(𝜔𝑡 + 𝜑&) + 𝐴! cos(𝜔𝑡 + 𝜑!)
= 𝐴& cos𝜔𝑡 cos𝜑& − 𝐴& sin𝜔𝑡 sin𝜑& + 𝐴! cos𝜔𝑡 cos𝜑! 	− 𝐴! sin𝜔𝑡 sin𝜑!
= 𝐴& cos𝜑& + 𝐴! cos𝜑! cos𝜔𝑡 − 𝐴& sin𝜑& +	𝐴! sin𝜑! 𝐴& sin𝜔𝑡
= 𝐴(cos𝜑 cos𝜔𝑡 − sin𝜑 sin𝜔𝑡) = 𝐴 cos 𝜔𝑡 + 𝜑

其中𝐴 = 𝐴&! + 𝐴!! + 2𝐴&𝐴! cos(𝜑& − 𝜑!) , tan𝜑 =
V3 WXY Z3[V4 WXY Z4
V3 \]W Z3[V4 \]W Z4

• 两个频率相同的简谐振动的叠加仍然为⼀个简谐振动

• ⽮量⽅法
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𝑡𝑥&
𝑥!

𝑥& + 𝑥!

𝑋

𝑌

𝑥!

𝑥*

𝑥

𝜑
𝜑*

𝜑!

cos 𝑎 cos 𝑏 − sin	𝑎	sin	𝑏 = cos	(𝑎 + 𝑏)回忆：同频率振动的叠加



衍射：是指波遇到障碍物时偏离原来直线传播的物理现象。⽤惠更
斯原理同样可以解释波的衍射。

• 如图所示，波在遇到衍射孔以后，在孔⾯各点都会形成次级波源。
孔⾯边缘附近的波⾯是球⾯波，这可以解释波偏离直线传播、绕
过障碍物的现象

• 同时，孔径越⼩，球⾯波占的⽐例越⼤，衍射现象越明显
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• 当观察者与波源做相对运动时，所观测到的波的频率会发⽣改变，
这个效应⾸先是由奥地利科学家多普勒注意到并研究的，称为多
普勒效应

• ⼀个很显著的现象是当汽⻋从轰鸣⽽过的过程中，能够明显感受
到汽⻋声调由⾼到低的变化

•设波速为𝑐，波⻓为𝜆，波的周期为波传播⼀个波⻓的时间：𝑇 =
𝜆/𝑐，波的频率为单位时间内接收到的波⻓的数⽬：𝑁 = 𝜈Δ𝑡 =
Δ𝑡/𝑇 = 𝑐Δ𝑡/𝜆 ⇒ 𝜈 = 𝑐/𝜆

•设波源的速度为𝑢，观察者的速度为𝑣

e. 多普勒效应（Doppler effect）
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•波源不动𝑢 = 0、观察者运动：

设观察者相对于波源运动，速度为𝑣。Δ𝑡时间内观察者接收到的波
⻓的数⽬为

𝑐 + 𝑣 Δ𝑡/𝜆 = 𝜈EΔ𝑡

考虑到𝜈 = 𝑐/𝜆，可以得出，
𝜈E = 𝜈 1 + 𝑣/𝑐 	

可⻅，当观察者相对于波源运动时，观测

到的波的频率会增加;	反过来，当观察者

远离波源运动时，观测到的波的频率会降

低
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•观察者不动𝑣 = 0、波源运动：

设波源运动速度为𝑢，此时由于波源的运动，其发出的波的波⻓变
短为，

𝜆E = 𝜆 − 𝑢𝑇

考虑到𝜈 = 𝑐/𝜆以及𝑇 = 1/𝜈，可以得出，
𝜈E = 𝜈/ 1 − 𝑢/𝑐 	

可⻅，当波源相对于观察者运动时，观测到的波的频率会增加；

反过来，当波源远离观察者时，观测

到的波的频率会降低
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•观察者与波源都运动时：

观测到的波的频率为两个效应的叠加：

𝜈E =
𝑐 + 𝑣
𝑐 − 𝑢

𝜈

• 如果运动速度不在波源与观察者的连线上，则只需要考虑连线⽅
向的速度分量

•注意如果波源与观察者的相对速度是变

化的，则还需要考虑波传播的延迟效应

•波源与观察者速度的不对称性是由于波

本⾝是相对于介质运动的
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【例⼦】⽕⻋在进⼊隧道前鸣笛，频率为200Hz。⼀位乘客注意到
⽕⻋鸣笛开始后4秒钟能听到频率为10Hz的拍。已知声⾳在空⽓中
的速度为340m/s，求⽕⻋开始鸣笛时到悬崖的距离与⽕⻋的速度。
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【例⼦】⽕⻋在进⼊隧道前鸣笛，频率为200Hz。⼀位乘客注意到
⽕⻋鸣笛开始后4秒钟能听到频率为10Hz的拍。已知声⾳在空⽓中
的速度为340m/s，求⽕⻋开始鸣笛时到悬崖的距离与⽕⻋的速度。

求解：拍的形成是由于汽笛声与反射的声波的叠加。时间差来⾃于直接传播

与经过反射的路径之差。考虑到⽕⻋速度远⽐声速慢，�
� ≪ 1，

𝑡& =
𝑥&
𝑐
, 𝑡! =

2𝑙 + 𝑥& − 𝑢𝑡!
𝑐

Δ𝑡 ≈ 𝑡! − 𝑡& =
2𝑙
𝑐
⇒ 𝑙 =

𝑐Δ𝑡
2
= 680	m	
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【例⼦】⽕⻋在进⼊隧道前鸣笛，频率为200Hz。⼀位乘客注意到
⽕⻋鸣笛开始后4秒钟能听到频率为10Hz的拍。已知声⾳在空⽓中
的速度为340m/s，求⽕⻋开始鸣笛时到悬崖的距离与⽕⻋的速度。

拍频Δ𝜈 = 𝜈? − 𝜈。乘客相对于⽕⻋静⽌，因此频率不变。反射的声波相当于
波源与观察者都在运动，因此多普勒频移为，

𝜈E =
1 + 𝑢/𝑐
1 − 𝑢/𝑐

𝜈 ≈ 1 +
2𝑢
𝑐

𝜈

⇒ 𝑢 =
Δ𝜈
2𝜈
𝑐 = 8.5	m/s
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•多普勒效应的应⽤：
• 多普勒超声（彩超）：利⽤多普勒效应测⾎液流动速度，
• 超声测速仪：⻋辆速度监控

• 天体物理、宇宙学：测量天体的移动速度——哈勃定律

• 等离⼦体诊断：⾼温⽓体中的分⼦做⾼速运动，⽅向杂乱⽆章，其发射
的谱会由于多普勒效应发⽣移动展宽，通过测量展宽可以确定温度

• 动⽬标显示雷达和脉冲多普勒雷达：利⽤多普勒效应，从强背景杂波中
提取运动⽬标的信号——军事、⽓象、辅助/⾃动驾驶……
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激波(shockwave)与⻢赫锥

• 当波源的速度⼤于波速时，上⾯的公式不再适⽤

• 当波源速度达到波速时，波阵⾯在介质中堆积，形成冲击波（激
波）

• 当波源速度进⼀步增加时，质点的激波的波阵⾯呈圆锥形，且以
运动的物体为圆锥的顶点，叫做⻢赫锥。⻢赫锥的顶⻆
sin𝜑 = 𝑐/𝑢，其中𝑀𝑎 = 𝑢/𝑐叫做⻢赫数

•电磁学：切连科夫辐射——测量粒⼦速度

107𝑢 < 𝑐 𝑢 = 𝑐 𝑢 > 𝑐

𝑐Δ
𝑡

𝑢Δ𝑡



激波的例⼦
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歼20突破音障瞬间

中微子切连科夫探测器

汽艇形成的V形水波(开尔文波) 地球相对于太阳风运动形成的激波

高速飞行的飞机行程的马赫锥 东风-17高超音速导弹


