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These notes define a set of conventions in light-front quantum field theory. Similar conventions for
light-front dynamics, can be found in, e.g.,

e A. Harindranath: Light front QCD: lecture notes (2005);
e M. Burkardt: Light Front Quantization, Adv. Nucl. Phys. 23, 1 (2002) [arXiv:hep-ph/9505259];

e G. P. Lepage, S. J. Brodsky, Ezclusive processes in perturbative quantum chromodynamics, Phys.
Rev. D 22, 2157 (1980);

e S. J. Brodsky, H.-C. Pauli , S. S. Pinsky: Quantum chromodynamics and other field theories on
the light cone, Phys. Rep. 301, 299 (1998);

e J. Carbonell , B. Desplanques , V. A. Karmanov and J.-F. Mathiot: Phys. Rep. 300, 215 (1998).

Throughout the notes, we use natural units, i = ¢ = 1. Let x = (2°, 2!, 22, 23) = (¢, ) be the standard
space-time coordinates. The signature of Minkowski space metric tensor is g,,, = diag{+1,—1, -1, —1}.

1 Light-Front coordinates

The light-front coordinates are defined as (z, 27, 21, 2%), where 27 = 2%423 is the light-front time, 2~ =

2% — 23 is the longitudinal coordinate, + = (2!, 22) are the transverse coordinates. The corresponding

metric tensor and its inverse is,

NO|—=

uv = ) g = (1)

Note that /—det g = % The Levi-Civita tensor should be defined as

) +2 if p,v, p,o is an even permutation of —,+,1,2
v o
= (,u p ) =4 —2 if u,v,p,0is an odd permutation of —, +,1,2  (2)

ehvpo —
v—detg \— 4+ 1 2

0 other cases.

Similarly, the light-front components of a 4-vector v = (v°,v) is (v, v™,v*), where v* = v* £ ¢ and

vt = (v!,v?). Sometimes it is also useful to introduce the complex representation for the transverse
vector v*: vE = v! —iv?, and v = v! +iv? = (vl)*. The component of the contravariant 4-vector
vy = guv” are: (v_,vq, v ), where vy = L(vg £v3) = LvT, v = —vt.
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It is useful to introduce two vectors to symbolically restore the covariance: w = (w”, w) = (1,0,0, —1),

and n = (n°,m) = (0,1,0,0). They satisfy
wuwt =0, nunt = =1, nuw* =0, (W =n*=1). (3)

Then, the longitudinal coordinate of a vector a can be written as a™ = w - a. Similarly, the transverse
component of it becomes a' = a — w(w - a).

2 Normalization

The coordinate space integration measure is defined as

1
/d3x£ /dx+d2xJ‘ = i/dx*d%cl. (4)

The full four-dimensional integration measure is,
1
/d4x = /dmodxldedx3 = §/dac+dac_d2acl = /d3acdx+. (5)

In the momentum space, we use the Lorentz invariant integration measure:

dat . 4 d2p, dpt p, [ da
[ ittt = mt) = [ SS06n) = [ S 0wt = [ SEs [ (6)
0

where p° = \/p2? + m? is the on-shell energy and z = p™/P7 is the longitudinal momentum fraction.
The corresponding normalization of the single-particle state is

(p,olp’,0") = 20°0(p°)(27)*6%(p — P')d00r = (27)*6* (p — 1) /0 ()5 (0 — m?)
=201 0(pT)(27)%83 (p — p')00or = 22(21)36(x — 2)5%(p1L — P/ )0oor-  (7)

Here the light-front delta function is defined as §(p) = §%(pL)d(p™).
The transverse Fourier transformation and its inverse transformation are defined as,

%mz/d“#m“ﬂmxf@uszmam“ﬂm» (8)

2.1 Box regularization

In a typical box normalization, the system is confined in a box with length L:

Wt~

SxS—i—é. (9)

Here x is the coordinate of any one spatial dimension. Boundary conditions, such as periodic boundary
condition or anti-periodic boundary condition, may apply. The conjugate moment is discretized. In the
case of the periodic boundary condition, it becomes, p = 27n/L, (n = 0,£1,42,---). The conversion of
the integrations and §-functions are listed in Table [I| For example,

+oo i , +%L . /
/ dz e 'P=P)T —276(p — p'), / dz e P=P)e = 5, .
o .Y

YO ip(z—2’) _ o - ip(z—x') _ o
/ e'? =0(x — '), sz:ep =d(x —2a).

oo 2T

In light-front dynamics, the spectral condition requires that the longitudinal momentum is always
positive. The box regularization of the longitudinal momentum can be implemented using the same



Table 1: Conversion formula for the box regularization.

. . L—oo .
box regularization —— continuum

+iL +o0
/ dx / dx
_1 oo

3L I

oo
1 L—oo dp
— H JE—
L; / 2w

5z —2") §(x — ")
Léy, 276(p — p')

method above but with an addition Heaviside #-function to impose the positivity of the longitudinal
momentum: 6(p*). Note also that the longitudinal momentum is conjugate to z; = 1z~. For example,

1 Foo _ _7:(+_ /+) - + /4 1 +1 _ _7:(+_ /+)
5/ dz= e 2P 7P )T =275(pT — p'r), 5/ de” e 2P TP T = Ly

oo -L
Too dpt i 1 it (o (11)
/_Oo %9(p+)eip+(* - ):25(36_ —a2'7), Zze(p+)e§p+(* - ):25(30_ —a'7).
p
2.2 Longitudinal propagators
L, 1t o _
gefa =1 [ ar e =y - —a )16, (12)

This propagator is the inverse of the derivative operator and satisfies the anti-periodic boundary condition
in the longitudinal direction:

o (5ef) @) =) (G21) (o0 == (5 ) (. (13)
ﬁf(x‘) = ;/_:O dy~ |z~ =y~ |f(y7)- (14)

This propagator is the inverse of the double-derivative operator and satisfies the anti-periodic boundary
condition in the longitudinal direction:

0 (gt ) @) =560 (et ) o0 == (! ) (+o0) 15)

3 Kinematics

Two-Body kinematics Let P, = p;| +poi, Pt = pf + p; be the c.m. momentum of two on-shell
particles with 4-momentum py, pe, respectively (p? = m2). Define the longitudinal momentum fraction
xq = pt /PT, (x1+32 = 1), and relative transverse momentum p; = py; —x1 P, (—=pL = pa) —x2P)).
Then, the momentum space integration measure admits a factorization:

/d2pf-dpl+ / d2p§-dp§r _/d2pf-dx1 / d2p§-dx2 _/dQPJ-dP+/ d?ptdz (16)
(2m)32pf ) (2m)32pf ) (2m)3221 ) (2m)32z, ) (2m)32Pt ) (2m)322(1 —a)’




where x = x1. Similarly, the two-body Fock state
(P11, p2) =2210(p1 ) (2m)°6° (p — PiH)0(ar1 — 24)2220(p3 ) (21)° 8% (py — pis )0 (w2 — a3)
=2PT9(P1)(21)383(P — P)2z(1 — z)(21)382(p1. — 9/, )d(z — o) (17)
:<Pl;plL7x/|P;pLax>'
Furthermore, the two-body invariant mass squared is,

2 2 2 2 2 2 2 2
pigtmi Py +m pi+tmi pitm
82 = (p1 + p2)? = PLL 1y Py 2 _p2_PL 1, Pl 2

T To x 1—2

(18)
here m, is the a-th particle’s mass.

Few-Body kinematics Define the few-body c.m. momentum P, =Y p.., PT™ =Y, pl. Introduce
the momentum fraction and the relative transverse momentum:

LTa = Pq /131L k.. = Pal — o Py (19)

Then, it is clear that ) z, =1, and ), ko1 = 0. The few-body momentum space integration measure
admits a factorization of the c.m. momentum:

pLdp} d?PLdP+ d2ktdz,
1/ G own) = [ Grpr 0P T [ Grgre 2om e (ks )a( 1) 20

The few-body invariant mass squared is,

= (Tn) = L At @)

a

Lemma cluster decomposition of s,:

Let (2q,kq1), (a =1,2---,n) be n relative momenta, i.e. > x, =1, > kqi = 0. Define
new relative momenta with respect to the cluster without the n-th particle: (, = z,/(1—x,),
Kol = ka1 + (ukni. Then, the n-body invariant mass squared can be written as,

I T B ] (o e ST NS

o1 a Ca mn(l - xn)

a=1

or in short form,

(1 —x,)(8, — M?) =5 (23)

Figure 1: Cluster decomposition of the few-body invariant mass squared.



Lemma cluster decomposition of s:

Let (x;, k; 1) be relative momenta (i = 1,2---),1.e. >, 2; =1,) . k; 1 = 0. Partition the sys-
tem into two clusters A and B. Let x4 = > ;e i, kar = ;cakil, 2 =) ,cpTi kpL =
ZiEB k. ObViOuSly, ki, +kp, = 0, x4 +2xz5=1.

Define new relative momenta with respect to the cluster: ;4 = x;/xa, KiaL = kil —Ciakal .

2 2
3 3 Kialtm;
(i = xi/xp, Kip1L = ki1 — (;pkp.. Introduce the invariant masses s4 = > icA AC#’
2 2
— Kiptm;
SB = icn ¢

k2 2 .
EiiA™i can be written as,

Then, the total invariant mass squared s = s4yp =Y,

2 ZTq

k2 +m? K k2
3 iL M R4y t5A | Fay T Se (24)
- z; Ta 1—z4

Figure 2: Cluster decomposition of the few-body invariant mass squared.

4 gamma matrices

In this convention, the 4-by-4 gamma matrices are defined as (cf. Dirac and chiral representation):

0 —i . 0 i —ig? 0 ict 0
0_ 3_ 1_ 2 _ 925
=0 =0 =00 ) =0 ) &

where 0 = (1, 0) are the standard Pauli matrices,

) ) 6
0 1 1 0 i 0 0 -1

The v-matrices defined here furnish a representation of the Clifford algebra C¢; 3(R):

YA + Ay = 2g" (27)
Then, S* = i['y“,'y”] furnishes a spinorial representation of the Lorentz group. It is convenient to
introduce the following 4-by-4 matrices,

o front-form: 7 =10 £% vt = (Y4, A = -2 A = v p =t = 5pT +
5P Pl

corollaries: Yyt = 0,777~ = 0;9 Ty 7yt = 49,y 79ty = 497:4%9F = 4F40. The matrix

form are:
’YJF: 0 0 v = 0 —2i ’yL: ol 0 ’YR: —oft 0
2i 0/’ 0o o)’ 0 —ob)’ 0 oft)’
where,



— 1,0,%.

e projections: A* = Ay = 1709%;

corollaries: A2 = Ay, ATA= =0, A"AT =0, AT+ A~ =1
AL =Ap, Ry = Ag, 3Ty = A7, Lyt =A%,

Under the convention we use, the projections are diagonal and simple:

SRS

parity matrix: 3 = «Y; charge conjugation matrix: C = —iy?; time reversal matrix: 7' = y'v3 = Cys

chiral matrix: v° = v5 = i7%9'4243 = —75’“”"77“%%70 is diagonal:

3 - +
5 o o 1 /(o
= , P = Pr== ,

where P, = 1(1 — v5) = diag{0,1,1,0}, Pz = (1 + 75) = diag{1,0,0,1} are the two chiral
projections, also diagonal. It is easy to see P} = Pp, Pf% = Pgr, PLPr = PrP;, =0, P, +Pr=1.

DN | =

o-identity:
1
1SH s = 755“”’”5,;,, (28)

¢ = !B (for spinorial vector) and A = BA'A3 (for spinorial matrix).
Overbar identities:

AE =, S = SW dyg =dys,  APs =As, 159 = iy SHY
In other words, the spinorial representation is real.

spin projection matrix S,:

; 3 s i
_qi2_1 1o 1f0 i_ Lk _ L 0 —io

The gamma matrix identities Because gamma matrices satisfy anti-commutation relations, the trace
of a string of gamma matrices follows the Wick theorem (see, e.g., S. Weinberg, The quantum theory of
fields, Vol. 1, 2005):

The trace of the product of gamma matrices equals the sum of all possible contractions with
the corresponding permutation signatures included.

A contraction of any two gamma matrices v,, v, gives a factor 4g,,. If the two contracted gamma
matrices are not adjacent, there would be a sign (—1)", where n is the number of exchange operations
needed to makes them adjacent (but keeping their relative order).

Frequently used identities in D = 4 dimensions:

tr{product of odd number of v’s} = tr{7s - product of odd number of v’s} =0

trl=4, trys=0

tr{dh} = 4(a-0), tr{sdh} =0

tr{dbgd} = 4((a-b)(c-d) = (a-c)(b-d) + (a-d)(b-c)), tr{vsdbfd} = —4ic"""7a b, cpds
Note that, when p, v, p,0 = +,—,1,2, e"P7 = ¢(pu,v, p,0)//—det g

YA =4, Yudy" = (2— D), Yudby" =4(a-b) — (4— D)dh, ~udb¢r" = —2¢bd + (4 — D)gb¢,
Tudbddyt = 2(ddbs + ¢hdd) — (4 D) dbéd;

dd = a®, dh=—pg+2(a b)



5 Spinors

The u, v spinors are defined as,

us(p) = 2\/» (p+m)yFxs = \1/—(J¢+m)6xs = \/;T(er +at - pt 4 Bm)xs; -
vs(p) = ﬁ(p —m)ytx_s = \/?(p —m)Bx_s = \/;TW +at-pt—Bm)x_s;

where x4+ = (1,0,0,0)T,x— = (0,1,0,0)T are the basis of the two-component spinors (the dynamical
spinors on the light front) and satisfy:

1
A+Xs = Xs» A—Xs =0, Xle’ =0ssry S X+ = i§Xi- (30)

The u, v spinors are polarized in the longitudinal direction:
Szu:l:(p+apl = O) = i%ui(p+apL = 0)7 Sz'U:I:(p+’pL = O) = :F%U:l:(p+7pl = 0) (31)

and following the standard normalization scheme:

Us(p)us (p) = 2mdssr,  Vs(p)vs (p) = —2mssr,  Us(p)vs (p) = Vs(p)us (p) = 0. (32)

The spinor identities:

e Dirac equation:

(p —m)ug(p) =0, (P +m)vs(p) =0; (33)
e normalization:

Us(p)us (p) = 2mbssr,  Vs(p)s (p) = —2mbssr,  Us(p)vs (p) = O; (34)
e spin sum:

Z us(p)us(p) = p+m, Z vs(p)Vs(p) = P—ny (35)

s== s==+

e crossing symmetry:
us(p) = V—1v_s(=p), Us(p) = V—10_5(—p), vs(p) = V—1u_s(—p), 0s(p) = V—1tu_,(—p); (36)

Note that p — —p flips the sign of all four components of the momentum, including the light-front
energy and the longitudinal momentum.

The crossing symmetry is clearer if we define wy(p) = 22'%(p +m)ytxs = \/%us (p), and zs(p) =
P

2}% (p—m)yTx—s = ﬁvs (p). Then the cross symmetry between w and z is z,(p) = w_s(—p), Zs(p)

W_s(—p).

e Gordon identities:

2may (p")y"us (p) =ty (') [(p + P + 215" (p —p )o]us(p); (37)
—2mg (p")y*vs(p) =05 (") [(p + P')* + 2" (0" — p).]vs(p); (38)
2miy (p' )y vs(p) =tis (p') [(p' — )" + 218" (9 + p)u ] vs(p); (39)
2miy (p") v ysus (p) =ts (p') [(p — P) s + 20SH (0 + p)uys ) us (p); (40)
0 =ty (p') [(p — )" + 215" (p' + p)o ] us(p); (41)

0 =ty (') [(p + )75 + 205" (0 — p)oys] us (D). (42)



e other useful identities:

Us(p)y us (p) = 2p"0ssr,  Vs(P)Y 05 (P) = 29" 05t
g (P )y ys5us(p) = 2/ T+ dssrsign(s);

s (p)y Fus (0) = 05 (p)y T ve (') = 24/ PP+ Oser
ts(p)7 vy (—p) =0

Spinor vertices In general, the spinor vertex can be written as,

Vi =ts (p' )y by - b, u(p)

— 1 T A0+

T W mdy e (P m s

1
S ! +
72 /p+p,+xs’A+(p +m)¢’1¢2 Vin(}’)"‘m)’Y Xs
_ 1
4 /prpt

tr[(p' + m)¢i1¢i2 U ¢n(p + m)'7+Xss’]

Now the spinor vertex is turned into the trace of a string of gamma matrices, and

I+, s=+,8 =+

b 2 L =Ly e 8= ==
2 2| A=t s=ts =
Y=t -1, s=—,8 =+

— — 'R
US’(p/)us(p) — _Us(p)'US' (p/) _ /p+p/+ B - P/+’

!
)a 5,8 :++7__
/
S, 8 +7_
8,8 = — +

e pseudo scalar vertex: (p® = p' +ip?, p¥ = p' —ip?, p.p* = m?)

(
(L
Uy (P )vsus(p) = —0s(p)Yy50s (p') = V/pHp'* R(”+

Ay
p

p" _
p p

1 1
_p/Jr)a $,8 = ——
[
/+ 5,8 ==T,—
!/
I+ S, S __7+

(46)



e vector vertex: (p? = p! +ip?, p¥ = p! —ip?, pupt = m?)

s (p) vy us(p) = 0s(p)y T ve (p') =24/ ptp'* dssr
m? +pfp't, s =+,+

i (07 s (p) = 0 (p)7 00 () =—— m? 4 plp®, sl = -, -
Us'\P )Y Us\P) = VUs\D)Y Vs/\P ) =—F——
s s s s /p+p/+ m(pR _ p/R)7 s, Sl _ +’ _
m(p _pL) 878/:_a+
o 5,8/ =+, +
L
b, 8,8 =—,— (48)
Uy (p )7 us(p) = vs(p )’Y vy (p ) =2/ptp'* Pt
m( 1 - i) S, 8 =+, —
Pt pt /D ’
07 S, s’ = -+
r, 5,8 = +,+
p: ) S, S/ = -
e (p)7 us(p) = s (p)y 0w () =2¢/pFp't P /
07 $,8 =+, —
m(p%_p%r)’ 878/:_a+
e pseudo vector:
e ()Y sus(p) = —0s(p)y 500 (p) = 20/ PP+ dssrsign(s
—-m _’_pleR7 svsl = +7+
) p/RpL s SI - _ _
/ - — — / ’ ’ bl
Us'\P )Y VsUs\P) = —Us(D)Y V5Vs/\D ) = —F—/—=
S( ) S( ) S( ) S( ) \/W m(p +p/R)7 878/:+7_
m(pL+p/L)7 575/ = 77+
oy 5.8 = +,+
L o , -~ 5,8 = —, — (49)
s (0 )7 v5us(p) = —0s (D)7 00 () = 2¢/pHpH 4 2T :
m(F+p/+)a $,8 =+, —
07 S, S/ = +
iif’ s? SI +7+
7p/R s s/ —
Uy ()Y ysus(p) = —0s ()7 500 () = 2/ptp'+ o) v . ’
) 5,8 = y
m(p%+p/i+)a §,8=—,+
6 Polarization of massless vector bosons
Define the polarization vector:
_ L'kL
6/;(k) = (5;\‘_;5,\351_) = (0726)\?36*)7 ()‘ = :l:]-) (50)

where €1 = %(1, +i). In fact, ek = V255 1,8 = V255 . This definition satisfies the light-cone gauge
w+A= AT =0 and Lorenz condition 9, 4" = 0,

wueh(k) =gl (k) =0, k,ek(k)=D0. (51)

There is another set of conventions that define ef = ,%(17 +i).



Polarization identities:

e orthogonality:
eN(k)en (k) = —0xn; (52)

e helicity sum:

. . L. " /_Lkl/ l/kp, k2
S (k) = 67, dv = Y (k) (k) = —g + ST gy . (53)
w-k (w-k)?
A=+ A=+
In particular, if k is on-shell, i.e. k? = 0, the second identity is reduced to
N wHEY + WYk
D AR (k) = =g + ———— (54)
w-k
A==+
e crossing symmetry:
i (k) ="\ (k) = e\ (k) (55)
where w* = (1,0,0, —1), is the null normal vector of light-front, w-w =0, w-v =v™.
7 Spin vector of massive vector bosons
Define the spin vector for the massive vector bosons:
(i kZ —m? k) A=0
ex(k) = (e (k),ex (k),ex (k)= q " i 7 (56)
A (0,295 el),  A=+1
where where ef = %(1, +i), and ei* = e, m? = k,k" £ k? is the mass of the particl
Spin identities:
e Proca equation, k,e) (k) = 0.
e orthogonality:
ex(k)ex, (k) = =0 (57)
e spin sum:
+1
X kHEY
KM= 3" el"(k)e (k) = —g" + R (58)
A=—-1
kFEK (k) = kMEY K, (k) = 0.
e crossing symmetry:
eV (k) = e \(k), ei(—k)=(—1) el (k); (59)
IThere is another set of conventions that define e} = ,%(17 +i). One should be careful about the consistency of the
conventions one chooses. For example, under the definition of ei = —%(1,ii) the eigenvalue of the mirror parity
(light-front parity) operator mp = Ry (m)P of a vector state is mp|pt,pt,p?,j,m;) = (=) Plpt, —p',p?, 4, —m;).
But if one use our definition ei = %(l,j:i)7 there will be an extra minus sign, i.e., mp|pt,pt,p? j,m;) =

—(=)2 Plp*, —pt, p?, 4, —m;).

10



	Light-Front coordinates
	Normalization
	Box regularization
	Longitudinal propagators

	Kinematics
	gamma matrices
	Spinors
	Polarization of massless vector bosons
	Spin vector of massive vector bosons

