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General discussions

▶ Recent reads, thoughts, plans and other things
▶ English, physics
▶ Literatures in HEP (search engine, Wikipedia, arXiv, inspirehep, indico)
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Light-front Schrödinger wave equation

LFSWE provides a semiclassical first approximation to QCD

[ k⃗2
⊥ + m2

q

x
+

k⃗2
⊥ + m2

q̄

1 − x
+ V

]
ψss̄/h(x, k⃗⊥) = M2

hψss̄/h(x, k⃗⊥)

▶ Separation of variables V = V⊥ + V∥ , ψ = ϕ(ζ⊥)χ(x), M2 = M2
⊥ + M2

∥

[
∇2

ζ⊥ + V⊥
]
ϕ(ζ⃗⊥) = M2

⊥ϕ(ζ⃗⊥)[m2
q

x
+

m2
q̄

1 − x
+ V∥

]
χ(x) = M2

∥χ(x)

▶ Light-front holography, confinement and supersymmetry
▶ 't Hooft model, chiral symmetry breaking and longitudinal dynamics
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Numerical methods
Goal: Develop numerical tools to solve LFSWEs.

1. Non-relativistic Schrödinger equations

Problem 1.1: Consider a 1D square well defined by the potential energy,

V(x) =

{
0, 0 < x < a
∞, x < 0 or x > a.

(1)

A non-relativistic particle with mass m is inside the well. Find the energy levels of the
particle and the corresponding wave functions.

Problem 1.2: In 1935, Hideki Yukawa proposed a meson-mediated model for nuclear
force. In this model, two nucleon interacts by exchange a pion. Deuteron is a nucleus
consisting of two nucleon. In the semiclassical approximation, it can be described by
the 3D Schrödinger equation with Yukawa potential,[ p⃗2

2mr
− α

exp(−µr)
r

]
ψ(⃗r) = Eψ(⃗r). (2)

Solve this equation and obtain the binding energies as well as the wave functions.
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Numerical methods
Goal: Develop numerical tools to solve LFSWEs.

2. Light-front Schrödinger wave equations

Problem 2.1: Consider a 1D light-front Schrödinger equations,

[ m2
q

x(1 − x)
− σ2 d2

dx2

]
χ(x) = M2χ(x) (3)

This equation describes a semiclassical model of the meson. mq is the mass of the
quark, x = p+q /P+

M is the fraction of the quark momentum with respect to the meson
of the meson. σ ∼ 1 GeV is the strength of the confining potential. Find the squared
mass eigenvalues of the meson M2 and the corresponding wavefunctions χ.

Problem 2.2: 't Hooft model is obtained from the 1D QCD at large Nc limit ['t Hooft,
1974 Nucl. Phys. B]. The equation is,

[m2
q

x
+

m2
q̄

1 − x

]
χ(x) +

g2

π
P
∫

dx′
χ(x)− χ(x′)
(x − x′)2 = M2χ(x) (4)

g is the dimensionful 't Hooft coupling. P
∫

means that the integral is taken with the
principal value prescription.
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General discussions

▶ Thoughts sharing
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Time-independent Schrödinger wave equation
H|ψh⟩ = Eh|ψh⟩

Here H = T + V is the Hamiltonian operator. T is kinetic energy, V is
potential energy.
Representations:

|ψ⟩ =
∫

d3x ψ(x⃗)|⃗x⟩,

=
∫ d3 p

(2π)3 ψ( p⃗)| p⃗⟩

ψ(x⃗) and ψ( p⃗) are called the coordinate space and momentum space wave
functions, respectively. They are related by Fourier transform.

ψ( p⃗) =
∫

d3x e−i p⃗·⃗xψ(x⃗).

Inner product:

⟨ψ|φ⟩ =
∫

d3x ψ(x⃗)φ∗(x⃗) =
∫ d3 p

(2π)3 ψ( p⃗)φ∗( p⃗)
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Numerical methods

▶ Separation of variables, symmetry
▶ Finite difference (P1.1, P1.2, P2.1)
▶ Basis expansion

▶ Fourier transform/plane wave basis (P1.1, P2.1)
▶ Harmonic oscillator basis, Coulomb basis

▶ Nystrøm method (P1.2, P2.2)

Each method has its advantages and disadvantages in a specific set of problems.
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Finite difference(
− d2

dx2 + V(x)
)

ψ(x) = Eψ(x). (a < x < b)

▶ Represent wave function on a set of finite discrete spatial points:
{a = x0, x1, x2, · · · , xN−1, xN = b}

▶ Approximate the kinetic energy operator using finite difference,

d
dx

ψ(xi) =
ψi+1 − ψi−1

2∆x
+ O(∆x2),

d2

dx2 ψ(xi) =
ψi−1 − 2ψi + ψi+1

∆x2 + O(∆x)

where, ∆x = (b − a)/N, ψi ≡ ψ(xi). The equation becomes
(Vi ≡ V(xi)),

2ψi − ψi+1 − ψi−1 + ∆x2Viψi = E∆x2ψi,

▶ Solve the finite-discretized Schrödinger equation using eigensolvers

∑
j

Hijψj = ϵψi,

where Hij = δij(2 + ∆x2Vi)− δj,i+1 − δi,j+1, ϵ = E∆x2
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Basis expansion
H|ψh⟩ = Eh|ψh⟩

Here H = T + V is the Hamiltonian operator. T is kinetic energy, V is
potential energy.
▶ Choose a basis with a finite truncation {|ϕ1⟩, |ϕ2⟩, · · · , |ϕN⟩}
▶ Expand the state vector in the basis,

|ψ⟩ = ∑
i

ci|ϕi⟩

The TISWE becomes a generalized matrix eigenvalue problem,

∑
j

Hijcj = E ∑
j

wijcj

where Hij ≡ ⟨ϕi|Ĥ|ϕj⟩, wij ≡ ⟨ϕi|ϕj⟩. In wave function representation,

⟨ϕi|Ĥ|ϕj⟩ =
∫

d3x
∫

d3x′ϕi(x⃗)H(x, x′)ϕ∗
j (x⃗′)

▶ Solve the matrix eigenvalue equation using eigensolvers
Yang Li, LFSWE 11/122 November 29, 2021



Nystrøm method

p2

2m
ψ(p) +

∫ dp′

2π
V(p, p′)ψ(p′) = Eψ(p)

▶ Choose a set of Gaussian quadrature points {p1, p2, · · · , pN}
▶ Represent the integral using Gaussian quadratures (ψi ≡ ψ(pi)),∫

dp′V(p, p′)ψ(p′) ≈ ∑
i

wiV(p, pi)ψi

Then, the TISWE becomes,

p2
i

2m
ψi +

1
2π ∑

j
wjVijψj = Eψi

▶ Solve the eigenvalue problem ∑j Hijvj = Evi , where, vi =
√

wiψi , and
Hij = δij(p2

i /2m) + (1/2π)
√wiwjVij .
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Example: Yukawa potential[ p⃗2

2mr
− α

exp(−µr)
r

]
ψ(⃗r) = Eψ(⃗r).

In momentum space,

p⃗2

2mr
ψ( p⃗)−

∫ d3 p′

(2π)3
4πα

( p⃗ − p⃗′)2 + µ2 ψ( p⃗′) = Eψ( p⃗).

Separation of variables, ψ( p⃗) = R(p)Ylm( p̂)

p2

2mr
R(p)− 4α

π

∫
dp′Kl(p, p′)R(p′) = ER(p).

where,
Kl(p, p′) =

∫ ∞

0
dr jl(pr)re−µr jl(p′r)

For example (λ = µ/mr),

K0(p, p′) =
1

4pp′
ln

[ (p + p′)2 + λ2

(p − p′)2 + λ2

]
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Numerical solution of non-relativistic Yukawa model

Yang Li∗

Department of Physics and Astronomy, Iowa State University, Ames, IA 50014

October 11, 2016

Abstract

These notes describe a numerical method for solving Schrödinger equation with the Yukawa
potential. Energy eigenvalues and wave functions are obtained and compared with the Coulomb
results.

Introduction The Yukawa potential (aka. screened Coulomb potential) V (r) = −(α/r) exp(−µr) is a
universal potential for interactions mediated by massive particles in the non-relativistic limit. It is also
useful for describing interactions in the medium – the “screened Coulomb interaction”. Thus it is very
important to find the solutions for the Yukawa potential in non-relativistic Schroedinger equation:[

− ∇
2

2m
− α

r
e−µr

]
ψ(~r) = E ψ(~r), (1)

where m is the reduced mass, α ≡ g2/(4π) is the strength of the interaction with g the “charge”, µ is
the mass of the exchanged particle, and µ = 0 gives the Coulomb potential. Alas, the above eigenvalue
problem does not admit analytic solution, except for the Coulomb case.

In the momentum space, the eigenvalue equation becomes an integral equation:

~p2

2m
ψ(~p)−

∫
d3p′

(2π)3
4πα

(~p− ~p′)2 + µ2
ψ(~p′) = E ψ(~p). (2)

Here ψ(~p) represents the momentum-space wave functions, related to the coordinate-space wave function
ψ(~r) by a Fourier transformation,

ψ(~p) =

∫
d3r ei~p·~rψ(~r), ψ(~r) =

∫
d3p

(2π)3
e−i~p·rψ(~p). (3)

We have abused the notation ψ for wave functions. The wave functions are normalized according to∫
d3r ψ∗(~r)ψ(~r) = 1,

∫
d3p

(2π)3
ψ∗(~p)ψ(~p) = 1. (4)

Before employing numerical methods, let us first put the equation to a dimensionless form. The
natural scale in the problem is the Bohr radius (~ = c = 1): a ≡ 1/(αm). We also define: λ ≡ aµ,
κ ≡ 2mEa2 = 2E/(mα2) ≡ E/EB , with EB ≡ α2m/2 being the ground state binding energy within the

Coulomb potential (µ = 0). Upon substitutions: ~p→ a~p, ~r → ~r/a, ψ(~r)→ a
3
2ψ(~r/a), ψ(~p)→ a−

3
2ψ(a~p),

the Schrödinger equation and its momentum representation becomes,[
−∇2 − 2

r
e−λr

]
ψ(~r) = κψ(~r), (5)

~p2ψ(~p)−
∫

d3p′

(2π)3
8π

(~p− ~p′)2 + λ2
ψ(~p′) = κψ(~p). (6)

∗leeyoung@iastate.edu
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The theory has a rotational symmetry and the wave functions can be written as,

ψ(~r) = R(r)Ylm(r̂), ψ(~p) = P (p)Ylm(p̂), (7)

where Ylm are the spherical harmonics. They are the eigenfunction of the angular momentum squared
operator ~L2, and are normalized:∫

d2Ω(r̂)Y ∗l′m′(r̂)Ylm(r̂) = δll′δmm′ . (8)

As a result, we only need to solve for the radial part R(r) or P (p) which are real functions1. These radial
wave functions are related by Hankel transformation:

R(r) =
(−i)`

8π3

∫ ∞
0

dp p2j`(pr)P (p), (9)

P (p) =i`
∫ ∞
0

dr r2j`(pr)R(r). (10)

Here j`(z) is the spherical Bessel function of the first kind, ` = 0, 1, 2, · · · is the orbital angular momentum
quantum number. The radial wave function are normalized according to:∫ ∞

0

dr r2R2(r) =1, (11)

1

8π3

∫ ∞
0

dp p2P 2(p) =1. (12)

Numerical Methods The coordinate-space Schroedinger equation can be written in the spherical
coordinates:[

− 1

r2
d

dr

(
r2

d

dr
) +

l(l + 1)

r2
− 2

r
e−λr

]
R(r) =κR(r). (13)

⇔
[
− d2

dr2
+
l(l + 1)

r2
− 2

r
e−λr

]
u(r) =κu(r), (14)

where u(r) = rR(r). The above differential equations can be discretized and solved numerically. In
particular, in the case of an even-spacing grid2,

d

dr
f(r) =

f(r + h)− f(r − h)

2h
+ O(h2) (15)

d2

dr2
f(r) =

f(r + h)− 2f(r) + f(r − h)

h2
+ O(h2). (16)

The obtained matrix can be diagonalized.
In these notes, however, we will focus on the momentum space representation and its numerical

solutions. In momentum space, Schroedinger equation can be written as

p2P (p)− 4

π

∫ ∞
0

dp′ p′2K`(p, p
′)P (p′) = κP (p), (17)

where

K`(p, p
′) ≡

∫ ∞
0

dr r exp(−λr)j`(pr)j`(p′r). (18)

1R(r) and P (p) depends on the orbital quantum number l. The dependence is suppressed here.
2For non-even-spacing grids useful for radial wave functions, either a cutoff or a mapping is necessary before the

discretization.
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The above integral (18) can be evaluated analytically. The expressions for the first few K` are:

K0(p, p′) =
1

4pp′
log
[ (p+ p′)2 + λ2

(p− p′)2 + λ2

]
; (19)

K1(p, p′) =
p2 + p′2 + λ2

4p2p′2
log
[ (p+ p′)2 + λ2

(p− p′)2 + λ2

]
− 1

2pp′
; (20)

K2(p, p′) =
3p4 + 2p2p′2 + 3p′4 + 6(p2 + p′2)λ2 + 3λ4

16p3p′3
log
[ (p+ p′)2 + λ2

(p− p′)2 + λ2

]
− 3(p2 + p′2 + λ2)

8p2p′2
. (21)

Eq. (18) can also be evaluated numerically using quadrature method as described below.
Once K` is obtained, the integral in Eq. (17) can be approximated using quadrature method. For a

general integral,∫
dx f(x) =

N∑
i=1

wif(xi) +R[f (2N+1)(ξ)] (22)

where xi and wi are pre-chosen abscissas and weights. For the radial integrals (17–18), the abscissas and
weights can be obtained from the Gauss-Legendre quadrature with a mapping function. Gauss-Legendre
quadrature approximates integrals over the interval (−1,+1):∫ +1

−1
dz f(z) =

N∑
i=1

ωi f(xi) +R[f (2N+1)(ξ)].

⇔
∫ 1

0

dz f(z) =

N∑
i=1

1

2
ωi f((xi + 1)/2) +R[f (2N+1)(ξ)].

(23)

Here xi are the zeros of Legendre polynomial PN (z), and ωi ≡ 2(1 − x2i )/(N + 1)2/[PN+1(xi)]
2. We

employ a mapping function φ : (0, 1)→ (0,∞):

ri = φ( 1
2 (xi + 1)), wi = 1

2ωi φ
′( 1

2 (xi + 1)). (24)

Now, ∫ ∞
0

dz f(z) =

N∑
i=1

wif(ri) +R[f (2N+1)(ξ)]. (25)

We choose r = x/(1 − x). Other popular choices include: r = a tan(xπ/2), r = a(1 − e−bx)/(e − ex).
While in principle the converged result is independent of the mapping function φ, the choice of it is very
important in practice, as it controls the rate of convergence. It should be chosen to cover the extent of
the wave function. Because different states have different radial extent, it is often difficult to come up
with a universal mapping function optimal for all excited states. Fortunately, in most practical cases,
we are interested in the first lowest states, whose radial extent is not far from the ground state.

The integral equation (17) can be written as,

p2iP (pi)−
4

π

∑
j

wjp
2
jK`(pi, pj)P (pj) = κP (pi). (26)

It is convenient to define vi ≡
√
wipiP (pi), with normalization3∑

i

v2i = 1. (27)

Then, the discretized equation becomes,∑
j

Hijvj = κ vi, Hij = δijp
2
i − (4/π)

√
wiwj pipj K`(pi, pj). (28)

H is obviously Hermitian. The energy eigenvalue and the wave functions can be obtained by numerically
diagonalizing the Hamiltonian matrix (see Fig. 1). The system can be solved in different quadrature
order N . The continuum limit can be reach by extrapolating the quadrature order N →∞.

3We dropped a factor 1/
√

8π3 here.
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Figure 1: Visualization of the Hamiltonian matrix (28), with ` = 0 (S-wave) and quadrature order
N = 512.

Figure 2: The S-wave energy eigenvalues as a function of µ. The values are obtained by extrapolating
results over quadrature grids of the order N = 16, 32, 64, 128, 512, 1024. The red crosses represent

Coulomb energy levels E
(coul)
n = −α2m/(2n2), n = 1, 2, 3, · · · . The red dashed line represents the upper

bound obtained from variational method, using the Coulomb wave function as trial functions.

Results The obtained energy eigenvalues as a function of the exchanged particle mass µ are shown in
Fig. 2 (see also Table 1). At small µ, the binding energies approach to the standard Coulomb values

E
(coul)
n = −α2m/(2n2) where n = 1, 2, 3, 4, · · · is the principle quantum number. The ground state

energy is also in good agreement with the upper bound obtained from the variational method, using the
Coulomb wave function as trial functions. As µ increases, bound states gradually disappear. The ground
state starts to dissociate at µ & αm.

The momentum-space wave functions can be extracted from the obtained eigenvectors. Fig. 3 presents
an exertion of the S-wave wave functions. At small µ, the wave functions agree with the analytic results
of the Coulomb potential:

ψ
(coul)
nl (p) = Nnl

pl

(1 + n2p2)l+2
Cl+1
n−l−1

(n2p2 − 1

n2p2 + 1

)
, (n = 1, 2, 3, · · · ; l = 0, 1, 2, 3, · · · ) (29)

where Cαn (z) is the Genebauer polynomial. As µ increases, the wave function within the momentum space
becomes narrower. Furthermore, the change in excited wave functions are more dramatic comparing to
that of the ground state as µ increases.

Summary We have described and demonstrated, in these notes, a numerical method to solve the non-
relativistic Yukawa model. Both the energy eigenvalues and the wave functions agree with the Coulomb
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Figure 3: The obtained 1S and 2S wave functions in momentum space for selected µ. The red solid
curves are the corresponding Coulomb results (µ = 0).

Table 1: The energy eigenvalues E (in unit of α2m/2) for different µ (in unit of αm).

µ/(αm) E1/(α
2m/2) E2/(α

2m/2) E3/(α
2m/2) E4/(α

2m/2) E5/(α
2m/2)

0 -1 -0.25 -0.1111 -0.0625 -0.04
0.0001 -0.9947 -0.2494 -0.1129 -0.06564 -0.04005
0.0005 -0.9907 -0.2466 -0.1096 -0.06165 -0.03953
0.001 -0.9892 -0.2454 -0.1084 -0.06114 -0.03823
0.002 -0.9877 -0.2438 -0.1065 -0.05891 -0.03742
0.005 -0.9837 -0.2389 -0.1014 -0.05365 -0.03145
0.01 -0.9762 -0.2302 -0.09269 -0.04533 -0.02440
0.02 -0.9591 -0.2125 -0.07643 -0.03123 -0.01249
0.05 -0.9043 -0.1638 -0.03889 -0.006285 -0.00002863
0.10 -0.8149 -0.1000 -0.006451
0.15 -0.7315 -0.05453
0.20 -0.6540 -0.02425
0.25 -0.5821 -0.006805
0.30 -0.5154 -0.0001847
0.35 -0.4538
0.40 -0.3968
0.45 -0.3444
0.50 -0.2963
0.55 -0.2523
0.60 -0.2123
0.65 -0.1761
0.70 -0.1437
0.75 -0.1148
0.80 -0.08942
0.85 -0.06739
0.90 -0.04863
0.95 -0.03306
1.00 -0.02057
1.05 -0.01111
1.10 -0.004575
1.15 -0.0009122
1.20
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results as small µ. These results can be used to compare with the Yukawa model in quantum field
theories in the non-relativistic limit. The numerical method employed here can be adapted to solving
integral equations appearing in the quantum field theoretical treatment of the Yukawa model.
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One-gluon-exchange on the light front

[ k⃗2
⊥ + m2

q

x
+

k⃗2
⊥ + m2

q̄

1 − x
+ V

]
ψ(x, k⃗⊥) = M2

hψ(x, k⃗⊥)

The one-gluon-exchange interaction,

VOGE ◦ ψ(x, k⃗⊥) =
∫ dx′

2x′(1 − x′)

∫ d2k′⊥
(2π)3

4πα(Q2)

Q2 ψ(x′, k⃗⊥)

where Q2 = 1
2

(√
x′
x k⃗⊥ −

√
x
x′ k⃗′⊥

)2
+ 1

2

(√
1−x′
1−x k⃗⊥ −

√
1−x
1−x′ k⃗′⊥

)2
+ 1

2 m2(x −

x′)2
(

1
xx′ +

1
(1−x)(1−x′)

)
+ µ2 .

+

k1 k′
1

k2 k′
2 k2 k′

2

k′
1k1

q q
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Exercise II

Problem II-1: Solve problems I-1.1,I-1.2, I-2.1 using the methods you learned

Problem II-2: A quark model for meson. In the leading order, the inter-quark potential
can be described by the superposition of a linear confining interaction Vcon = σr and
the Coulomb part VCoul = −(CFαs/r), where CF = (4/3) is the color factor. In
practical applications, the confining potential is ``screened'' at large distance to take
into account the effect of string breaking at large excitations. The screened potential is,
Vscr = σµ−1[1 − exp(−µr)

]
.

The non-relativistic Schrödinger equation of the above described quark model is,[ p⃗2

2mr
+

σ

µ
(1 − e−µr)− 4

3
αs

r

]
ψ(⃗r) = Eψ(⃗r).

Solve this equation for eigenvalues and wave functions. Apply this model to charmonia.
Find the best parameters and compare the results with the experiments.

Problem II-3: Solve problem I-2.2 using the methods you learned
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Discussion on August 27, 2021
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Tools

Hardwares
▶ Personal computer (PC, Mac, tablet): portability, accessibility
▶ Tower, personal workstation: accessibility, initial computational power
▶ Local cluster, server, cloud service, grid: accessibility, computational

power
▶ Supercomputer, cloud: ultimate computational power with scalability

Softwares
▶ Integrated computational systems: Mathematica/Wolfram Alpha, Matlab,

SciPy/NumPy, R, Octave, Julia, Sage
▶ Batch tools: bash, python, Mathematica, Matlab, GO, ROOT, ...
▶ Low level programming languages: C/C++, Fortran
▶ Data visualization: Mathematica, Origin, matlab, python, ...
▶ Editors: Vim, emacs, TeXlive, Word, notepad, sublime, Markdown, ...
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Nystrøm method - revisited
Nystrøm method to solve Schrödinger wave equation:

p2

2m
ψ(p) +

∫ dp′

2π
V(p, p′)ψ(p′) = Eψ(p)

⇒
p2

i
2m

ψi +
1

2π ∑
j

wjVijψj = Eψi

where {p1, p2, · · · , pn} are quadrature abscissas. ψi = ψ(xi), Vij = V(pi, pj).
▶ The key ingredient of Nystrøm method is to use Gaussian quadrature to

approximate numerical integrations.

∫ b

a
dx f (x) =

n

∑
i=1

wi f (xi) +
(b − a)2n+1(n!)4 f (2n)(ξ)

(2n + 1)[(2n)!]3
, (a < ξ < b)

The quadrature abscissas xi are zeros of some orthogonal polynomials, wi are
weights. Example: Gauss-Legendre quadrature, wi = 2/(1 − x2

i )[P
′
n(xi)]

2 .
▶ Gaussian quadrature is exact for polynomials of degree less than 2n − 1.

Nystrøm method seeks a polynomial approximation of the wave functions.
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Nystrøm method - revisited
Nystrøm method seeks to a polynomial approximation of the wave functions,

ψ(x) → ψ̂(x) = ∑
i

ψiℓi(x), (ψ̂(xi) = ψi)

▶ By definition, ψ̂(xi) = ψi ⇒ ℓi(xj) = δij
▶ ℓi(x) can be constructed from Lagrange interpolation polynomials, viz

ℓi(x) =
n

∏
j=1,i ̸=j

x − xj

xi − xj
, (degℓi(x) = n − 1)

▶ Basis expansion: {|ϕi⟩}, with ⟨x|ϕi⟩ = Niℓi(x).
▶ Inner product:

⟨ϕi|ψ⟩ =
∫

dxϕ∗
i (x)ψ̂(x) = ∑

j
wjNi

δij︷ ︸︸ ︷
ℓi(xj)ψ(xj) = Niwiψ(xi)

▶ Schrödinger equation in this basis is the same as the Nystrøm equation.
▶ Evaluation of matrix elements becomes simple, even trivial.

Nystrøm method = basis method with Lagrange polynomial basis defined on
quadrature mesh, aka. Lagrange mesh method (LMM) aka. discretized variable
representation (DVR) [D. Baye, Phys. Rep. 565, 1 (2015)]
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General discussions, Q&A
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Exercise III

For the problems as follow, consider the Gauss-Legendre quadrature as a
concrete example. Properties of the Legendre polynomials can be found on
Abramowitz & Stegun.

Problem III-1: Prove that

ℓi(x) =
Pn(x)

ani(x − xi)

where Pn(x) is the orthogonal polynomial. Find ani .

Problem III-2: Show that ℓi can be expanded using orthogonal polynomials Pk
where 0 ≤ k ≤ n − 1, viz

ℓi(x) =
n−1

∑
k=1

cikPk(x).

Find cik .
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Discussion on Sept 10, 2021
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General discussions

1. Pick at least one problem, and make a presentation to talk about how to
solve it numerically
15∼20 min, you can prepare some slides and/or notes to aid your presentation

Let me know your preferred schedule

While a right solution is our goal, we can also learn from mistakes

Move fast and break things.
Learning from breaking things.

2. Volunteer for today

3. Q&A
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Matrix as diagrams
https://www.math3ma.com/blog/matrices-as-tensor-network-diagrams

Tensor network diagrams
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Matrix as diagrams

https://www.math3ma.com/blog/matrices-as-tensor-network-diagrams
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Matrix as diagrams

https://www.math3ma.com/blog/matrices-as-tensor-network-diagrams

SVD:

Trace identity:
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Matrix as diagrams

https://www.math3ma.com/blog/matrices-as-tensor-network-diagrams

An awefully complicated tensor (network):
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Diagrammatics for Schrödinger equation
H|ψn⟩ = En|ψn⟩ (5)

⇒ (H0 + V)|ψn⟩ = En|ψn⟩ (H0 is an ``simple'' Hamiltonian)
⇒ V|ψn⟩ = (En − H0)|ψn⟩
⇒ V(En + iϵ − H0)

−1|Γn⟩ = |Γn⟩ |Γn⟩ ≡ (En − H0)|ψn⟩

⇒ ∑
β

⟨α|V|β⟩⟨β|Γn⟩
En + iϵ − εβ

= ⟨α|Γn⟩ ⟨α|H0|β⟩ = εαδαβ

⇒ ∑
β

VαβΓβn

En + iϵ − εβ
= Γαn Vαβ ≡ ⟨α|V|β⟩, Γαn ≡ ⟨α|Γn⟩

=
n α

Γ V

(En − εβ)
−1

n
Γ = V

Γ

Γ

n

n
α

β

β

σ

δ

Γ(n+1) = VG0Γ(n) (G0 = (E − H0)
−1)
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Examples:

⟨Ψ|Jµ|Ψ⟩
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Discussion on Sept. 14, 2021
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General discussions

▶ Schedule, plans
▶ https://www.tensors.net
▶ References on computational physics:

▶ Thijssen, Computational Physics
▶ Koonin, Computational Physics
▶ Landau, A survy of computational physics
▶ 丁泽军：计算物理讲义
▶ 马文淦：《计算物理学》

None of these will cover everything -- because there is no such thing as
computational physics! Learn as needed

▶ Presentation: Duan
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Matrix diagonalization

Diagonalization/eigenvalue equation is one of the most important methods in
computational sciences

A · v = λv (6)
For simplicity, we only consider Hermitian matrices.
▶ A = U†ΛU, such that U†U = 1, Λ = diag{λ1, λ2, · · · , λn} is diagonal

matrix, λi are A's eigenvalues.

U = [v1, v2, · · · , vn]

▶ Eigen decomposition: A = ∑i λiviv†
i or in Dirac's notation: A = ∑i λi|vi⟩⟨vi|

▶ Eigenvectors form an orthonormal complete basis: x = ∑i civi, ∀ vector x
▶ det(λ − A) = 0
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Power iteration

▶ Without too much loss of generality, λ1 > λ2 > λ3 > · · · > 0. The
corresponding (orthonormalized) eigenvectors are, v1, v2, · · · ,

▶ Observe:

Ak · x = ∑
i

λn
i civi = λk

1

[
c1v1 + ∑

i=2

( λi
λ1

)k
civi

]
k≫1−−→ λk

1c1v1, (7)

▶ Assumption: maximum eigenvalue is non-generate
▶ Convergence rate is controlled by |λ2/λ1|

▶ Implementation:
▶ Choose a normalized initial vector x(0) O(N)
▶ Compute y(k+1) := A · x(k) O(N2)

▶ Compute λ(k) := y(k+1) · x(k) = x(k) · A · x(k) k≫1−−→ λ1 O(N)

▶ Normalize y(k+1) : x(k+1) := y(k+1)

∥y(k+1)∥ = A·x(k)

∥A·x(k)∥
k≫1−−→ v1 O(N)

▶ Overall complexity: O(N2k)
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Power iteration: issues

Remaining issues of power iteration:

▶ How to get multiple and even all eigenpairs?

▶ Degenerate case λ1 = λ2 = · · · = λk (k < n)

▶ Smallest eigenvalue and eigenvectors
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Power iteration: ground states

In Hamiltonian formalism, we wish to get the lowest lying eigenvalues and
eigenstates.
▶ Lowest energy state is the ground states while the highest energy states

are not useful (numerical noise)
▶ Method 1: shift

▶ Consider B = A − sI where s is close to the largest eigenvalue λ1
▶ Eigenvalues of B: λ1 − s, λ2 − s, · · ·
▶ Magnitudes: |λ1 − s| < |λ2 − s| < · · · if s is close to λ1

▶ Method 2: exponentiation
▶ Consider U = exp(−A)
▶ Eigenvalues of U: e−λ1 < e−λ2 < · · ·
▶ Power iteration Un = exp(−nA)

Application: imaginary time evolution,

|ψ(t)⟩ = exp(−Ht)|ψ(0)⟩ t≫∆E−1

−−−−→ e−Egst|ψgs⟩
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Successive power iterations

How to get multiple and even all eigenpairs: successive power iteration
▶ Redo the power iteration with a second vector x2 and project out the

obtained eigenvector v1
▶ Obtain v1 from power iteration
▶ Choose initial vector x2 := y2 − (v†

1 · y2)v1 = ∑i=2 ci2vi
▶ Power iteration with x2 : Ak · x2 = ∑i=2 λk

i ci2vi

▶ Problem: if the orthogonalization is not complete due to numerical
precision, x2 = ϵv1 + ∑i=2 ci2vi (|ϵ| ≪ |ci2|)

Ak · x2 = ϵλk
1v1 + ∑

i=2
λk

i ci2vi

Only applicable if |ϵ| ≪ |λ2/λ1|k ≪ 1.
▶ Solution: re-orthogonalize the vector after nreo iterations

▶ nreo ≪ ln |ϵ|
ln |λ2/λ1|▶ We can even take nreo = 1 and re-orthogonalize every step
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Simultaneous power iteration

Degenerate case λ1 = λ2 > λ3 > · · ·
▶ Power iteration converges to a vector in the eigen-subspace instead of a

single eigenvector

Ak · x = ∑
i

λn
i civi = λk

1

[
c1v1 + c2v2 + ∑

i=3

( λi
λ1

)k
civi

]
k≫1−−→ λk

1(c1v1 + c2v2)

▶ We need two linearly independent initial vectors
x1 = ∑i ci1vi, x2 = ∑i ci2vi

Ak · x1 → λk(c11v1 + c21v2), Ak · x2 → λk(c12v1 + c22v2)

▶ Problem: linear independence may lose during iteration
Example: construct x1, x2 such that c12 = c22 = 0, but x1 · x2 = 0

▶ Solution: iterate x1, x2 simultaneously and re-orthgonalize every step
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Orthogonal power iteration
Simultaneous power iteration with a re-orthogonalization can be generalized
to n vectors which remarkably also include the successive iteration case
▶ In general, we can do simultaneous power iterative with an initial matrix

X = [x1, x2, · · · , xn]
X = VC

where V = [v1, v2, · · · , vn] is the eigen-vector matrix.

Ak · X = [λk
1v1, λk

2v2, · · · , λk
nvn]C

= [∑
j

Cj1λk
j vj, ∑

j
Cj2λk

j vj, · · · , ∑
j

Cjnλk
j vj]

▶ Re-orthogonalization QR = X where Q†Q = 1, R is triangular.
▶ Implementation:

▶ Choose a random initial matrix X(0)

▶ Re-orthonormalize X(k) : Q(k)R(k) = X(k) , Q(k) is orthogonal matrix, and
R(k) is triangular.

▶ Compute X(k+1) = AQ(k) . Then, Q(k) → V , R(k) → Λ
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QR algorithm

▶ The celebrated QR algorithm is,
▶ A(0) = A
▶ QR decomposition A(k) : Q(k)R(k) = A(k) , where Q(k) is orthogonal

matrix, and R(k) is triangular.
▶ Compute A(k+1) = R(k)Q(k) = [Q(k)]† A(k)Q(k) ∼ A(k) . Then,

Q(k) → V , A(k) → Λ
▶ QR algorithm is equivalent to the orthogonal power iteration.
▶ The crucial step is the QR decomposition which effectively implements

the re-orthogonalization.
▶ Computational complexity of QR decomposition is O(N3) for general

matrices and O(N) for tridiagonal matrices.
▶ QR decomposition can be implemented using (i) Householder

transformations (ii) Givens rotations (iii) Gram-Schmidt procedure. N.B.,
Gram-Schmidt procedure is not numerically stable.
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Numerical libraries: LAPACK

▶ Short for ``Linear Algebra Package'' is a standard numerical linear algebra
library

▶ Functionalities: linear solver, linear least squares, eigenvalue problems,
SVD, LU, QR, Shur decomposition, Cholesky decomposition

▶ Language: Fortran 77/90 (native), C binding, other language bindings are
available through external libraries or wrappers

▶ Officially published by Netlib under BSD-new license (free):
www.netlib.org/lapack/

▶ Also available in computational systems, e.g. intel's MKL, matlab,
mathematica, ...

▶ Parallel versions: ScaLAPACK, PLAPACK
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Discussion on Sept. 24, 2021
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Quantum theories

Schrödinger equation:
H|ψh⟩ = Eh|ψh⟩

Some notable examples:
▶ Quantum few-body systems
▶ Quantum many-body systems
▶ Quantum fields
▶ Quantum gravity, string, brane and other unknown beasts
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Schrödinger wave equation

Single-particle: ψ(⃗r) = ⟨⃗r|ψ⟩

H =
p⃗2

2m
+ V(r)

Schrödinger wave equation:[ p⃗2

2m
+ V(r)

]
ψ(⃗r) = Eψ(⃗r)
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Quantum many-body systems

Quantum many-body system:

H = ∑
i

p⃗2
i

2mi
+ U(⃗ri) +

1
2 ∑

i,j
V(rij) +

1
3! ∑

i,j,k
V(rijk) + · · ·

▶ Coordinate or momentum space many-body wave function

ψ({⃗r1, r⃗2, · · · , r⃗n}) = ⟨{⃗r1, r⃗2, · · · , r⃗n}|ψ⟩
▶ Self-bound systems: molecules, atoms, nuclei, hadrons, cold atoms
▶ Condensed matters: gas/plasma, lattice gas, fluids, soft matter, glass, solids
▶ Controlled systems: qbits, qgates, quantum simulator, quantum computer
▶ Second quantization and indistinguishable particles

One-body operator :

O = ∑
α,β

Oαβc†
αcβ (Oαβ = ⟨α|O|β⟩)
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Quantum fields

Classical fields:
▶ Elasticity, electromagnetism, gravity
▶ Continuum limit of lattice models

qi → φ(x⃗), pi → π(x⃗)
▶ Lagrangian (density): S =

∫
d4x L [∂φ, φ]

▶ Euler-Lagrangian equation
▶ Fluidity: local conservation laws DµTµν = 0
▶ Mode expansion:

φ(x) = ∑
α

[
cα(t)uα(x) + c∗α(t)u

∗
α(x)

]
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Quantum fields

Quantum fields:
▶ Degrees of freedom: field operator φ (operator-valued distributions)
▶ Continuum limit is highly non-trivial due to quantum fluctuations

qi → φ(x⃗), pi → π(x⃗)
▶ Heisenberg representation, Euler-Lagrangian equation, Dyson-Schwinger

equations and the covariant formulation
▶ Canonical quantization:[

pi, qj
]

t=0 = iδij →
[
π(x⃗), φ(⃗y)

]
t=0 = iδ3(x − y)

▶ Hamiltonian:

H =
∫

d3x
{

1
2 π2 + 1

2∇
2 φ2 + 1

2 m2 φ2 − g
4! φ4

}
▶ Particles are eigenstates of the Hamiltonian (particle ̸= fields)
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Quantum fields

Second quantization:

φ(x) = ∑
α

[
cαuα(x) + c†

αu∗
α(x)

]
t=0

▶ CCR:
[
cα, c†

β

]
= δαβ

▶ Momentum rep'n:

φ(x) =
∫ d3 p

(2π)32Ep

[
a(p)e−ip·x + a†(p)e+ip·x

]
t=0

where
[
c(p), c†(p′)

]
= 2Ep(2π)3δ3(p − p′)

▶ Field Hamiltonian in second quantized form:

H = ∑
αβ

εαβc†
αcβ −

g
4! ∑

αβδγ

c†
αc†

βcδcγ

QFT ≈ QMBT
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Discussion on Oct. 15, 2021
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Quantum field theory and quantum many-body theory
QFT ≈ QMBT: QFT and QMBT can be related through second quantization.
Example: Many-body Hamiltonian:

H = ∑
i

p⃗2
i

2mi
+ ∑

i<j
V(rij)

Second quantized many-body Hamiltonian:

H = ∑
σ

∫ d3 p
(2π)3 a†

σ( p⃗)
p⃗2

2m
aσ( p⃗)

+ ∑
σ,σ′

∫ d3 p
(2π)3

d3 p′

(2π)3
d3q
(2π)3 a†

σ( p⃗ + q⃗)a†
σ′ ( p⃗′ − q⃗)Ṽ(q)aσ′ ( p⃗′)aσ( p⃗)

Rule of second quantization:

O[1]
i = ∑

α,β
O[1]

αβc†
αcβ (Oαβ = ⟨α|O[1]

i |β⟩),

O[2]
ij = ∑

α,β,ρσ

O[2]
αβρσc†

αc†
βcρcσ (Oαβρσ = ⟨αβ|O[2]

ij |ρσ⟩)
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Quantum field theory and quantum many-body theory

Hamiltonian quantum field theory:

H =
∫

d3xψ† −∇2

2m
ψ +

∫
d3x d3x′ψ†(x⃗)ψ†(x⃗′)V(|⃗x − x⃗′|)ψ(x⃗′)ψ(x⃗)

Here, the field operator :

ψ
α
(x⃗) = ∑

σ

∫ d3 p
(2π)3 χα( p⃗, σ)ei p⃗·⃗xaσ( p⃗)

Here χα(p, σ) is the ``spin wave function'' (spinor, polarization vector/tensor).

Classical Lagrangian (field theory):

L =
i
2
(
∂tψ

†ψ − ψ†∂tψ
)
− 1

2m
∇ψ† · ∇ψ

−
∫

d3x′ ψ†(x⃗)ψ†(x⃗′)V(|⃗x − x⃗′|)ψ(x⃗′)ψ(x⃗)

Canonical quantization: L → H
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−
∫

d3x′ n(x⃗)n(x⃗′)V(|⃗x − x⃗′|)
+ normal ordered terms
n(x⃗) ≡ ψ†(x⃗)ψ(x⃗)



Quantum many-body theories
Important examples:
▶ Born-Oppenheimer electron gas:

H = ∑
i

p⃗2
i

2mi
+ 1

2 ∑
i,j

α

rij

= ∑
p⃗,λ

p2

2m
a†

p⃗λa p⃗λ +
1

2V ∑
p⃗,λ,⃗p′ ,λ′ ,⃗q

4πα

q2 a†
p⃗+q⃗,λa†

p⃗′−q⃗,λ′ a p⃗′ ,λ′ a p⃗,λ

▶ Bardeen–Cooper–Schrieffer liquids:

H = ∑
i

( p2
i

2mi
− µ

)
+ 1

2 ∑
i,j

α

rij

= ∑
p⃗,λ

( p2

2m
− µ

)
a†

p⃗λa p⃗λ + ∑
p⃗,⃗p′

V( p⃗, p⃗′)a†
p⃗↑a†

− p⃗↓a− p⃗′↓a p⃗′↑

▶ Fermi-Hubbard model (Lattice gas):

H = −t ∑
σ

∑
⟨i,j⟩

(
c†

jσciσ + c†
iσcjσ

)
+ U ∑

i
ni↑ni↓
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Non-perturbative approaches

H = ∑
α,β

hαβc†
αcβ + ∑

α,β,ρ,σ
vαβ,ρσc†

αc†
βcρcσ + · · ·

where hαβ ≡ ϵαδαβ + uαβ .
▶ Perturbation theory v ≪ h
▶ Non-perturbative approaches

▶ Approximations:
▶ Mean-field approach: Hatree-Fock (HF), Density function theory
▶ Post HF: Tamm-Dancoff, Ramdom-phase approximation

▶ Effective field theory
▶ Direct methods:

▶ Full Configuration Interaction
▶ Coupled Cluster
▶ Quantum Monte-Carlo
▶ Hamiltonian similarity renormalization group
▶ Density matrix renormalization group

▶ New many-body techniques:
▶ Quantum simulation and quantum computing
▶ Tensor network representation
▶ Deep learning
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Assignments

Do a literature review on one of the following emerging techniques in
quantum many-body theory and quantum field theory:
▶ Quantum simulation and quantum computing (Duan)
▶ Tensor network representation (Wang)
▶ Deep learning

Schedule a time for presentation.
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Difficulties with relativistic wave functions
▶ Wave function is frame dependence

Rest-frame wave function ̸= moving frame wave function, boost transformation is dynamical (involves

time-evolution)

Lost of cluster decomposition, key property for renormalization

Hadronic observables require wave functions at large P⃗: infinite momentum frame

▶ Square root issues
Square roots in kinetic energies and in energy denominators

HNR = ∑
i

p⃗2
i

2mi
+ ∑

ij
Vij

→ HR = ∑
i

√
p⃗2

i + m2
i + ∑

ij
Vij

▶ Vacuum pair production and annihilation
p1

p2

p3
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Dirac's forms of relativistic dynamics [Dirac, Rev. Mov. Phys. '49]

In Hamiltonian dynamics, time dictates the direction of the dynamical
evolution. In relativity, t = x0 is not the only choice of time.

instant form front form point form
t = x0 x+ ≜ x0 + x3 τ ≜

√
t2 − x⃗2 − a2

H = P0 P− ≜ P0 − P3 Pµ

P⃗, J⃗ P⃗⊥, P+, E⃗⊥, E+, Jz J⃗, K⃗

K⃗, P0 F⃗⊥, P− P⃗, P0

p0 =
√

p⃗2 + m2 p− = ( p⃗2
⊥ + m2)/p+ pµ = mvµ (v2 = 1)

P± ≜ P0 ± P3 , P⃗⊥ ≜ (P1, P2), x± ≜ x0 ± x3 , x⃗⊥ ≜ (x1, x2), Ei = M+i ,
E+ = M+− , Fi = M−i , Ki = M0i , Ji = 1

2 ϵijk Mjk .
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time variable

quantization
surface

Hamiltonian

kinematical

dynamical

dispersion
relation



Advantages of light-front dynamics

non-relativistic
relativistic

instant form front form

kinetic energy ∑
i

p⃗2
i

2mi
∑

i

√
p⃗2

i + m2
i ∑

i

p⃗2
i⊥ + m2

i
p+i

Lorentz covariance partial (rotation) no partial (boost)

frame dependence no yes no

vacuum fluctuation no yes no
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Understanding physics on the light front
Infinite momentum frame
▶ Lorentz transformation: ct′ = γV(ct + βV z) V→∞→ γV x+

▶ Feynman's parton model: partons are free as time dilation
beats interactions at a scale τQCD ∼ Λ−1

QCD
▶ Renewed interests in efforts to extract parton distributions

from Euclidean QFTs, e.g. LaMET, and interpolating between
equal-time and light-front quantization [X.d. Ji, PRL '13; C.R. Ji '18]

Hadron photography
▶ Due to the finiteness of the speed of light, the light-front way

is the natural way to see things.
▶ Dirac's front-form quantization: initial hyper-surface where

you can specify the canonical commutation relation and define
the probability amplitudes (wave functions).

▶ Hadron is not moving at an infinite momentum! It is just the
way how we see it.
Particle can be at rest in light-front dynamics: P+ = M, P⃗⊥ = 0.

x
+
= 0
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Scalar theory

The Lagrangian of the system is,

L = ∂µχ†∂µχ − m2
χχ†χ +

1
2

∂µ φ∂µ φ − 1
2

m2
φ φ2 + gχ†χφ. (8)

The corresponding light-front Hamiltonian is,

P− =
∫

d3x
{

χ†[(i∇⊥)
2 + m2

χ

]
χ +

1
2

φ
[
(i∇⊥)

2 + m2
φ

]
φ − gχ†χφ

}
(9)

At the initial time x+ = 0, the field operators can be expanded as,

χ(x) =
∫ d3 p

(2π)32p+
[
b(p)eip·x + d†(p)e−ip·x

]
, (10)

φ(x) =
∫ d3k

(2π)32k+
[

a(k)eik·x + a†(k)e−ik·x
]
. (11)
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Discussion on Oct. 22, 2021
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Second quantization
Wave function of two free indistinguishable particles:

⟨x1, x2|αβ⟩ ≡ ψαβ(x1, x2) = ψα(x1)ψβ(x2)± ψα(x2)ψβ(x1)

α, β are quantum numbers. The sign is determined by particle statistics. In the general
n-body case,

⟨x1, x2, · · · , xn|α1, α2, · · · , αn⟩ = ∑
σ∈Sn

(−1)Sgn(σ)ψα1 (xσ1 )ψα2 (xσ2 ) · · ·ψαn (xσn )

Here Sn is the permutation group. {σ1, σ2, · · · , σn} = σ{x1, x2, · · · , xn} is a
permutation of {x1, x2, · · · , xn}.

Dirac introduced the creation and annihilation operators to simplify the
(anti-)symmetrization.

|α1, α2, · · · , αn⟩ ≡ Na†
α1

a†
α2
· · · a†

αn |0⟩.

Here, the operators satisfies

aαa†
β ± a†

αaβ ≡
[
aα, a†

β

]
± = δαβ.
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Diagrammaticsm I
Feynman diagrams for generic interactions
V = ∑

α,β,σ
Vαβ,σb†

αa†
βbσ

Vαβ,σ

α

β

σ

V = ∑
α,β,σρ

Vαβ,σρb†
αb†

βbσbρ

α

β

σ

ρ

Vαβ,σρ

Exercise 1: write down Feynman rules for H0 = ∑α,β
(
ϵαδαβ + uαβ

)
c†

αcβ
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Diagrammaticsm II: momentum representation

In momentum space, 3-momentum conservation is manifest. It is understood
that each tensor block is associated with a Dirac delta δ3(pi − p f )

V =
∫ d3 p1

(2π)32p+1

d3 p2

(2π)32p+2

d3 p′1
(2π)32p′+1

d3 p′2
(2π)32p′+2

× 2P+(2π)3δ3(p1 + p2 − p′1 − p′2)V(p1, p2, p′1, p′2)

× b†(p′2)b
†(p′1)b(p1)b(p2)

p′
1

p′
2

p1

p2
V (p1, p2, p

′

1
, p′

2
)

N.B. in harmonic oscillator basis, angular momentum is conserved.
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Diagrammaticsm III: local interactions

Local interactions:
Hint(t) =

∫
d3x Hint(x)

▶ Local interactions can be built from local fields, e.g.,

ψ(x) = ∑
σ

∫ d3 p
(2π)32p+

[
uσ(p)eip·xbσ(p) + vσ(p)e−ip·xd†

σ(p)
]

Covariance is easily maintained.
▶ Why local interactions are important in relativistic QFTs?[

Hint(x),Hint(x′)
]
= 0, ∀(x − x′)2 < 0.

Physically, causality requires spacelike separated events do not causally affect each
other via interaction.

▶ Local interactions can be represented by (contact) vertices
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Diagrammaticsm III: local interactions
V =

∫
d3x

(
φ(x)

)3

V =
∫

d3xψ(x)γµψ(x)Aµ(x)

· · ·

V =
∫

d3xd3x′n(x)U(|⃗x − x⃗′|)n(x′),
[
n(x) ≡ ψ†(x)ψ(x)

]
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Diagrammaticsm IV: tensor contractions
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Scattering I: Dyson formula

i
∂

∂t
|ψ(t)⟩ = H|ψ(t)⟩. ⇒ |ψ(t f )⟩ ∼ e−iHt|ψ(ti)⟩

Dyson formula: formal solution of Schrödinger equation, |ψ(t f )⟩ ≡ U(t f , ti)|ψ(ti)⟩

U(t f , ti) = T exp
{
− i

t f∫
ti

dtH(t)
}

,

= 1 − i

t f∫
ti

dtH(t) +
(−i)2

2!

t f∫
ti

dt1dt2T
{

H(t1)H(t2)
}
+ · · ·

Here, the time-ordering operation is defined as,

T
{

H(t1)H(t2)
}
= θ(t1 − t2)H(t1)H(t2) + θ(t2 − t1)H(t2)H(t1)

Therefore,

1
2!

t f∫
ti

dt1dt2T
{

H(t1)H(t2)
}
=

t f∫
ti

dt1dt2θ(t1 − t2)H(t1)H(t2)
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Scattering II: S-matrix
Scattering amplitude and S-matrix:

⟨ψ(t f → ∞)|ψ(ti → −∞)⟩ ≡ ⟨ϕα|S|ϕβ⟩

where |ψ(ti)⟩ → e−iH0ti |ϕβ⟩ as ti → −∞, |ψ(t f )⟩ → e−iH0t f |ϕα⟩ as t f → +∞.
The transition amplitude iMαβ = ⟨ϕα|S − 1|ϕβ⟩.
Formal solution in the interaction picture:

S =UI(+∞,−∞)

= T exp
{
− i

∫
dtHI(t)

}
= 1 − i

∫
dtHI(t) + (−i)2

∫
dt1dt2θ(t1 − t2)HI(t1)HI(t2) + · · ·

Consider the leading order (LO) term∫
dtHI(t) =

∫
d4xHI(x) = H̃I(0)

where
H̃I(p) =

∫
d4x eip·xHI(x)
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Scattering III: perturbation theory

Example: ϕ3 theory, H = gφ3

H̃I(0) = g
∫ d3 p1

(2π)32p0
1

d3 p2

(2π)32p0
2

∫ d3 p3

(2π)32p0
3

× (2π)4δ4(p1 − p2 − p3)a†(p1)a(p2)a(p3) + · · ·

iM(1)(p1 + p2 → p′) = ⟨p′|H̃I(0)|p1 p2⟩ = (2π)4δ4(p1 + p2 − p′)g

p1

p2

p
′
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Scattering III: perturbation theory
For the next-to-leading order (NLO) term, consider the Fourier transform of
the θ-function:

θ(t) =
1

2πi

+∞∫
−∞

dτ
eiτt

τ − iϵ
Then,∫

dt1dt2θ(t1 − t2)HI(t1)HI(t2) =
1

2πi

+∞∫
−∞

dτ

τ − iϵ
H̃I(τω)H̃I(−τω)

Here ωµ is a 4-vector pointing to the time direction. For instant form ωµ = (1, 0⃗).
For front form ωµ = (ω−, ω+, ω⃗⊥) = (2, 0, 0⊥).

iM(2)(p1 + p2 → p′1 + p′2) =
−g2

2πi

+∞∫
−∞

dω

ω − iϵ
⟨p1 p2|H̃I(τω)H̃I(−τω)|p′1 p′2⟩

p1

p2

p′
1

p′
2

q

t

τω
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Scattering III: perturbation theory

p1

p2

p′
1

p′
2

q

t

τω

▶ Energy is not conserved at each vertex and τ is the off-shell energy.
▶ For each internal line, there is an energy denominator 1/(τ − iϵ).
▶ Total 4-momentum is conserved pi = p f .
▶ Diagrams are time ordered
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Scattering III: Feynman rules

J. Carbonell et al., Physical Reports, 300 (1998) 215-347.
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Diagrammatics for Schrödinger equation
H|ψn⟩ = En|ψn⟩ (12)

⇒ (H0 + V)|ψn⟩ = En|ψn⟩ (H0 is an ``simple'' Hamiltonian)
⇒ V|ψn⟩ = (En − H0)|ψn⟩
⇒ V(En + iϵ − H0)

−1|Γn⟩ = |Γn⟩ |Γn⟩ ≡ (En − H0)|ψn⟩

⇒ ∑
β

⟨α|V|β⟩⟨β|Γn⟩
En + iϵ − εβ

= ⟨α|Γn⟩ ⟨α|H0|β⟩ = εαδαβ

⇒ ∑
β

VαβΓβn

En + iϵ − εβ
= Γαn Vαβ ≡ ⟨α|V|β⟩, Γαn ≡ ⟨α|Γn⟩

=
n α

Γ V

(En − εβ)
−1

n
Γ = V

Γ

Γ

n

n
α

β

β

σ

δ

Γ(n+1) = VG0Γ(n) (G0 = (E − H0)
−1)
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Lippmann-Schwinger equation

How to generalize the results to the non-perturbative regime?
▶ Vertex diagrams Vαβ ≡ ⟨ϕα|V|ϕβ⟩ here |ϕα⟩ = c†

α|0⟩ is the free Fock state and
H0|ϕα⟩ = εα|ϕα⟩

▶ Lippmann-Schwinger equation:

H|ψα⟩ = Eα|ψα⟩ ⇒ |ψα⟩ = |ϕα⟩+ G−1
0 V|ψα⟩,

G0 = (Eα + iϵ − H0)
−1 is the (free) resolvent operator.

▶ T-matrix:

Γαβ ≡ ⟨ϕα|T|ϕβ⟩ ≡ ⟨ϕα|V|ψβ⟩ = (Eβ + iϵ − εα)⟨ϕα|ψβ⟩

T-matrix consists of composite vertices
p1

p2

p
′

Γ(p1, p2; p
′)

p1

p2

p′

V (p1, p2; p
′)
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Diagrammaticsm IV: Kadyshevsky equation
T-matrix satisfies an integral equation:

∑
{βi}

Vα,{βi}Γ{βi},n

En + iϵ − ε{βi}
= Γα,n

where Vα,{βi} = ⟨α|V|{βi}⟩, Γα,{βi} = ⟨α|T|{βi}⟩, and, ∑{βi} |{βi}⟩⟨{βi}| = 1
is the complete Fock space basis. The the total energy ε{βi} ,

ε{βi} =

∑i

√
p⃗2

i + mi instant form,

∑i
p⃗2

i⊥+m2
i

p+i
, front form

p1

p2

p
′

p1

p2

p
′

=

p1

p2

p
′

+

We can generalize the Feynman rules in perturbation theory to
non-perturbative theory by incorporating the T-matrix elements.
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Discussion on Oct. 29, 2021
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Scalar Yukawa theory

As a concrete example, let us consider a scalar theory consists of a charged
scalar field χ(x) and a light neutral scalar φ(x) interacting through the
Yukawa coupling Lint = gχ†χφ.

The Lagrangian of the system is,

L = ∂µχ†∂µχ − m2
χχ†χ +

1
2

∂µ φ∂µ φ − 1
2

m2
φ φ2 + gχ†χφ.

Here mχ and mφ are the masses of the two species. We tentatively choose
mχ = 0.94 GeV and mφ = 0.14 GeV. The theory thus describes the pion-nucleon
interaction. The corresponding semiclassical nucleon-nucleon interaction is the Yukawa
potential, VNN(r) = −α exp(−mφr)/r, where α = g2/16πm2

χ .

Yang Li, LFSWE 79/122 November 29, 2021



Quantization
▶ What is quantization?

The quantization of a dynamical system is to pick out the physical generalized coordinates
qi and generalized momenta pi and to impose the appropriate commutation relations
{qi , pj} → (i/h̄)[qi , pj].

▶ Quantization of this theory on the light front x+ = 0 involves constraint
quantization.
However, observe that the Lagrangian is similar to the Schrödinger field ( ḟ = ∂ f /∂x+)

L0 =
1
2

[
χ̇†∂+χ + ∂+χ†χ̇

]
−∇⊥χ† · ∇⊥χ − m2

χχ†χ

▶ Light-front Hamiltonian,

P− =
∫

d3x
{

χ†[(i∇⊥)
2 + m2

χ

]
χ +

1
2

φ
[
(i∇⊥)

2 + m2
φ

]
φ − gχ†χφ

}
χ(x) =

∫ d3 p
(2π)32p+

[
b(p)eip·x + d†(p)e−ip·x

]
,

φ(x) =
∫ d3k

(2π)32k+
[

a(k)eik·x + a†(k)e−ik·x
]
.

where,
[
ci(p), c†

j (p′)
]
= 2p+(2π)3δ3(p − p′)δij
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Second quantization
Light-front Hamiltonian,

P− =
∫

d3x
{

χ†[(i∇⊥)
2 + m2

χ

]
χ +

1
2

φ
[
(i∇⊥)

2 + m2
φ

]
φ − gχ†χφ

}
=

∫ d3 p
(2π)32p+

p⃗2
⊥ + m2

χ

p+
[
b†(p)b(p) + d†(p)d(p)

]
+

∫ d3k
(2π)32k+

k⃗2
⊥ + m2

φ

k+
a†(k)a(k)

−g
∫ d3 p

(2π)32p+
d3 p′

(2π)32p′+
d3k

(2π)32k+

×
{

b†(p)b(p′)a(k) (2π)3δ3(p − p′ − k)

+ b†(p)b(p′)a†(k) (2π)3δ3(p + k − p′)

+ d†(p)d(p′)a(k) (2π)3δ3(p − p′ − k)

+ d†(p)d(p′)a†(k) (2π)3δ3(p + k − p′)

+ b†(p)d†(p′)a(k) (2π)3δ3(p + p′ − k)

+ b(p)d(p′)a†(k) (2π)3δ3(k − p − p′)
}
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Light front variables
▶ For any 4-vector Vµ = (V0, V⃗), define the light-front components of V as,

V± = V0 ± V3 , V⃗⊥ = (V1, V2).
▶ Scalar product: V · U = V0U0 − V⃗ · U⃗ = 1

2 V+U− + 1
2 V−U+ − V⃗⊥ · U⃗⊥ . In

particular, V2 = V+V− − V⃗2
⊥ .

▶ Coordinates: x+ = x0 + x3 is light front time. x− longitudinal coordinate, x⃗⊥
transverse coordinate.
Causality: for time-like separations ∆x2 > 0, θ(∆x0) = θ(∆x+)

▶ 4-momentum: p · x = 1
2 p−x+ + 1

2 p+x− − p⃗⊥ · x⃗⊥ . Hence, p− is light-front
energy whereas p+ is longitudinal momentum and p⃗⊥ is transverse momentum.

▶ Dispersion relation: instant form p0 =
√

p⃗2 + m2 vs front form p− =
p⃗2
⊥+m2

p+

▶ No square root in front form dispersion relation!
▶ Positivity of light-front energy p− ≥ 0 implies the positivity of longitudinal

momentum p+ ≥ 0
▶ Vacuum fluctuation is suppressed in light-front dynamics. M ∝ δ(∑i p+i ) → 0

p1

p2

p3
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Light front kinematics
▶ Lorentz boosts:

p′− = e−
1
2 β−(

p− + β⃗2
⊥p+ + 2β⃗⊥ · p⃗⊥

)
,

p′+ = e+
1
2 β−

p+,

p⃗′⊥ = p⃗⊥ + p+ β⃗⊥

Lorentz boosts in front form is similar to Galileo boosts, hence permitting simpler
kinematics e.g. factorization of center of mass motion.

▶ Total/center-of-mass momentum:

P+ = ∑
i

p+i , P⃗⊥ = ∑
i

p⃗i⊥

▶ Relative momenta:

xi = p+i /P+, k⃗i⊥ = p⃗i⊥ − xi P⃗⊥.

Relative momenta are boost invariant.
▶ Lorentz invariant phase element:

d2 p
(2π)32p0 θ(p0) =

dp+d2 p⊥
(2π)32p+

θ(p+)

2p0θ(p0)δ3(p − p′) = 2p+θ(p+)δ(p+ − p′+)δ2(p⊥ − p′⊥)
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Light front Schrödinger equation

Schrödinger equation of a particle with quantum number α,

P−|ψα(p)⟩ =
p⃗2
⊥ + M2

α

p+
|ψα(p)⟩

Einstein equation:
M2|ψα(p)⟩ = M2

α|ψα(p)⟩

where M2 = p+P− − p⃗2
⊥ serves as the light-cone Hamiltonian. For example,

M2 = M2
0 + V , where M2

0 = p+P−
0 − p⃗2

⊥ , and V = p+P−
int .
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Light front wave functions

▶ Example: nucleon |N⟩ = |χ⟩+ |χφ⟩+ |χφφ⟩+ · · ·
▶ Light-front wave functions (LFWFs)s,

|ψN(p)⟩ = Ψχb†(p)|0⟩+
∫ d3k1

(2π)32k+1

d3k2

(2π)32k+2
2p+(2π)3δ3(k1 + k2 − p)

× Ψφχ(k1, k2; p)a†(k1)b†(k2)|0⟩+ · · ·

▶ LFWFs are boost invariant (frame-independent)
They only depend on boost invariants Ψn(k1, k2, · · · , kn; p) = ψn(x1, κ⃗1⊥, · · · , xn, κ⃗n⊥)

where xi ≡ k+i /p+ , κ⃗i⊥ = k⃗i⊥ − xi p⃗⊥

Momentum conservation implies, ∑i xi = 1, ∑i κ⃗i⊥ = 0.
▶ Light-front kinematics:∫ d3k1

(2π)32k+1

d3k2

(2π)32k+2
2p+(2π)3δ3(k1 + k2 − p) =

∫ dx
2x(1 − x)

d2k⊥
(2π)3 ψ(x, k⃗⊥)
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Diagrammatics

Recall T-matrix

Γn(k1, k2, · · · , kn; p) ≡ ⟨k1, k2, · · · , kn|T|p⟩ = ⟨k1, k2, · · · , kn|V|ψ(p)⟩

Relation to LFWFs,

ψn({xi, k⃗i⊥}) =
Γn({xi, k⃗i⊥})

sn − M2 ,

where sn = (p1 + p2 + · · ·+ pn)2 is the eigen-energy of the M2
0 operator.

= + +

= + +

We get an infinite tower of coupled integral equations! Must do a truncation.
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Diagrammatics

Two-body truncation:

=

ψ2(x, k⃗⊥) =
gψ1

k⃗2
⊥+m2

φ

x +
k⃗2
⊥+m2

χ

1−x − M2

where 2p+(2π)3δ3(p − k1)ψ1 = ⟨k1|ψ(p)⟩, and ψ1 = ⟨0|χ(0)|ψ(p)⟩ ≡
√

Zχ is
a c-number.
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Assignments

▶ Exercise I: Write down the integral equation for the diagrammatic
equation in the first line.

▶ Exercise II: Show that the light-front kinetic energy,

∑
i

p−i =
P⃗2
⊥ + sn

P+

where P+ = ∑i p+i , P⃗⊥ = ∑i p⃗i⊥ are the total light-front momenta. The
effective mass sn ≡ (p1 + p2 + · · ·+ pn)2 .

▶ Exercise III: Compute sn ≡ (p1 + p2 + · · ·+ pn)2 in instant form and in
front form, where p2

i = m2
i . Show that in front form, sn only depends

on the relative momenta {xi, k⃗i⊥}.
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Assignments
▶ Exercise IV: Cluster decomposition:
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Discussion on Nov. 12, 2021
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Scalar Yukawa theory

The Lagrangian of the system is,

L = ∂µχ†∂µχ − m2
χχ†χ + 1

2 ∂µ φ∂µ φ − 1
2 m2

φ φ2 + gχ†χφ.

The light-front Hamiltonian,

P− =
∫

d3x
{

χ†[(i∇⊥)
2 + m2

χ

]
χ + 1

2 φ
[
(i∇⊥)

2 + m2
φ

]
φ − gχ†χφ

}
Light-front Schrödinger equation and Einstein equation,

P−|ψα(p)⟩ =
p⃗2
⊥ + M2

α

p+
|ψα(p)⟩ ⇒ M2|ψα(p)⟩ = M2

α|ψα(p)⟩

Light-front wave function, T-matrix, and diagrammatic representation,

= + +
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Renormalization: mass

All parameters appearing in the Lagrangian are bare parameters, not directly
observables. Why? Because fields are not particles!

L = ∂µχ†
0∂µχ0 − m2

χ0χ†
0χ0 +

1
2 ∂µ φ0∂µ φ0 − 1

2 m2
φ0 φ2

0 + g0χ†
0χ0 φ0.

They only coincide with the physical parameters if there is no interaction (or protected
by symmetries).

Example 1: particle mass m ̸= m0 due to quantum fluctuation

M2 = ⟨ψ|M2|ψ⟩ = m2
0⟨χ|χ⟩ −

∫
d3x⟨χ|g0χ†χφ|χφ⟩+ · · ·
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Renormalization: coupling constant

All parameters appearing in the Lagrangian are bare parameters, not directly
observables. Why? Because fields are not particles!

L = ∂µχ†
0∂µχ0 − m2

χ0χ†
0χ0 +

1
2 ∂µ φ0∂µ φ0 − 1

2 m2
φ0 φ2

0 + g0χ†
0χ0 φ0.

They only coincide with the physical parameters if there is no interaction (or protected
by symmetries).

Example 2: coupling constant g ̸= g0 due to quantum fluctuation

= + + · · ·

iM =
iV2(x, k⊥)

q2 − µ2 + iϵ
=

ig0

q2 − µ2 + iϵ
+ · · · q2→µ2

∼ ig
q2 − µ2 + iϵ

Yang Li, LFSWE 94/122 November 29, 2021



Renormalization: field strength

All parameters appearing in the Lagrangian are bare parameters, not directly
observables. Why? Because fields are not particles!

L = ∂µχ†
0∂µχ0 − m2

χ0χ†
0χ0 +

1
2 ∂µ φ0∂µ φ0 − 1

2 m2
φ0 φ2

0 + g0χ†
0χ0 φ0.

They only coincide with the physical parameters if there is no interaction (or protected
by symmetries).

Example 3: particle scattering vs field scattering

∼ = + · · ·

|ψ(p)⟩ =
√

Zb†(p)|0⟩+
∫
[dx d2k⊥]ψ2(x, k⃗⊥)b

†(p1)a†(p2)|0⟩+ · · ·

̸= b†(p)|0⟩
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让子弹飞一会儿

Lemma (Riemann–Lebesgue)
If f (x) ∈ L1(Rn), then as |z| → ∞,∫

dnx f (x)e−iz·x → 0.

Create asymptotic states using Riemann-Lebesgue lemma:

e−
i
2 P−x+χ(x)|0⟩ = ∑

α

∫ d3 p
(2π)32p+

e−ipα ·x|ψα(p)⟩⟨ψα(p)|χ(0)|0⟩

x+→∞−−−−→ e−ip0·x|ψ0(p)⟩
√

Z

=

√
Zn×

alternatively, χ0 → χ = χ0/
√

Z
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Field redefinition/renormalization

Original Lagrangian,

LI = −χ†
0
[
∂2 + m2

χ0
]
χ0 − 1

2 φ0
[
∂2 + 1

2 m2
φ0
]
φ0 + g0χ†

0χ0 φ0.

Form II:
LII = −χ†

0
[
∂2 + m2

χ

]
χ0 − 1

2 φ0
[
∂2 + m2

φ

]
φ0 + g0χ†

0χ0 φ0

− δm2
χχ†

0χ0 − 1
2 δm2

φ φ2
0

δm2 = m2
0 − m2 , are called the mass counterterms.

Form III:
LIII = −χ†[∂2 + m2

χ

]
χ − 1

2 φ
[
∂2 + m2

φ

]
φ + gχ†χφ

− (δZχ∂2 + δm2
χ)χ

†χ − 1
2 (δZφ∂2 + δm2

φ)φ2 + δZggχ†χφ

Field redefinitions: χ = χ0/
√

Zχ , φ = φ0/
√

Zφ , g = g0Zχ
√

Zφ/Zg

Counterterms: δm2 = m2 − Zm2
0 , δZ = Z − 1,

LI = LII = LIII = · · ·
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Redefined/renormalized vertices

It turns out, in the Hamiltonian formalism, one of the the convenient form is,

L = −χ†
0
[
∂2 + m2

χ

]
χ0 − 1

2 φ0
[
∂2 + m2

φ

]
φ0 + g0χ†

0χ0 φ0

− δm2
χχ†

0χ0 − 1
2 δm2

φ φ2
0

Drop the subscripts to simplify the notations,

L = L0 +Lint = −χ†[∂2 + m2]χ − 1
2 φ

[
∂2 + µ2]φ

+ g0χ†χφ − δm2χ†χ − 1
2 δµ2 φ2

g0 δm2 δµ2
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Discussion on Nov. 26, 2021
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Feynman rules (scalar theory)

g

How to draw time-ordered diagrams:
1. Draw a connected time-ordered graph for designated initial and final states. The

vertices are those allowed by the interactions;
2. Associate each line an appropriate 4 momentum;
3. Associate each vertex a coupling provided by the vertex rule of the theory;
4. Connect the vertices using dashed lines in the order against the direction of the

time;
5. Associate each dashed line a spurious 4-momentum ωτij , where ω is a null

vector in the light cone direction. τij is a number connecting the vertex i to j;
6. If the initial or final state is also off-shell, continuate the spurious line to the

off-shell initial or final state, and associate a spurious 4-momentum ωτi or ωτf ;
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Feynman rules (scalar theory)

S f i =
∫ d4q

(2π)4 2πδ(q2 − µ2)
∫ dτ

2π

1
τ − iϵ

×g(2π)4δ4(p1 + p2 + ωτ − q)g(2π)4δ4(q − p′1 − p′2 − ωτ)

=
g2

(p1 + p2)2 − µ2 (2π)4δ4(p1 + p2 − p′1 − p′2)

How to translate the diagrams to expressions:
1. Each internal line with 4-momentum pi contributes to a factor∫ d4 pi

(2π)4 (2π)δ(p2
i − m2

i ) =
∫ d3 pi

(2π)32p+i
;

2. Each internal spurious line with 4-momentum ωτij contributes to a factor∫ +∞

−∞

dτij

2π

1
τij − iϵ

3. Each vertex contributes to a factor specified by vertex rules (including T-matrix);
4. Each vertex contributes to the factor associated with the vertex and a

4-momentum conservation including the spurious momenta

(2π)4δ4(∑
i∈in

pi + ωτi − ∑
j∈out

pj − ωτj)
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Feynman rules (scalar theory)

How to compute the S-matrix element:
1. Find and compute all topologically distinct time-ordered diagrams G with the

same initial and final states.
2. The total S-matrix element is the superposition of all these diagrams listed above.

S f i = ∑
g∈G

S(g)
f i
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Example: electromagnetic vertex

Γ
µ

p p
′

p p
′ p p

′

e(p + p
′)µǫµ e

2
ǫ1 · ǫ2

M =
∫

d4xeiq·xϵµ(q, λ)⟨p|Jµ(x)|p′⟩ = (2π)4δ4(p+ q− p′)ϵµ(q, λ)⟨p|Jµ(0)|p′⟩

Lorentz decomposition of the hadronic matrix element:

Γµ ≡ ⟨p|Jµ(0)|p′⟩ = (p + p′)µF(q2)

Interaction vertex: minimal coupling ∂µ → ∂µ − ieAµ ≡ Dµ

∂µχ†∂µχ → Dµχ†Dµχ = ∂µχ†∂µχ − eAµ
[
i∂µχ†χAµ − χ†i∂µχ

]
− e2χ†χAµ Aµ

Electromagnetic current of a charged scalar field Jµ = i(Dµχ)†χ − iχ†Dµχ
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Example: electromagnetic form factor

p p
′

q

p1

p2

p
′

2

ωτ

ωτ
′

x
+

Mµ =
∫ d4 p2

(2π)4 2πδ(p2
2 − m2)

d4 p′2
(2π)4 2πδ(p′2 − m2)

d4 p1

(2π)4 2πδ(p2
1 − m2)

×
∫ dτ

2π

1
τ − iϵ

∫ dτ′

2π

1
τ′ − iϵ

(2π)4δ4(p1 + p2 − p − ωτ)

× (2π)4δ4(p2 + q − p′2)(2π)4δ4(p1 + p′2 − p′ + ωτ − ωτ′)

× Γ2(p1, p2; p)Γ∗
2(p1, p′2; p′)e(p2 + p′2)

µ

⇒ F(q2) =
∫ d3 p1

(2π)32p+1

Γ2(p1, p2; p)
s2 − p2

Γ∗
2(p1, p′2; p′)

s2 − p′2
(p2 + p′2)

+

(p + p′)+
p+p′+

p+2 p′+2

=
∫ dx

2x(1 − x)
d2k⊥
(2π)3 ψ2(x, k⊥)ψ∗

2 (x′, k′⊥)
2 − x − x′

2(1 − x′)
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Mass renormalization

Γ1 = (s1 − m2)ψ1 → 0, with s1 = p2 = m2 = m2
ph.

= +

x, k⊥

g0

δm2

Γ1 Γ2 Γ1

(Mass) gap equation:

0 = Γ1 =
∫ dx

2x(1 − x)
d2k⊥
(2π)3

g0Γ2(x, k⊥)
s2 − m2 − δm2ψ1.

+=

Γ1/ϕ Γ2/ϕ

x, k⊥

g0
Γ1/ϕ

Exercise: write down the gap equation for the φ
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Field renormalization

A natural normalization in the Hamiltonian formalism is,

⟨ψα(p)|ψβ(p′)⟩ = δαβ2p+(2π)3δ3(p − p′).

In terms of the wave functions,

1 = |ψ1|2 +
∫ dx

2x(1 − x)
d2k⊥
(2π)3

∣∣ψ2(x, k⊥)
∣∣2 + · · ·

Alternatively, we can normalize the state vector such that ψ1 = 1:

⟨α, p|ψβ(p′)⟩ = δαβ2p+(2π)3δ3(p − p′).

Equivalently, ⟨0|χ(0)|ψ(p)⟩ = 1
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Coupling constant renormalization

Tree level amplitude defines the physical coupling:

iM =
i
√

Z2
χZφV3(p, p′, q)

q2 − µ2 + iϵ
q2→µ2

∼ ig
q2 − µ2 + iϵ

where V3 is the one-particle irreducible (1PI) vertex 3-point functions, viz. its external
legs are replaced by asymptotic states, provided, the fields are renormalized.

g
V3(p, p

′, q)

∼
q = q∗

q
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Coupling constant renormalization

A dissection of the three-point vertex function Γ2:

= + · · ·

Γ2 =
√

ZχV3Z(off)
φ Z(off)

χ

Therefore, the renormalization condition becomes,

Γ2(x∗, k∗⊥) = g
√

Zφ

√
Zχ

where s∗2 = m2 defines the on shell condition.
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Discussion on Dec. 3, 2021
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Induced vertices
Are the three examples (mass, coupling, field strength) exhaustive -- in other
words, are there any other quantities that need to be renormalized?
▶ To answer this question, let us first consider a theory with vanishing bare mass

m0 = 0. Are we free from the mass renormalization?
In general, no! Because the loop still exists (unless some symmetry forbids the
generation of mass, e.g. chiral symmetry for fermions).

▶ In the same token, we need to consider all possible induced vertices due to
quantum fluctuation! (Unless a vertex is forbidden by symmetry)

a b c d e

· · ·

f g h

Vertices a-e are possible induced vertices, while f -h are forbidden by charge
and/or Lorentz symmetries.
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Induced vertices
As we mentioned, quantum fluctuations would generate all possible vertices
allowed by the symmetries of the system.

ga|χ|
2ϕ

=

=

+ + · · ·

+ + · · ·

gb|χ|
2ϕ2

Consider an induced χχφφ interaction. The physical coupling is determined by the
induced vertex at some chosen kinematical point, and is in general non-zero.

A local operator has a bare coupling. Is this coupling zero or non-zero? Ultimately, it is
determined from matching the physical coupling to the experimental measurement.
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Effective field theory

Therefore, we can associate each induced vertex with a local interaction
whose strength is described by a coupling constant.

a b c d e

· · ·

ga|χ|
2ϕ gb|χ|

2ϕ2 gc|χ|
2ϕ3 gd|χ|

4 geϕ
4

Each set of (physical) couplings define a theory (including the masses). At this point,
the couplings have to be determined from measurement of physical observables.

L = −χ†[∂2 + m2]χ − 1
2 φ

[
∂2 + µ2]φ + ∑

i
giOi(|χ|2, φ)
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Effective NN interactions

Example: using Yukawa theory to describe the nuclear force.
▶ Assume pion and nucleon are separately studied and their masses µ, m are

known. Assume the π-N coupling ga is known e.g. from experiments.
▶ Now, consider the ππN scattering experiment. The result is likely different from

the π-N coupling theory prediction. This determines gb .

gb

= +

▶ Similar multi-πN scattering experiments determine the π-N couplings ga,b,c,··· .
The N-N scattering experiments determines the NN couplings gd,··· .

▶ In order to make the process tractable, we work with a low pion energy Q ≪ Λ
where the nucleon-anti-nucleon fluctuation can be ignored.

▶ For an A-nucleon system, there may be up to A-body interactions. QFT in
principles allows a fluctuation up to an infinite number of particles.

▶ Predictive power lies within the access to other observables
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Wait a second!

▶ This is not what I learned from QFT classes!
What we learned from QFT classes are based on leading-order perturbation theory.
And we are satisfied with that due to the complication in algebra. Many things
(including deeper questions) are ``forbidden'' by the lack of know-how.

▶ How could this be useful?
It is so ironic that in fundamental science we do not know the fundamental quantum
theory, the quantum Hamiltonian. In applied sciences, the details of the quantum
theory, like the properties of the electrons are given.

▶ Are there something missing?
Yes, to make the theory useful. It is separation of scales.
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Multipole expansion as an effective theory
Consider the electric potential φ(⃗r) generated by a charge distribution ρ:

φ(R⃗) =
∫

d3r
ρ(⃗r)

|⃗r − R⃗|

=
∞

∑
n=0

1
Rn+1

∫
d3rρ(⃗r)rnPn(cos θ)︸ ︷︷ ︸
qn , multipole moments

=
∞

∑
n=0

qn

Rn+1 =
q
R
+

p
R2 +

Q
R3 + · · ·

In this example,
▶ We need an infinite number of couplings -- multipole moments
▶ Only valid & useful with the separation of scales a ≪ R
▶ High moments are suppressed by the power of a/R if the multipole moments

are ``natural''
▶ Naturalness: qn ≡ an q̄n , where the dimensionless moment q̄n ∼ O(1)
▶ There could be exact symmetries that eliminate q̄n completely. For example, composite

particles with spin J only has up to 2J + 1 multipoles (electric + magnetic).
▶ A super large q̄n ≫ 1 or a super-tiny q̄n ≪ 1 (but q̄n ̸= 0) are all unnatural cases.

Yang Li, LFSWE 115/122 November 29, 2021



Chiral effective field theory
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Modern nuclear force
from χEFT



Standard Model as an EFT

LSMEFT = LSM +
2499

∑
i=1

C(6)
i

Λ2 O(6)
i + ∑

i

C(8)
i

Λ4 O(8)
i + · · ·
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All Things EFT

MOOCs:
▶ MIT OpenCourseWare: Effective Field Theory (Spring 2013)
▶ All Things EFT:

https://sites.google.com/view/all-things-eft
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Separation of scales

▶ Local theories
The core problem of renormalization is our lack of knowledge of the short-distance
behavior.

▶ When the scales are well separated, details of the microscopic physics
should not affect the macroscopic behaviors.
▶ Abundant examples. But, there are also counterexamples!
▶ The microscopic physics only enters the macroscopic physics through the

fundamental parameters (mass, charge, ...)
▶ Classical theories are naturally compatible with the principle of separation of

scales.
▶ Quantum fluctuations made the separation of scales in quantum fields

non-trivial.

▶ Low-energy constants: masses, few-body couplings.
Ideally, the theory should be able to be described by these low-energy constants,
modulo power suppressed high-energy parameters λlow/Λhigh ≪ 1.
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Wilsonian picture

▶ In the Wilsonian picture, a QFT L ({ηi(Λ0)}, Λ0) (i = 1, 2, · · · , N) is defined
only up to a cutoff scale Λ0 ≫ ΛR (ΛR is the scale of interests). It contains all
possible interaction terms allowed by the symmetry.
▶ The dimensionless bare parameters {η̄i} should be natural.

▶ The change of cutoff Λ0 → Λ1 will make the parameters of the theory
{ηi(Λ1)} change while keeping the physical predictions unchanged.
▶ The change of the cutoff is continuous and is called a renormalization group evolution

(RGE).
▶ In coordinate space view, RGE is the coarse-graining (smoothing) of the theory.
▶ It comes with different versions. In general, very complicated.
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RG flow
▶ At the scale of interests ΛR ≪ Λ0 , some theories may be described by only a

finite number of parameters {λa}, up to an accuracy in the power of ΛR/Λ0 .
▶ {λa} can be determined by experimental measurements.
▶ Predictive power is regained.
▶ The bare parameters {ηi(ΛR)} still exist, but they become highly correlated.
▶ Universality: up to O(ΛR/Λ0), different theories, viz. different {ηi(Λ0)} may describe

the same low-energy physics.
▶ In conventional renormalizable theories, Λ0 can be taken to ∞, and remove the values of

ηi except for those relevant at low energies.
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fin
That's all for today. Thank you.
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