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Summary

• We investigated the electromagnetism of QCD matter: described by
Maxwell-Chern-Simons theory with magnetic monopoles (MCSm)

and linear response: ~Je = σe ~E, ~JA = σχ ~B, ~Jm = σm ~B
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• Two regimes of the medium:

Meissner phase chiral phase

σ2
χ < 4σeσm σ2

χ > 4σeσm

dual superconductivity chiral mag. instability

• Through the chiral evolution, which is governed chiral anomaly, the
medium settles in the Meissner phase
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Introduction

• Relativistic heavy ion collisions create some of the strongest
electromagnetic fields in nature: B ∼ m2

π ≈ 1018 Gauss

• Maxwell-Chern-Simons theory as an effective theory of QED×QCD

~∇ · ~E = ρe + cA~∇θ · ~B −~∇× ~E = ∂t ~B

+ ~Jm

~∇ · ~B = 0 ~∇× ~B = ∂t ~E + ~Je + cAθ̇ ~B − cA~∇θ × ~E

I electric current Jµe : existence of electric charges
I axial current JµA: imbalance of chiral fermions [Kharzeev ’14]

• Why add monopole and magnetic current?
I quasiparticles of non-Abelian gauge theory [review: Shnir ’05]

I CS term ~E · ~B can also be generated by the dual transformation
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Maxwell-Chern-Simons theory with monopoles

• Idealized model:
I away from charges ρe = ρm = 0
I homogeneous medium ~∇θ = 0: ~JA = cAθ̇ ~B = σχ ~B
I Ohm’s laws: ~Je = σe ~E, ~Jm = σm ~B

~∇ · ~E = 0, (i) −~∇× ~E = ∂t ~B + σm ~B, (ii)

~∇ · ~B = 0, (iii) ~∇× ~B = ∂t ~E + σe ~E + σχ ~B. (iv)

• Introduce vector potential: ~∇× ~A = ~B w. Coul. gauge ~∇ · ~A = 0
I Bianchi identity violated: ∂µF̃

µν 6= 0
I ~E = −∂t ~A− σm ~A satisfies (i–ii)
I can also work with the dual vector potential ~∇× ~C = ~E

• Wait, what about gauge invariance?
I Ginzburg-Landau-Anderson-Higgs mechanism: ψ = |ψ|eiφ
I unitary gauge: φ = 0

Wait, are we getting superconductivity?

Li with Kirill, dual superconducting chiral medium 3/13 Institute of Modern Physics, CAS, Lanzhou, China



Superconductivity

London equations: [F. London & H. London, 1935]

∂t ~J = +λ−2 ~E ~∇× ~J = −λ−2 ~B

zero resistivity Meissner effect

The second London equation + Maxwell equation: ∇2 ~B = λ−2 ~B, where
λ is known as the London penetration length.
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Dual superconductivity
• Introduce the super current: ~Js = −σeσm ~A and the normal current
~Jn = σe ~En with ~En = −∂t ~A; ~Je = ~Js + ~Jn

• Maxwell-Chern-Simons-London equations

~∇ · ~En = 0, −~∇× ~En = ∂t ~B

~∇ · ~B = 0, ~∇× ~B = ∂t ~En + (1 + σm
σe

) ~Jn + ~Js + ~JA

~∇× ~Js = −σeσm ~B, ∂t ~Js = σeσm ~En

• Dual Meissner effect

∇2 ~B = σeσm ~B + σχ~∇× ~B, ∇2 ~E = σeσm ~E + σχ~∇× ~E

In the stationary limit ~En = 0, ~Je → ~Js

I Chandrasekhar-Kendall modes:

k =
λσχ
2
±
√

1
4
σ2
χ − σeσm = kχ + i/λ

I σ2
χ < 4σeσm:
Bz(x) = B0 cos(kχx) exp(−x/λ)

I σ2
χ > 4σeσm: no Meissner effect

outside medium inside medium

σχ=0
σχ≠0

x

B(x)
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penetration length:
λ = 1√

σeσm− 1
4
σ2
χ



Persistent current
Can we have both the finite conductivity and a persistent current? Let’s
consider a realistic problem – a dual superconducting ring (σχ = 0):

circuit law:

~∇× ~En + ∂t ~B = 0,

∂t ~Js = σeσm ~En,

~∇× ~B = ∂t ~En + (1 + σm
σe

) ~Jn + ~Js

~Je = ~Jn + ~Js

self inductance L = 4π
[
ln(8b/a)− 7/4

]
+O(b2/a2) (for a ring).
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Persistent current
Can we have both the finite conductivity and a persistent current? Let’s
consider a realistic problem – a dual superconducting ring (σχ = 0):

circuit law:

InR+ Φ̇tot = 0,

İs = σmIn,

~∇× ~B = ∂t ~En + (1 + σm
σe

) ~Jn + ~Js

~Je = ~Jn + ~Js

self inductance L = 4π
[
ln(8b/a)− 7/4

]
+O(b2/a2) (for a ring).
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Persistent current
Can we have both the finite conductivity and a persistent current? Let’s
consider a realistic problem – a dual superconducting ring (σχ = 0):

circuit law:

InR+ Φ̇tot = 0,

İs = σmIn,

Φint = L
[
(1 + σm

σe
)In + Is

]
~Je = ~Jn + ~Js

self inductance L = 4π
[
ln(8b/a)− 7/4

]
+O(b2/a2) (for a ring).
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Persistent current
Can we have both the finite conductivity and a persistent current? Let’s
consider a realistic problem – a dual superconducting ring (σχ = 0):

circuit law:

InR+ Φ̇tot = 0,

İs = σmIn,

Φint = L
[
(1 + σm

σe
)In + Is

]
Itot = In + Is, Φtot = Φext + Φint

self inductance L = 4π
[
ln(8b/a)− 7/4

]
+O(b2/a2) (for a ring).
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Dispersion relation

(∂2
t −∇2) ~A+ (σe + σm)∂t ~A+ σeσm ~A− σχ(t)~∇× ~A.

• ~E, ~B satisfy the same equation

• Expand ~A with CK states – circularly polarized planewaves

ωλk(t) = − i
2

(σe + σm)±
√
k2 − λσχ(t)k − 1

4 (σe − σm)2

• σχ = cAθ̇ has non-trivial time dependence dictated by chiral anomaly

• Full time evolution has to take into account the evolution of σχ

If σ2
χ > 4σeσm, there exist unstable

modes w. Imωλk > 0

For example, the fastest growing state
k? =

λσχ
2 : A? ∼ e

1
2

Γ?t where
Γ? =

√
σ2
χ+(σe−σm)2−(σe+σm) > 0

σ=2 σe σm

chiral magnetic
instability

chiral magnetic
instability

exponentially decaying
states wo. oscillation

σe=4σm

static states

fastest growing state

static state wo. monopole
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Chiral anomaly

• Magnetic helicity: Hem =

∫
d3x ~A · ~B topological quantity

• Chiral anomaly equation governs the evolution of chiral conductivity:

∂µJ
µ
A = cA ~E · ~B ⇒ ∂t(β

−1σχ +Hem) = 0

• Without monopole, the total helicity is conserved [Tuchin ’17]

I chiral magnetic instability = helicity transfer from medium to field
I chiral anomaly terminates the growth of magnetic field (σ∞ = 0)

• With monopole, Jm dissipates helicity (though it conserves energy):
Hem → 0; but there is no constraint on σ∞

σm = 0

σm 6= 0

instability exists for all σχ

instability exists for σ2
χ ≥ 4σeσm

σχ → 0

σχ → σ∞
?
< 2
√
σeσm

Hem → const

Hem → 0

A→∞, B → 0

A→ 0, B → 0
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[Hirono ’15]

magnetic fields with definite Hem

final state is always
dual superconducting

(see next slide for proof)
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Analytic solutions
• Ansätze:

I adiabatic approximation: ω̇λk ≈ 0
I fastest growing state approximation: only consider the FGS: k = λ

2
σχ

σ̇χ = −Hem(σχ)
[√

(σe − σm)2 + σ2
χ − (σe − σm)

]
• Final state: σ̇χ = 0 ⇒ Hem(σ∞) = 0

• σ∞ is determined by the details of the evolution. But Hem peaks at
2
√
σeσm ⇒ σ2

∞ ≤ 4σeσm

σe=1, σm =0.1
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f = Hem/Htot is the initial fraction of
helicity stored in the magnetic field



σe=1, σm =0.1
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Stability of the chiral medium
Under what condition is the chiral medium stable with respect to helicity
fluctuation, if there is no electromagnetic field initially?

• In an unstable chiral medium, a small fluctuation will grow
exponentially. In other words, if you disturb an unstable chiral
medium, it will blow up.

• Chiral medium is always unstable without magnetic monopole —
chiral magnetic instability

• Stability condition (for Hem = 0 at t = 0):
σχ(t) = σχ(0) and H′em(σχ) < 0 ⇒ σ2

χ < 4σeσm

σ ∞
=
�

σ �
σ �

�

��-�

���

���

���

��� ��� ��� ��� ���
���

���

���

���

���

���

� σ� σ� /σχ(�)

σ
∞
/σ

χ
(�
)

σ�=�σ�

f  10-4

σe=1.0, σm =0.1

σe=2.0, σm =0.2

0.01 0.10 1 10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

α t

σ
χ
(t)
/α

Li with Kirill, dual superconducting chiral medium 11/13 Institute of Modern Physics, CAS, Lanzhou, China



Conclusion and outlook
• We investigated the Maxwell-Chern-Simons theory with magnetic

monopoles

• We discovered there exist two distinct regimes:
I σ2

χ < 4σeσm is dual superconducting phase featuring dual Meissner
effect and stable chiral medium

I σ2
χ > 4σeσm is a chiral phase featuring chiral magnetic instability

• In presence of monopoles, the chiral medium undergoes an inverse
cascade before settling to the superconducting phase

Questions to be answered:

• What is the microscopic origin of the dual
superconductivity?

• What is the implication to quark-gluon
plasma physics?

• Can we observe these phenomena in
condensed matter systems, e.g. spin ice?

• What is the role of Dirac quantization?
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Thank you!
Questions?
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