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A brief (and biased) history of the proton structure

Proton magnetic moment (1930s)

Elastic scattering of proton (1950s)

Quark model (early 1960s)

Chiral symmetry breaking (1960s)

Deep inelastic scattering (late 1960s)

m Quantum chromodynamics (1970s)

Tremendous progress, but many puzzles remain. See, F. Gross and
E. Klempt (eds.), 50 Years of quantum chromodynamics, EPJC, 2023
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Electron structure in history

m Thomson discovered the electron in 1897 in cathode rays. Classical view of the electron: a
spherical corpuscles of the size 7, ~ 10715 m moving in high speeds

m Minkowski (1908), and Einstein & Laub (1908) established the correct theory of macroscopic
electromagnetism of moving bodies based on Einstein's electrodynamic theory of moving bodies
(1905), i.e. special relativity [W. Pauli. Theory of Relativity (Oxford Univ. Press, 1958)]

m Modern view of the electron: a pointlike particle r, < 1024 m, first verified by Sam Ting in 1967
m Relativity as a byproduct -- a right theory (indeed, a great theory) for a wrong problem

m Modern applications: cosmology, black hole merger, inertial fusion, quark-gluon plasma (hydro), ...
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Minkowski-Einstein-Laub theory

9, FB = jB §P=58+0, M~P 9, HoB = jfﬁ
~ —_— ~
804Fa5:0 8aF"‘ﬁ=0
where, j¢ is the full current, and j¢ = ou® + j&y,, is the free current, and H = pof — poP

m The theory appears identical to Maxwell's theory of macroscopic electromagnetism, but now
applicable to media in motion -- rediscovered several times in applied physics!

m Co-moving decomposition of the medium polarization tensor:

_ A
MOB =y PB ey BNy, M\
where, u® is the velocity vector, P and M ® are co-moving polarization & magnetization vectors
= Co-moving polarization & effective magnetic charge densities: 0,0 = —9,P%, Orag = =0, M
m Dependance on the choice of u®, e.g. Landau-Lifshitz vs. Eckart frames [Eckart:] 940te]
m Need the microscopic theory to obtain the full current as developed by Max Born in 1909
[H. Minkowski Nachr: Ges. Wiss. Gétt., Math.-Phys. KI. 53 (1908);]
[H. Minkowski, Math.Ann. 68 (1910) 472;]
[A. Einstein, J. Laub, Annals Phys. 331 (1908) 532]
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Classical many-body theory of Born e

:E) :Zeai/dTaiX ( )54( az( az) :l?)

> 7
where a and ¢ enumerate the ““atoms" and their constituents, respectively. R ‘ |
m Born introduced a privileged worldline X, (7,) for atom a and define r,; = X, — X,
jH / Z az Xg +T ( )]( '8)n64(Xa(Ta)_x)'

n= O acA i€a

m Multipole structure, and the monopole term (n = 0) defines the free current
Z/dTeX 64 (X, (1,) — )

m If atomic motion X, neligible, factorization of the atomic distribution and
the internal density within each atom

() = /d3m“<xf Ripa(Bot) +O(X,)

m Weyl quantization, Wigner-Newton position operator & particle localization
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Quantum many-body theory and nuclear structure

m One-body density (OBD): ) lﬂ
p(#) = (U] Y ;63 (r — ;)| ) l;-g; ‘
7 2 alpha
m Factorization of c.m. motion |¥) = |®_,)|¥,) and %pmm‘d’mty : \

translationally-invariant OBD:

1) = [ @R p(R)ol ~ B 220 i

m Form factor: FT. of OBD o(r) I IR
npdensnty [Maris:2012ee, Cockrell:2012hfi]
/ d3reid”

[ Root—mean—square (rm.s.) radius:

r2 = /d3rr2g(?) = —6F’(0)

\~

. . o (2
m Elastic eA scattering oo = ooy F(3)]
Nucleus is at rest (no recoil)
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Nuclear structure within e A scattering [Hofstadter-1956as]
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LABORATORY ANGLE OF SCATTERING (IN DEGREES)

m Hofstadter et al. systematically investigated nuclear structure using electron scattering

m For the proton, the nucleus of hydrogen, nucleus recoil is non-negligible: E. 2 Mpc2 and full
relativistic description is needed.

m Protons are intrinsically relativistic, since their radius 7, ~ Ao = szl
= In order to resolve the proton, the photon wavelength A, < r = E, > M),

m Similar to other hadrons, e.g. neutron, pion
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Proton form factors

dog dl

U,o s
Y 4
GH(Q?) +7G3,(Q%) 20 o 2 ’
dQ o dQ MottI: 1+T +2Ttan §GM(Q ):| Lo s

where, 7 = Q2/4M?, and Gz and G, parametrize the Lorentz covariant structures of the current hadronic
matrix elements,

/7 — p# ZEHUPGQVP Yo V5
¥, [ J4(O)p. 5) =Ty ()| 37 Gola®) + ——5 1 G () |5 (p)

=7 () R + S By(g?)] s ()

Here, P = %(p +p),q=p" —p G, are called the Sachs form factors. F o are called the Dirac and Pauli
form factors

proton G proton Gy neutron G i neutron Gy

(@) = —— )

Fit: Ye, 2017; (1 +m)

Global analysis: Arrington, 2007 i :

107 07 107 10 107 107 07 107
Q@ [GeVY] Q [GeVY]

proton radius  —0
puzzle
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Proton charge density: Sachs/Breit-frame density st 196022, sachs:1962220)

The Sachs densities are defined as the FT. of the hadronic matrix elements within the Breit frame

(Sach) /oy d’q g7/ 17 70 1 _ d*q 2N, —iG T
B0 = [ e A0 50 = [ G Gae
m Ambiguities G vs Fy vs G /vV/1+ 7 [Lorce:20200nh]
m Frame dependence: the proton is not at rest in the Breit frame. Densities in other frames?
m Lack of local probabilistic interpretation JO(xz) = Wy°W # Y e,6%(x — X;) [Miller:2018ybm]
m Underlying assumption: proton as a rigid ball -- in contradiction with relativity [Jaffe:2020ebz]

Is it possible to generalize the non-relativistic quantum many-body OBD to relativistic quantum theory?

q
) ‘ ) O

Ay ~ Taud » Acomp = Mpual Ay ~ 1y ~ Acomp = My*
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Relativistic quantum many-body theory on the light front

m In relativistic quantum theory, the position operator does not exist*

m Fortunately, in light-front dynamics, transverse position operator exist, which defines the OBD
on the 2D transverse plane:

pr(iy) = (U1 e;0%(r) —r; ) )|¥)
i

where, 2t (7, ) =3, e;02(r| —r; | ) is the transverse charge density operator.
m Factorization of c.m. motion |¥) = |®_,)|¥,.) thanks to Galilean covariance in LFD
m Indeed, FT. of pp (7 ) is given by the celebrated Drell-Yan-West formula  [Dreli1 969km, West 1970a/]

. FT. . X - .
pr) D PG =Y [ ekl Y et (o kL Do (o b b
n J
where, Drell-Yan frame ¢t = 0 is equivalent to the longitudinal compactification X1 = (1/2) [ da™ J T (z)

. + _ .0 3
light-cone TE=r £,

i o2 (a1 2
coordinates: = (x T )
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Transverse density on the light front [Miler:2010nz, Freese:2022fat]

= d*q —ig, 7
pr(is) = [ ompme TP+ a7 0P~ o)

d*q —ig, —
Z/ﬁe WLF ()

m Frame independent: boost invariance in light-front dynamics

qt=0

= Local probabilistic interpretation: J* ~ 3. g7 q; ~ >°. e;IN;, vacuum suppressed

m Intrinsically relativistic and related to the forward generalized parton density q(a:,T)L), i.e. what
the probes "see" in high-energy collision experiments [Burkardt:2000za]

interaction
among quarks
&gluons.

z light-cone coordinates:

L9 external

e
. g senal ‘ o 2 =20 £ 3,
ecuon /interaction|w.

mage credit: ourier external sighal - 7 = 1,2
Image credit: CERN C AV~TN>>1/P ﬂ :El:(x , )
Experiment: DIS Theory: IMF & LFQ
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What does the proton look like in 3D7?

?
m Light-front densities are 2D — 3D [Panteleeva:202 liip]

m Light-front densities can be understood as equal-time densities in the infinite momentum frame
which could be counter-intuitive [Lorce:20200nh]
m Physical densities associated with "bad" components, e.g. J~, are not well explained

m Amplitude vs. quantum expectation value: what is truly probed by a semiclassical
electromagnetic field is the quantum expectation value j*(z) = (¥|J*(z)|¥) where |¥) is a
generic hadronic state
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What does the proton look like in 3D7?

resolving a non-relativistic particle: 74000 > Ay > Ajgon = Ac

resolving a relativistic hadron: A0, R Thadron ~ Ac > A,

where Ac = M~ is the Compton wavelength, Ay = Q! is the photon wavelength. Agron is the de Broglie
wavelength. 7,4-0n is the hadron radius.

B\, < Agoon' the photon “'sees" a de Broglie wave (medium)! [de Broglie, 1924]

m The relevant theory is Minkowski-Einstein-Laub's relativistic theory of macroscopic
electromagnetism

m Mass & spin decomposition as multi-fluid

adron densities, Yang Li (USTC
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Relativistic theory of macroscopic electromagnetism

i =i +0,MP = 9, HP = j] (HOP = Fof — Mod)
where, j?‘ = 0yu® + j&, is the free current, consisting of the convective current and the Ohmic current. and
MB =y PB —yfpe 4 5°‘ﬁ””upMU is the medium polarization tensor.
= Our “'medium" is non-dissipative, unmagnetized, unpolarized (a; > oep)

m Densities (frame dependent): charge p = j°, bound charge density p, = V - P, effective
magnetic charge density p,,, = V - M, magnetization current j,,, = V X M
m Co-moving densities -- densities measured in local rest frame, are Lorentz invariants:
m Free charge density: oy = uaj?‘
m Bound charge density: g, = —0,P%
= Total charge density: 0 = o + g3
m Effective magnetic charge density: o,,, = —0,M*
[Jackson, Classical Electrodynamics (John Wiley & Sons, 1999)]
[W. Pauli. Theory of Relativity (Oxford Univ. Press, 1958)]
[SR. de Groot & L.G. Suttorp, Foundations of electrodynamics (North-Holland, 1972)]
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Factorization

Consider media comprising of composite particles, e.g. atoms, molecules. The total current density
factorizes into a convolution of an internal density and a convective current density:

() = / EBr 5 F)py(E —7.1)

Here, 7%(&) is known as the atomic/molecular density.
Similar factorization formula for nuclear densities,

o) = / ER p, (R)py— R)
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Relativistic quantum current [Li:20221db, Freese:2022a]

JH(x) = (P|TH ()| @)
1 d3p dB3p’  ~ - i
:M/ (2#)32]90/ 2@321)/0\1/ (P (p)e'T

XUy (p') [P“GE(cf) + mé“”p"qypp%vsGM(f) ug(p)

where, P = (p’ +p)/2and ¢ =p’ —p. ¥, (p) = (p, s|¥) is the momentum-space wavepacket, which is

PP02

arbitrary, e.g. Gaussian @S( ) x exp{ and stationary planewave @S(f)) o 63(p) [Ernst:1960zza]

m Introduce the ““coordinate space wave function" as the FT. of @S(;To),

3 T .
=3 [ Gt s,

where ¥(z) satisfies the Dirac equation

m Conserved number current: (fgg = fog—0fg)

nh(z) = =V (2)id"U(z) = 9nt =0

2M



Quantum wave kinematics [Li:20221db]

n® =nu®, (u,u®=1).
n =ny,u® is the proper number density
m The medium (wave) velocity u:
_ 1 — = 1 3
a — o _ oY o 2, « 4 o _ .
u®(z) = ¥(z)U {J(z)—74M2+82[\P18 U] =n 8M26n +16M48n

m Consider the gradient of the velocity vector:
1
8auB = uaaﬁ + Qoz,B + Eaﬁ —+ §0AQB7

a is the 4-acceleration, a,u® = 0; {2,z is the vorticity tensor; X, 5 is the shear tensor; 0 is the expansion
scalar, @ = 0 for hadrons, and A8 = g8 — 42,8 is the spatial metric tensor (spatial projector)

[Rezzolla, Relativistic Hydrodynamics, 2013]
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Electromagnetic structure: spin-0

Recall, in Minkowski-Einstein-Laub's theory,
ja — pfua + 6ﬁMa5
m Free current of spin-0 particles:
¥ = On® = Q8*id*® = pp = On = 0B*i),UP
here, Q@ = F'(0) is the charge number

m The polarization tensor can be constructed as,

3 . 2y
Maﬁ(l-):<i/ d?q eiq~zq[a,1'/ad]w>

M J (27)3 iq?
3. 2
= mia) = { [ gser\1- fimlF@) - Fo)),

Pm (@) =0.

where, the quantum average is defined as,

(O(x)) = 2M / 432 0% (2 — 2)0(2)D(z — 2)
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Electromagnetic structure: spin-0

m Full electric density in the local rest frame (LRF):

p=pr+p,="{02)

:2M/d3z®*(m—z)/.ﬁeiq'z 1— iF(q2)<1>(;v—,z)
23S VT aae

= Full density is a convolution of the wave density o ®*®, i.e. the cm. density and the hadronic density o(z),
i.e. the intrinsic distribution

m The full current can also be written as,

J* = (el)
corresponds to a new current decomposition in relativistic hydrodynamics (for spin-0):
J* = pu®

USTC 18/3 JLab, August 18, 2025




Electromagnetic structure: spin-1/2

Generalizing the current decomposition to polarized relativistic matter:

m Electromagnetic decomposition:
j% = pu® + aﬁMaﬂ

m Special case: Minkowski-Einstein-Laub decomposition:
j¢ = pfuo‘ + (9[3M0‘B
m Bemfica-Disconzi-Noronha-Kovtun (BDNK) formalism: [Kovtun:201 élfw, Hernandez:2017mch, Bemfica:20 | 9knx]
JE=NuE g (J = A%5P)
where the relation between the e.m. and the 3+ 1 decompositions is,
N =p+0,P%+Poa® + M0, % =ugPlPucl 4 B0y g0,
where, Q% = %aaﬁp"uﬁﬂpa is the vorticity vector, and & = u,0%a

No dissipation (no entropy production), no gradient expansion, no local thermal equilibrium assumption

adron del
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Electromagnetic decomposition

Hadron matrix elements expressed using Dirac-Pauli form factors: (Fiio=F +Fy)

5 LA O)lp, ) =T () [ 5 Fala?) + T (6 o),

1
= ja = <Qua + m0a585f1+2>
where, the quantum average for spin-1/2 particles is,

(O()) :/dSzE(x—z)O(z)\Il(x—z)

m One can identify the FT. of the Dirac form factor as the hadronic electric charge density,

3., 2
o) = [ et 1- fhmRla?)

m |dentify the FT. of the I, 5 as the polarization (magnetic dipole) density,

1 d3q iq-
MOP = 20T g, Tiya(z) = / Wezq “Fiia(a?)
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3+1 decomposition

Hadron matrix elements expressed using Sachs form factors:

_ pr .
@', 8" |J*(0)|p, s) =y (p') [VGE(Q2) + ie"P? 4, Py, s Gar (4%) [us (p),

402
o = (e 4 - eaBooy 959
= 7= _|'2]\4—8 pVoV5089 M

m One can identify the FT. of the Sachs form factor G'g; as the hadronic temporal charge density,

3. 2
N = [ sty 3G

m |dentify the FT. of the Sachs form factor G, as the magnetization density,

2

Yys [ d3q q 9
a _ iqzy [1 — G «
M= 5n1 (2m)3° oz Cmla’) < J5

ng Li (USTC) 21/37 JLab, Aug




Factorization of the hadronic density [Li:20221db; Freese:2022fat]

p(z) = /d%@(m —2z) / d’q eFy /1 — iF () pU(z —2)
(27)3 AM2 T
The hadronic part is not factorizable due to the dependence of P = (—i/2)V . in ¢% = (¢°)% — ¢%, where
= \(P+ 502+ M2~ (P~ 192 + M2

m Taylor expansion around P = 0: multipole series,

20=0

s (D) iy, i i S
p(E) = S irod (@) VT T
n=0 :

m Monopole density gives the Breit-frame distribution (Sachs distribution)

_ [P fiL P g0 AcH/A
p(?‘)— (27r)3 +m ch(_q )e + (max{rhadronv C}/ hadron)

m High-multipole moments exist due to Lorentz distortion

m No special frame or non-relativistic approximation is taken

m Convergence of the multipole series: A\uqron > Max{riqrons Ac} - sufficiently delocalized wavepacket
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Light-front distribution from infinite momentum limit [Li-2022icb]

Is the multipole expansion unique? Nol — Alternative: Taylor (Laurent) expansion around 1/|13| =0

= Sufficient to take P, — 0o = |P| = /P2 + P2 — 0

m Monopole density gives the 2D light-front distribution

d?q, @ -2\ i, T
pl\’lon(r) = 5(T|\) (271’)3 1+ chh(_QL)e L

= No special frame, e.g. Drell-Yan g™ = 0 frame, is chosen

m Relativistic, suitable also for massless hadrons (in contrast to the Sachs distribution)
m Convergence of the multipole series: | P| > Aridiron > M, .5 .} - sufficiently localized z-direction

m Consistent with analyses from the (2+2)D phase space approach and the light-front quantization approach.
And we have retained full Lorentz covariance [Lorce:20200nh, Freese:202 | mzg]

= In the infinite momentum frame (IMF), the current components form a hierarchy: 57 > j1 > 5
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Hadronic energy-momentum tensor

H= / BrTO(@) = 198(z) = (BT (2)| V)

Hadronic energy-momentum tensor encodes the energy-stress densities inside hadrons

Hadronic matrix elements and gravitational form factors (GFFs):

[Kobzarev:1962wt, Pagels: [966zza]
(', s'IT1(0)[p. s) =
_ 1. 1 _
27 % (7)) [PMPVAi(QZ) + §ZP{’“‘0”} Pqydi(q*) + i 9" ) D;(¢*) + 9" () |us(p)

hadron densiti
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Light front energy and momentum densities  uzoz4cta, of. Freese:2021czn, Freese2021mzg)

d2 o
B m . py— 9L —iq,- 1 1
Tssf(m,P)—/(%)22P+e TP+ 3q,8' (TP (0)|P - g, 9)

PH(r ) =T (r s P)=PYA(ry),

qt=0

/d%T*“(m):P“ = ?i(rl)ETj}(rL;P):Pj/l(m_)-l—(VXg)i, (i=1,2),

P? P, . § 2
P(r)=Ti(r;P) = J_A(TJ_) + P (VX8E)+M(r))

P+
m A(r)) can be interpreted as the number density (cf. mass density, tensor density, long. momentum density)
m M?(r,) can be interpreted as the invariant mass squared density P2y
[ g(rL) can be interpreted as the spin current density P = %

Frame independent!
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Relativistic guantum many-body rep'n on the light front

m Drell-Yan-West formula: transverse charge density as exact OBD

Pch TJ_ Z/ dx d? Tu |¢n {l’zﬂ“u} ‘ Ze 62 TJ__T

[Drell:1969km, West:1970av

= (Lo

m Brodsky-Hwang-Ma-Schmidt formula: number density A(r | ) as exact OBD
suppressed

TL_T )>
ry)= <ij52(7l - ]J_)>

J
Number density A(r | ) mainly samples the valence partons x; ~ O(1); wee parton z; < 1 contributions

[Brodsky:2000ii]

Tch pion cloud

Ty > Ten
L
0.3

ng Li (USTC)
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F

Ta < Tch
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Wave function representation of D-term

International Journal of Modern Physics A | Vol. 33, No. 26, 1830025 (2018) f‘++ of the EMT. Being related to the stress tensor f‘” the form factor D(t)
| Reviews naturally “mixes” good and bad light-front components and is described in terms

o . . of transitions between different Fock state components in overlap representation.
Forces inside hadrons: Pressure, surface . quatity intrinsically nondiagonal in a Fock space, it is diffcult to study the

H H H D-t i aches based on light-front functions. This is due to the rela-
tenSIon, mechanlcal radlus, and a" that erm in approaches based on light-front wave functions. This is due to the rela-
Maxim V. Polyakov and Peter Schweitzer =]

i non-diagonal
https://doi.org/10.1142/50217751X18300259 | Cited by: 212 (Source: Crossref) dlagonal

m In an explicit model calculation (scalar model in 3+1D), we showed that all non-diagonal
contributions add up to a diagonal contribution [Ca0:20230hj]

IR . ¥ S .




LFWF representation of energy and stress (Cao:20230h), Cao:2024rul]

Tj

152 1.2
pz_1 (S et VjLiVin qﬂ’l>
=3 ,
J

1'6’2 4 2 1.2
o TV mi — 314 .
= 2< Z eigrdr AL T T ATE L iy d,
j J potential part

kinetic part

-V3 +

2
where, V = M2 -3 ™ and the quantum average is defined as,

J Zj
) =3 [l ], T (e DOWT (i D)
u The off-shell factors ™t 'dx i 2(r, — 7, ) indicate the location of the graviton coupling

m Large contributions from the wee parton -- condensates?

m Use scalar model as an example
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EMT Of a relat|V|St|C Splﬂ med|um [Rezzolla, Relativistic Hydrodynamics, 2013]

t*8 = eu®uf — pA*P + %8U(u{°‘55}”) + 7B — @B + dissipative terms

where, 4 is the medium velocity with u,u® = 1, A%B = g"‘ﬂ —u®uP is the spatial metric tensor.
athpvt = ahbY + avbH,

m e(x) -- proper energy density, i.e. energy density measured in local rest frame (LRF)

m P = 712% — pA>P - Cauchy stress tensor, consisting of a traceless shear tensor and a normal
pressure p(z).

m 7%(z) - shear tensor, dissipative in fluids but non-dissipative in solids

m 5°%(z) - spin tensor, recently proposed by Fukushima et. al. in relativistic spin hydrodynamics

m A -- cosmological constant term, non-conserving, representing an [Fukushima:2020ud, cf. Li2020eon]
external pressure  [Teryacv2013ba, Teryacv20| bedw, Liu2023cse] density N

Ey
8

m Coupled multifluids vs Interacting multifluids 701 02 703

10| | 11 | 12 13

20| 721 22 23
T730|| 731 32| 33

momentum momentum isotropic
density fluz pressure

]

w _
Tire=




Hadronic energy-momentum tensor [Li-2024vg]

m |t can be shown that the quantum expectation value of the EMT tensor can be written as,

(U|TP (2)|¥) = (EUUP — PAP 4 30, (U *8P) 4 TT*F — g*PA),,

where,
3 _
/d 20(2)O0(x — 2)U(z )wo:zo,
is a convolution with the wavepacket W(x).
S(I)—M/ d’q wz{(ki)A( 2) 4 ¢ [2J( 2) D 2)]}
- (277)3 a2 ) ) Ty 20 SR 10°%Pa
L T 2
6M 271')3 74’ D(g?),
B it ap [, P UG
af _ iq-x af _ _ 2
s (x)’/(zfr) et {w Y=o~ o S
aﬁ el z ﬂ_i af
IT 4M/ ¢ q q A ) (@),

d
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Factorization of the hadronic density: stationary limit  (izozeib, of. Freese:2022tat

20=0

e(z) = /dgzﬁ(x—z){ﬂi / <(21;;13 eiq‘x{<1 — %)A(QQ) + 4;1;2 [2J(q2) — D(qz)] }}\If(x—z)

The hadronic part is not factorizable due to the dependence of P = (—i/2)V, in ¢* = (¢°)? — §2, where
@ = \/(P+ 30 + M2 = (P~ §)2 + 2

m Taylor expansion around P = 0: multipole series,

N 0 (=) i e -
(9(7') = ZO (2n71! gfnﬂz tn (r)vzl Viz...Vin
n—

m Monopole density gives the Breit-frame distribution (Sachs distribution)

o) =21 | %e-w‘f{(l ) acP) - o ) - p-p)] )

m High-multipole moments exist due to Lorentz distortion

= Note that for spin-0, the monopole density & differs from the Breit-frame distribution given by Polyakov &
Schweitzer
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Infinite momentum limit [Li:20221d]

Is the multipole expansion unique? No! — Alternative: Taylor (Laurent) expansion around 1/|Z3| =0

= Sufficient to take P, — 0o = |P| = /P2 + P2 — 0

m Monopole density gives the 2D light-front distribution

2o = e (14 41)

m No special frame (e.g. DreII—Yan gt = 0 frame) is chosen

A=) — 4;[2(&1( 2)-D(-a))].

m Relativistic, suitable also for massless hadrons (in contrast to the Sachs distribution)

Convergence of the multipole series: | P| > Miron > {M, 71}, } — sufficiently localized z-direction

m In the infinite momentum frame (IMF), components of the EMT form a hierarchy:

T+t~ P2, JHi~ Pl Tt~ T~ PO Ti~ P7l T~ P72
—_— =
best good bad worse worst




Charmonium: "hydrogen atom" of QCD [Li20152da, Li:2017miw]

2+
p; m
il QCD
H=) == 10"+ Z Uy + Z Vij Usj
A i
T T T —— T T T T
a0k k30 7 ahoo) Xer(4274) |
- a Xald140)
L o ¥(4160) -
.
— H
4.0 $(4040) on 3915 <>D a90) -
B o = w2y 8% ]
3770; c S _—
3.8 o . o3860) Y1872 Bo  TTE yesa) -
<
- ° G o © DD threshold
5Swe)
- 7.0S (1P -
3.6_ 7:(28) h(IP) YD) Xe2(1P) i
34 o0 app 0%

]
°

= — PDG
3.2
o o BLFQ
B n(1S)  Jpas) & CsT
L

3.0 © DSE/BSE ]|
19 1 Il 1 1 1 1

1 1
0 1 1+ o+ 1+ 2+ 2+ 2= 3

m Basis light-front quantization: two free parameters (m,, k), rms deviation: 30 MeV

m Good agreement with the PDG data for both the masses and decay constants and radiative
widths




Charmonium gravitational form factors [Xu:20240fa; Hu:2024edc]

= Obtained GFF D from both T~ (via localizing P~) and T'*2, results consistent with each other

m Energy density £(r ) is positive. However, M2(r ) is negative at small 7 : tachyonic core
within hadrons?

p+

27r 1 E(r /M [fm™!]

tachyonic
core

ov®

60 o1 02 03 04 05 06 00 01 02 03 04 05 06
7y [fm] ry [fm] M)

34/3 JLab, August 1




Physical densities Xu:2024cfa]

= Number density A(r ), energy density &(r ), invariant mass squared density M?(r | ) and
trace scalar density 6(r )

m Onion like structure -- true for all hadrons with negative D
g <rTp<rTp2<T9<Tp

Y

1" T T T T T
I: —aAcy ]

Te grom +
e MM X 4 p
oM 4

e

27r1p(ry) [fm™']

OF- i
A Fe o Fp e Ty AT £y M2(r) oY) P
LN/ i fm=2 15 10 5.0 0
o L L L L L N R
60 01 02 03 04 05 06
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Mechanical stability conjecture D < 0 [Hu:2024edc]

777

D:/d?’rrz?(r) <0

m Speculation: a mechanically stable system must have a repulsive core and an attractive edge

m We find that while 7, has a repulsive core, x .o has an attractive cores, and both have negative D!

T
Xeo(1P)
ol E e 20+ Xeo2P)
& o8
3 .
i g 7 0 = 401 .
g | 2
X os p(Idr =0 s} 1
" %Hv—ﬁ r &:‘
o & 0
~ 05 D= fr*p(r)d’r <0
\E%E ' 5T _4 I L ! ! L 2 L L L L L
- ] 8.0 0.1 0.2 0.3 0.4 0.5 0.6 8.0 0.1 0.2 0.3 0.4 0.5 0.6

71 [fm] r.[fm]




Summary

Hadrons are unique relativistic systems r ~ A~ which enables us to view them as de Broglie
waves, Minkowski-Einstein-Laub's relativistic theory of macroscopic electromagnetism provides
the relevant concepts & tools for describing their electromagnetic structure in 3D

We showed the multipole structures of relativistic currents (first proposed by Born) -- Sachs &
light-front distributions can be understood as monopole densities

| also discussed the relativistic quantum many-body description of form factors as 2D Fourier
transform (FT.) of one-body densities (OBDs) on the light front

| extended the concepts to the hadronic energy-momentum tensor and discussed the
mechanical properties of hadrons

So far, | focused on the interpretations. Are there any physical consequences of the
interpretations? (Gravity, soft-photon, energy conditions, ...)

Thank you!






Transverse charge densities of the nucleons

[Miller:2010nz]
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Phase space approach

[Lorce:20200nh, Chen:2022smg]

Lorcé interpreted the FT. as the Weyl function of the current operator,

d3q

ol P) = [ e

2m)3

= Weyl quantization O < Oy, (7, D), eps. the Wigner function ¢ > W (7, p)
= Sachs distribution: P = 0; Light-front distribution: P — (IMF)

m Quasi-probabilistic

= Still need a special frame, ¢° = 0 (elastic frame)

PEL Tef fm?]

0.2~ hiird.
e — 0.5
5 e — —_-0.75
i . YR . B
—0.1+- 131
_0.2: N - 2.
—037 / eutron S=é, = 4110
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From 2D to 3D: Abel-Radon transformation [Panteleeva:2021iip]

X-ray tube Detector 2D Projections (X-ray image) 3D Reconstruction

xou
"
)

Spectrum Tumtable

m An Abel-Radon signal at angle 7 and distance s is obtained by the line integral along the path of
the X ray.

Rf(s,n) = /d3rf(?)6(s—ﬁ~F)

= Inversion problem

m Panteleeva & Polyakov showed with some reasonable assumptions the 3D Sachs and the 2D
light-front distributions can be related by the Abel-Radon transformation

Panteleeva:202 liip



Example: Gaussian wavepacket

= Normalization of the momentum space wave function

(WD) =1, (¢ |p) = 200 P(p—p) = /

— TP (p) =1
2520 (P)¥(p)
where, p% = /P2 + M?2 is the on-shell energy.

m Gaussian wavepacket:

52
U(p) = N,e~ 207
where, o is the width of the Gaussian, and N, = 47r4 /[UU

~z (3,0,M?/0?)]. U(a,b,c) is the confluent
hypergeometric function of the second kind. Plane wave limit: ¢ — 0 and localization limit o — oo
m Normalization of the coordinate-space wave function

W‘FO(J(';L) (o —0),
VM 22y o( M2

) (0 — 00)
The wave function cannot be normalized in the localization limit or the massless limit

1 M? 3
oM d3 |\I/ MU(lvaﬁ) 1-— z
0. M2



Dependence on wavepac ket [Jaffe:2020ebz; Lorce:20200nh; Belitsky:2003nz; Ji:2004gf; Belitsky:2005gn]

m Consider a Gaussian wavepacket:
r3 = [ d3z 22 (V]J%(2)|¥) = 6F/(0) + 3R32,
where, Ry, is the size of the wavepacket.
m Sachs distribution is valid (ie. 72, & 6F”(0)) if, Thagron > Qmax > Ry > M1
m However, for hadrons 7 ,g.on M ~ 1
m Factorization approach works for Ry >> 7 .4r0n

12 [ () . proton 477 praive (7)
1.0 ¢ - 4772 procatized (1) r M rM
[ secses R=0.5fm .

0.8 4 e B 09 fm pion 0.67 fm 0.14 GeV 0.5
- 961 _sghe N R =0.05 fm charmonium  025--04fm 30 GeV  3.8--6
o 04 ’ BN proton 0.87 fm 094 GeV 4
L ' i
o2t of N\ nuclei |3A5 fm 0944 GeV 643

042 0.84 1% 16 T [fn]



Sharply localized wavepacket

[Epelbaum:2022fic, Panteleeva:2022khw]

Epelbaum et al. proposed to use sharply localized wavepacket Ry, — O with spherical symmetry,

o) = [ e |

m Angle-averaged light-front density

m Particle localization problem in QFTs
m Ry — 0limitis not well defined, eg. R, = 2R, — 0 gives different results

L )

on densities, Yang Li (US

47r? p(r)
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Factorization formula

[Li:2022Idb; cf. Freese:2022fat]

) dasp d3q =, = 1w 1
@)= [ G [ e P+ 3R~ 3 s
= /d3x1<1>*(:;51,t)/d%ziaa@(@,t)/—
Y

f/d%liaaq)*(fl,t)/d3x2<I>(:i’2,t)

The above integral is not factorizable because ¢° is not independent of P

d3q -~ @ +@

271_)3 ch(qg)e i ER
d3q _ _ x4
o g (g2

@ = (P30 + M2 /(P — 30 + M2

However, we can evaluate the d P integration, provided all P — (—i/2)V inside ¢°:

ppa—

() = / &Br @ (7, 1)iDD@ — 75 5, )8

1

)

where, the intrinsic density is idensitified as,

D(%; P) =/(

d3q

——F
2m)3



Covariant analysis of EM current on the light cone Zhang:2025wi]

In Drell-Yan frame (w - ¢ = 0):

M2t
(p'|7(0)|p) = 2P*F(—¢*) +

2
—p o),

where, P = (p’ +p)/2.¢q=p" —p. w¥ = (wh,w™,&,) = (0,2,0) is a null vector indicating the orientation of
the quantization surface.

m Emergence of spurious form factors .S due to the violation of dynamical Lorentz symmetries in
practical calculations, which usually contain uncanceled divergences

m EM current is automatically conserved in the Drell-Yan frame gt = 0

= Identify JT, ji as the good currents that are free of spurious form factors or divergence
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Covariant analysis of EMT on the light cone [Ca0:2024ru]
In Drell-Yan frame (w - g = 0):
o 1 _
@' IT77(0)lp) = 2P PPA(—¢*) + 5 (a°0° — ") D;(~¢?) + 2M?9°Pé,(—¢?)

MAwwh
WSUFGZ)JF (VOVP +q%¢P)So;(—4?),

where, P = (p’ +p)/2,¢q=p —p. wt = (w,w™,&,) = (0,2,0) is a null vector indicating the orientation of
the quantization surface. Vector V¢ is defined as V* = so‘ﬁp”Pquwg/(w - P).

m Emergence of spurious form factors S , due to the violation of dynamical Lorentz symmetries
in practical calculations, which usually contain uncanceled divergences

m Identify TFF, T*¢, T2, T+~ as the good currents that are free of spurious form factors or

divergence
i = 2PRALR), e )
1 . + 197 2 4M 9
ti? = Salai Dy(ad), =2 ) e+ (pry2 Sulal)-
_ 1 _ 1 _ . .
t;r :2(M2+ZQi)Ai(Qi)"'QiDi(qi)+4M20i(Qi) tzu"'tzzz:_§QiDi(Qi)—4M26i(Qi)+2(liSm<(Ij)~
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