第五章 双原子分子的能级结构和光谱

5.1 分子的形成和化学键
5.2 双原子分子的能级
5.3 双原子分子的光谱
5.4 拉曼散射
5.5 双原子分子的电子态

5.1 分子的形成和化学键

5.1.1 双原子分子的薛定谔方程和玻恩-奥本海 默近似

双原子分子的哈密顿量可以写为:

$$\hat{H} = \sum_{i=1}^{N} \left(-\frac{\hbar^2}{2m_e} \nabla_i^2 \right) + \left(-\frac{\hbar^2}{2m_a} \nabla_a^2 - -\frac{\hbar^2}{2m_b} \nabla_b^2 \right) + \sum_{i=1}^{N} \left(-\frac{Z_a e^2}{4\pi\varepsilon_0 r_{ai}} - \frac{Z_b e^2}{4\pi\varepsilon_0 r_{bi}} \right) + \sum_{i>j=1}^{N} \frac{e^2}{4\pi\varepsilon_0 r_{ij}} + \frac{Z_a Z_b e^2}{4\pi\varepsilon_0 R_i} \right)$$

双原子分子的薛定谔方程可写为:

$$\hat{H}\psi = E\psi$$

玻恩-奥本海默近似:

把电子的运动和原子核的运动分开,在讨论电子运动的 时候,近似认为原子核是固定不动的。

$$\hat{H} = \sum_{i=1}^{N} \left(-\frac{\hbar^2}{2m_e} \nabla_i^2 \right) + \left(-\frac{\hbar^2}{2m_a} \nabla_a^2 - -\frac{\hbar^2}{2m_b} \nabla_b^2 \right) + \sum_{i=1}^{N} \left(-\frac{Z_a e^2}{4\pi\varepsilon_0 r_{ai}} - \frac{Z_b e^2}{4\pi\varepsilon_0 r_{bi}} \right) + \sum_{i>j=1}^{N} \frac{e^2}{4\pi\varepsilon_0 r_{ij}} + \frac{Z_a Z_b e^2}{4\pi\varepsilon_0 r_{ij}} + \frac{Z_a Z_$$

多了一个变量:核间距R

✓ 玻恩-奥本海默近似下,双原子分子的哈密顿量可以写为:

$$\hat{H}_{e} = \sum_{i=1}^{N} \left(-\frac{\hbar^{2}}{2m_{e}} \nabla_{i}^{2} \right) + \sum_{i=1}^{N} \left(-\frac{Z_{a}e^{2}}{4\pi\varepsilon_{0}r_{ai}} - \frac{Z_{b}e^{2}}{4\pi\varepsilon_{0}r_{bi}} \right) + \sum_{i>j=1}^{N} \left(\frac{e^{2}}{4\pi\varepsilon_{0}} \frac{1}{r_{ij}} \right)$$

✓ 此时薛定谔方程可写为:

$$\hat{H}_e \psi_e(\vec{r}, R) = E(R) \psi_e(\vec{r}, R)$$

✓ 可解出:

$$E^{j}(R) \qquad \psi^{i}_{e}(\vec{r},R)$$

✓ 势能曲线:

$$U^{j}(R) = E^{j}(R) + \frac{Z_{A}Z_{B}e^{2}}{4\pi\varepsilon_{0}R}$$
$$\hat{H} = \sum_{i=1}^{N} \left(-\frac{\hbar^{2}}{2m_{e}}\nabla_{i}^{2} \right) + \left(-\frac{\hbar^{2}}{2m_{a}}\nabla_{a}^{2} - \frac{\hbar^{2}}{2m_{b}}\nabla_{b}^{2} \right) + \sum_{i=1}^{N} \left(-\frac{Z_{a}e^{2}}{4\pi\varepsilon_{0}r_{ai}} - \frac{Z_{b}e^{2}}{4\pi\varepsilon_{0}r_{bi}} \right) + \sum_{i>j=1}^{N} \frac{e^{2}}{4\pi\varepsilon_{0}r_{ij}} + \frac{Z_{a}Z_{b}e^{2}}{4\pi\varepsilon_{0}R}$$

2

氢分子的势能曲线

5.1.2 分子的形成和共价键

氢分子的势能曲线

两个原子共同使用它们的外层电子,进而导致原子间的较强相互作用被称为共价键

图5.1.2 氢分子在核间距为 R_e 下电子密度的空间分布: (a)是 H_2 基态 (1so_g)²¹ Σ_g ⁺的电子密度的空间分布, (b)是 H_2 第一激发态 (1so_g2po_u) ³ Σ_u ⁺的电子密度的空间分布, (c)是两个独立氢原子 (即不考虑氢原子间的相互作用)且间距为 R_e 时的电子密度的空间分布。

✓ 价电子起作用,例如N₂的1s和2s电子几乎不变

✓一个共价键由两个自旋反平行的电子组成,H₂、N₂、0₂

✓共价键具有方向性和饱和性,H₂、N₂、0₂

✓非极性分子: 同核双原子分子

✓极性分子: 异核双原子分子

5.1.3 离子键

NaC1分子的势能曲线

$$\left[-\frac{\hbar^2}{2\mu}\left(\frac{\partial^2}{\partial R^2}+\frac{2}{R}\frac{\partial}{\partial R}-\frac{\hat{L}^2}{R^2\hbar^2}\right)+U(R)\right]\psi_N(\vec{R})=E_N\psi_N(\vec{R})$$

角动量平方算符:

$$\hat{L}^2 = -\hbar^2 \left[\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} (\sin\theta \frac{\partial}{\partial\theta}) + \frac{1}{\sin^2\theta} \frac{\partial^2}{\partial\varphi^2} \right]$$

5.2.2 双原子分子的转动能级

氢原子中角向薛定谔方程的解:

$$\hat{L}^{2}Y_{JM}(\theta,\varphi) = J(J+1)\hbar^{2}Y_{JM}(\theta,\varphi) \qquad J=0,1,2,3...$$

 $\hat{L}_{z}Y_{JM}(\theta,\varphi) = M\hbar Y_{JM}(\theta,\varphi) \qquad M=0,\pm 1,\,\pm 2...\pm J$

双原子分子球坐标系下的核运动方程:

$$\left[-\frac{\hbar^2}{2\mu}\left(\frac{\partial^2}{\partial R^2} + \frac{2}{R}\frac{\partial}{\partial R} - \frac{\hat{L}^2}{R^2\hbar^2}\right) + U(R)\right]\psi_N(\vec{R}) = E_N\psi_N(\vec{R})$$

由于薛定谔方程相同,双原子分子角向运动(转动) 的解与氢原子完全相同!

双原子分子的转动能: $E_J = \frac{\hat{L}^2}{2\mu R^2} = \frac{J(J+1)\hbar^2}{2\mu R^2}$

5.2.3 双原子分子的振动能级
双原子分子球坐标系下的核运动方程:

$$\begin{bmatrix} -\frac{\hbar^2}{2\mu} \left(\frac{\partial^2}{\partial R^2} + \frac{2}{R} \frac{\partial}{\partial R} - \frac{\hat{L}^2}{R^2 \hbar^2} \right) + U(R) \end{bmatrix} \psi_N(\bar{R}) = E_N \psi_N(\bar{R})$$

$$\frac{\hat{L}^2 Y_{JM}(\theta, \varphi) = J(J+1)\hbar^2 Y_{JM}(\theta, \varphi)$$

$$\mathcal{X} 原子分子振转运动的薛定谔方程为:$$

$$\begin{bmatrix} -\frac{\hbar^2}{2\mu} \left(\frac{\partial^2}{\partial R^2} + \frac{2}{R} \frac{\partial}{\partial R} - \frac{J(J+1)}{R^2} \right) + U(R) \end{bmatrix} \psi_{\nu,J}(R) = E_{\nu,J} \psi_{\nu,J}(R)$$

$$\frac{J(J+1)\hbar^2}{2\mu R^2} \rightarrow \frac{J(J+1)}{2\mu R_e^2}$$

$$\mathcal{X} 原子分子振动的薛定谔方程:$$

$$\begin{bmatrix} -\frac{\hbar^2}{2\mu} \left(\frac{\partial^2}{\partial R^2} + \frac{2}{R} \frac{\partial}{\partial R} \right) + U(R) \end{bmatrix} \psi_{\nu}(R) = E_{\nu} \psi_{\nu}(R)$$

$$\frac{J(J+1)\hbar^2}{2\mu R^2} \rightarrow \frac{J(J+1)}{2\mu R_e^2}$$

$$\mathcal{X} 原子分子振动的薛定谔方程:$$

$$\begin{bmatrix} -\frac{\hbar^2}{2\mu} \left(\frac{\partial^2}{\partial R^2} + \frac{2}{R} \frac{\partial}{\partial R} \right) + U(R) \end{bmatrix} \psi_{\nu}(R) = E_{\nu} \psi_{\nu}(R)$$

$$\frac{\psi_{\nu}(R) = \frac{X(R)}{R}}{\frac{X(R)}{R}}$$

振动薛定谔方程化简为:

$$\begin{bmatrix} -\frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial R^2} + U(R) \end{bmatrix} X(R) = E_v X(R)$$

$$V(R) = V(R_e) + \left(\frac{\partial U}{\partial R}\right)_{R_e} (R - R_e) + \frac{1}{2} \left(\frac{\partial^2 U}{\partial R^2}\right)_{R_e} (R - R_e)^2 + \frac{1}{3!} \left(\frac{\partial^3 U}{\partial R^3}\right)_{R_e} (R - R_e)^3 + \dots$$
取为零 等于零 $E_e(R)$

$$Q(R) = \frac{1}{2} k(R - R_e)^2$$
Kg力:

$$f = -k(R - R_e)$$

$$\varphi:$$

$$q = R - R_e$$

$$Q \ B = C + C + R_e$$

$$Q \ B = C + C + R_e$$

5.2.4 双原子分子的总能量

 $E = E_e + E_v + E_J$

NO分子的振转光谱

> 极性分子(异核双原子分子)才有纯转动和振转光谱
> 非极性分子(同核双原子分子)没有纯转动和振转光谱
> 无论是极性还是非极性双原子分子,都有电子振转光谱

5.3.2 双原子分子纯转动光谱

▶电子态相同, *E_e*相同,例如电子基态
 ▶同一振动态, *E_v*相同
 ▶转动能级*E_y*不同
 ▶只有极性双原子分子(例如HCl、HF、CO、NO等)才有
 ▶位于远红外和微波区域
 ▶能量一般在10⁻⁵~10⁻³eV的数量级

纯转动跃迁的选择定则:

 $\Delta J=\pm 1$

纯转动光谱的频率为:

$$v = \frac{\Delta E_J}{h} = \frac{E_J - E_{J-1}}{h} = \frac{\hbar}{2\pi I_e} J \qquad J = 1, 2, 3...$$

以波数来表示:

$$\widetilde{v} = \frac{1}{\lambda} = \frac{\hbar}{2\pi I_e c} J = 2BJ \qquad J = 1,2,3...$$

例5.3.1 由HCl分子的纯转动光谱数据,可知其转动常数为10.44cm⁻¹。 试求出其转动惯量和平衡核间距。已知氢的原子量为1.008,³⁵Cl的原 子量为34.969。

解: 由公式 (5.3.4) 可得:

$$I_e = \frac{\hbar}{4\pi Bc} = 2.679 \times 10^{-47} kg \cdot m^2$$

由于电子的质量远小于原子核的质量,我们可以用原子的质量代替 原子核的质量,代入可得:

$$\mu = \frac{1.008 \times 34.969}{1.008 + 34.969} \times 1.66 \times 10^{-27} kg = 1.626 \times 10^{-27} kg$$

代入可得:

$$R_e = \sqrt{\frac{I_e}{\mu}} = 1.284 \text{ \AA}$$

两个近似: > 化学键近似为不会形变的刚性杆

 \rightarrow 核间距为 R_e

缺点:

➢ 转动量子数J不是很大时,与实验符合

➢ 随着转动量子数J的增加,偏离上述转动能级公式

分子转动时存在离心力:

 $F_{C} = \mu \omega^{2} R'$ 两个原子核之间的真实距离

$$F_C = \mu \omega^2 R = k(R - R_e)$$

代入 $L^2 = \mu R^2 \omega$:

$$R - R_e = \frac{\mu \omega^2 R}{k} = \frac{L^2}{\mu k R^3} \approx \frac{L^2}{\mu k R_e^2}$$

非刚性转子的转动能量为:

$$E_{J} = \frac{L^{2}}{2\mu R^{2}} + \frac{1}{2}k(R - R_{e})^{2}$$

忽略掉 $R - R_e$ 的高于二次方的小量,代入 $L^2 = J(J+1)\hbar^2$:

$$E_J = hc \left[BJ(J+1) - DJ^2(J+1)^2 \right]$$

因此,非刚性转子由J→J-1的纯转动跃迁辐射的光子能量为:

 $\tilde{v} = \Delta E_J / hc = (E_J - E_{J-1}) / hc = 2BJ - 4DJ^3 J=1, 2, 3\cdots$

绝大多数情况下K10⁻⁴B,例如HC1中B=10.44cm⁻¹,而D=0.0004cm⁻¹

5.3.3 双原子分子的振转光谱

▶电子态相同, *E_e*相同, 例如电子基态
 ▶不同振动态, *E_v*不同
 ▶转动能级*E_s*不同
 ▶只有极性双原子分子(例如HCl、HF、CO、NO等)才有
 ▶位于红外区域
 ▶能量在10⁻²~10⁻¹eV的数量级

一、双原子分子的振动跃迁

相应的振动跃迁的选择定则为:

 $\Delta \nu = \pm 1, \pm 2, \pm 3 \cdots$

从高能态v'跃迁到低能态v''所辐射光子的波数为:

基频

$$\widetilde{\nu}(\nu' \rightarrow \nu'') = \frac{E_{\nu'} - E_{\nu''}}{hc} = \widetilde{\nu}_0, 2\widetilde{\nu}_0, 3\widetilde{\nu}_0 \cdots$$
第二泛频

HC1分子: (a) 振动能级和跃迁; (b) 振动光谱; (c) 振转光谱(为图b中蓝色谱线的放大图)。

例5.3.2 已知 I_2 分子的基频 $\tilde{\nu}_0$ =213.20cm⁻¹,试求在300K时处于振动能级v上的分子数 n_v 与处于v=0基态上的分子数 n_0 之比。

解: 振动能级→非简并 分子数在不同能态上的布居 <u>n</u>, 遵循玻耳兹曼分布律: $n_0 1.00$ $\frac{n_{\nu}}{n_0} = \frac{e^{-hc\,\widetilde{\nu}_0\,(\nu+\frac{1}{2})/kT}}{e^{-hc\,\widetilde{\nu}_0\,\cdot\frac{1}{2}/kT}} = e^{-hc\,\nu\widetilde{\nu}_0\,/kT}$ 0.75 0.50 0.25 $\frac{n_v}{2} = e^{-1.022v}$ 0.00 3 0 2 4 n_0 ν

图1 I₂分子在300K时处于各 振动能级上的分子数布居

表5.3.1一些常见双原子分子在300K和1000K下的 $n_{1/n_{0}}$

分子	\widetilde{V}_0 /cm ⁻¹	n_1/n_0		
		300K	1000K	
H ₂	4160.2	2.16×10-9	2.51×10 ⁻³	
HCl	2885.9	9.77×10-7	1.57×10 ⁻²	
N ₂	2330.7	1.40×10 ⁻⁵	3.5×10 ⁻²	
СО	2143.2	3.43×10 ⁻⁵	4.58×10 ⁻²	
O ₂	1556.4	5.74×10-4	1.07×10 ⁻¹	
S ₂	721.6	3.14×10 ⁻²	3.54×10 ⁻¹	
Cl ₂	556.9	6.92×10 ⁻²	4.49×10 ⁻¹	

二、双原子分子的振转光谱

$$\begin{split} \widetilde{v} &= \frac{(E_{v'} + E_{J'}) - (E_{v''} + E_{J''})}{hc} = \frac{(E_{v'} - E_{v''})}{hc} + \frac{(E_{J'} - E_{J''})}{hc} \\ &= \widetilde{v}_{v} + B'J'(J'+1) - B''J''(J''+1) \\ &= \widetilde{v}_{v} = \frac{(E_{v'} - E_{v''})}{hc} \\ &B' \pi B'' \mathring{+} \pi H \, \Box, \ \Box \eta \square \\ &\oplus \mathscr{F} \mathring{a}, \ B' \pi B'' H \mathring{\pm} W \wedge, \\ & \overleftarrow{v} = \widetilde{v}_{v} + B[J'(J'+1) - J''(J''+1)] \end{split}$$

转动选择定则: $\Delta J = \pm 1$

振转光谱是分子的"指纹":

分子	$\omega_{\rm e}/{\rm cm}^{-1}$	$\omega_{\rm e} x_{\rm e} / {\rm cm}^{-1}$	B _e /cm ⁻¹	D _e /10 ⁻¹	R _e /Å
¹² C ¹⁶ O	2619.81	13.29	1.93128075	6.1216	1.12823
³⁵ Cl ₂	559.7	2.68	0.2440	0.186	1.988
F ₂	916.64	11.24	0.89019	3.3	1.41193
¹ H ₂	4401.21	121.34	60.853	47100	0.74144
² H ₂	3115.50	61.82	30.444	11410	0.74152
³ H ₂	2546.5	41.23	20.335		0.74142
¹ H ⁸¹ Br	2648.97	45.22	8.46488	345.8	1.41444
² H ⁸¹ Br	1884.75	22.72	4.245596	88.32	1.4145
¹ H ³⁵ Cl	2990.95	52.82	10.59342	531.94	1.27455
² H ³⁵ Cl	2145.16	27.18	5.448796	140	1.27458
¹ H	4138.32	89.88	20.9557	2151	0.91681
² H	2998.19	45.76	11.0102	594	0.91694
¹⁴ N ₂	2358.57	14.32	1.99824	5.76	1.09769
¹⁴ N ¹⁶ O	1904.20	14.07	1.67195	0.5	1.15077
¹⁶ O ₂	1580.19	11.98	1.44563	4.839	1.20752

5.3.4 双原子分子的电子振转光谱

▶电子态E_e不同
 ▶不同振动态, E_v不同
 ▶转动能级E_J不同
 ▶极性和非极性双原子分子都有
 ▶位于可见光、紫外、真空紫外波段
 ▶能量在2~12eV的数量级
 >要受到选择定则的限制

一、双原子分子的电子振动光谱

$$\begin{split} \tilde{v} &= \frac{1}{hc} \Big[(E_{e'} + E_{v'}) - (E_{e''} + E_{v''}) \Big] \\ &= \frac{1}{hc} \Big[(E_{e'} - E_{e''}) + (E_{v'} - E_{v''}) \Big] \\ &= \tilde{v}_e + \frac{1}{hc} (E_{v'} - E_{v''}) \end{split}$$

$$\widetilde{\nu}_{e} = \frac{1}{hc} (E_{e'} - E_{e''})$$

双原子分子的电子振动能级、跃迁和光发射谱

分为三支: R支、P支和Q支

R支: $\Delta J = +1$, 也即 J' = J + 1 该支谱线的能量为:

$$\tilde{v}_{R} = \tilde{v}_{ev} + B'(J+1)(J+2) - B''J(J+1)$$
$$= \tilde{v}_{ev} + 2B' + (3B' - B'')J + (B' - B'')J^{2}$$

 $J = 0, 1, 2, 3, \dots$

P支: $\Delta J = -1$, 也即 J' = J - 1 该支谱线的能量为:

$$\tilde{v}_{P} = \tilde{v}_{ev} + B'(J-1)J - B''J(J+1)$$
$$= \tilde{v}_{ev} - (B'+B'')J + (B'-B'')J^{2}$$

$$J = 1, 2, 3, \dots$$

Q支: $\Delta J = 0$, 也即 J' = J 该支谱线的能量为:

$$\tilde{v}_{Q} = \tilde{v}_{ev} + B'J(J+1) - B''J(J+1)$$
$$= \tilde{v}_{ev} + (B'-B'')J + (B'-B'')J^{2}$$

$$J = 0, 1, 2, 3, \dots$$

可研究同核双原子分子的振转能级结构!

斯托克斯线 瑞利线 反斯托克斯线

大拉曼散射:

S支∆*J*=+2, *J′=J*+2:

 $\Delta \tilde{v}_{s} = \tilde{v}_{0} - \tilde{v}_{s} = \tilde{v}_{i} + B'(J+2)(J+3) - BJ(J+1)$ $= \tilde{v}_{i} + 6B' + (5B'-B)J + (B'-B)J^{2}$

$$J = 0, 1, 2 \cdots$$

O支∆*J*=--2, *J′=J*-2:

$$\Delta \tilde{v}_{0} = \tilde{v}_{0} - \tilde{v}_{0} = \tilde{v}_{i} + \left[B'(J-2)(J-1) - BJ(J+1) \right]$$

= $\tilde{v}_{i} + 2B' - (3B'+B)J + (B'-B)J^{2}$ $J =$

 $J = 2, 3, 4 \cdots$

 $J = 0, 1, 2 \cdots$

Q支∆*J*=+0, *J′=J*:

$$\Delta \tilde{v}_{Q} = \tilde{v}_{0} - \tilde{v}_{Q} = \tilde{v}_{i} + \left[B'J(J+1) - BJ(J+1) \right]$$
$$= \tilde{v}_{i} + (B'-B)J + (B'-B)J^{2}$$

大拉曼散射对应的跃迁和光谱

CO分子拉曼光谱1←0的斯托克斯谱带

*5.5 双原子分子的电子态

5.5.1 双原子分子的单电子分子轨道

类似原子,先给出分子的电子组态,再耦合出分子态,进而给 出电子态符号

双原子分子的库仑势关于分子轴旋转对称,电子的轨道角动量的轴向分量保持量子化,大小为λh

$$\lambda = \left| m_l \right| = 0, 1, 2, \cdots l$$

用量子数 λ 标记单电子分子轨道, $\lambda=0$, 1, 2, 3, 4… 分别对应 σ, π, δ, φ, γ…轨道

为描述双原子分子的能量状态,还需要其他的量子数,分为 分离原子模型和联合原子模型两种情况

联合原子模型

▶认为分子核间距趋于0,适合处理核间距小的分子,如H₂、DH、 NaH、CH等

▶此时可将分子作为一个原子处理,电子具有确定的主量子数n 和轨道量子数*l*, *l*=0, 1, 2…*n*-1

≽λħ作为轨道角动量的轴向分量,有:

$$\lambda = |m_l| = 0, 1, 2, \cdots l$$

▶用n、l和 λ 来标记分子轨道, n和l写在 λ 的前面, 例如1sσ、 2sσ、2pπ、3dδ等

▶对于 $\lambda \neq 0$ 的分子轨道, $m_{i} = \pm \lambda$ 有两个取值, 因此π、δ、φ、γ等分子轨道是双重简并的

>λ=0的σ轨道是非简并轨道

分离原子模型

➢认为分子核间距趋于无穷大,适合处理核间距大的分子,如 CO、O₂、N₂等

▶此时可将分子作为两个单独的原子处理,每个电子具有确定的主量子数n、轨道量子数l和m_l

≻λh作为轨道角动量的轴向分量,仍保持确定的取值

>用单个电子的*n、l*和λ来标记分子轨道,*n*和*l*写在λ的后面, 每个原子符号写在 的右下角以区分来自两个原子的量子数, 例如 $\sigma ls_A, \sigma ls_B, \pi 2p_A, \pi 2p_B$ 等

→这些分子轨道可以近似理解成原子轨道的线性组合(LCAO), 例如 $\varphi = a(1s_A \pm 1s_B)$ 对应 $\sigma 1s_A$ 和 $\sigma 1s_B$

同核双原子分子的中心对称性

✓轨道波函数关于中心反演不变号,称为偶态(以g表示)

✓轨道波函数关于中心反演变号,称为奇态(以u表示)

✓分离原子模型中,轨道波函数的奇偶性分别写在 λ 的右下角,例如 $\sigma_s ls$ $\sigma_s s$

✓联合原子模型下, Ⅰ为偶数的轨道波函数例如s、d、g…等是 关于中心反演是不变号的,为g轨道。而Ⅰ为奇数的轨道波函数 例如p、f、h…等是关于中心反演是变号的,为u轨道。

✓分子轨道的g和u特性与量子数*l*—一对应,可以不用在分子轨道中专门标出

5.5.2 双原子分子的电子组态和电子态一、双原子分子的电子组态

双原子分子基态的电子组态也遵循能量最低原理,也即在泡利 不相容原理的限制下,电子按分子轨道的能量高低次序,依次 由低到高逐步填充分子的相应轨道

表5.5.1 联合原子模型下的分子轨道

п	1	2			3						4				
l	0	0	1			0	1			2					
λ	0	0	0	1		0	0	1 0		0	-	l	2		
m _l	0	0	0	+1	-1	0	0	+1	-1	0	+1	-1	+2	-2	
m _s	$\uparrow\downarrow$	↑↓	↑↓	$\uparrow\downarrow$	↑↓	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	↑↓	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	↑↓	
分子轨道	1sσ	2sσ	2рσ	2рπ		3sσ	3ро	3p	οπ	$3d\sigma$	30	lπ	3dð		
可容纳电 子数目	2	2	2	4		2	2	Z	1	2	2	1	4	-	

对**v**个电子的双原子分子,其电子组态可写为: $(n_1l_1\lambda_1)^{\nu_1}(n_2l_2\lambda_2)^{\nu_2}\cdots(n_tl_t\lambda_t)^{\nu_t}$

例5.5.1 BH分子的核间距较小,可以用联合原子模型描述。 试写出其基态和激发态的电子组态。

解: BH分子共有6个电子,根据表5.5.1和公式(5.5.5), 其基态的电子组态可写为:

 $(1s\sigma)^2(2s\sigma)^2(2p\sigma)^2$

由于其 的壳层已经填充了两个电子,为满支壳层结构,可 以用K表示。因此其基态的电子组态也可写为: $K(2s\sigma)^2(2p\sigma)^2$

当把它的一个电子从 激发到 时,其激发态的电子组态可 写为: $K(2s\sigma)^2 2p\sigma 2p\pi$

BH的其它激发态的电子组态可写为

 $K(2s\sigma)^2 2p\sigma(ns\sigma, np\sigma, np\pi, nd\sigma, nd\pi)$ n > 2

▶在分离原子模型近似下,若A≠B,分子轨道的能量次序由 低到高为:

 $\sigma_{1s_{A}}, \sigma_{1s_{B}}, \sigma_{2s_{A}}, \sigma_{2s_{B}}, \sigma_{2p_{A}}, \sigma_{2p_{B}}, \pi_{2p_{A}}, \pi_{2p_{B}}$... >同核双原子分子,分子轨道的能量次序由低到高为:

 $\sigma_g 1s$, $\sigma_u 1s$, $\sigma_g 2s$, $\sigma_u 2s$, $\sigma_g 2p$, $\pi_u 2p$, $\pi_g 2p$, $\sigma_u 2p$.

例5.5.2 Na₂分子的核间距较大,可以用分离原子模型描述。试写出其基态的电子组态。

解: Na₂分子有22个电子,根据公式(5.5.7)可写出其基态的电子组态:

 $(\sigma_{g} 1s)^{2} (\sigma_{u} 1s)^{2} (\sigma_{g} 2s)^{2} (\sigma_{u} 2s)^{2} (\sigma_{g} 2p)^{2} (\pi_{u} 2p)^{4} (\pi_{g} 2p)^{4} (\sigma_{u} 2p)^{2} (\sigma_{g} 3s)^{2}$

由于Na₂两个原子的 和 的壳层都填满了,所以其基态的电子组态也可写为:

 $KKLL(\sigma_g 3s)^2$

总角动量在分子轴方向的分量 $\overline{\Lambda}$ 为不变量

$$\overline{\Lambda} = \sum_{i=1}^{\nu} \overline{\lambda_i}$$

由于矢量方向共线, Λ 为 λ_i 的代数和。

 Λ =0、1、2、3、4···的分子态分别记为大些的Σ、Π、Δ、Φ、Γ···

 Σ 是非简并的, 而 Π 、 Δ 、 Φ 、 Γ ···都是双重简并的。

例5.5.3 试分别求两个非等价电子(n和l不完全相同,类似于原子物理中的非同科电子)(1) $\sigma\pi$,(2) $\pi\delta$ 和(3) $\pi\pi$ 的 Λ 值。

解: (1)
$$\sigma$$
电子: $\lambda_1=0$: $\lambda_2=1$: $\Lambda=1$

取分子轴为水平方向,其耦合情形如图(a)所示。

(2) π电子, λ=1; δ电子, λ=2
考虑电子轨道角动量在分子轴上的取值后,其耦合无外乎图
(b) 和(c) 两种情形。因此,只能有两种取值,分别为Λ=3
和Λ=1

(3) 第一个 π 电子, λ_{-1} ; 第二个 π 电子, λ_{-1}

耦合情况如图(d)和图(e)所示,可得 $\Lambda=2$ 和 $\Lambda=0$ 。

所有电子的自旋耦合出分子的总自旋:

$$\overline{S} = \sum_{i=1}^{\nu} \overline{S_i}$$

分子中电子态的多重性为2S+1。

$$\Sigma = M_s = S, S-1, \dots - S$$

电子的总角动量沿分子轴方向,计入自旋-轨道耦合,总角动量可写为*Ω*:

$\Omega = |\Lambda + \Sigma|$

Ω是Λ和Σ的代数相加 对Λ ≠ 0的电子态,自旋-轨道相互作用分裂为2S+1个支项。 对Λ=0的Σ电子态,不存在自旋-轨道相互作用 分子的电子态符号记为:

 $^{2S+1}\Lambda_{\Omega}$ 多重性2*S*+1标于谱项的左上角, Λ 依其取值0、1、2、3、4 写为 Σ 、 Π 、 Δ 、 Φ 、 Γ …, 而 Ω 的取值写在右下角。

在一级近似下,电子的轨道运动和自旋磁矩的相互作用能正比 于*Λ*•*Σ*,相应地考虑自旋-轨道相互作用后,分子电子态的能量 可写为:

$$T = T^0 + A\Lambda \cdot \Sigma$$

分子的精细结构与A和2耦合出的2取值个数有关

例5.5.4 试写出A=2、S=1的电子态符号,并说明其耦合过程及能级分裂情况。

 >对于双原子分子的Σ电子态而言,其电子波函数关于平面σ_{xx} 做映射操作,其波函数可以改变符号(在电子谱项的右上角以 "-"号表示),也可以不改变符号(在电子谱项的右上角以 "+"号表示),也即可写为Σ⁺和Σ⁻。电子态Σ⁺和Σ⁻的能量并不 相同,要分别表示出来
>对Π、Δ、Φ和Γ等电子态,"+"和"-"两种情形的能量相同

 >同核双原子分子还存在电子波函数关于对称中心的反演奇偶性 (电子态波函数改变 "-" "+"号)
>若电子波函数关于对称中心反演不变号,以g表示,写于电子 谱项右下角。
>若电子态波函数关于对称中心反演改变符号,则以u表示,也 写于电子谱项右下角

 Σ_g^+ Σ_u^+ $\Sigma_g^ \Sigma_u^ \Pi_g$ Π_u Δ_g Δ_u

例5.5.5 试写出非等价电子(1) $\sigma_g \pi_u$, (2) $\pi_g \delta_g \pi$ (3) π_u , π_u 的电子谱项符号。

解: 它们都是两个电子组成的电子组态,所以S=1和0 (1) *A*=1,电子谱项³Π_u、¹Π_u

(2) Λ =1和3, 电子谱项 Π_g 、 Π_g (Π_g) (Π_g (Π_g) ($\Pi_$

(3) Λ =0和2, 电子谱项 ${}^{1}\Sigma_{g}^{+}$ 、 ${}^{1}\Sigma_{g}^{-}$ 、 ${}^{1}\Delta_{g}$ 、 ${}^{3}\Sigma_{g}^{+}$ 、 ${}^{3}\Sigma_{g}^{-}$ 、 ${}^{3}\Delta_{g}$ 此例说明, 分子的电子态的奇偶性由电子组态的奇偶性决定。 例 5.5.6 试写出 σ^{2} 、 π^{4} 和 δ^{4} 耦合后的电子谱项。 解:

✓对于 σ^2 、 π^4 和 δ^4 ,它们都是满支壳层,所有电子的自旋都成对,因此*S*=0。

✓满支壳层中所有电子的 m_l 也都成对,必有 $\Lambda=0$ 。

✓因此, σ^2 、 π^4 和 δ^4 的电子态均为¹ Σ^+ 。

此例说明,满支壳层的电子组态与其它电子耦合时,不用考虑满支壳层的贡献,且大部分双原子分子的基态为+ 或;

电子组态	分子的电子谱项*
σ	$^{2}\Sigma^{+}$
π	$^{2}\Pi$
σσ	${}^{1}\Sigma^{+}, {}^{3}\Sigma^{+}$
σπ	¹П,³П
σδ	$^{1}\Delta, ^{3}\Delta$
ππ	$^{1}\Sigma^{+}, ^{3}\Sigma^{+}, ^{1}\Sigma^{-}, ^{3}\Sigma^{-}, ^{1}\Delta, ^{3}\Delta$
πδ	¹ Π, ³ Π, ¹ Φ, ³ Φ
δδ	$\Sigma^+, {}^3\Sigma^+, {}^1\Sigma^-, {}^3\Sigma^-, {}^1\Gamma, {}^3\Gamma$
σσσ	$^{2}\Sigma^{+}, ^{2}\Sigma^{+}, ^{4}\Sigma^{+}$
σσπ	² П, ² П, ⁴ П
σσδ	$^{2}\Delta$, $^{2}\Delta$, $^{4}\Delta$
σππ	$^{2}\Sigma^{+}(2),^{2}\Sigma^{-}(2),^{4}\Sigma^{+},^{4}\Sigma^{-},^{2}\Delta(2),^{4}\Delta$
σπδ	$^{2}\Pi(2),^{4}\Pi,^{2}\Phi(2),^{4}\Phi$
πππ	$^{2}\Pi(6),^{4}\Pi(3),^{2}\Phi(2),^{4}\Phi$
ππδ $\Sigma^{+}(2), {}^{4}\Sigma^{+}, {}^{2}\Sigma^{-}(2), {}^{4}\Sigma^{-}, {}^{2}\Delta(4), {}^{4}\Delta(2), {}^{2}\Gamma(2), {}^{4}\Gamma$	

表 5.5.2 非等价电子组态耦合的电子态

*() 内表示电子态的数目,例如 $\sigma\pi\pi$ 中的 $^{2}\Sigma^{+}$ 有两个,但是这两个 $^{2}\Sigma^{+}$ 的能量不同。

电子组态	分子的电子谱项				
π^2	$^{1}\Sigma^{+}, ^{1}\Delta, ^{3}\Sigma^{-}$				
π^3	$^{2}\Pi$				
δ^2	${}^{1}\Sigma^{+}, {}^{3}\Sigma^{-}, {}^{1}\Gamma$				
δ^3	$^{2}\Delta$				
$\pi^2 \sigma$	$^{2}\Sigma^{+}, ^{2}\Sigma^{-}, ^{2}\Delta, ^{4}\Sigma^{-}$				
$\pi^2\pi$	$^{2}\Pi(3),^{2}\Phi,^{4}\Pi$				
$\pi^2\delta$	$^{2}\Sigma^{+},^{2}\Sigma^{-},^{2}\Delta(2),^{2}\Gamma,^{4}\Delta$				
$\pi^3 \sigma$	$^{1}\Pi, ^{3}\Pi$				
$\pi^3\pi$	$^{1}\Sigma^{+}, ^{1}\Sigma^{-}, ^{1}\Delta, ^{3}\Sigma^{+}, ^{3}\Sigma^{-}, ^{3}\Delta$				
$\pi^3\delta$	$^{1}\Pi, ^{3}\Pi, ^{1}\Phi, ^{3}\Phi$				

表 5.5.3 等价电子组态及等价和非等价电子混合组态耦合的电子态

M_L	M_S	泡利原理允许的(m _l ,m _s)组合	态的数目	相应的电子态*
2	1		0	$^{3}\Delta$
2	0	{ (1,+) (1,-)}	1	$^{1}\Delta + ^{3}\Delta$
2	-1		0	$^{3}\Delta$
0	1	{ (1,+) (-1,+)}	1	$^{3}\Sigma$
0	0	$\{ (1,+) (-1,-) \} \{ (1,-) (-1,+) \}$	2	$^{3}\Sigma + ^{1}\Sigma$
0	-1		1	$^{3}\Sigma$
-2	1		0	$^{3}\Delta$
-2	0	{ (-1,+) (-1,-)}	1	$^{1}\Delta + ^{3}\Delta$
-2	-1		0	$^{3}\Delta$

表 5.5.4 π² 电子组态光谱的推导

*蓝色表示的是存在的电子态,它们是 $^{1}\Delta$ 、 $^{3}\Sigma$ 和 $^{1}\Sigma$ 。

5.5.3 分子轨道相关图

考虑到双原子分子的有限核间距,实际上分子轨道能量次序介于 联合原子模型和分离原子模型给出的结果中间。

把联合原子模型给出的分子轨道与分离原子模型给出的分子轨道 关联起来,可大致给出分子核间距由小到大情况下分子轨道能量 的高低次序,这就是<mark>分子轨道相关图</mark>。

分子轨道相关图的连线遵循以下规则:

(1)由于分子中电子的 值是一定的,因此由下往上只能左右的 轨道或左右的 轨道相连,其它轨道也类似处理;

(2)相同类型的轨道相连不能相交,对于同核双原子分子,只有 相同奇偶性的分子轨道才能够相连。

5.5.3 双原子分子电子态的跃迁选择定则

≻∆S=0

只有相同多重态的电子态之间才能发生跃迁

- $>\Delta\Lambda=0, \pm 1$
- $\Delta \Omega = 0, \pm 1$

 $\Sigma \Delta \Sigma = 0$

这条选择定则源于自旋S在对称轴上的分量不改变

 \rightarrow 对 $\Sigma \leftrightarrow \Sigma$ 跃迁, 有 $\Sigma^+ \leftrightarrow \Sigma^+$, $\Sigma^- \leftrightarrow \Sigma^-$ ($\Sigma^- \not\leftrightarrow \Sigma^+$)

例5.5.11 H_2 分子的基态电子组态为 (1s σ)²,相应的基态电子谱 项为 $X^1\Sigma_g^+$ 。其激发态为一个电子处于1s σ 不动,而另一个电子被激 发到空轨道而形成,其能级高低次序为:

1sσ2sσ: $A^{1}\Sigma_{g}^{+}$, $a^{3}\Sigma_{g}^{+}$ 1sσ2pσ: $B^{1}\Sigma_{u}^{+}$, $b^{3}\Sigma_{u}^{+}$ 1sσ2pπ: $C^{1}\Pi_{u}$, $c^{3}\Pi_{u}$ 1sσ3sσ: $E^{1}\Sigma_{g}^{+}$, $e^{3}\Sigma_{g}^{+}$ 1sσ3pσ: $B'^{1}\Sigma_{u}^{+}$, $^{3}\Sigma_{u}^{+}$ 1sσ3pπ: $D^{1}\Pi_{u}$, $^{3}\Pi_{u}$

上述能级中只有 $X^{1}\Sigma_{g}^{+} \rightarrow B^{1}\Sigma_{u}^{+} \ C^{1}\Pi_{u} \ B^{1}\Sigma_{u}^{+} \ \Pi_{u}$ 的跃迁才是 允许跃迁。这一分析与实验光谱吻合。

双原子分子的转动能级

双原子分子的转动能: 转动量子数 $E_{J} = \frac{\hat{L}^{2}}{2\mu R_{o}^{2}} = \frac{J(J+1)\hbar^{2}}{2I} \qquad J = 0, 1, 2, 3...$ \boldsymbol{J} $\Delta E_J = E_J - E_{J-1} = \frac{\hbar^2}{I_a} J$ *J*=0,1,2,3... 3 2 4B 6B 8B 10B 12B 2B 双原子分子的纯转动能级和纯转动光谱 V

二、双原子分子的振动能级

$$E_{\nu} = (\nu + \frac{1}{2})h\nu_0$$

 $v = 0, 1, 2, 3 \cdots$

$$\nu_0 = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$$

三、双原子分子纯转动光谱

▶电子态相同, *E_e*相同,例如电子基态 ▶同一振动态, *E_v*相同 ▶转动能级*E_J*不同 ▶只有极性双原子分子(例如HCl、HF、CO、NO等)才有 ▶位于远红外和微波区域

纯转动跃迁的选择定则:

纯转动光谱的频率为:

$$v = \frac{\Delta E_J}{h} = \frac{E_J - E_{J-1}}{h} = \frac{\hbar}{2\pi I_e} J \qquad J = 0, 1, 2, 3...$$

 $\Delta J = \pm 1$

以波数来表示:

$$\widetilde{v} = \frac{1}{\lambda} = \frac{\hbar}{2\pi I_e c} J = 2BJ \qquad J = 1,2,3...$$

□、双原子分子的振转光谱 > 电子态相同, *E*_e相同, 例如电子基态 > 不同振动态, *E*_v不同 > 转动能级*E*_j不同

▶只有极性双原子分子(例如HCl、HF、CO、NO等)才有
▶位于红外区域

相应的振动跃迁的选择定则为:

 $\Delta \nu = \pm 1, \pm 2, \pm 3 \cdots$

转动选择定则: $\Delta J = \pm 1$

拉曼(C. V. Raman, 1888-1970),印度 人,荣获1930年诺 贝尔物理学奖。

可研究同核双原子分子的振转能级结构!

瑞利线ΔJ=0与入射光重合

大拉曼散射:

S支∆*J*=+2, *J′=J*+2:

 $\Delta \tilde{v}_{s} = \tilde{v}_{0} - \tilde{v}_{s} = \tilde{v}_{i} + B'(J+2)(J+3) - BJ(J+1)$ $= \tilde{v}_{i} + 6B' + (5B'-B)J + (B'-B)J^{2}$

$$J = 0, 1, 2 \cdots$$

O支∆*J*=--2, *J′=J*-2:

$$\Delta \tilde{v}_{O} = \tilde{v}_{0} - \tilde{v}_{O} = \tilde{v}_{i} + \left[B'(J-2)(J-1) - BJ(J+1) \right]$$

= $\tilde{v}_{i} + 2B' - (3B'+B)J + (B'-B)J^{2}$ J =

$$J = 2, 3, 4 \cdots$$

 $J = 0, 1, 2 \cdots$

Q支∆*J*=+0, *J′=J*:

$$\Delta \tilde{v}_{Q} = \tilde{v}_{0} - \tilde{v}_{Q} = \tilde{v}_{i} + \left[B'J(J+1) - BJ(J+1) \right]$$
$$= \tilde{v}_{i} + (B'-B)J + (B'-B)J^{2}$$

大拉曼散射对应的跃迁和光谱