

Differential Geometry & Discrete Operators

Ligang Liu
Graphics&Geometric Computing Lab
USTC

http://staff.ustc.edu.cn/~lgliu

Curves

■ Tangent vector to curve C(t)=(x(t),y(t)) is

$$T = C'(t) = \frac{dC(t)}{dt} = \left[x'(t), y'(t)\right]$$

Unit length tangent vector

$$\vec{T} = \vec{C}(t) = \frac{\left[x'(t), y'(t)\right]}{\sqrt{x'(t)^2 + y'(t)^2}}$$

Curvature

$$k(t) = \frac{x'(t)y''(t) - y'(t)x''(t)}{\left(x'(t)^2 + y'(t)^2\right)^{3/2}}$$

Curve Curvature

- Curvature is independent of parameterization
 - C(t), C(t+5), C(2t) have same curvature (at corresponding locations)

Measure curve bending

Surfaces

Tangent plane to surface S(u,v) is spanned by two partials of S:

$$\frac{\partial S(u,v)}{\partial u} \quad \frac{\partial S(u,v)}{\partial v}$$

Normal to surface

$$\stackrel{\rightarrow}{n} = \frac{\partial S}{\partial u} \times \frac{\partial S}{\partial v}$$

- perpendicular to tangent plane
- Any vector in tangent plane is tangential to S(u,v)

Surface Curvature

Normal curvature of surface is defined for each tangential direction

$$\kappa^{N}(\theta) = \kappa_1 \cos^2(\theta) + \kappa_2 \sin^2(\theta)$$

- Principal curvatures Kmin & Kmax: maximum and minimum of normal curvature
 - Correspond to two orthogonal tangent directions
 - Principal directions
 - Not necessarily partial derivative directions
 - Independent of parameterization

Surface Curvature

Isotropic

Equal in all directions

spherical

planar

Anisotropic

2 distinct principal directions

elliptic

parabolic

Principal Directions

Surface Curvatures

- Typical measures:
 - Gaussian curvature

$$K = k_{\min} k_{\max}$$

Mean curvature

$$H = \frac{k_{\min} + k_{\max}}{2}$$

Surface Curvature

Isotropic

Equal in all directions

planar

Anisotropic

2 distinct principal directions

elliptic

parabolic

However, meshes are only C⁰

- Meshes are piecewise linear surfaces
 - Infinitely continuous on triangles
 - $-C^0$ at edges and vertices

Discrete Differential Geometry

- How to apply the traditional differential geometry on discrete mesh surfaces?
 - Normal estimation
 - Curvature estimation
 - Principal curvature directions

— ...

Estimation of Differential Measures

- Approximate the (unknown) underlying surface
 - Continuous approximation
 - Approximate the surface & compute continuous differential measures (normal, curvature)
 - Discrete approximation
 - Approximate differential measures for mesh

Continuous Approximation

Quadratic Approximation

- Approximate surface by quadric
- At each mesh vertex (use surrounding triangles)
 - Compute normal at vertex
 - Typically average face normals
 - Compute tangent plane & local coordinate system

(0,0,0)

 (x_1, y_1, z_1)

- (node = (0,0,0))
- For each neighbor vertex compute location in local system
 - relative to node and tangent plane

Quadratic Approximation (2)

Find quadric function approximating vertices

$$F(x, y, z) = ax^2 + bxy + cy^2 - z = 0$$

To find coefficients use least squares fit

$$\min \sum_{i} (ax_i^2 + bx_iy_i + cy_i^2 - z_i)$$

Quadratic Approximation (3)

Finding the quadric function approximating points

$$F(x,y,z) = ax^2 + bxy + cy^2 - z = 0$$

To find coefficients use least square $min\sum_{i}(ax_i^2 + bx_iy_i + cy_i^2 - z_i)$ fit to find minimum:

$$\begin{pmatrix} x_1^2 & x_1 y_1 & y_1^2 \\ \dots & \dots & \dots \\ x_n^2 & x_n y_n & y_n^2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} z_1 \\ \dots \\ z_n \end{pmatrix} A = \begin{pmatrix} x_1^2 & x_1 y_1 & y_1^2 \\ \dots & \dots & \dots \\ x_n^2 & x_n y_n & y_n^2 \end{pmatrix}, \ X = \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \ b = \begin{pmatrix} z_1 \\ \dots \\ z_n \end{pmatrix}$$

Approximation can be found by: $\tilde{X} = (A^T A)^{-1} A^T b$

Quadratic Approximation (4)

• Given surface F its principal curvatures k_{min} and k_{max} are real roots of:

$$k^2 - (a+c)k + ac - b^2 = 0$$

• Mean curvature: $H = (k_{min} + k_{max})/2$

• Gaussian curvature: $K = k_{min} k_{max}$

Other approximation

- Cubic approximation
 - J. Goldfeather and V. Interrante. A novel cubicorder algorithm for approximating principal direction vectors. ACM Transactions on Graphics 23, 1 (2004), 45–63.
- Implicit surface approximation
 - Yutaka Ohtake et al. Multi-level partition of unity implicits. Siggraph 2003.
- Many others...

Discrete Approximation

Normal Estimation

- Normal estimation on vertices
 - Defined for each face
 - Average face normals
 - Weighted: face areas, angles at vertex

What happen at edges/creases?

Mean Curvature

- Integral of curvature on circular arc
 - β central angle

$$\int k = \frac{1}{R} \operatorname{arclenght} = \frac{1}{R} \frac{\beta}{2\pi} 2\pi R = \beta$$

- On cylindrical parts $H=k_{max}/2 (k_{min}=0)$
- On planar faces H=0

Mean Curvature (2)

For entire vertex region

$$\int H = \sum_{i} \beta_{i} / 2 \| e_{i} \| / 2 = \frac{1}{4} \sum_{i} \beta_{i} \| e_{i} \|$$

Mean curvature at vertex (A_i triangle area)

$$H = \frac{3}{4\sum_{i} A_{i}} \sum_{i} \beta_{i} \parallel e_{i} \parallel$$

Gaussian Curvature

Use Gauss-Bonnet Theorem

$$\int_{T} K = 2\pi - \sum_{i} \alpha_{i} - \int_{\partial T} k_{\partial T} = 2\pi - \sum_{i} \alpha_{i}$$

Curvature at vertex

$$K = \frac{3(2\pi - \sum_{i} \alpha_{i})}{\sum_{i} A}$$

Note (Gauss-Bonnet for closed surfaces) –
 Integral Gaussian curvature = genus

Gaussian Curvature Estimate – Example

- Approximation always results in some noise
- Solution
 - Truncate extreme values
 - Can come for instance from division by very small area
 - Smooth
 - More later

Mean Curvature Estimate – Example

Mean Curvature

More...

 MEYER M., DESBRUN M., SCHRÖDER P., BARR A.: Discrete differential-geometry operators for triangulated 2-manifolds. In Visualization and Mathematics III, Hege H.-C., Polthier K., (Eds.). Springer, 2003, pp. 35–58. (PDF)

Applications

- Feature detection
- Shape recognition
- Mesh segmentation
- Any feature-aware applications
 - Preserving salient features in processing

- Challenges:
 - What are features on surfaces?

References

- TAUBIN G.: Estimating the tensor of curvature of a surface from a polyhedral approximation. In Proc. International Conference on Computer Vision (1995), pp. 902–907.
- MEYER M., DESBRUN M., SCHRÖDER P., BARR A.: Discrete differential-geometry operators for triangulated 2-manifolds. In Visualization and Mathematics III, Hege H.-C., Polthier K., (Eds.). Springer, 2003, pp. 35–58.
- CAZALS F., POUGET M.: Estimating differential quantities using polynomial fitting of osculating jets. In Eurographics Symposium on Geometry Processing (2003), pp. 177–187.
- COHEN-STEINER D., MORVAN J.: Restricted delaunay triangulations and normal cycle. In Proc. ACM Symposium on Computational Geometry (2003), pp. 312–321.
- GOLDFEATHER J., INTERRANTE V.: A novel cubic-order algorithm for approximating principal direction vectors. ACM Transactions on Graphics 23, 1 (2004), 45–63.
- MARTIN R. R.: Estimation of principal curvatures from range data. International Journal of Shape Modeling 4, 1 (1998), 99–109.
- OHTAKE Y., BELYAEV A., SEIDEL H.-P.: Ridge-valley lines on meshes via implicit surface fitting. ACM Transactions on Graphics 23, 3 (2004), 609–612. (Proc. SIGGRAPH'2004).
- PAGE D., SUN Y., KOSCHAN A., PAIK J., ABIDI M.: Normal vector voting: Crease detection and curvature extimation on large, noisy meshes. Graphical Models 64, 3-4 (2002), 199–229.

Q&A