Graphics&Geometric Computing Lab ()
@USTC \:

Differential Geometry
& Discrete Operators

Ligang Liu
Graphics&Geometric Computing Lab
USTC
http://staff.ustc.edu.cn/~Igliu



http://staff.ustc.edu.cn/~lgliu

Curves

= [angent vector to curve C(7)=(x(7),y(7)) IS

_dc@) _ [x'(1),»'(1)]

I'=C'(1)

dt

= Unit length tangent vector

= Curvature
k(f) =

xX'(Oy"'(0) - y'(@)x" (@)
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Curve Curvature

= Curvature is independent
of parameterization
= C(7), C(t+5), C(27) have
same curvature (at
corresponding locations)

= Corresponds to radius of
osculating circle R=1/k

= Measure curve bending




Surfaces

= Tangent plane to surface Sr,v) is spanned by
two partials of S

D, v)  AS(u,v)

= Normal to surface

= perpendicular to tangent plane

= Any vector in tangent plane is tangential to
Stu,v)



Surface Curvature

s Normal curvature of surface is defined for
each tangential dlrect|on

kN (6) = Kkicos?(0) + Kosin© (6‘}
= Principal curvatures Kmin & Kmax:
maximum and minimum of normal curvature

= Correspond to two orthogonal tangent
directions

= Principal directions
= Not necessarily partial derivative directions
= Independent of parameterization



Surface Curvature

kmin=kmax > 0 kmin=Kmax =
Isotropic
Equal in all directions
spherical planar

Anisotropic

2 distinct principal
directions

kmax > 0

elliptic parabolic hyperfolic

kmax > 0



Principal Directions

Min Curvature Max Curvature



Surface Curvatures

= Typical measures:
« Gaussian curvature

11111[(1]13"5;

= Mean curvature
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Surface Curvature

kmin=kmax > 0 kmin=kmax =

Isotropic
Equal in all directions

spherical planar

Anisotropic

2 distinct principal
directions

max > 0

Kenax }h erbolic

elliptic parabolic



However, meshes are only C°

* Meshes are piecewise linear surfaces
— Infinitely continuous on triangles
— C? at edges and vertices




Discrete Differential Geometry

e How to apply the traditional differential
geometry on discrete mesh surfaces?
— Normal estimation
— Curvature estimation
— Principal curvature directions



Estimation of Differential Measures

e Approximate the (unknown) underlying
surface
— Continuous approximation

e Approximate the surface & compute continuous
differential measures (normal, curvature)

— Discrete approximation

e Approximate differential measures for mesh



Continuous Approximation



Quadratic Approximation

= Approximate surface by quadric

s At each mesh vertex (use surrounding
triangles)
= Compute normal at vertex
= Typically average face normals

= Compute tangent plane & local coordinate
system
= (hode = (0,0,0))
= For each neighbor vertex

compute location in local
system

= relative to node and tangent plane




Quadratic Approximation (2)

= Find quadric function approximating vertices

Flz,y,z) = ax*+bry+cy —z=0

= To find coefficients use least squares fit

min » (a-:r? +bx;y; + ny? —Z;)
j




Quadratic Approximation (3)

Finding the quadric function approximating points
F(x,y,z) =ax?+ bxy +cy?—-z =10

To find coefficients use least square mimZ(mf +bx.y, +c}f __-3_)
fit to find minimum: i
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Approximation can be found by: X=(4"4)74D



Quadratic Approximation (4)

= Given surface £ its principal curvatures &
and k. are real roots of:

k* —(a+c)k+ac—b-=0

min

s Mean curvature. H = (k

+k

)/2

min ?Hf}“t

s Gaussian curvature: K =k . k

min " max



Other approximation

e Cubic approximation

— J. Goldfeather and V. Interrante. A novel cubic-
order algorithm for approximating principal
direction vectors. ACM Transactions on Graphics
23,1 (2004), 45-63.

e Implicit surface approximation

— Yutaka Ohtake et al. Multi-level partition of unity
implicits. Siggraph 2003.

e Many others...



Discrete Approximation



Normal Estimation

e Normal estimation on vertices
— Defined for each face
— Average face normals

 Weighted: face areas, angles at vertex

 What happen at edges/creases?



Mean Curvature

= Integral of curvature on circular arc

=« } - central angle
1

1 g
k= —arclenght = —-L—27aR =
I R & R F

27

= On cylindrical parts H=k,, /2 (k,. =0)
= On planar faces H=0




Mean Curvature (2)

= For entire vertex region
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Gaussian Curvature

= Use Gauss-Bonnet Theorem

s Curvature at vertex
327 — Z a.)
S A

K =

= Note (Gauss-Bonnet for closed surfaces) —
Integral Gaussian curvature = genus



Gaussian Curvature Estimate
— Example

s Approximation always results in some noise
= Solution

= Truncate extreme values
= Can come for instance from division by very small area

= Smooth
« More later



Mean Curvature Estimate
— Example




Mean Curvature

Truncate
e

Smocﬂ\

Smooth




More...

e MEYER M., DESBRUN M., SCHRODER P., BARR
A.: Discrete differential-geometry operators
for triangulated 2-manifolds. In Visualization
and Mathematics Ill, Hege H.-C., Polthier K.,
(Eds.). Springer, 2003, pp. 35—-58. (PDF)



Applications

Feature detection
Shape recognition
Mesh segmentation

Any feature-aware applications

— Preserving salient features in
processing

Challenges:
— What are features on surfaces?
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