

Shape Segmentation

Ligang Liu
Graphics&Geometric Computing Lab
USTC

http://staff.ustc.edu.cn/~lgliu

Pixels or Objects?

Human Perception

 Examining human image understanding many works indicate that recognition and shape understanding are based on structural decomposition of the shape into smaller parts.

Segmentation

- Input: a mesh M={V,E,F}
- Output: a set of submeshes M_i that partition the faces of M into disjoint subsets

Analysis

Representation

Recognition

Collision detection

Animation

Modeling

Problem

- Input: a mesh M={V,E,F}
- Output: a set of submeshes M_i that partition the faces of M into disjoint subsets

Formulation

- Input: a mesh M={V,E,F}
- Output: a set of submeshes M_i that partition the faces of M into disjoint subsets

that minimizes an object function J under a set of constraints C

Outline

- Constraints
- Objective function
- Algorithmic strategies
- Evaluation

Constraints

Cardinality

- Not too small and not too large or a given number (of segment or elements)
- Overall balanced partition

Geometry

- Size: area, diameter, radius
- Convexity, Roundness
- Boundary smoothness

Topology

- Connectivity (single component)
- Disk topology

Objective Function

Objective Function

- How "good" a segmentation is?
 - Number of segments?
 - Surface properties?
 - Boundary properties?
 - Global shape properties?
 - Match examples?
 - Semantics?
 - etc.

Two Types of Segmentations

Different applications

Objective Function

- Mesh attributes to consider:
 - Distances
 - Normal directions
 - Smoothness, curvature
 - Shape diameter
 - Distance to proxies
 - Convexity
 - Symmetry
 - etc.

Distances

Triangles in same segment ought to be close

Field of geodesic distance

Distances

 Triangles in same segment ought to be close Discontinuities in functions of distance indicate possible boundaries

Average geodesic distance to other points

Distances with Spectral Embedding

Normal direction, Dihedral Angles

 Triangles in same segment ought to have normals that are: similar (planar)?, continuous (no creases)?

Skeletons

Smoothness, Curvature

Concave creases indicate good segmentation boundaries

Minimal Rule

- Psychological study [Hoffman et al. 84]
 - All negative minima of the principal curvatures form boundaries between parts
 - decompose 3D shapes at concave creases

Diameter

Distinguish between thin and thick parts in a model

Convexity

Parts generally should be convex and compact

Convexity =
$$\frac{\sum_{n \in P} dist(t, C(P)) \cdot area(t)}{\sum_{n \in P} area(t)},$$
Compactness =
$$\frac{area(C)}{volume(C)^{2/3}}$$

Symmetry

Segments should be locally symmetric

Slippage

 Slippable motions are rigid motions which, when applied to a shape, slide the transformed version against the stationary version without forming any gaps.

$$\min_{[rt]} \sum_{i=1}^{n} ((r \times p_i + t) \cdot n_i)^2$$

Combining many properties

Randomized cuts [Sig 2009]

Segmenting and Labeling

Multi-objective mesh segmentation [SGP 08]

Segmenting and Labeling

• Learning based [Sig 2010]

Application: Simplification

Shape Simplification

- We want to approximate a complex model (shape) with a simpler one. Similar to an approximation theory problem:
 - Replacing complex mathematical objects with simpler ones, while keeping the primal information content.

Planar Patches

Variational shape approximation [Sig 2004]

Planes or Cylinders

Spheres, Cylinders, Rolling Ball Surfaces

Strips & Quasi-Developable Surfaces

Algorithmic Strategies

Algorithmic Strategies

- If |M| = n and |S| = k, then the search space of possible mesh decompositions is of order k^n .
 - NP-complete
 - Must revert to approximation algorithm

Segmentation as Clustering

- The basic segmentation problems can viewed as assigning primitive mesh elements to sub meshes
 - Clustering problem
 - Well-studied in machine learning
- Most segmentation strategies have basis in classic clustering algorithms:
 - Region growing (local greedy)
 - Primitive fitting (model-based)
 - Hierarchical clustering (global greedy)
 - K-means (iterative)
 - Graph Cut

Region Growing

Growing regions started from seeds

Hierarchical Clustering

Watershed

Graphcuts

• Find min-cut

Pose Invariant

Evaluation

Benchmark for Segmentation

A Benchmark for 3D Mesh Segmentation,
 Siggraph 2009

Summary

- Many applications use mesh segmentation as a substage
- Segmentation usually has more effect on the results than seem to be realized
- 3D segmentation is still a very difficult problem and still in its infancy, e.g. compared to image segmentation (hundreds of papers).
- More advanced coherency issues should be addressed such as pose invariance, extracting similar parts and shapes over similar objects and more...

Discussion